
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computer Science

Adapting Main-Memory Databases to
Modern Hardware Architectures
An Evaluation of Query Processing Using SIMD Instructions

Harald Lang

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computer Science

Adapting Main-Memory Databases to Modern Hardware
Architectures

An Evaluation of Query Processing Using SIMD Instructions

Anpassung von Hauptspeicher-Datenbanken an moderne
Rechnerarchitekturen

Eine Evaluation der Anfragebearbeitung unter Verwendung von SIMD Instruktionen

Author: Harald Lang
Supervisor: Prof. Alfons Kemper, Ph.D.
Advisor: Prof. Dr. Peter Boncz, (CWI, Amsterdam)

Viktor Leis, M.Sc.
Submission Date: August 15, 2014

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, 15. August 2014 Harald Lang

iv

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Related Work . 1
1.3. Research Questions . 2
1.4. Scope . 2
1.5. Approach . 2
1.6. Organization . 2

2. Fundamentals 5
2.1. SIMD in x86 Architectures . 5
2.2. Relational Operators . 7
2.3. Query Execution Models . 8
2.4. Benchmark Setting . 10

3. Motivation for SIMD Processing 13

4. Block-Wise Query Execution 15
4.1. Code Generation . 15
4.2. Degree of Parallelism . 16
4.3. Block Size . 16

5. Evaluation of Selection Predicates 19
5.1. Available Compare Instructions . 19
5.2. Selection Mask . 20
5.3. Type Conversions . 20
5.4. Branches . 20
5.5. Qualifying Blocks . 22
5.6. Implementation Issues . 24

6. Arithmetics and Special Math Functions 27
6.1. Available Instructions . 27
6.2. Relevance of Arithmetic Operations . 28
6.3. Vectorized Multiplication . 30
6.4. Overflow Handling . 34
6.5. Min/Max . 38
6.6. Hashing . 39
6.7. Summary . 41

7. Type Conversion 43
7.1. Arithmetic Expressions . 43
7.2. Implementation Details . 44
7.3. Performance Comparison SSE vs. AVX-2 46
7.4. Mixing SIMD with Scalar Operations . 46

v

Contents

7.5. Summary . 47

8. Aggregation and Grouping 49
8.1. Scalar Aggregation . 49
8.2. Group-By Aggregation . 51
8.3. Summary . 58

9. Prototype 61
9.1. Low-Level Query Language . 61
9.2. Optimizations . 63
9.3. Query Compiler Flags . 63

10.Experimental Evaluation 65
10.1. TPC-H Queries . 65
10.2. Overflow Detection . 67
10.3. Block Size . 67
10.4. Query 1: Generated vs. Handwritten . 70

11.Conclusion and Future Work 71
11.1. Conclusions . 71
11.2. Future Work . 73

A. Appendix 75

Bibliography 77

vi

List of Figures

2.1. A common SIMD operation. 5
2.2. SIMD register layout. 6
2.3. Relational operator trees of TPC-H Queries 1 and 6. 12

3.1. Performance comparison of handwritten TPC-H Q1 implementations. . . . 13

5.1. Evaluation of selection predicates in Q6 using SIMD instructions. 20
5.2. Probability that a block qualifies with varying selectivities and block-sizes. . 23

6.1. Type-extending SIMD multiplication. 31
6.2. Performance comparison of type-extending multiplication with varying data

types. 32
6.3. SIMD multiplication of 8-bit integers. 33
6.4. Performance comparison of type-preserving multiplication with varying data

types. 34
6.5. Extraction of the most significant bits of packed 16-bit integers using the

_mm256_movemask_epi8 (vpmovmskb) instruction. 37
6.6. Performance impact of overflow detection on arithmetic operations. 39
6.7. Different overflow detection implementations due to missing signed right

shift instructions. 40
6.8. Hash computation performance. 41

7.1. An example binary expression tree. 44
7.2. A binary expression tree with type annotations and conversions. 44
7.3. Type conversion of sixteen packed 8-bit integers into 32-bit integers. 45
7.4. Unsigned type conversion of sixteen packed 8-bit integers into 32-bit inte-

gers. 45
7.5. Type conversion performance comparison. 46
7.6. Runtime profile of the sequential part of Q6. 47

8.1. Column-oriented group-by aggregation using gather- and scatter-instructions. 51
8.2. Row-oriented group-by aggregation. 52
8.3. SIMD aggregation performance with varying number of aggregates and dif-

ferent instruction selection strategies. 54
8.4. Costs comparison . 56
8.5. Branch prediction costs and branch-free alternatives. 59

10.1. Performance comparison with HyPer (overflow prevention) 66
10.2. Performance comparison with HyPer (enabled overflow detection). 69
10.3. Runtime of Q1 with varying block sizes. 70
10.4. Performance comparison of generated and handwritten code (Q1). 70

A.1. SIMD multiplication of 8-bit integers using AVX-2 instructions only. 75

vii

List of Figures

viii

List of Tables

2.1. Reduced schema of the TPC-H lineitem table. 11

6.1. Available arithmetic operations in AVX-2. 28
6.2. Number of arithmetic operations in the TPC-H benchmark (including ag-

gregations). 29
6.3. Speedup of vectorized addition (with and without overflow checks). 37
6.4. Speedup of vectorized multiplication (with and without overflow checks). . . 39

7.1. Instructions that are involved in moving data between vector- and regular
registers. 47

8.1. Speedup of SIMD minimum/maximum selection compared to sequential
execution. 51

8.2. Relative runtime of Q1 using different transition strategies from parallel to
sequential code compared to sequential loop. 58

10.1. Selection predicates and selectivities. (Q6) 67
10.2. Relative changes in runtime with Q6/wide when introducing branches after

predicate evaluation. 67
10.3. Operations performed by Q6 including type conversion overheads. 68

ix

List of Tables

x

Listings

6.1. SIMD multiplication of 64-bit integers. 33
6.2. Checked (scalar) integer addition without hardware support. 36
6.3. Checked integer addition in AVX-2. 36
6.4. Checked integer addition in AVX-2 using saturation arithmetic. 36
6.5. Selecting the minimum using the _mm256_blendv_epi8 (vpblendvb) in-

struction. 39

8.1. Sequential aggregation loop . 56
8.2. Aggregation loop with branch-free selection (selection-vector) 59
8.3. Aggregation loop with branch-free selection (masking) 59

9.1. TPC-H Query 1 in LLQL . 64
9.2. TPC-H Query 6 in LLQL . 64

xi

1. Introduction

1.1. Motivation

In the last decade, database systems have been adapted to the continuously evolving
hardware. Growing main-memory formed the basis of success for highly performant in-
memory database systems and the increasing number of CPU cores led to very efficient
approaches with respect to task-parallelism in query processing. With data stored in main-
memory, the access latencies have been decreased by orders of magnitude. As a result,
research has been focused on the efficient utilization of CPUs. Many concepts used in disk-
based systems have been discarded as they have been become obsolete or too inefficient
in their new environment. Resent research led to query execution strategies that turned
the main-memory bandwidth into the new bottleneck.
However, many analytical workloads perform CPU-intensive tasks on large amounts of

data. Typically, the data is aggregated to a small number of output tuples or even to a
single scalar value. Many arithmetic operations and comparisons result in higher latencies
and turns this kind of queries into a CPU-bound workload.
In this work we investigate on how CPU-intensive database queries can be accelerated

using the Single Instruction Multiple Data (SIMD) capabilities of the latest x86 processors.
With the Haswell architecture, Intel released the AVX-2 instruction set which provides a
wide range of SIMD instructions for integer arithmetics. With AVX-2 an operation can
be performed on up to thirty-two elements in parallel within one single CPU instruction.
As database systems make much use of integer data types, the AVX-2 instruction set is a
very promising subject of investigation in the context of database systems.

1.2. Related Work

Improving query processing performance using SIMD instructions has been investigated
by many researchers. E.g. Willhalm et al. [22] proposed a table scan for column-oriented
main-memory databases that operates on compressed data. Polychroniou et al. [17] used
SIMD techniques to improve aggregations. Zukowski et al. [26] investigated the use
of SIMD operations in a block-oriented query processing as it is used in the MonetDB
database system [3] and in [25] Zukowski et al. presented a architecture-conscious hashing
which significantly improved the efficiency of hash tables in terms of instructions per cycle
(IPC). In [2], Balkesen et al. tuned different hash join implementations to the underlying
hardware inter alia, by making use of SIMD. The HyPer database system [6] makes use
of SIMD instructions to accelerate bulk-loading [13] and index lookups [9]. In the basic
research of Zhou et al. [24] in 2002, the authors showed the potentials of SIMD in many
different database operations. E.g. the evaluation of selection predicates, aggregation,
index lookups, etc.

1

1. Introduction

1.3. Research Questions
In contrast to previous works, this thesis does not focus on a single database operator, but
instead it aims to efficiently employ SIMD instructions on larger parts of query execution
plans. On this extended scope, performance related aspects are investigated that arise
when SIMD is used across multiple operator boundaries.
In this work the following research questions will be answered:

1. What are the performance benefits for computationally intensive analytical queries?

2. Can queries be efficiently compiled into SIMD code?

3. What kind of operations/queries can not be efficiently processed with SIMD?

4. How does the AVX-2 instruction set compare to earlier SIMD instruction sets in
terms of performance?

1.4. Scope
In this thesis we restrict our research to unary database operators, which we briefly intro-
duce in chapter 2. We primarily focus on efficient arithmetics and aggregation; and on the
evaluation of selection predicates in table scans. The scope of the considered operators is
sufficient to execute single-table queries. Further, we only consider relations that consist of
integer data. We do not investigate on binary operators like the join operator. Especially,
the most important hash join operator is not well suitable for employing SIMD instruc-
tions, due to its random memory access patterns. However, the computation of hash
values can be performed in parallel. Therefore, in chapter 6 we evaluate three prominent
hash functions in SIMD.

1.5. Approach
To answer the research questions stated in section 1.3, we chose the following approach:

1. To determine the potentials of AVX-2 in terms of performance, we manually imple-
ment a CPU-intensive query in C++ using SIMD instructions. We then compare the
runtime with a second hand-written non-SIMD implementation. The query and the
data set for this experiment are taken from the TPC-H benchmark [19] which we will
introduce in the following chapter. In preparation of this experiment, we establish
a suitable in-memory representation of the data set that makes use of narrow data
types, mostly 8-bit integers.

2. In the second stage, we implement a prototypal query compiler to answer the ques-
tion, if automatically compiled queries can compete with handwritten queries in
terms of performance. The prototype should be able to produce AVX-2 code, as
well as SSE code for comparison.

1.6. Organization
The rest of this work is organized as follows. Chapter 2 describes the fundamentals of
SIMD in x86 architectures. Further, it provides an overview of existing query execution

2

1.6. Organization

strategies and it introduces two queries that are used for benchmarking throughout the
work.
Chapter 3 covers the first stage of the approach (given in section 1.5) where the poten-

tials of AVX-2 are experimentally determined using a handwritten query. The subsequent
chapters are part of the second stage, where we focus on code generation and the imple-
mentation details of the individual operators.
Chapter 4 introduces our query execution model that enables data-parallelism via SIMD

instructions. In chapter 5 we shows how the evaluation of selection predicates is imple-
mented using SIMD instructions. Further, it discusses some implications for the underlying
storage. In chapter 6 we cover basic arithmetics and special math functions. As part of
this chapter, we present efficient implementations for checked integer arithmetics. Type
conversion in SIMD registers is discussed in chapter 7 and chapter 8 covers the group-by
operator.
In chapter 9 we present the prototypal query compiler that has been developed as part

of this work and the experimental results are presented in chapter 10.

3

1. Introduction

4

2. Fundamentals

2.1. SIMD in x86 Architectures

In Flynn’s taxonomy [4], a computer that is able to perform an operation on multiple
data elements within a single instruction is classified as a single instruction, multiple data
(SIMD) computer. Most of today’s x86 processors fit into this class, as they provide
supplementary instruction sets to speed up data-intensive computations. In x86 architec-
tures, SIMD operations are performed in an additional set of registers, which are typically
128- or 256-bit wide. These registers can be filled with multiple data elements. A single
SIMD instruction then performs the same operation on all element. Figure 2.1 shows a
SIMD instruction that performs an arbitrary operation ◦ on eight elements in parallel. In
general, the number of results are equal to the number of input elements.

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
0

○ b
0

a
1

○ b
1

a
2

○ b
2

a
3

○ b
3

a
4

○ b
4

a
5

○ b
5

a
6

○ b
6

a
7

○ b
7

○ ○ ○ ○ ○ ○ ○ ○

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

Figure 2.1.: A common SIMD operation.

SIMD instructions are often termed as vector instructions, because they process a fixed
number of input elements at once. Code parts that make use of SIMD instructions are
therefore also referred to as vectorized code. The expression in Figure 2.1 can therefore
also be written as −→a ◦ −→b .
In SIMD terminology, we often refer to the elements which are stored in a SIMD register

as packed elements. The number of elements, that can be packed into a single register
depends on bit-width of the element’s data type. The bit-width of a SIMD register is
either fixed to 128 or 256 bits. Therefore, the maximum number of packed elements of
type T is P = bit-width(REG)

bit-width(T) .
The term lane refers to the to the bit-width and to position of packed elements. E.g.

if a 256-bit SIMD instruction performs an operation “on 64-bit lanes”, then the contents
of the input registers are interpreted as four 64-bit values, and the ith lane refers to data
stored in bits [64 · (i+ 1)− 1; 64 · i].

2.1.1. SIMD Instruction Sets

In this work we primarily focus on Intel’s latest Advanced Vector Extensions 2 (AVX-
2), but we also operate with many different earlier instruction sets such as the Streaming
SIMD Extensions 2 (SSE2) and the Supplemental Streaming SIMD Extensions 3 (SSSE3).
Throughout this work, we only distinguish between SIMD instructions that operate on
256-bit registers, like AVX-2, and instructions that operate on 128-bit registers, like SSE2,
SSSE3, etc. For simplicity, we use “AVX-2” or “SIMD-256” to refer to 256-bit instructions,

5

2. Fundamentals

YMM0

127255 0128
Bit #

XMM0

YMM1 XMM1

...
YMM15 XMM15

Figure 2.2.: SIMD register layout.

and “SSE” or “SIMD-128” (imprecisely) subsume all instructions that operate on 128-bit
registers. For non-SIMD instructions, that operate on regular CPU registers, we use the
term scalar- or “x86”-instructions.

2.1.2. Register Naming and Layout

In earlier processors, SIMD instruction where limited to eight 128-bit registers, which
were named as XMM0 to XMM7. With the release of the Advanced Vector Extension
(AVX) instruction set, Intel introduced 256-bit wide registers and doubled their number.
The newly introduced registers are named as YMM0 to YMM15. XMM and YMM regis-
ters are physically the same, because the XMM names refer to the lower 128 bits of the
corresponding YMM register, as illustrated in Figure 2.2. - Due to the fact, that XMM
and YMM registers share the lower 128 bits, the YMM registers are also called extended
SIMD registers and the term extended packed elements sometimes refer to their contents.
- Instructions from earlier instruction sets can only access the lower 128 bits, but due to
the new instruction encoding (VEX), legacy 128-bit instructions benefit from the eight
additional XMM registers. Further, the VEX encoding provides a three-operand form for
legacy instructions, which allows a compiler to produce more efficient code compared to
the two-operand form, where the content of at least one input register is overridden by
the results. To access the higher 128 bits of a YMM register with SSE instruction, we
have to move the data into the lower bits beforehand. This is accomplished using the
vextracti128 instruction.

2.1.3. Intrinsics Functions

To make use of SIMD instructions in high-level languages like C and C++, Intel provides
for almost all instructions corresponding intrinsics functions- and type-declarations in C.
Throughout this work, we make heavy use of these intrinsics. Therefore, we introduce
some basic type declarations and the general naming conventions.
The data types __m128i and __m256i are used to represent the content of SIMD registers

filled with integer data. An instance of __m256i can either represent thirty-two 8-bit,
sixteen 16-bit, eight 32-bit, or four 64-bit integers. Typically, these types are only used to
call intrinsics functions. A common code pattern is to reinterpret an array of integers as
an array of __m256i before an intrinsics function is called.
The functions use the following naming convention: <prefix>_<operation>_<type>. The

prefixes _mm and _mm256 denote the bit-width of the SIMD instruction, whereas _mm refers
to SIMD-128 and _mm256 to SIMD-256, respectively. The middle part contains the name
of the operation (mostly in short form) and last part of the function name denotes the
type of the packed elements. For instance, the following function performs an addition on
eight 32-bit integers:

6

2.2. Relational Operators

__m256i _mm256_add_epi32 (__m256i a, __m256i b)

Where EPI stands for extended packed (signed) integers.
In general, there is a one-to-one relationship between the SIMD instructions and their

corresponding intrinsics function. In most cases, we refer to the function names instead
to assembler mnemonics to improve readability.

2.2. Relational Operators
In this work, we focus on database queries of the following form:
SELECT aggr1(expr1), ... , aggrn(exprn)
FROM R
WHERE p1 AND ... AND pm

GROUP BY attr1, ... , attrk

where aggri denote aggregation functions like SUM, AVG and COUNT and expri stands for arbi-
trary arithmetic expressions. The WHERE and GROUP BY clauses are optional. The selection
condition in the WHERE clause is restricted to conjunctive predicates, and the FROM clause
is restricted to a single relation.
This kind of queries can be (logically) expressed in relational algebra using the following

relational operators:

• Projection, which is defined as ∏A(e) = {◦a∈A(a : x.a) | x ∈ e}, where e denotes an
arbitrary relational expression, ◦ the concatenation operator and A a set of attributes
produced by e. x.a refers to the attribute a in tuple x (dot-notation).

• Selection, which is defined as σp(e) = {x | x ∈ e∧p(x)}, where p denotes the selection
predicate which tuples must satisfy.

• Map / function evaluation, which is defined as χa:f (e) = {x ◦ (a : f(x)) | x ∈ e},
where f(x) denotes an arbitrary arithmetic expression or function, and a the name
of the newly computed attribute.

• Group by / aggregation, which is defined as ΓA;a:f (e) = {x◦(a : f(y)) | x∈ΠA(e)∧y =
{z | z ∈ e ∧ ∀a ∈ A : x.a = z.a}}.

Further we make use of the following equivalence to rearrange relational expressions:

σp1∧p2(e)) ≡ σp1(σp2(e))
σp1(σp2(e)) ≡ σp2(σp1(e))

ΓA;a:f(g(x))(e) ≡ ΓA;a:f(x′)(χx′:g(x)(e))
ΓA;a:avg(x))(e) ≡ ΠA\{a′,t}(χa:a′/t(ΓA; a′:sum(x); t:count(∗))(e)))

In general, logical algebraic operator may have different physical implementations. An
example from the list above is the group-by operator, which can be implemented i.a. based
on sorting or hash-partitioning. During query-translation or -optimization, the database
system selects a concrete implementation for each operator and so it transforms the logical
algebraic expression into a physical algebra expression that is logically equivalent to the
former one, but suitable for execution. Typically, physical operators have annotations

7

2. Fundamentals

that refer to the implementation details. For instance, a selection operator that processes
multiple elements in parallel using SIMD might be denoted as σSIMD

p .
A very simple but important physical operator, is the table scan operator. The table

scan iterates over all tuples of some table and passes them to the subsequent operator.
In classical relational algebra, the scan operator does not have a logical counterpart,
because accessing data is inherently a physical operation. For example, the logical algebra
expression

Γ{};s:avg(x+y)(σx<42(R))

can be translated into

Πs(χs:t2/t3(ΓS{};t2:sum(t1),t3:count(∗)(χt1:x+y(σx<42(tscan(R)))))),

where ΓS denotes a scalar aggregation.

2.3. Query Execution Models

Once a query is translated into a physical algebraic expression (aka. the query execution
plan), it basically contains all necessary information to execute the query on the underlying
database. However, existing database systems differ considerably in the way queries are
executed. The execution model we are going to use with SIMD adapts concepts of different
existing execution models. Therefore, we give a brief overview of these existing models
that are related to the execution model we use in this work.

2.3.1. Iterator Model

The most popular execution model is the iterator model [10]. In the iterator model,
all physical operators share a common interface, which basically consists of the three
functions: open(), next() and close(). Initially, the open() function is called on the topmost
operator. During the function call, the operator performs initializations like memory
allocations, acquiring file handles, etc. Further, the open()-function call is propagated
to all subsequent operators. After the initialization is complete, the next() function is
called (again) on the topmost operator. The next() function either returns a single output
tuple or a NULL value which marks the end of the query result. If a output tuple was
produced, the database system repeatedly calls next() until NULL is returned. Thus, the
system iterates over the query results. As with the open() function, each operator calls
the next() function of its succeeding operators. Each (non-root) operator produces an
intermediate tuple which is handed over the caller of next(). Immediately after all results
have been produced, the close() function is called to release all acquired resources.
Even though, the iterator model is very easy to implement, it is also known for its

inefficiencies, which are mainly caused by many virtual function calls and branch mispre-
dictions. In disk-based database systems the iterator model was a great success, because
query evaluation was mostly I/O bound and the mentioned inefficiencies did not affect the
overall system performance. However, with the increasing bandwidth of storage systems
and eventually with the arise of main-memory database systems the situation changed
dramatically, as most queries are no longer I/O bound. Instead, pipeline stallings caused
by branch misprediction and the overheads that come with function calls now have con-
siderable performance impacts.

8

2.3. Query Execution Models

2.3.2. Block-Oriented Processing

To overcome these shortcomings, the iterator model was improved so that operators pass
multiple tuples (blocks of tuples) at once to their parent operator [15], in order to reduce
the number of function calls. In the MonetDB/X100 system [3] these blocks (aka. vectors)
of tuples are scaled to the CPUs cache size to additionally avoid costly materialization in
main-memory. Nevertheless, the iterator based executions models follow an interpretation
approach and the associated costs can only be reduced to some certain degree.

2.3.3. Query Compilation

Recent developments therefore favor compilation approaches, where a given query plan
is entirely translated into executable code. The Holistic Integrated Query Engine [7]
(HIQUE) for instance, translates the query plan into C++ code which is then compiled
into a machine executable binary. Thereby, the system makes heavy use of templates,
which are expanded during compilation. This approach eliminates the concept of iterators
entirely and so its overheads. Further, the system benefits from static code optimizations
(e.g. function inlining) performed by the underlying compiler. However, this approach
requires that every query goes through a compilation process which in case of C++ is very
heavy-weight and therefore time consuming (in the order of seconds). The HyPer system
[6, 14] uses a more complex but light-weight compilation process which generates low-level
intermediate code which is then compiled by the Low Level Virtual Machine (LLVM)
framework [8] into native code. Using an intermediate representation that is closer to
native code, reduces the compilation time from seconds to milliseconds.

2.3.4. Produce/Consume Model

Beside the reduced compilation time, HyPer further improved the overall query perfor-
mance by introducing a data centric query execution model. Whereas in the aforemen-
tioned models tuples are passed or copied between the physical operators, the data centric
approach aims to keep tuples in CPU registers as long as possible. In the ideal case, a
tuple is loaded into registers only once and remains there until all operators are finished
processing the current tuple. This approach greatly improves code locality and reduces
materializations into slower cache memory.
In this model, the physical operator provide a lean interface consisting of two functions:

produce() and consume(). In contrast to the iterator model, where function calls immedi-
ately compute result tuples, the compilation approach follows the paradigm of generative
programming. Thus, function calls instead emit code which in the later execution phase
computes the query results. This code generation process is triggered by calling the pro-
duce() function of the root operator of a given query plan. As the name suggests, the
produce() function emits the code to produce an output tuple. Typically, only the leaf
operators are able to directly produce tuples, whereas inner operators rely on the input
from their child. Inner operator use the produce() function to make initializations (if nec-
essary) and to direct the control flow to the produce() function of their child operators.
Once an operator has emitted the code that produces an output tuple, the consume()
function of the parent operator is called. The consume() function then emits code that
processes the previously produced tuple. - We illustrate the code generation in simpli-
fied pseudo-code which is based on the following query plan and given implementations:∏
y(σx=42(tscan(R)))

9

2. Fundamentals

Table Scan:
function produce()

emit "for each tuple t in R"
emit " load t.x → a0"
emit " load t.y → a1"
parent.consume(a0, a1)
emit "end for"

Selection:
function produce()

child.produce()

function consume(ai)
emit "if a0 == 42"
parent.consume(ai)
emit "end if"

Projection:
function produce()

child.produce()

function consume(ai)
emit "output a1"

The above query plan then results in
for each tuple t in R

load t.x → a0
load t.y → a1
if a0 == 42

output a1
end if

end for

As shown in the example, the produce/consume model generates very concise inter-
mediate code. Further, it shows that the code generation is not restricted to emit only
assembly-like code. In principal, any imperative programming language can be used as
intermediate representation.

2.4. Benchmark Setting
In Section 2.1 we mentioned, that the number of elements that can be packed together
depends on their data type. The wider the data type of an element is, the smaller is the
number of packed elements P . Theoretically, this number denotes the maximum degree
of parallelism that can be achieved, and therefore it denotes the upper bound for possible
speedups. This implies, that database systems, that want to take maximum advantage
from SIMD, needs to make use of the smallest possible data types in their storage system.
Possibly some lightweight compression scheme should be used to better utilize SIMD
capabilities, but this is out of the scope of this work. In this work we restrict ourselves to
narrowing down the internally used data types to the smallest possible types, depending
on the maximum attribute values.
For performance measurements we use parts of TPC-H benchmark [19]. In this par-

ticular case, we evaluate the system only with TPC-H Query 1 (Q1) and 6 (Q6). Both

10

2.4. Benchmark Setting

queries operate on a single table, namely the lineitem table. In total, 6 attributes (out
of 16) are accessed by Q1 and Q6. Thus we reduced schema and data set to these six
attributes. To gain a higher degree of parallelism, we choose the least memory consuming
data type for each attribute. For comparison we also compiled the schema with wider
data types, mostly 64-bit integers. Table 2.1 shows the reduced schema and the two
internal representations, which are named “Narrow” and “Wide”. Note, that we store
date values as Julian Day Numbers (JDN). For the Narrow representation we addition-
ally change the point of reference to January 1, 1970. Then, a date d is encoded as:
JDN(d) − 2440587. Because we use signed 16-bit integers, the uppermost representable
date is JDN(215 − 1) + 2440587 = 2473354 = September 18, 2059.

Internal Data Types
Column TPC-H Spec. Narrow Wide
l_quantity decimal int 8 int 64
l_extendedprice decimal int 32 int 64
l_discount decimal int 8 int 64
l_tax decimal int 8 int 64
l_returnflag fixed text, size 1 int 8 int 8
l_linestatus fixed text, size 1 int 8 int 8
l_shipdate date int 16 int 32

Table 2.1.: Reduced schema of the TPC-H lineitem table.

Figure 2.3 depicts the relational operator trees of Q1 and Q6 as they are used in our
performance evaluations. The characteristics of Q1 are: (i) High selectivity, because more
than 95% of the tuples survive the selection operator. Further, (ii) many arithmetic
operations are performed. In total, seven additions and two multiplication are performed
for each surviving tuple, until its materialization in the group-by operator. (iii) The tuples
are reduced to only four output tuples during aggregation. Thus, the time spent in the
subsequent operators is negligible small.
In contrast, Q6 only performs two arithmetic operations, one in the map operator

and another one in aggregation. Important characteristics are: (i) No grouping during
aggregation. The surviving tuples are reduced to a single scalar value. (ii) Many selection
conditions. In total, five comparisons are performed on three different attributes. (iii)
Low selectivity. Approximately 2% of the tuples survive the selection.
Both queries together, deliver meaningful results regarding the performance of SIMD

arithmetics, selection and the two kind of aggregations. Throughout this work we use
them as our running examples.
We ran all benchmarks single-threaded on a Intel Haswell (Core i5-4670T) machine

clocked at 2.30 GHz with 16 GB of main-memory (DDR-1333). As C++ compiler we used
LLVM/Clang++ version 3.4. As input we used the lineitem table with scale factor 10 (≈ 60
million tuples). If not stated otherwise, we make use of the narrow data types.

11

2. Fundamentals

Г

σ
l_shipdate ≤ 1998-09-01

lineitem

l_returnflag, l_linestatus;
sum_qty: sum(l_quantity),
sum_base_price: sum(l_extendedprice),
sum_disc_price: sum(disc_price),
sum_charge: sum(charge),
sum_discount: sum(l_discount)
count_order: count(*)

χ avg_qty: sum_qty / count_order,
avg_price: sum_base_price / count_order
avg_disc: sum_discount / count_order

 Π

pi
pe

lin
e

0
pi

pe
lin

e
1

disc_price: l_extendedprice*(1-l_discount)
charge: l_extendedprice*(1-l_discount)*(1+l_tax)

χ

l_returnflag, l_linestatus, avg_qty, avg_price,
avg_disc, sum_qty, sum_base_price,
sum_disc_price, sum_charge, sum_discount,
count_order

(a) Q1

Г

σ

lineitem

{};revenue: sum(t)

 Π

pi
pe

lin
e

0
pi

pe
lin

e
1

t: l_extendedprice * l_discountχ

revenue

l_shipdate ≥ 1994-01-01 ⋀
l_shipdate < 1995-01-01 ⋀
l_discount ≥ 0.05 ⋀
l_discount ≤ 0.07 ⋀
l_quantity < 24

(b) Q6

Figure 2.3.: Relational operator trees of TPC-H Queries 1 and 6.

12

3. Motivation for SIMD Processing

As mentioned in the introduction, we initially determined the potentials of the AVX-2
instruction set in terms of performance. For this, we manually implemented the first
TPC-H query (Q1) in C++ and tuned it to the underlying hardware.
We basically implemented three different versions of Q1: A sequential version which

processes a single tuple at a time, an AVX-2 version where the evaluation of arithmetic
expressions as well as the aggregations are entirely performed in SIMD registers, and
further a hand-tuned AVX-2 version where we additionally exploited the exact knowledge
about the input data. In the latter case we stored the two aggregates sum(l_quantity)
and count(*) in a single 64-bit lane. We exploited the fact, that both aggregates can be
represented using 32 bits. This allowed us to update five aggregates in parallel within a
single SIMD instruction. In all three implementations we make use of the narrow data
set.
As figure 3.1 shows, the runtime of Q1 can be reduced by ~30% compared to the hand-

written sequential version. However, this kind of optimization requires precise domain
knowledge which is typically provided by min/max-indices. Therefore, in database sys-
tems, like HyPer, that do not maintain min/max-indices, we can not make use of these
optimization techniques. Nevertheless, with the “clean” AVX-2 version we still achieve a
27% performance improvement which motivates further investigations.
The performance difference between HyPer and the handwritten sequential version is

basically due to the compact data representation we use for our experiments.

AVX-2 (hand-tuned)

AVX-2

Sequential

HyPer

0 50 100 150 200 250 300 350 400 450 500

Runtime [ms]

Figure 3.1.: Performance comparison of handwritten TPC-H Q1 implementations.

In the rest of this thesis we focus on automatically generating SIMD code and we
describe the implementation details of the individual operators. We pursue the goal of
developing a query compiler which generates code that is as efficient as our handwritten
implementation. Because the generated code will be similar to the handwritten code in
many aspects, we omit implementation details in this section. Instead, we briefly discuss
the differences in the later evaluation chapter.

13

3. Motivation for SIMD Processing

14

4. Block-Wise Query Execution

In this chapter we conceptionally introduce the execution model which we employ for
SIMD enabled query evaluation. We adapt concepts from existing models which we briefly
introduced in section 2.3. Due to the outstanding performance of the HyPer database
system [6], we based our model on the produce/consume code generation model [14].
In its original form the produce/consume model is designed to process tuple-at-a-time,
which is naturally not well suited for SIMD processing. Therefore we slightly extended
the function behaviors of the physical operators. A producing operator is now intended
to produce a block of tuples until the code of a consuming operator is executed, because
processing multiple tuples at a time paves the way for employing SIMD instructions. We
refer to this as block-wise processing. But in contrast to vector-wise processing which is
used in MonetDB/X100, our approach differs in the following aspects: (i) Each block has
a constant size and within a single query the size does not change, where size refers to the
number of tuples. (ii) The total number of tuples in a block is quite small, because we aim
to keep elements in CPU registers as long as possible. Thus, the block size is determined
by the number of elements that fit into SIMD registers, and not by the CPU’s cache size.
Further, the block size must be chosen large enough, that it would be possible to apply
wide SIMD instructions.

4.1. Code Generation

For the intermediate representation (IR) we use the C++ programming language, what is
basically due to simplicity reasons. Thus, we also “adapt” long compilation times.
During the code generation process, each operator emits C++ code for its corresponding

logical operation, where the generated code mostly consists of intrinsics function calls.
The intrinsics can therefore be seen as the basic building blocks (or primitives) every query
is made of. Therefore, a single (logical) operation issues at least one (machine) instruction.
In our block-wise approach, each operation is always applied on a block-level. Thus, if the
block size exceeds the number of elements that can be packed into a single register, then
multiple instructions are performed. In that case the operator emits a small loop that
iterates over the current block, as it is shown in the following listing.

int16_t result[32] __attribute__ ((aligned (32)));
__m256i* result0 = reinterpret_cast<__m256i*>(result);
__m256i* a0 = reinterpret_cast<__m256i*>(a);
__m256i* b0 = reinterpret_cast<__m256i*>(b);
for (size_t i = 0; i < 2; i++) {

result0[i] = _mm256_add_epi16(a0[i], b0[i]);
}

The above listing contains some frequently recurring code patterns: (i) Intermediate re-
sults are stack-allocated arrays (from the perspective of C++). (ii) Function arguments are
re-interpreted as generic SIMD data types to match the function signatures of intrinsics,
and (iii) for-loops with simple bodies and a small amount of iterations.

15

4. Block-Wise Query Execution

It is noteworthy that the result of the operation is not necessarily materialized on
stack memory and that the reinterpretation statements are eliminated during compilation.
Further, the for-loops are unrolled by the compiler, thus the resulting native code does
not contain conditional jumps. In experiments we observed that manual loop unrolling
results in less efficient register allocation.
Careful handling is needed when intrinsics are used in combination with reinterpret

casts, because load and store instructions require the data to be 16-byte aligned in case of
SSE and 32-byte aligned in case of AVX-2. If SIMD data types like __m128i and __m256i
are used explicitly, the compiler automatically takes care of a proper alignment. In case
of reinterpretation of arrays as SIMD types, the corresponding array must be annotated
with alignment information.
Most instructions exists in three different variants: As SIMD-256 (AVX-2), SIMD-128

(SSE) and as scalar instructions (x86). During code generation, each operator selects the
widest possible instruction. If the block size is smaller than the width of the narrowest
SIMD instruction, then the code generator is forced to select a scalar instruction. From
the perspective of a query compiler, this can be seen as the instruction selection phase.

4.2. Degree of Parallelism

In earlier sections, we informally introduced the degree of parallelism metric (DoP). The
DoP metric provides useful information about how well a given query can benefit from
SIMD and gives a (rough) estimation about the speedup. In later chapters we show
example queries, where employing SIMD has negative impact on query performance. Using
the DoP metric, these cases can be easily identified and quantified. Therefore, we give the
fundamental formal definition of DoP.
So far we used P to denote the number of elements that can be packed into a single

register. On a single-instruction-level, P also denotes the degree of parallelism for a specific
operation. At a coarse grained level a query basically consists of a (finite) sequence of
operations s := (o1, . . . , on), and each operation o has a corresponding instruction with a
specific degree of parallelism Po. Then, the DoP of a given sequence is defined as:

DoP(o1, . . . , on) =
∑n
i=1 Poi

n
= Poi

[elements
instructions

]
(4.1)

We assume that ∀oi(Poi ≤ B), where B denotes the block size. By design, the DoP can not
exceed the block size, because the instruction selection ensures, that the instruction width
is less or equal to the block size. However, the DoP’s upper bound is independent from
the block size, because it is naturally bound by the instructions widths: DoP ≤ max(Poi).

4.3. Block Size

Throughout this work we let B denote the block size. We showed that a block which is
too small limits the maximum degree of parallelism that we can gain from SIMD. On the
other hand, larger block sizes increase the register pressure and typically lead to spilling.
In the later evaluation section we show how the block size influences the query runtime.
So far, we only restrict the block size to be a power of two.

B = 2b , b ∈ N

16

4.3. Block Size

Due to the maximum number of elements that can be processed in parallel using SIMD is
also a power of two, restricting the block size ensures that all elements of a block can be
processed exclusively using SIMD instructions.

B mod Po ≡ 0 if B ≥ Po
For instance, in database queries that access attributes which are stored as 8-bit integers,
the max. degree of parallelism with AVX-2 is 32. Thus, we have to set the block size at
least to 32 to fully utilize SIMD instructions.

17

4. Block-Wise Query Execution

18

5. Evaluation of Selection Predicates

In this chapter we focus on the select operator. Typically, selection is performed at the
very beginning of query evaluation. Query optimizers perform logical transformations on
the operator tree to push selections down as much as possible. In most cases, the selection
is then performed immediately after the table scan. This simple optimization, which can
be found in almost any text book, aims to reduce the cardinality of the intermediate results
and therefore the computational costs of the subsequent operators.
In general, the evaluation of selection predicates is a quite simple task as it (in most

cases) consists of the evaluation of binary relational operators like <,=, >, etc. However,
the use of SIMD instructions has significant implications for query execution.
Note, that we do not consider the more complex set oriented predicate evaluation like

a
?
∈ {. . . }. However, short IN-lists like ... WHERE attribute IN (value1, value2, ...)

can be compiled down to a sequence of equality checks.
The rest of this chapter is structured as follows: Sections 5.1 and 5.2 give an overview

about the available instructions in AVX-2 and show how selection predicates are evaluated.
Sections 5.3 to 5.6 discuss the implications of using SIMD instructions.

5.1. Available Compare Instructions

The AVX-2 instruction set provides an equal and a greater than comparison on signed
integers of 8, 16, 32 and 64 bit width. Further it provides the logical operations AND,
OR and AND-NOT. Based on these instructions, the query compiler can translate selection
predicates of the forms attribute1 ◦ attribute2 and attribute ◦ constant, where ◦ ∈ {=
, ! =, <,≤,≥, >}, by applying the following logical transformations:

Rule Condition Transformation
1) a ≤ b 7→ a = b AND b > a

2) a < b 7→ b > a

3) a ≥ b 7→ a = b AND a > b

4) a ! = b 7→ a = b AND-NOT true

Where a and b are either attributes or constants. In the most cases the ≤ and ≥ conditions
can be transformed into > comparisons which reduces the number of instructions per
comparison:

5) a ≤ b 7→ a < b+ 1, if b < max(domint(b))
6) a ≥ b 7→ a > b− 1, if b > min(domint(b))

Where domint(A) denotes the domain of the internal data type of an attribute A. Rules 5)
and 6) reduce the number of instructions from 3 to 1 if either a or b is constant. Otherwise,
the addition/subtraction is performed at runtime instead of compile time, which results
in 2 instructions per comparison.

19

5. Evaluation of Selection Predicates

discount

4 4 ... 4

-1 -1 ... 0selection mask

>

8 8 ... 8 <

-1 -1 ... 0

^

quantity

24 24 ... 24 <
^

convert

-1 -1 ... 0

-1 -1 ... 0

shipdate

… 1993-12-31 ... >
^

-1 -1 ... 0

… 1995-01-01 ... <

-1 -1 ... 0

^

Figure 5.1.: Evaluation of selection predicates in Q6 using SIMD instructions.

5.2. Selection Mask

A SIMD comparison is performed on multiple packed elements P . Again, P denotes the
number of packed elements within a single SIMD register. When performing P compar-
isons in parallel the result is a bit mask instead of a single boolean value. The resulting
bit mask consists of P packed elements where either all bits of each element are set to
1 or 0. The bits of a packed element are set to 1, if the comparison evaluated to true.
Otherwise, all bits are set to 0’s. We refer to this bit mask as the selection mask. Multiple
conjunctive or disjunctive predicates are evaluated directly on the selection mask using
the bitwise AND and OR instructions as depicted in Figure 5.1.

5.3. Type Conversions

As described in the previous section, the selection mask has the same number of packed
elements as the attribute that is part of the selection predicate. In general, the query
compiler has to handle predicate evaluations on multiple attributes of different types,
which causes type conversions of the selection mask. By default, the query compiler
creates and initializes a selection mask of the same type as the attribute of the first
selection predicate. For each of the following selections the mask is either converted into a
wider or a narrower data type whereby a conversion results (physically) in a newly created
selection mask. Note that down-casting the selection mask to a narrower type does not
result in a loss of information, because the selection mask only consists of boolean values
represented as 0 and -1. However, narrowing the selection mask can be prevented if the
predicates are ordered by the bit-width of their attribute types.

5.4. Branches

In contrast to tuple-at-a-time processing, where each selection predicate can be translated
into a conditional jumps, SIMD selection differs in the following points. First, checking

20

5.4. Branches

the branch condition is slightly more expensive. Second, the branch can only be taken if
all conditions that have been evaluated in parallel evaluated to false.
At this point, an important design decision has been made, regarding the case where

not all tuples in the current block satisfy the selection predicate. Basically, there are two
options to handle the presence of non-qualifying tuples in a block. (i) Reducing the block
size down to the number of qualifying tuples, and only pass the qualifying tuples to the
subsequent operator, or (ii) leave non-qualifying tuples in place and make the subsequent
operators aware of them.
For our evaluation, we took the second option, because reducing the block size would

cause the following additional operations:

1. Determining the positions of qualifying tuples.

2. Shuffling tuples so that they are stored contiguously.

Especially shuffling causes significant costs, because all columns need to be rearranged.
Further, a varying block size prevents loop unrolling in the subsequent operators.
Leaving non-qualifying tuples in place naturally does not cause any costs in the selection

operator, but subsequent operators may have additional efforts, checking the selection
mask. However, making operators aware of non-qualifying opens up the opportunity to
compile queries without any conditional jumps, which is particularly interesting for high
selectivity queries like Q1.

Branch Condition In principle, if at least one single tuple qualifies, then the control
flow must continue with the code generated by the subsequent operator. With SIMD,
this check can be efficiently implemented by performing a movemask instruction on the
selection mask. The movemask instruction interprets the content of a SIMD register as
packed 8-bit elements. It creates a mask from the most significant bit of each element
and stores the result in a (scalar) integer value. The result mask is zero, if all conditions
evaluated to false. If the result mask is not equal to zero, then at least one tuple qualifies.
The following listing shows the complete implementation with block size set to 32 and

a selection mask represented as 16-bit integers:

int branch = 0;
__m256i* sel = reinterpret_cast<__m256i*>(selection_mask);
for (size_t i = 0; i < 2; i++) {

branch |= _mm256_movemask_epi8(sel[i])
}
if (branch == 0) continue;

Predicate Selectivity Typically, multiple selection predicates are evaluated in the order
of their selectivity, which is defined as selp = |σp(R)|

|R| . Predicates with lower selectivity
are evaluated first to reduce the number of intermediate tuples and therefore the costs for
further comparisons.
In general, this also applies for the block-wise processing, but the selectivity of a predi-

cate has lower impacts, because a branch can only be taken if the predicate disqualifies all
tuples in a block. The probability that a block contains no qualifying tuple highly depends
on the block size. With an increasing block size, it is more likely that a block contains qual-
ifying tuples and the control flow continues with the evaluation of the remaining selection
predicates.

21

5. Evaluation of Selection Predicates

Further, reordering the predicates may also incur additional costs. If the selection
predicate which is most selective refers to an attribute of a wider data type as the others,
the selection mask needs to be down-casted subsequently.
For instance in Q6 the most selective predicate is the range predicate on l_shipdate:

p1 = 1994-01-01 ≤ l_shipdate < 1995-01-01 with a selectivity of selp1 = 0.15. The
bit-width of l_shipdate is 16 whereas the other predicates refer to 8-bit attributes. Even
though the predicate selects only 15% of the tuples, the number of blocks is reduced by only
19%. Thus, for 81% of the blocks, a down-cast of the selection mask is performed which
results in barely measurable improvements (less than 0.05%). Eventually, the costs for
checking the branch condition and down-casting the selection mask canceled out any per-
formance gains. In total, 40% of all blocks survive the selection. Thus, the 2% qualifying
tuples are distributed among 40% of the blocks. Introducing a branch after the selection
would eliminate the costs of the remaining operators for 60% of the blocks. However,
the runtime profile of Q6 is dominated by selection and costs for branching do not amor-
tize the costs of the remaining operators ΓS{};revenue:sum(t)(χt:l_extendedprice*l_discount(...)).
Introducing a branch results in a 8% performance decrease.

5.5. Qualifying Blocks
As shown by example of Q6, the decisive parameters whether to introduce a branch or
to run a query branch-free basically are the possible cost savings through the subsequent
operators and the additional costs incurred by the branch itself. In the block-wise pro-
cessing parallel operators incur costs on a per-block basis. Thus, independently from the
number of qualifying tuples in a block, the costs remain constant. If the query contains
a branch then these costs are incurred for all blocks that contain at least one qualifying
tuple. We refer to these blocks as qualifying blocks. As mentioned before, the impact of
a branch is lower compared to a traditional sequential execution because the branch can
only be taken if the selection predicate disqualifies all tuples in the current block, which
becomes more unlikely the greater the block size is. In general the number of qualifying
blocks is an unknown quantity. In the best case scenario the total number of qualifying
tuples k are distributed among

⌈
k
B

⌉
blocks. In the worst case, the k tuples are distributed

among as many blocks as possible. Then the number of qualifying blocks Nb is:

Worst case: Nb =
{

k if k ≤ |R|B
|R|
B otherwise

(5.1)

If we assume, that every possible set of k tuples is selected with the same probability 1
(|R|

k) ,
we can apply Yao’s formula [23] to estimate the number of qualifying blocks. For simplicity
we assume |R| is a multiple of B which implies that every block of size B also contains B
tuples. In our model, all tuples are stored contiguously in memory and only the last block
may not be entirely filled. Therefore, the assumption leads to an error of |R|modB

bN
B c

which

is negligible for large relations. Further let m = |R|
B denote the total number of blocks and

N = |R| the relations cardinality1. Then the number of qualifying blocks is

YN,mB (k) = m · YNB (k) (5.2)

where YNB (k) is the probability that a block contains at least one of the k selected tuples
1the notation of Yao’s formula is adapted from [12]

22

5.5. Qualifying Blocks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Selectivity
P

ro
b

a
b

ili
ty

 t
h

a
t

a
 b

lo
ck

 q
u

a
lif

ie
s

B=1

B=8

B=16B=32B=64

B=4

Figure 5.2.: Probability that a block qualifies with varying selectivities and block-sizes.

YNB (k) =
{

1− p
1

k ≤ N −B
k > N −B

and p is the probability that a block contains none of the selected tuples

p =
(N−B

k

)(N
k

) .

Due to the binomial coefficients the computation of p is very costly. We therefore make
use of the following approximation that has been developed by Waters [21]:

p ≈
(

1− k

N

)B
(5.3)

With sel = k
N , m = N

B and N = |R| we get the estimated number of qualifying blocks as
a function in sel:

NB
b (sel) = |R|

B
·
(
1− (1− sel)B

)
(5.4)

Figure 5.2 shows the probability that a block qualifies depending on the selectivity. Be-
cause the probability function grows exponentially with B as exponent it is very sensitive
to the block size. E.g. for B = 32, approximately 99% of the blocks are scanned if
sel = 0.13. In contrast for B = 4, 99% are scanned if sel ≈ 0.7.
In case of Q6, the 2% selected tuples that survive the selection are distributed among

40% of the blocks. An estimation based on Yao’s formula results in 48%. However, the
basic assumption that every k-set is selected with the same probability does not generally
match reality (that well). More precise estimations require detailed knowledge about the
distribution of the selected tuples, but this is out of scope of this work.
The costs incurred by a branch are also hard to quantify. Typically, checking the branch

condition adds constant costs: 1 vector instruction and 1 scalar comparison. However, the
performance impact of the conditional jump instruction depends on it’s predictability and
therefore also on the distribution of the qualifying tuples. - In the later chapter 8 we show
the impact of branch mispredictions in the context of grouping and aggregation. - The
decision whether or not to introduce a branch in some sequence of operations (o1, . . . , on)
depends on the (estimated) number of qualifying blocks Nb and the costs incurred by the
branch CBranch itself. In general, the query runtime can be reduced if the following holds:

23

5. Evaluation of Selection Predicates

|R|
B
·CBlock(o1, . . . , on) > |R|

B
·(CBlock(o1, . . . , ok)+CBranch)+NB

b (sel)·CBlock(ok+1, . . . , on)

where CBlock denotes the costs for a sequence of operations in block-wise processing.

5.6. Implementation Issues
As mentioned before, most AVX-2 instructions require the data to be 32-byte aligned.
Especially during selection, data is directly accessed on the global memory (the heap).
From the C++ perspective a vector or an array which is allocated on the heap is accessed
directly using an intrinsics function. The corresponding memory region is re-interpreted
as an array of type __m256i, which enables the use of SIMD intrinsics without copying
the data. This implies that the underlying storage has to guarantee that all column-arrays
are at least 32-byte aligned.
Further, the allocated memory region must be a multiple of the amount of data that is

read at once. During a table scan, the columns are read in chunks of at least 256 bits (or
32 bytes). Depending on the query plan, the optimizer might decide to load larger chunks
during one iteration. The decisive parameter is the block size B, which specifies how many
tuples are processed in one loop iteration. Depending on the data type T of the attribute
and the cardinality of the relation N , the size of the allocated memory region must be⌈
N
B

⌉
· sizeof(T) · B. This can be easily implemented by using STL vectors with an initial

size of Bmax, where Bmax denotes the maximum block size of the database system. Note,
that 32 ≤ Bmax and the block size is a power of two. The lower bound of 32 guarantees
that the initial vector size of the narrowest data type is equal the size of a YMM-register,
and because the STL vector doubles in size every time it gets full, the size of the allocated
memory is always a multiple of Bmax · sizeof(T) and therefore of B · sizeof(T).
Although the system can guarantee that memory reads happen within certain bound-

aries, it cannot guarantee that the number of records stored in a table is also a multiple
of the block size. This circumstance leads to a special case that needs to be handled
in the last iteration of the table scan. If the current read position i plus the block size
B exceeds the table’s cardinality N , then the current block contains random data from
uninitialized memory. There are basically two options to handle this case. First, the last
block of tuples is processed sequentially one tuple at a time or second, the query compiler
manipulates the selection mask within the last iteration to mark uninitialized memory
regions a non-qualifying tuple. The later approach requires that a conditional branch is
introduced in the table scan loop.
In contrast, processing the last block sequentially does not require a conditional branch

within the table scan loop, but it introduces a second code path that processes the re-
maining tuples. However, because the query compiler adapts the produce/consume model,
the query compiler has to compile the query plan twice, once for SIMD and once for the
non-parallel version for the last table scan iteration. This implies that every operator
needs to be able to produce both types of code which approximately doubles code size and
the compilation time. Possibly the development time doubles as well.
The query compiler that has been developed as part of this work prefers the second

alternative, which is much easier to implement as it simply sets the corresponding entries
in the selection mask to 0, beginning from index N modB to B− 1. As mentioned before,
this introduces an additional comparison for each block of tuples. The branch itself is

24

5.6. Implementation Issues

well predictable by the CPU as it is taken only once during query processing. Therefore,
the system trades reduced development and compile time with slightly increased runtime.
Experiments with the TPC-H Query 1 and 6 have shown, that the impact is ~1% for Q1
and ~0.05% for Q6.
This approach does not cause any additional overhead or special cases in the subsequent

operators of the query plan, as all other operators are already aware of the presence of
non-qualifying tuples. However, the notable aspect here is, that the selection mask needs
to be initialized (once) even if the query doesn’t contain any WHERE clause. Therefore,
masking random data as non-qualifying tuples is the table scan operator’s responsibility.

25

5. Evaluation of Selection Predicates

26

6. Arithmetics and Special Math Functions

In analytical workloads, arithmetics play an important and performance critical role.
Arithmetics appear in many different operators, e.g. in the GROUP BY operator, the MAP
operator and as well as in the SELECT operator.
A very popular example for a computationally intensive query is Q1 from the TPC-H

benchmark. If we compile the query with a data centric approach as proposed by Neumann
[14], then approximately 38% of the runtime is spent in arithmetic operations. Whereas
10% is spent in the map operator and the remaining 28% in the aggregation functions of
the group by operator.
In this section we take a closer look at arithmetics and special math functions in gen-

eral and we show how basic arithmetic operations are efficiently implemented using SIMD
instructions. We primarily focus on the AVX-2 instruction set, but we also present per-
formance numbers with the older SSE instruction sets for comparison. At some points we
give an outlook (or estimations) for the upcoming AVX-512 instructions. Because arith-
metics appear in different database operators, this chapter is intended to cover the very
basics, whereas later chapters show how the different high-level operators can benefit from
SIMD arithmetics.
This chapter is structured as follows: Section 6.1 gives an overview about the available

SIMD instructions. In section 6.2 we briefly quantify the importance of the individual
operations based on their frequency of occurrence within the TPC-H benchmark. Section
6.3 covers the specifics of integer multiplication and in section 6.4 we show how overflow
handling is implemented using SIMD instructions.

Experimental Evaluation Throughout the chapter we present performance numbers that
have been collected in micro-benchmarks. The experiments are performed as follows: First,
three small arrays a, b and c of size 5 KiB each are allocated, where a and b are initialized
with random values. The two arrays a and b are used as input, whereas c is used as an
output buffer. We iterate over the input elements, apply the arithmetic function under
test ◦ and store the results in c[i]← a[i]◦ b[i]. We deliberately use small arrays that easily
fit into the CPU’s L1 cache to minimize memory bandwidth and latency impacts.
We also take into account that modern Intel CPUs can perform up to four integer oper-

ations in parallel. Therefore, to fully utilize all available ALUs, we additionally unrolled
all loops by a factor of two and four, so that two or four results are computed within one
loop iteration. The experiment is repeated 200k times and as a result, we take the time
of that run that performs best.
The Clang++ compiler front-end is parameterized with -O3 and -march=core-avx2 to

produce code that is optimized for performance. Further we used -fno-vectorize to
prevent the compiler from automatically producing SIMD code.

6.1. Available Instructions

The AVX-2 instruction set provides almost all basic arithmetic operations for the most
common data types. For the implementation of database systems, in particular integer

27

6. Arithmetics and Special Math Functions

Operation
+ - * / min max abs

D
at
a
ty
pe

int 8 ! ! − − ! ! !

int 16 ! ! ! − ! ! !

int 32 ! ! ! − ! ! !

int 64 ! ! − − −2 −2 −2

unsigned int 8 !
1

!
1

− − ! !

unsigned int 16 !
1

!
1

− − ! !

unsigned int 32 − − ! − ! !

unsigned int 64 − − − − −2 −2

1 = saturation arithmetic, 2 = available in the upcoming AVX-512 instruction set

Table 6.1.: Available arithmetic operations in AVX-2.

operations are very important as many high level SQL data types are represented internally
as integers.
Table 6.1 gives an overview about the availability of SIMD arithmetics and special math

functions. It is noteworthy that not for all scalar operations a vectorized counterpart
exists. Especially, the integer division is missing for all integer types and for signed 64-
bit integers, only the addition and subtraction operations are implemented in hardware.
Further, the availability of vector operations is not symmetric w. r. t. signed and unsigned
integer types. Although, some of the missing operations will be available in the upcoming
CPU generation with the AVX-512 instruction set, most of the operations that are yet
implemented in AVX-2 will not be implemented on the larger 512-bit registers. Therefore,
AVX-512 can be seen as a supplemental instruction set.
In the following we only consider signed arithmetics, as most of the signed arithmetics

operations are directly available in hardware.

6.2. Relevance of Arithmetic Operations

As block-wise query processing primarily targets OLAP workloads we use the TPC-H
benchmark as a reference to roughly quantify the importance of individual arithmetic
operations. Among all 22 TPC-H queries the arithmetic operations are made of 61%
additions/subtractions (including aggregations), 26% multiplications, 10% division and
3% min/max selection (Table 6.2), whereas 20% of the multiplications and 100% of the
divisions are performed after an aggregation. Arithmetic operations that are performed
after an aggregation are not considered as performance critical, because the number of
aggregated tuples is much smaller than the cardinality of the scanned table. Therefore,
the absence of integer division is not crucial for implementing the map operator. In general,
the query compiler handles missing vector operation by falling back to the corresponding
scalar operation.
Switching between vector- and scalar-operations in general causes significant perfor-

mance impacts (which we show in the later section 7.4) and should therefore be avoided
whenever possible. In contrast to the integer division, additions and multiplications are
performed in heavily frequented query pipelines. For instance in Q1, eight additions and
two multiplications are performed on each tuple, thus they play an important role regard-
ing the overall query runtime.

28

6.2. Relevance of Arithmetic Operations

Operation
+/- * / min max

Q
ue

ry

1 7 2 3
2 1
3 2 1
4 1
5 2 1
6 1 1
7 2 1
8 3 1 1
9 3 2
10 2 1
11 3 4
12 2
13 2
14 3 2 1
15 2 1 1
16 1
17 2 1 2
18 2
19 2 1
20 1 1
21 1
22 3 1∑

47 20 8 1 1

Table 6.2.: Number of arithmetic operations in the TPC-H benchmark (including aggre-
gations).

29

6. Arithmetics and Special Math Functions

6.3. Vectorized Multiplication

A common vector operation takes two input vectors −→a ,−→b performs an operation ◦ and
produces an output vector of the same size as the input vectors. An exception is the vector
multiplication which has some specialties: 1.) The available multiplication instructions for
the different data types are inconsistently implemented in hardware. 2.) In general, the
bit-width of the products is twice the bit-width of the arguments. 3.) AVX-2 (as well
as SSE) only implement the 16- and 32-bit multiplication. Therefore, instructions that
operate on 8- and 64-bit integers are not directly available in hardware. The following
list, taken from the Intel Intrinsics Guide [5], shows the available instructions and short
descriptions:

• __m256i _mm256_mul_epi32 (__m256i a, __m256i b)
“Multiply the low 32-bit integers from each packed 64-bit element in a and b , and
store the signed 64-bit results in dst .” 1

• __m256i _mm256_mulhi_epi16 (__m256i a, __m256i b)
“Multiply the packed 16-bit integers in a and b , producing intermediate 32-bit inte-
gers, and store the high 16 bits of the intermediate integers in dst .”

• __m256i _mm256_mulhi_epu16 (__m256i a, __m256i b)
“Multiply the packed unsigned 16-bit integers in a and b , producing intermediate
32-bit integers, and store the high 16 bits of the intermediate integers in dst .”

• __m256i _mm256_mullo_epi16 (__m256i a, __m256i b)
“Multiply the packed 16-bit integers in a and b , producing intermediate 32-bit inte-
gers, and store the low 16 bits of the intermediate integers in dst .”

• __m256i _mm256_mullo_epi32 (__m256i a, __m256i b)
“Multiply the packed 32-bit integers in a and b , producing intermediate 64-bit inte-
gers, and store the low 32 bits of the intermediate integers in dst .”

As the list shows, all multiplications double the bit-width of the argument, but only the
_mm256_mul_epi32 instruction also returns the result with a doubled bit-width. Whereas
all other operations just return either the higher or the lower bits of the result value.
For our prototypal query compiler we implemented two different kind of SIMD mul-

tiplications. (i) The type-preserving multiplication, that produce output vectors of the
same type as the input vectors, similar to the vector addition/subtraction. (ii) The type-
extending multiplication, where the bit-width of the output is doubled, like in _mm256_mul
_epi32. Because, the product of two n-bit integers can always be represented as a 2n-bit
integer, the type-extending implementations cannot cause integer overflows. - Note, that
the handling of overflows is discussed in detail in section 6.4.

6.3.1. Type-Extending Multiplication
First, we focus on the implementations that double the bit-widths. Because the _mm256_mul
_epi32 intrinsics function serves as a role model for the following implementations, we
first explain how the function internally works.
The function expects the 32-bit arguments to be stored in 64-bit lanes, which means

that each 32-bit input element occupies 64-bit of the YMM-register. The instruction
treads the lower 32-bits of every 64-bit lane as a input, whereas the higher 32-bits are

1“dst ” refers to the return value of the intrinsics function.

30

6.3. Vectorized Multiplication

ignored. In other words, the multiplication expects spaces of 32-bit between the input
elements. In database systems that store attributes in column-oriented fashion, this has
the implication that columns cannot directly serve as an input for the multiplication
instruction. Instead, an additional shuffle or convert instruction is necessary beforehand.
In AVX-2 the most efficient way to do this, is to employ the _mm256_cvtepi32_epi64
(vpmovsxdq) instruction that converts four 32-bit integer stored in a XMM register into
four 64-bit integers, as sketched in figure 6.1.

convert

a
0
∙ b

0
a

1
∙ b

1
a

2
∙ b

2
a

3
∙ b

3

b
0

b
1

b
2

b
3

a
0

a
1

a
2

a
3

a
0

a
1

a
2

a
3

convert

∙b
0

b
1

b
2

b
3

0127255

Figure 6.1.: Type-extending SIMD multiplication.

Multiplying two input vectors with 4 packed elements each, results in (at least) 3 vector
instructions. The involved type conversion instruction takes a 128-bit register as input
and writes its output to a 256-bit register. A multiplication of four elements may also
result in 4 vector instructions, if the input elements are stored in the higher 128 bits of
an YMM register. In that case an additional extract instruction is issued to move the
contents into the lower 128 bits of an YMM register.
Based on the available instructions (listed on page 30) we implemented the 8- and 16-bit

multiplication the same way.
void mul16_epi8_to_epi16_avx2(__m128i* a, __m128i* b, __m256i* dst) {

__m256i a16;
__m256i b16;
convert16_epi8_to_epi16_avx2(a, &a16);
convert16_epi8_to_epi16_avx2(b, &b16);
dst[0] = _mm256_mullo_epi16(a16, b16);

}

void mul8_epi16_to_epi32_avx2(__m128i* a, __m128i* b, __m256i* dst) {
__m256i a32;
__m256i b32;
convert8_epi16_to_epi32_avx2(a, &a32);
convert8_epi16_to_epi32_avx2(b, &b32);
dst[0] = _mm256_mullo_epi32(a32, b32);

}

A type-extending 64-bit multiplication has not been implemented, because the devel-
oped prototype does not support 128-bit integers. Nevertheless, we implemented a type-
preserving 64-bit multiplication that supports overflow detection (see section 6.3.2).
Figure 6.2 shows a performance comparison of the individual implementations with

varying data types. Especially the speedups are much lower as one might expect. For

31

6. Arithmetics and Special Math Functions

example, in AVX-2 we can perform four 32-bit integer multiplication at once, but because
we also have to take the type-conversion into account, we only achieve a speedup of ~2.
In SSE, using 128-bit registers, only two operations can be performed at once, here the
costs for type-conversion do not amortize. Only the 8-bit multiplication benefits from SSE
instructions. In general, a type-extending multiplication reduces the degree of parallelism.
For example, the 32-bit multiplication processes four elements in parallel within three
instructions, thus the DoP(∗i32→i64)=1.3.

int 8 int 16 int 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x86 SSE AVX-2

C
yc

le
s

/
O

p
e

ra
tio

n

(a) Performance in [Cycles / Multiplication]
int 8 int 16 int 32

0

2

4

6

8

10

12

14

16
SSE
AVX-2

S
p

e
e

d
u

p

sequential
code

(b) Speedup of SIMD implementations compared
to sequential code.

Figure 6.2.: Performance comparison of type-extending multiplication with varying data
types.

6.3.2. Type-Preserving Multiplication
In this section we describe the type-preserving implementations. For the 16- and 32-bit
multiplication, we can directly use the corresponding intrinsics functions, as shown below.
Only the 8- and 64-bit multiplication need to be implemented manually.

Operation Intrinsics Function
∗i16 ←→ _mm256_mullo_epi16
∗i32 ←→ _mm256_mullo_epi32

8-Bit Integer Multiplication The (probably) most efficient way to implement a 8-bit
multiplication in AVX-2 is to use the _mm256_mullo_epi16 function as sketched in figure
6.3. Both input vectors are first type-converted into 16-bit integers and after the multipli-
cation has performed, the lower 8-bits of each 16-bit element are shuffled into upper/lower
64-bits of the 256-bit register. Finally, the contents of the upper and lower 128 bit are com-
bined using a bitwise OR. This intermediate step is necessary, because we can only shuffle
bits within 128-bit boundaries. For bit-shuffling, we employ the _mm256_shuffle_epi8
(vpshufb) instruction. In total, 5 C++ function calls are required to multiply both vectors,
which are translated into 6 native instructions. Therefore, a single multiplication of two
elements is performed within 0.375 instructions, in average. The additional instruction
is caused by the fact, that we interpret a YMM-register as two XMM-registers. The OR

32

6.3. Vectorized Multiplication

convert

a
0

a
1 ... a

15

a
0

a
1 ... a

15

127255

b
0

b
1 ... b

15

convert

b
0

b
1 ... b

15

0 127255 0

_mm256_mullo_epi16

a
1
∙ b

1 ... a
15

∙ b
15

a
0
∙ b

0

a
0
∙ b

0
a

1
∙ b

1 0 0 0 0 ... a
15

∙ b
15

or

... a
15

∙ b
15

a
0
∙ b

0
a

1
∙ b

1

2x

Figure 6.3.: SIMD multiplication of 8-bit integers.

instruction cannot access the higher 128-bit of a YMM-register, therefore an additional
_mm256_extracti128_si256 (vextracti128) instruction is issued to move the content
into a regular XMM-register. In this case, we can avoid the extraction if we only employ
AVX-2 instructions. The alternative implementation is described in appendix A. Unfortu-
nately, the AVX-2-only version is ~14% slower. The performance decrease is caused by the
_mm256_permute2x128_si256 (vperm2i128) instruction, which has very high latencies.

64-Bit Integer Multiplication A 64-bit multiplication is composed of multiple 32-bit
multiplications as shown in listing 6.1. The implementation has little room for optimiza-
tions. We only exploit the fact, that the _mm256_mul_epu32 ignores the higher 32 bits of
the input elements, therefore we do not have to mask out the higher bits. In total, the
multiplication of four 64-bit integer results in 9 vector instructions and therefore in 2.25
instructions per operation.

void mul4_epi64_avx2(__m256i* a, __m256i* b, __m256i* dst) {
const __m256i hi_a = _mm256_srli_epi64(a[0], 32);
const __m256i hi_b = _mm256_srli_epi64(b[0], 32);
const __m256i t1 = _mm256_mul_epu32(a[0], hi_b);
const __m256i t2 = _mm256_mul_epu32(a[0], b[0]);
const __m256i t3 = _mm256_mul_epu32(hi_a, b[0]);
const __m256i t4 = _mm256_add_epi64(_mm256_slli_epi64(t3, 32), t2);
dst[0] = _mm256_add_epi64(_mm256_slli_epi64(t1, 32), t4);

}

Listing 6.1: SIMD multiplication of 64-bit integers.

The performance comparison is shown in figure 6.4. As expected, the 64-bit multiplica-
tion does not benefit from SIMD instructions, whereas the 16- and 32-bit multiplications
are two times faster compared to the type-extending implementations.

33

6. Arithmetics and Special Math Functions

int 8 int 16 int 32 int 64
0

0.5

1

1.5

2

2.5

3

3.5
x86 SSE AVX-2

C
yc

le
s

/
O

p
e

ra
tio

n

(a) Performance in [Cycles / Multiplication]

int 8 int 16 int 32 int 64
0

2

4

6

8

10

12

14

16
SSE
AVX-2

S
p

e
e

d
u

p

sequential
code

22.4

(b) Speedup of SIMD implementations compared
to sequential code.

Figure 6.4.: Performance comparison of type-preserving multiplication with varying data
types.

6.4. Overflow Handling

For all database queries that contain integer arithmetics the database system has to be
aware of possible integer overflows. Basically, there a two different strategies to handle
overflows. First, the database system evaluates queries in a way that prevents overflows.
Second, the system explicitly checks if an overflow occurred right after an arithmetic
operation has been performed. Both strategies are not mutual exclusive and can therefore
be used within a single query.

6.4.1. Preventing Overflows

A simple way to prevent overflows is to convert the operands into a wider type before
the arithmetic operation is performed. The SIMD multiplication instruction is a suitable
example as it prevents overflows by doubling the bit-width of the data type. More evolved
implementations make use of meta data, e. g. min/max values, to choose the smallest data
type that is guaranteed to represent the result correctly. For systems that dynamically
create code at runtime, an overflow prevention strategy has great potential in terms of
performance, because overflow handling can be shifted from runtime to compile-time.
Therefore, the number of instructions issued by mathematical operations can at least be
halved compared to the overflow detection strategy, which incurs at least one additional
instruction to check the CPU’s status register. However, there are cases where overflow
prevention also has negative impact on runtime. For example, if the system determines
(based on the meta data) that an overflow might occur, it casts the operands into larger
types, even if the overflow is very unlikely or actually never happens. The casting operation
itself and as well as the usage of larger data types incur additional runtime costs, especially
if the type’s bit-width exceeds the machine’s register bit-width. Therefore, this can be
considered as a pessimistic approach.
Basically, expressions of the form attribute ◦ constant are considered harmless, because

the target type can be determined precisely based on the given min/max-intervals. In

34

6.4. Overflow Handling

contrast, for expressions of the form attribute1 ◦ attribute2 the database system can not
determine the smallest target type exactly, as illustrated in the following example.
Given a relation R := {[A,B]} where ∀a ∈ A : a ∈ [0, 100] and ∀b ∈ B : b ∈ [0, 100]

R

A B

0 100
42 35
100 13
47 0

and the expression e := a+ b. If we compute the range of e based on the ranges of a and
b, we get e ∈ [0, 200]. Because a (signed) 8-bit integer cannot represent the value 200, we
have to type-convert into 16-bit integers, although the concrete values of e never exceed
the domain of an 8-bit integer. This is not a big issue with 8-bit integers, but it becomes
costly if we unnecessarily cast from 32-bit to 64-bit integers or to even larger types.

6.4.2. Detecting Overflows
Modern x86 CPUs provide a special status register that helps detecting integer overflows.
Even though high level languages like C++ do not support overflow detection as part of the
language specification, compilers like LLVM/Clang++ provide special built-in functions2

for checked arithmetic operations. For example the built-in function

bool __built-in_saddll_overflow(long long x, long long y, long long *sum);

performs a checked 64-bit integer addition. The returned boolean signals, if an overflow
occurred. Unfortunately, these functions are only available for scalar operations. If we
employ SIMD instructions, overflow detection needs to be performed manually, without
hardware support.
In [20], Warren presents efficient implementations for almost all scalar arithmetic oper-

ations. In the following we show the overflow detection implementations for addition and
multiplication and re-implement them using SIMD instructions:

Addition An integer overflow caused by addition (or subtraction) can be easily detected
using the bitwise operators XOR and AND as follows:

result = a + b;
status = (result ^ a) & (result ^ b);

If the most significant bit in status is set, an overflow occurred. Otherwise the msb is
0. The manual check requires three additional instructions plus an additional instruction
to extract the overflow bit, which can be done for example by right-shifting status >> (
size_of(status)* 8 - 1).
The following listing shows the complete function for adding 16-bit integers. In addition

to the two operands, the functions expects a third (reference) argument, where the overflow
flag is stored. The function is designed to preserve already set overflow flags, thus multiple
arithmetic operations can be performed and subsequently, the overflow flag is checked only
once.

2http://clang.llvm.org/docs/LanguageExtensions.html#checked-arithmetic-builtins

35

http://clang.llvm.org/docs/LanguageExtensions.html#checked-arithmetic-builtins

6. Arithmetics and Special Math Functions

int16_t add_i16(int16_t a, int16_t b, int64_t& overflow) {
const int16_t result = a + b;
const int64_t local_overflow = ((result ^ a) & (result ^ b)) & 0x8000;
overflow |= local_overflow;
return result;

}

Listing 6.2: Checked (scalar) integer addition without hardware support.

The implementation of a SIMD version is very straightforward, as for all required opera-
tions a corresponding AVX-2 instruction exists. Only the update of the overflow variable
differs from the scalar version. Here, we employ the movemask instruction to collect the
most significant bits of each element. Because the movemask instructions interprets the
content of local_overflow as 8-bit integers, we additionally have to mask out some bits if
the addition is performed on larger types. The listing 6.3 shows a 16-bit integer addition,
therefore we have to mask out every second bit starting at position 0, as illustrated in
Figure 6.5 on the next page. The gabs between the individual bits can be ignored, because
for overflow detection, we only need to know if any bit is set.

void add16_epi16_avx2(
__m256i* a, __m256i* b, __m256i* dst, int64_t& overflow) {

const __m256i result = _mm256_add_epi16(a[0], b[0]);
const __m256i a_xor_result = _mm256_xor_si256(a[0], result);
const __m256i b_xor_result = _mm256_xor_si256(b[0], result);
const __m256i local_overflow =

_mm256_and_si256(a_xor_result, b_xor_result);
overflow |= _mm256_movemask_epi8(local_overflow) & 0xaaaaaaaa;
dst[0] = result;

}

Listing 6.3: Checked integer addition in AVX-2.

In total, a checked addition requires 5 vector instructions + 2 scalar instructions. Listing
6.4 shows a slightly improved implementation which is based on saturation arithmetic.
With saturation arithmetics no overflows (or underflows) occur. If the result exceeds the
range of the data type, the result is either set to the maximum possible value, in case
of overflows, or to the minimum possible value, in case of underflows. For example, if
the range is [−128, 127], then 120 +sat 10 = 127 or 0 −sat 200 = −128. An operation is
considered as overflowed, if the result value is either the min. or the max. possible value.
This leads to a little inaccuracy at the boundaries, because in the given implementation it
is undecidable whether the operation really overflowed or it just results in one of the two
extreme values. E.g. the operation 120 +sat 7 erroneously reports an overflow.
void add16_epi16_avx2_saturation(

__m256i* a, __m256i* b, __m256i* dst, int64_t& overflow) {
const __m256i result = _mm256_adds_epi16(a[0], b[0]);
const __m256i is_min = _mm256_cmpeq_epi16(result, MIN_EPI16_VEC);
const __m256i is_max = _mm256_cmpeq_epi16(result, MAX_EPI16_VEC);
const __m256i is_min_or_max = _mm256_or_si256(is_min, is_max);
overflow |= _mm256_movemask_epi8(is_min_or_max);
dst[0] = result;

}

Listing 6.4: Checked integer addition in AVX-2 using saturation arithmetic.

36

6.4. Overflow Handling

16 x 16-bit integer

&

=

mask_int8

0xAAAAAAAA

mask_int16

255 127 0

_mm256_movemask_epi8

Figure 6.5.: Extraction of the most significant bits of packed 16-bit integers using the
_mm256_movemask_epi8 (vpmovmskb) instruction.

Compared to the first implementation, we only save one scalar operation. Micro-
benchmarks have shown a little performance improvement of ~1%, if we use saturation
arithmetics. Further, saturation arithmetics are only available for 8- and 16-integer addi-
tion/subtraction.
Figure 6.6 on page 39 shows the performance of arithmetic addition with different inte-

ger types. It compares the scalar- with the vector-operations as well as the checked with
the unchecked version. For comparison, we also implemented the operations using the
older SSE instruction sets. We observed a 49% performance decrease3 with the 256-bit
AVX-2 instructions, whereas the hardware supported overflow detection with scalar oper-
ations causes as 40% performance decrease. In SSE, manual overflow detection adds 55%
overhead, but in all cases, SIMD processing amortizes the additional costs and improves
the computational performance, as shown in the table 6.3. In average, AVX-2 is 1.6 times
faster then SSE.

SSE AVX-2
unchecked checked unchecked checked

int 8 15.0 29.1 22.7 43.4
int 16 7.6 7.2 11.6 10.7
int 32 3.0 2.6 4.3 4.1
int 64 1.6 1.4 2.4 2.3

Table 6.3.: Speedup of vectorized addition (with and without overflow checks).

Multiplication As mentioned before, the product of two n-bit integers can always be
represented as a 2n-bit integer. To implement a manual overflow detection, as described
in [20], we need to have access to the higher n bits of the product. If we assume that both
operands have the same bit-width n, we can detect overflows as follows:

hi(a ·n b) 6= (lo(a ·n b) ≫ (n− 1)) (6.1)

3Median over all four data types.

37

6. Arithmetics and Special Math Functions

Where hi and lo let us access the higher and lower n bits of the product and ≫ denotes
the signed right shift. Informally speaking, the upper halve must only contain sign bits
and these sign bits need to be equal to sign bit in the lower halve. Otherwise, an overflow
occurred.
Basically, the implementations with overflow detection are based on the type-extending

multiplications as they give us access to the higher bits of the product. However, due to
the fact, that the signed right shift instruction is not available for all integer types, we had
to have find alternative implementations. The following list describes the most efficient
implementations that have been found on our Haswell machine:

• 8-bit: The 8-bit integer multiplication differs slightly from the above equation, be-
cause there is no signed right shift on 8-bit integers. Instead, the implementation
does a “double shift” on 16-bit elements. The algorithm is illustrated in figure 6.7a
on page 40. For the multiplication itself, we use the alternative type-preserving
(“AVX-2 only”) implementation which is shown in appendix A.1. The aforemen-
tioned latencies caused by the permutation instruction are hidden by the overflow
detection code, which makes the AVX-2-only version the best performing implemen-
tation for 8-bit integer multiplication.

• 16-bit: For multiplying 16-bit integer, we make use of the _mm256_mulhi_epi16 and
the _mm256_mullo_epi16 instructions. Basically, the multiplication is performed
twice, but it avoids the more costly type conversions, which makes the 16-bit mul-
tiplication the most efficient implementation among the others in terms of [cycles/-
operation].

• 32-bit: The overflow checks in 32-bit multiplications is the most similar to the above
equation. Here, we produce some don’t care (DC) values that have to be masked
out later on, but micro-benchmarks have shown, that this approach performs better
compared to alternative implementations that rely on shuffling to avoid these DCs.
The implementation is sketched in figure 6.7b.

• 64-bit: The implementation for multiplying 64-bit integers is based on the type-
preserving implementation (as shown in the previous section 6.3.2) and the overflow
detection is similar to those of the 32-bit multiplication.

The checked 64-bit integer multiplication is the only arithmetic operation, that does not
benefit from AVX-2 instructions. Compared to the sequential code, the SIMD code is 40%
slower. Therefore, in queries that make use of checked arithmetics, the query compiler
should fall back to sequential processing. Switching between scalar- and vector-operations
within a single query incurs an additional overhead caused by moving data from vector
registers into regular registers and vice versa. These additional costs are investigated in
section 7.4. Note, that even though the unchecked 64-bit multiplication is 20% slower, it
is still reasonable to use the AVX-2 version to avoid costly data movements between the
different registers.
Figure 6.6 shows a performance comparison among all implementations in [cycles/op-

eration]. The red bars denote the overhead caused by overflow detection.

6.5. Min/Max
As the table 6.1 (on page 28) shows, the vector extensions also lacks of min/max implemen-
tation for 64-bit integers. For completeness, we show how these functions are implemented
in SIMD.

38

6.6. Hashing

i8
 →

i8

i8
 →

i1
6

i1
6

 →
i1

6

i1
6

 →
i3

2

i3
2

 →
i3

2

i3
2

 →
i6

4

i6
4

 →
i6

4 i8

i1
6

i3
2

i6
4

Multiplication Addition

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Overflow detection

C
yc

le
s

/
O

pe
ra

tio
n

6.4

i8
 →

i8

i8
 →

i1
6

i1
6

 →
i1

6

i1
6

 →
i3

2

i3
2

 →
i3

2

i3
2

 →
i6

4

i6
4

 →
i6

4 i8

i1
6

i3
2

i6
4

Multiplication Addition

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x86 SSE AVX-2

C
yc

le
s

/
O

p
e

ra
tio

n

Figure 6.6.: Performance impact of overflow detection on arithmetic operations.

SSE AVX-2
unchecked checked type-ext. unchecked checked type-ext.

int 8 3.1 7.7 2.9 6.7 13.0 11.7
int 16 14.9 5.5 ! 0.6 22.4 10.0 1.6
int 32 2.5 ! 0.9 ! 0.8 4.0 1.3 2.2
int 64 ! 0.5 ! 0.3 n/a ! 0.8 ! 0.6 n/a

Table 6.4.: Speedup of vectorized multiplication (with and without overflow checks).

Computing the min or max basically takes two instructions, whereas the first is a less-
than or a greater-than comparison and the second is a blend instruction that copies el-
ements from two source registers into a third destination register using a control mask.
As control mask we can directly use the bit mask that is produced by the comparison
instruction (see listing 6.5).

6.6. Hashing

Beside the basic arithmetic operations, we also evaluated three popular hash functions in
SIMD. Even though we do not investigate hash tables in this work, the computation of
hash values can be pushed to the vectorized code part of a query and can therefore be

__m256i _mm256_min_epi64(__m256i a, __m256i b) {
__m256i mask = _mm256_cmpgt_epi64(a, b);
__m256i result = _mm256_blendv_epi8(a, b, mask);
return result;

}

Listing 6.5: Selecting the minimum using the _mm256_blendv_epi8 (vpblendvb)
instruction.

39

6. Arithmetics and Special Math Functions

DC

int32_t

sign bitssign bitssign bits sign bits

a
1
∙ b

1 ... a
15

∙ b
15

a
0
∙ b

0

left shift epi16 by 8

a
0
∙ b

0
a

1
∙ b

1 ... a
15

∙ b
15

signed right shift epi16 by 15

signed right shift epi32 by 8

hi(a

∙ b) lo(a

∙ b)

compare equal epi16

no-of
0

no-of
1 ... no-of

15

move mask epi8

a
0
∙ b

0
sign
bits a

1
∙ b

1
sign
bits ...sign

bits a
15

∙ b
15

sign
bits DC DC DC

16 bits

256 bits

bitwise complement overflowno overflow

(a) Overflow detection in 8-bit integer SIMD multiplication. - Extension of figure 6.3

DC

DCDCDCDC

int32_t

sign
bits

a
1
∙ b

1
a

2
∙ b

2
a

3
∙ b

3
a

0
∙ b

0

signed right shift epi32 by 31right shift epi64 by 32

hi(a

∙ b) lo(a

∙ b)

compare equal epi32

no-of
0

no-of
1

move mask epi8

a
0
∙ b

0
a

1
∙ b

1 ... a
15

∙ b
15

DC sign
bitsDC sign

bitsDC sign
bitsDC

DC DCno-of
2

no-of
3

DC

bitwise and 0x0F0F0F0F

overflow

bitwise complement

64 bits

256 bits

(b) Overflow detection in 32-bit integer SIMD multiplication.

Figure 6.7.: Different overflow detection implementations due to missing signed right shift
instructions.

40

6.7. Summary

CRC32
MurmurHash1

CRC64
MurmurHash2

Xorshift

0

1

2

3

4

5

6
x86 SSE4.x AVX2

C
yc

le
s

/
H

a
sh

 9.8

Figure 6.8.: Hash computation performance.

processed in parallel.
For our experimental evaluation, we choose the MurmurHash 1 & 2 [1] and the Xorshift

[11] functions. The latter is actually a pseudo-random number generator but it can be
alienated as a hash function. The Xorshift is very light-weight as it is computed in only
seven bit operations, whereas the MurmurHash2 is considered more heavy-weight as it
performs four 64-bit multiplication plus seven additional logical operations. Due to the fact
that 64-bit multiplication is relatively slow in SIMD, we decided to additionally implement
the MurmurHash2 64B version, which is optimized for 32-bit architectures as it only relies
on 32-bit multiplications. With the 64B version we observed a 18% performance increase
with AVX-2 compared to the 64A version of MurmurHash2. With SSE, the 64B version
outperforms the 64A version by 20%. Therefore, we omit the results of MurmurHash2
64A.
We have to mention, that our implementations of MurmurHash2 slightly differs from

the original versions. Originally, the function is designed to hash inputs of variable length,
whereas our modified implementation is limited to hash a single 64-bit input value. The
same applies for the MurmurHash1, except that it hashes 32-bit inputs.
Since Intel implemented the cyclic redundancy check (CRC) [16] in hardware, beginning

with the Nehalem architecture, the CRC function also became very attractive to be used
as a hash function. Therefore, we also consider the 32- and 64-bit CRC functions in our
evaluation.
The results in figure 6.8 clearly show that MurmurHash2 function implemented in SIMD

cannot compete with its sequential counterpart. In contrast, the 32-bit MurmurHash1,
which computes eight hash values at ones, shows a speedup of more than 3 x. However, the
CRC functions only take ~1 CPU cycle, and the only function that can slightly underbid
this, is Xorshift implemented in AVX-2.

6.7. Summary
In this chapter we investigated the efficiency of SIMD arithmetics. Especially additions/-
subtraction can highly benefit from SIMD instructions. With SSE we observed speedups
that are close to the number of packed elements P : SSSE = 0.86P . In contrast, the relative
speedup of 256-bit SIMD is significantly lower: SAVX-2 = 0.64P , but in absolute numbers,
AVX-2 still outperforms SSE by a factor of 1.5. Even though that overflow detection has

41

6. Arithmetics and Special Math Functions

to be implemented manually in SIMD, we only observed 9% lower speedups compared to
the scalar operations.
With multiplications the picture changes dramatically. In particular the SIMD 64-bit

multiplication, that has to be implemented using 32-bit multiplications, cannot compete
with its scalar counterparts. Detecting overflows causes significant additional runtime
costs, that makes the SIMD-256 implementation about 40% slower than the scalar imple-
mentation. Due to the fact, that modern CPUs can perform up to four scalar operations
in parallel, arithmetics barely benefit from SIMD-128 instructions. While on the other
hand it is safe to rely on SIMD-256 instructions for integer types of up to 32-bit.
The missing 64-bit multiplication also has noticeable performance impacts on hashing.

The evaluation of the MurmurHash2 function has shown, that the AVX-2 version is more
than 20% slower than the scalar version. Only the 32-bit MurmurHash1 and the 64-bit
Xorshift functions can compete with the CRC function which is directly implemented in
hardware.

42

7. Type Conversion

In the context of database research, type conversions are a very uncommon topic, because
most database systems are developed in a high-level programming language, and from the
perspective of a high-level programming language, type conversions are usually performed
implicitly. E.g. if a program accesses a scalar 8-bit integer value, it is most likely loaded
into a 64-bit general purpose register. During program execution a movsbl is performed
that extends the sign bits to the bit-width of the register while the data is loaded from
memory. In practice, it makes (almost) no different w.r.t. execution time, if we load a
64-bit or an 8-bit integer. Differences in runtime are usually due to memory bandwidth
limitations and not due to type conversions. In general, we can say that a single scalar
value reserves one register independently of its data type and conversions between different
integer types do not incur additional costs.
However, if we employ SIMD instructions the picture changes dramatically. In SIMD

processing, where a single register contains multiple packed elements type conversions has
the implication that data may no longer fit into a single register after a type conversion.
Further, dependent on the source- and target-data type, a conversion may also employ
multiple instructions. Thus, type conversions become an explicit task that need to be
handled efficiently.
The necessity for type conversions arises by the facts that (i) almost all binary operations

we perform in SIMD during query processing, require both operands to be of the same
data type, and (ii) we favor that each attribute is stored (and processed) in the narrowest
possible type, as this increase the degree of parallelism. Thus, whenever we want to
perform a binary operation on two attributes that are of different types, we have to
explicitly convert them into their common super-type. Furthermore, in chapter 5 we
already mentioned, that type conversions also appear during the evaluation of selection
predicates. In that case, the selection mask is type-converted to match the bit-width of
the selection-attribute, which may happen multiple times within a single query.
In this chapter we first give an example for type conversions in the context of the map

operator and we discuss the implications. Then we present our implementations for type
conversion in SIMD in the subsequent section. Again we focus on the new AVX-2 instruc-
tion set, but we’ll also show a performance comparison with the older SSE instructions. In
the last section, we take a look at the performance impacts of the conversion from vectors
to scalar values and vice versa.

7.1. Arithmetic Expressions

Type conversions often occur during the evaluation of arithmetic expressions. In general,
the evaluation of arithmetic expressions in SIMD is very similar in terms of code generation
with its scalar counterpart. Internally, expressions are represented as binary expression
trees. During code generation, the tree is traversed in post-order and the corresponding
code for each operation is emitted.

43

7. Type Conversion

*

extendedprice -

1 discount

Figure 7.1.: An example binary expression tree.

For instance, figure 7.1 depicts the expression extendedprice∗(1−discount) as it appears
in TPC-H Q1. The discount attribute is internally represented as an 8-bit integer and
the extendedprice attribute is a 32-bit integer. Due to the nature of x86-SIMD, both
operands of an binary operation needs to be of the same data type and in general, this
is achieved by converting the smaller operand into the type of the larger operand. In our
example, a special case arises, because the final multiplication is type-extending. In that
case, both operands need to be converted into 64-bit, as shown in figure 7.2.

*
i32→i64

extendedprice
i32 -

i8

1
i8

discount
i8

convert
i8→i64

convert
i32→i64

Figure 7.2.: A binary expression tree with type annotations and conversions.

In block-wise processing, each operation is performed on an entire block of tuples. This
implies, that the degree of parallelism decreases with every type-conversion. Further, it
results in a higher register pressure as the memory consumption of the attributes increases
by factors. Assuming the block-size in the above example is set to B = 32, then the (sub-)
expression 1 − discount is evaluated within a single instruction, whereas only two SIMD
registers are allocated. In contrast, the subsequent multiplication is performed on 64-bit
lanes and therefore, the thirty-two 8-bit elements need to be converted. After the type-
conversion, the memory consumption has been increased from 32 bytes to 256 bytes which
corresponds to 8 YMM register. The same applies for the second operand. Theoretically,
all available SIMD register are then allocated only for the evaluation of a simple expression,
whereas other attributes (and the selection mask) has been spilled to memory. However,
the underlying LLVM compiler reorders the operations so that conversions and arithmetic
operations are interleaved. Therefore, in practice the total number of allocated registers is
significantly lower. Nevertheless, the example shows that type conversions in SIMD play
a performance critical role.

7.2. Implementation Details
In AVX-2, all converting instructions read the content of a XMM register and store their
results in YMM registers. This implies, that if we cast into the next wider type, we again

44

7.2. Implementation Details

8 bits

_mm256_cvtepi8_epi32

a
8

a
9 a

15
a

0
a

1 a
7

_mm256_cvtepi8_epi32

16 x 8 bit integer

8 x 32 bit integer8 x 32 bit integer

src

dst

shuffle control mask

_mm_shuffle_epi8

0

load 16 packed 8-bit integers
vmovdqa (%rsi,%rax,1),%xmm0
convert and store the
first 8 elements
vpmovsxbd %xmm0,%ymm1
vmovdqa %ymm1,(%rdx,%rax,4)
load control mask and shuffle
remaining elements
vpshufb 0x2110b8(%rip),%xmm0,%xmm0
convert and store the
remaining 8 elements
vpmovsxbd %xmm0,%ymm0
vmovdqa %ymm0,0x20(%rdx,%rax,4)

Figure 7.3.: Type conversion of sixteen packed 8-bit integers into 32-bit integers.

4 x

... a
15

a
0

a
1 ...

16 x 8 bit integer

4 x 32 bit int

src

dst
4 x 32 bit int 4 x 32 bit int 4 x 32 bit int

src

dst

_mm_shuffle_epi8

shuffle control masks

load shuffle control masks
vmovdqa 0xb7f1(%rip),%xmm0
vmovdqa 0xb7f9(%rip),%xmm1
vmovdqa 0xb801(%rip),%xmm2
vmovdqa 0xb809(%rip),%xmm3
load 16 packed 8-bit integers
vmovdqa (%rsi,%rax,1),%xmm4
shuffle - store, 4 times
vpshufb %xmm0,%xmm4,%xmm5
vmovdqa %xmm5,(%rdx,%rax,4)
vpshufb %xmm1,%xmm4,%xmm5
vmovdqa %xmm5,0x10(%rdx,%rax,4)
vpshufb %xmm2,%xmm4,%xmm5
vmovdqa %xmm5,0x20(%rdx,%rax,4)
vpshufb %xmm3,%xmm4,%xmm4
vmovdqa %xmm4,0x30(%rdx,%rax,4)

Figure 7.4.: Unsigned type conversion of sixteen packed 8-bit integers into 32-bit integers.

can store the result within a single register. Therefore, the conversions i8 → i16 → i32
→ i64 can all be performed within a single instruction. In contrast, if we increase the
bit-width fourfold or eightfold, we have to issue multiple instructions to convert all packed
elements in the source register, because the output of a single instruction is limited to a
single register. E.g. the conversion into 32-bit integers is limited to eight elements per
instruction, because at most eight 32-bit integers can be packed into a YMM register. If for
example the source type is an 8-bit integer, the source register contains sixteen elements in
total. In that case, the _mm256_cvtepi8_epi32 (vpmovsxbd) instruction consumes eight
source elements from the lower half of the source register, while the remaining elements,
stored in higher halve, are ignored. In a second step, the remaining source elements
are moved into the lower halve of the SIMD register and a second convert instruction is
performed. This procedure is illustrated in figure 7.3. The listing right beside the figure
shows the corresponding assembly code. Note, that due to missing right shift instructions,
we have to use a shuffle instruction to move elements. The shuffle has the drawback,
that a control mask needs to be loaded into a XMM register, which naturally requires an
additional move instruction. Analogous, if we extend the bit-width eightfold (i8 → i64),
three shuffles and four converts are required.

45

7. Type Conversion

i8 → i16 i8 → i32 i8 → i64 i16 → i32 i16 → i64 i32 → i64
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
SSE SSE (unsigned) AVX-2

C
yc

le
s

/
O

p
e

ra
tio

n

Figure 7.5.: Type conversion performance comparison.

7.3. Performance Comparison SSE vs. AVX-2
In SSE, things are quite different, as SSE instructions only operate on XMM registers.
Here, basically all type conversions require additional shuffle instructions, this also in-
cludes the conversions i8 → i16 → i32 → i64. However, in SSE we can improve the overall
performance by 22% in average, if we directly shuffle the source elements to their corre-
sponding target positions without issuing a convert instruction. This optimization works
as long as both operands are positive, because the sign bits are not extended this way. Un-
fortunately, this optimization does not work with AVX-2, because the shuffle instruction
operates on XMM registers only and therefore does not fully utilize SIMD capabilities. As
shown in figure 7.4, the unsigned conversion of sixteen packed integers would requires 13
instructions in total, whereas the signed conversion is performed in just 6 instructions.
To the best of our knowledge, the presented implementations are the most efficient ones.

In average, the conversion takes 0.34 cycles per element with AVX-2. Compared to SSE,
we observed speedups of 1.8 x and 1.5 x compared to “SSE-unsigned” (as shown in figure
7.5).

7.4. Mixing SIMD with Scalar Operations
As mentioned in previous sections, in some cases the query compiler has to fall back to
scalar operations if the corresponding SIMD operation is not implemented in hardware.
Accessing the individual components of a vector does not necessarily incur a type conver-
sion, but from a high level perspective, it can be seen as some sort of conversion as well, as
we convert vectors in multiple scalar values and vice versa. In this section we investigate
the performance impacts of mixing scalar operations into a vectorized query pipeline.
As a subject of the investigation, we choose query number six (Q6) from the TPC-H

benchmark. For our experiment, we synthetically sequentialized the computation of the
arithmetic expression discprice = extendedprice ∗ discount and compared the runtime
and the assembly generated by the LLVM compiler. The preceding type conversion of
extendedprice and discount into 64-bit integers ensures, that both operands are first
located in SIMD registers. The later aggregation revenue = sum(discprice) is performed
in parallel, thus the discprice must then be loaded back into SIMD registers again, and the
circle is closed. In our experiment, we replaced the SIMD multiplication by a sequential
loop:

46

7.5. Summary

for (uint64_t i = 0; i < 32; i+=1) {
discprice[i] = extendedprice[i] * discount[i];

}

With this small change, the overall performance decreased by 66%. Due to the relatively
large block-size of 32, no loop-unrolling is performed by the LLVM backend. As a result,
~15% of the overall runtime is spend in checking the loop condition and in branching. To
remove the conditional branch, we unrolled the loop manually. This also paved the way
for LLVM to produce more efficient code, but we still observed a performance decrease of
47%. An analysis of the assembly code has shown, that the conversion from vectors to
scalars comes in many different “flavors”. The LLVM compiler creates different sequences
of instructions to perform the same task, which we do not want to discuss in detail.
However, in all cases we observed that the data is spilled to memory at least once. E.g. in
Q6, both operands are directly moved from SIMD to regular registers, whereas the results
of the multiplications are first spilled to memory and then moved back into SIMD registers
later on.
It is noteworthy, that data that is located in the higher 128 bits of an YMM register is

never moved directly into regular registers. Instead, the higher 128 bits are first moved into
a XMM register using the vextracti128 instruction and then, the vpextrq instruction
is used to extract the individual scalar values from the XMM register. The extraction of
the higher 128 bits is usually done once for each vector-operand. Thus, the number of
issued instruction is independent from the number of packed elements, but it additionally
allocates one temporary SIMD register per input vector.
Figure 7.6 shows the runtime profile of the sequentialized code part of Q6 and table 7.1

gives a short description about the involved instructions.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

7% 14% 18% 49% 11%

vextracti128 vpextrq vmovq imul/mov vmovdqa

Time

Figure 7.6.: Runtime profile of the sequential part of Q6.

vextracti128 move high 128 bits of an YMM- into a XMM-register
vpextrq extract a scalar value from XMM- to regular register
vmovq extract the first scalar value from a XMM register
mov move data between regular register and memory
vmovdqa move data between YMM registers and memory

Table 7.1.: Instructions that are involved in moving data between vector- and regular
registers.

7.5. Summary
In this chapter we have shown that SIMD enabled query processing comes with additional
costs for type conversions, what we would get almost for free if we would process data

47

7. Type Conversion

sequentially. In average we have to count 0.34 additional cycles per element. Especially
in databases, were attributes are preferably stored in narrow data types, type conver-
sions may appear more often. Typically, queries that perform aggregation are potentially
affected by type conversions, because the aggregates usually have a wider type than the
individual attributes themselves. In general, conversion can be reduced if we adjust the all
attributes to wider types. However, this would greatly reduce parallelism and the memory
bandwidth might become the bottleneck. Beside type conversions we have shown that
mixing sequential code into a vectorized query pipeline has severe impact on the overall
performance. The costs that comes with sequential code parts are threefold: (i) Moving
data from a SIMD register into a regular registers requires up to three instructions. (ii) In
most cases, the results of scalar operations are spilled to cache memory, and must therefore
be loaded into a SIMD register later on (filling); and (iii) the natural loss of parallelization
has serious impact on the overall performance.

48

8. Aggregation and Grouping

In this chapter we show how aggregation is implemented in SIMD. We basically distinguish
two different types of aggregation. 1.) The scalar aggregation, where aggregation functions
are applied to one or more attributes. This kind of queries produce exactly one output
tuple containing at least one aggregated value. 2.) The group-by aggregation, where
aggregated values are computed individually for each group of tuples.
Even though, both implementations are quite different, they both rely on efficient arith-

metics, which we presented in chapter 6. Note, that we focus on the most common
aggregation function. More precisely, we only support aggregations that can be computed
using a constant amount of space. E.g. median is not supported, due to its linear space
complexity. On the other hand, average is supported, because it can be easily decomposed
into a summation and a division: avg(x) = sum(x)/count(x)

8.1. Scalar Aggregation
Queries that perform scalar aggregations, are of the following form: SELECT f0(a0), ...,
fn(an) from <relations> where <conditions> , whereas fi are aggregation functions
like sum, avg, count, etc. These functions reduce the attribute values ai of each qualifying
tuple to a single scalar value. The aggregation can be performed incrementally as the
following pseudo-code snippet shows:
initialize variable aggr
for each qualifying tuple t do {
aggr ← f(aggr, t.attr)

}
output aggr

We have to declare and initialize a variable for each aggregate, then we call the corre-
sponding aggregation function for each qualifying tuple.
The basic idea for SIMD processing, which was originally presented in [24], is to compute

multiple partial aggregates in parallel and store them in an array. Then, after all tuples
have been consumed, a final reduction is performed on that array. In our block-wise
approach, this array is initialized with a size of the block-size B. In each iteration, we
process B tuples and update the corresponding partial aggregate, where the ith element
is the aggregation of the ith tuple of each block.
In contrast to the sequential version, in our block-wise approach we have to take into

account the non-qualifying tuples; as described in the earlier chapter 5. In the aggregation
phase, we therefore make use of the selection mask to mask out all non-qualifying tuples.
The key idea is to replace the affected attribute values in the current block by a neutral
element w.r.t. the aggregation function. Then, the modified block is passed into the
aggregation function. E.g. for summations, a bitwise AND is performed with the selection
mask, which sets all elements that belong to non-qualifying tuples to zero. The following
listing shows the (generic) algorithm in pseudo-code:

49

8. Aggregation and Grouping

initialize array partial_aggr[B]
for each qualifying block b do {
tmp[B] ← neutralize(b.attr, selection_mask)
partial_aggr ← f(partial_aggr, tmp)

}
aggr ← reduce(partial_aggr)
output aggr

To keep things simple, the final reduction is done sequentially. Because the block-size
is quite small (usually B ≤ 32), the reduction phase is not a sweet spot for optimizations.
Especially, because the reduction is independent from the input size.

8.1.1. Implementation Details

8.1.1.1. Count(*)

Counting the qualifying tuples is basically a summation, where the constant 1 is passed
into the aggregation function for each qualifying tuple. In SIMD, we can optimize the
computation of a count(*) by simply summing up the selection mask. If a tuple qualifies,
all bits at the corresponding position of the selection mask are set to ones, which represents
the integer value -1 in two’s complement. Thus, if we pass the selection mask into the
aggregation function, then we count in negative direction. After the final reduction phase
is finished, we only have to toggle the sign of the aggregate. Zhou and Ross already
mentioned this “trick” [24], but did not make use of it. In total, this reduces the number
of instruction from three down to one per vector, because we don’t have to broadcast (or
load) the constant 1 into a vector register, nor do we have to neutralize elements.
A SELECT count(*) FROM lineitem shows speedups of 1.6 x with SSE and 2.3 x with

AVX-2 instructions, compared to sequential code.

8.1.1.2. Min/Max

For selecting the minimum or maximum attribute values we use the extreme values of
the corresponding data type as neutral elements. Attribute values that belong to non-
qualifying tuples are replaced by the largest possible integer, in case of minimum selection,
or the smallest possible integer, in case of maximum selection. These extreme values are
broadcasted into a vector register, then we blend (vpblendvb) the attribute values and
extreme value into a third register using the selection mask as a control mask (as shown in
section 6.5). Compared to sequential code, we observed an average speedup of ~6 x with
AVX-2 (see table 8.1).
In contrast to count and sum, we achieve much higher speedups with min/max-selection.

The key difference is, that min/max is performed on the original data type, whereas a sum
is usually stored in a wider type, e.g. in a 64-bit integer. Thus, min/max benefits from a
higher degree of parallelism and does not cause costly type-conversion.

8.1.2. NULL-Handling

In scalar aggregation a special case occurs if no tuple qualifies. In that case, the aggregates
contain NULL values. If we apply the aggregation functions as shown, we might get one of
the neutral elements as a result. In that case it is undecidable, whether the aggregation
resulted in an extreme value or no tuple survived the selection. To handle these corner

50

8.2. Group-By Aggregation

SSE AVX-2
int 8 11.0 12.2
int 16 5.2 6.7
int 32 2.7 3.5
int 64 1.4 1.5

Table 8.1.: Speedup of SIMD minimum/maximum selection compared to sequential exe-
cution.

cases, the system has to additionally count the qualifying tuples. In case of min/max-
selection, the introduction of an additional count(*) aggregation might have negative
performance impacts, due to the mentioned loss of parallelism and conversion costs.

8.2. Group-By Aggregation
In this section we take a closer look at the hash-based group-by aggregation. Compared to
the scalar aggregation, that perfectly enables SIMD processing, the way of implementing
a group-by aggregation is not that self-evident. Actually, the column oriented aggregation
does not work anymore when the aggregation contains a group-by clause. At least, it can’t
be implemented efficiently on the current Haswell architecture, due to missing hardware
instructions. Nevertheless, this is going to change with the next processor generation,
therefore we still sketch the idea of a column oriented group-by aggregation. After that,
we present a fine-tuned row-oriented implementation.

8.2.1. Column-Oriented Group-By

signed right shift epi32 by 31

256-bit

Hashtable Buckets

a
1

a
2

a
3

 apply aggr. fn.

aggregates

attribute vector

 scatter gather1

2

3

Group 0 Group 1 ... Group n

a
0

Figure 8.1.: Column-oriented group-by ag-
gregation using gather- and
scatter-instructions.

In the block-wise processing scheme, the in-
dividual attribute values arrive in a colum-
nar format. Compared to the scalar ag-
gregation, the key difference is, that in
general these attributes belong to different
groups which are stored in different hash
buckets. Therefore, the corresponding ag-
gregates are no longer stored in contigu-
ous memory locations. This implies that,
if we want to apply the aggregation func-
tion to P tuples in parallel, we would have
to gather the corresponding P aggregates
from their memory locations into a single
vector register. After the function is ap-
plied, the results must be scattered back
to their original locations.
Further, in this approach conflicting

write operations occur, if multiple at-
tributes belong to the same group. E.g.
if two aggregates are written to same memory location during the back-scattering, the
results are partially overridden. This can be solved using the partial aggregation approach
as shown in the scalar aggregation section. For this, we allocate multiple memory “slots”
for each aggregate and depending on the position of attribute in the column vector, the

51

8. Aggregation and Grouping

signed right shift epi32 by 31

compare equal epi32

Block

00 -1-1 -1-1 0-1selection_mask

disc_price

extendedprice

charge

quantity

Packed Aggregates

Hashtable
Buckets

Sequential Scan

load + convert SI
M

D
 a

gg
re

ga
tio

n
+

 b
uc

ke
t u

pd
at

e

Figure 8.2.: Row-oriented group-by aggregation.

corresponding aggregate is updated as shown in figure 8.1. This way, all write-accesses
become data-independent and can be performed in parallel. E.g. in the figure the at-
tribute a0 and a2 hash to the same group 0. Depending on their position in the attribute
vector, the corresponding aggregates within the group are updated. In principle, this ap-
proach trades memory consumption for parallelism, as it reserves 256-bits for each bucket
independently of the attributes data type. Thus, if P elements fit into a single 256-bit
register, the hash table consumes P times more space. However, the show-stopper is the
missing scatter instruction in Intel’s current Haswell architecture. Indeed, the scatter can
be manually implemented using maskstores but this would lead to a complete loss of
parallelism.

8.2.2. Row-Oriented Group-By

As the name suggests, the following implementation of a group-by aggregation breaks
with the column-oriented processing model. The row-based approach tries to overcome
the aforementioned shortcomings by employing SIMD instructions in a tuple-at-a-time
processing. The key idea is to update multiple aggregates of a single group in parallel.
This is achieved by arranging aggregates in the hash bucket in such a way, that neigh-
boring aggregates are compatible w.r.t. to their aggregation function. The corresponding
attribute values can then be packed into vector registers and the hash bucket is updated
using vector instructions. Typically, aggregates are 4- or 8-byte values, therefore we can
update up to eight aggregates in parallel. This approach implies, that data has to be trans-
formed from column-vectors into tuples. Further, the maximum degree of parallelism no
longer depends on the block size, instead it depends on the number of compatible aggrega-
tions. Therefore, only queries that perform multiple aggregations may benefit from SIMD
instructions. In general, the vectorized group-by, as it is sketch in figure 8.2, is orthogonal
to block-wise processing.
In the following sections we first present how SIMD instructions can be employed to

efficiently update the aggregations in hash buckets. Then, we show how the row-oriented
approach integrates into the block-wise processing scheme.

52

8.2. Group-By Aggregation

8.2.2.1. Bucket Layout and Updates

To apply SIMD updates, the hash buckets have to be of a proper format. For our approach,
we subdivide the structure of a hash bucket into packed aggregates (PA). All aggregates
that belong to the same PA basically have the same aggregation function and the same
data type. More precisely, the underlying arithmetic operation needs to be the same.
Therefore, sums and counts can be packed together, naturally. A single PA reserves
256 bits, thus it takes exactly one instruction to perform an update on all containing
elements. Further, each PA needs to be 32-byte aligned otherwise a general-protection
exception will be thrown. The following listing shows the structure of an exemplary hash
bucket consisting of two PAs:

struct Entry {
int64_t packedAggr0[4] __attribute__ ((aligned (32)));
int32_t packedAggr1[8] __attribute__ ((aligned (32)));

};

Finding a proper bucket layout is part of the query compilation process. For our prototy-
pal query compiler we developed an algorithm, that minimizes the number of instructions
that are required to update all packed aggregates. Thereby, the algorithm tries to avoid
overheads caused by 1.) under-utilization of SIMD registers and 2.) unnecessary space
consumption by the hash buckets.
The algorithm determines the bucket layout in two phases. The first phase groups

together all compatible aggregations, forming up to three disjoint sets of aggregations: the
sum-group, the min- and the max-group. In the second phase, the algorithm determines
a proper data layout for each group individually as follows:
First, the algorithm counts the number of aggregates for each data type. If the number

of aggregates of a certain type is greater or equal to the number of aggregates that can
be stored within a single PA, then new PAs are created and the corresponding aggregates
are assigned to it. All PAs created within this step contain the maximum number of
aggregates, thus they fully utilize SIMD instructions and each aggregate reserves the
minimum amount of memory. Therefore, they are considered as optimal.
In the second step, the algorithm considers the remaining aggregates that have not been

assigned in the previous step. In general, the remaining aggregates are of different data
types (typically 32- and 64-bit integers) and the algorithm assigns them to PAs so that
the number of instructions required for updates and the costs are minimal. During this
step, the algorithm considers up-casting the aggregates from smaller into larger types to
achieve the mentioned optimization objectives. We discuss the details of this optimization
step later in this section.

Instruction Selection Optimization After the bucket layout is determined, the query
compiler performs an additional optimization step during the instruction selection phase.
Based on the utilization of the PAs, it selects the smallest instruction for updating the
aggregates. Small, in terms of number of packed elements or vector size respectively. In
worst case, a PA contains only a single element. In that case the code generator selects a
scalar instruction.
To make the effects of the instruction selection optimization visible, we conducted

an experiment where we performed multiple count(*) aggregations and compared the
query run-times. We started with a single count and subsequently increased the counts
to the number of elements in a PA. As data set we used the lineitem table of the TPC-
H benchmark with scale factor 10 and the grouping attributes are l_returnflag and

53

8. Aggregation and Grouping

1 2 3 4

80

85

90

95

100

105

110

115

120

125

130

AVX-2 + SSE + Scalar

SSE

AVX-2

Scalar

Number of Aggregations

R
u

n
tim

e
 [

m
s]

144 169

(a) 64-bit integer aggregates

1 2 3 4 5 6 7 8

80

85

90

95

100

105

110

115

120

125

130

AVX-2 + SSE + Scalar

SSE

AVX-2

Scalar

Number of Aggregations

R
u

n
tim

e
 [

m
s]

204132 168 224 244 271

(b) 32-bit integer aggregates

Figure 8.3.: SIMD aggregation performance with varying number of aggregates and differ-
ent instruction selection strategies.

l_linestatus:
SELECT count(*) c1, ... , count(*) cn
FROM lineitem
GROUP BY l_returnflag, l_linestatus

The experiment is repeated with different instruction selection strategies and different
data types. First, we restricted the query compiler to use either scalar-, SSE- or AVX-2
instructions exclusively. Then, we let him select the smallest viable instruction from all
instruction sets. The plots in Figure 8.3 show the results with either (a) 4 x 64-bit packed
aggregates and (b) 8 x 32-bit packed aggregates.
Beside the fact, that SIMD updates can significantly increase performance, the results

also show that

1. under-utilization of SIMD instructions causes noticeable overheads,

2. and a packed aggregate should be updated within (at most) one single instruction.

Both observations seem to be contradictory, as in some cases we cannot avoid under-
utilization without employing an additional instruction. In these cases the system should
select a vector instruction even if the packed aggregate contains empty slots (blue lines in
Figure 8.3).
Based on this results we can formalize how the costs of the individual instructions are

related to each other. Assuming the underlying hardware implements the SSE and the
AVX-2 instruction sets, we distinguish between scalar x86 instructions, denoted as I64, and
128-/256-bit SIMD instructions denoted as I128 and I256, respectively. If we apply some
(arbitrary) cost function C, then the following system of inequalities must be satisfied:

1) C(I64) < C(I128) < C(I256)
2) C(I256) < C(k · I128); k ∈ N\{1}
3) C(I256) < C(k · I64) (8.1)
4) C(I128) < C(k · I64)
5) C(I128 + I128) < C(I256 + I64)

54

8.2. Group-By Aggregation

Thus, employing more than one instruction is in any case more costly. E.g. updating
two 32-bit aggregates using a SIMD-128 instruction is less costly than using two scalar
instructions, even though the SIMD register is only utilized by 50%. The overhead of
under-utilization becomes visible if we compare the SIMD-128 with the SIMD-256 instruc-
tion. Whereas the SIMD-256 instruction still outperforms the two scalar instructions, we
only observe a performance gain of ~7% compared to ~17% with SIMD-128.

Minimizing Costs Through Up-casting As mentioned before, we can apply additional
optimizations if the aggregates are of different data types. Due to the nature of SIMD,
all aggregates that are packed together need to be of the same data type. Therefore,
if we naively assign aggregates depending on their types to the corresponding PAs, we
might employ more instructions during hash bucket updates than necessary. Further, as
a PA always reserves 32-bytes, the space consumption of the hash buckets may also be
suboptimal. For example, the following two packed aggregates are under-utilized: PAi64

0 =
[a0, a1, Ø, Ø], PAi32

1 = [b0, Ø, Ø, Ø, Ø, Ø, Ø, Ø], where Ø denotes an empty slot.
By up-casting b0 from i32 to i64 we can assign it to PAi64

0 = [a0, a1, b0, Ø] and therefore
reduce the costs for the hash bucket updates, because C(I256) < C(I128) + C(I64).
To quantify the results, we model the costs using the latencies of the add instruction,

which we observed in the micro-benchmarks of chapter 6:

Lat(IB) =


1.2 if B = 64
1.6 if B = 128
2.4 if B = 256

(8.2)

Further, we define the costs as a function that maps a given PA to the latency values
based on the number of assigned aggregates n and the data type T :

CT (n) =



0 if n = 0
Lat(I64) if n = 1
Lat(I128) if n > 1 ∧ n·bitwidth(T)

256 ≤ 1
2

Lat(I256) if n > 1 ∧ 1
2 <

n·bitwidth(T)
256 ≤ 1

+∞ otherwise

(8.3)

If we apply the cost function to the above example, then we get a reduced latency of 0.2
(-14%). Further, as a side effect, the overall space consumption has been halved through
this optimization step.
In the following we present an algorithm that minimizes the costs for a given list of

under-utilized packed aggregates: The algorithm expects the list to be sorted by the bit-
width of the PA’s data type in a descending order. The up-casting optimization starts
at the PA with the widest data type. Thereby, the algorithm computes how the costs
would change if additional aggregates will be up-casted into the current PA. These costs
deltas are computed for every empty slot and the results are stored in a vector −−−→delta =
(d0, . . . , dmaxIn)T. Thus, the components di denotes the cost delta if i elements are up-
casted from one of the subsequent PA’s, where d0 is always 0 at the top-level PA and the
size of the vector (= maxIn + 1) denotes the number of available slots. After the deltas
have been computed, the algorithm recurses to the subsequent PA of a narrower type with
the delta-vector passed in. In each recursion step, a new cost delta-vector is computed
similarly, but this time the algorithm does not only considers incoming aggregates, but
also outgoing aggregates. For all possible combinations the changes in costs are computed

55

8. Aggregation and Grouping

1
 x

 i3
2

2
 x

 i3
2

3
 x

 i3
2

4
 x

 i3
2

5
 x

 i3
2

6
 x

 i3
2

7
 x

 i3
2

1
 x

 i3
2

2
 x

 i3
2

3
 x

 i3
2

4
 x

 i3
2

5
 x

 i3
2

6
 x

 i3
2

7
 x

 i3
2

1
 x

 i3
2

2
 x

 i3
2

3
 x

 i3
2

4
 x

 i3
2

5
 x

 i3
2

6
 x

 i3
2

7
 x

 i3
2

1 x i64 + … 2 x i64 + … 3 x i64 + …

0

1

2

3

4

5

AVX-2 SSE x86
AVX-2 SSE x86
Naïve Optimal

Number of Aggregates

L
a

te
n

cy

Figure 8.4.: Costs comparison

and the results are again stored in a delta-vector. When the recursion reaches the last
PA, the algorithm can make a global decision, because the delta-vector reflects the cost
changes of all preceding PAs. As a result, the algorithm returns for each PA the number
of elements that need to be up-casted. In the (trivial) introductory example, this would
be (0, 1).
The full algorithm is shown on the facing page. Within the pseudo-code we denote the

maximum number of aggregates a given PA can contain with ||PA||, and |PA| denotes the
number of currently assigned aggregates.
Figure 8.4 shows a comparison of the naive assignment strategy and the up-casting

strategy with varying numbers of (mixed) aggregates. Each of the colored bars denotes a
single instruction, and the heights of the bars refer to the latencies of the corresponding
instructions as defined in equation 8.2. If we mix only 32- and 64-bit aggregates, as
shown in the Figure, we gain performance improvements of up to 35% and in general, the
optimization potentials are higher for a smaller number of (mixed) aggregates, which is
more likely in practice.

8.2.2.2. Switching from Block- to Tuple-Wise Processing

Another challenge with the group-by aggregation is to efficiently switch between the block-
wise to tuple-at-a-time processing. The simplest and most general way is to introduce a
inner loop that sequentially iterates over the current block, as shown in listing 8.1.
for (uint64_t i = 0; i < BLOCK_SIZE; i += 1) {

if (selection_mask[i]) {
// ... convert attributes from DSM to NSM
// ... update hash bucket

}
}

Listing 8.1: Sequential aggregation loop

As we do not expect non-qualifying tuples within a sequential code part, we additionally
introduce a conditional branch. This naturally provokes the well known performance
problems caused by branch mispredictions and the resulting execution pipeline stallings.
Only blocks that contain either qualifying or non-qualifying tuples are considered harmless,
because the branch is highly predictable for the CPU. In general, the predictability of the
branch depends on how often the selection mask changes between -1 and 0, and therefore
on the distribution of the qualifying tuples. For instance, a block that contains 50%

56

8.2. Group-By Aggregation

Algorithm 8.1 UpcastAggregates
Input: an ordered sequence of under-utilized packed aggregates P = (pi),

current position pos in sequence P ,
a vector −−−−−→upCosts of size k that reflects the costs changes when up-casting k elements.

Output: a sequence (ui) of length |P |, where ui denotes the number of aggregates in Pi
that need to be up-casted to minimize the costs.

pa = ppos
T = type-of(pa)
currentCosts = CT (|pa|)
maxOut = |−−−−−→upCosts| − 1
maxIn = maxOut+ ||pa|| − |pa|
−−−→
delta = (d0, . . . , dmaxIn)T = +∞
−→up = (u0, . . . , umaxIn)T = 0
for i = 0 to maxIn do

for j = 0 to maxOut do
∆c = 0
util = |pa|+ i− j
if util < 0 then

∆c = +∞
else

∆c = CT (util) + upCostsj − currentCosts
end if
if ∆c < di then

di = ∆c
ui = j

end if
end for

end for
if pos < |P | then

R = (ri) = UpcastAggregate(P , pos+ 1, −−−→delta)
return (ur0) ◦R

else
m = arg mini di
return (um)

end if

57

8. Aggregation and Grouping

qualifying tuples where each qualifying tuple follows a non-qualifying tuple represents the
worst case for the CPU’s branch predictor.
Figure 8.5a shows the costs induced by the sequential loop, assuming a uniform distri-

bution of the qualifying tuples. In worst case, the loop adds 300 CPU cycles to process
a single block consisting of 32 tuples. Therefore, we additionally evaluated and compared
two branch-free approaches:

1) Transforming the selection mask into a selection vector: In this approach
we adapt the concept of the selection-vector from the MonetDB database system [3]. A
selection-vector basically consists of positions of tuples that survived the selection. For
instance, discount[selection_vector[i]] refers to the attribute value of discount of the
ith qualifying tuple. This approach makes the conditional branch superfluous, as shown
in listing 8.2. The transformation itself is implemented branch-free as well. The code is
based on the No-Branching Selection primitive presented in [18].

2) Masking aggregates that belong to non-qualifying tuples: The second
branch-free approach adapts the idea of masking out non-qualifying tuples using bitwise
AND operations. Similar as in the scalar aggregation, the aggregation functions are always
applied, but in case of non-qualifying tuples, the attribute values are replaced by neutral
elements beforehand. Listing 8.3 shows the masking code for SUM aggregations.

Figure 8.5b shows a performance comparison of the two branch-free approaches and the
sequential loop using a conditional branch. As mentioned before, the conditional branching
is very sensitive to the number of qualifying tuples in a block. In contrast, the selection-
vector approach greatly eliminates misprediction costs, but introduces a constant amount
of costs for transforming the selection mask. However, only qualifying tuples reach the
sequential code part, which improves performance of queries with lower selectivities. The
costs for the masking approach are entirely independent from the number of qualifying
tuples, but masking doubles the number of instructions needed for aggregation. These
additional cycles become noticeable in high selectivity queries like Q1, where 80% of all
blocks contain only qualifying tuples.

Relative runtime
No branch (selection-vector) +30.2%
No branch (masking) +13.6%

Table 8.2.: Relative runtime of Q1 using different transition strategies from parallel to
sequential code compared to sequential loop.

In conclusion, all three approaches have their strengths. The selection-vector performs
best in queries with a selectivity of < 0.65 and masking shows good results with high
selectivity queries. In case of Q1, the conditional branch is so well predictable, that the
naive approach still outperforms the branch-free approaches.

8.3. Summary

In this chapter we covered the scalar- and the group-by aggregation. We have shown that
the former one perfectly enables SIMD processing, which resulted in speedups reaching
from 1.5 x up to more than 12 x, depending on the data types. In contrast, the hash-
based group-by aggregation naturally involves random memory accesses, which are hard
to handle using SIMD instructions. Eventually, the missing scatter instruction in current

58

8.3. Summary

uint64_t selection_vector[BLOCK_SIZE];
uint64_t num_qualifying_tuples = 0;
for (size_t i = 0; i < BLOCK_SIZE; i++) {

selection_vector[num_qualifying_tuples] = i;
num_qualifying_tuples += (selection_mask[i] == -1);

}
for (uint64_t i = 0; i < num_qualifying_tuples; i += 1) {

// ... convert attributes from DSM to NSM
// ... update hash bucket

}

Listing 8.2: Aggregation loop with branch-free selection (selection-vector)

const vector4_int64 UPDATE_4xI64 {-1,-1,-1,-1};
const vector4_int64 NO_UPDATE_4xI64 {0,0,0,0};
const vector4_int64 MASKS_4xI64[2] {UPDATE_4xI64, NO_UPDATE_4xI64};
...
for (uint64_t i = 0; i < BLOCK_SIZE; i += 1) {

mask = MASKS_4xI64[selection_mask[i] + 1];
// ... convert attributes from DSM to NSM
// ... update hash bucket

}

Listing 8.3: Aggregation loop with branch-free selection (masking)

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

0

2

4

6

8

10

12

14

16

Avg. loop/selection overhead
Avg. # of alterations in selection mask

of qualifying tuples / block

C
yc

le
s

#
a

lte
ra

tio
n

s

(a) Average costs for scanning a block of size 32
with varying number of qualifying tuples, includ-
ing branch mispredictions costs. (uniformly dis-
tributed qualifying tuples)

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Branch
No branch (selection-vector)
No branch (masking)

of qualifying tuples / block

C
yc

le
s

/
B

lo
ck

(b) Comparison of selection cost, caused by non-
qualifying tuples when falling back to sequential
aggregation code. (using aggregations from Q1)

Figure 8.5.: Branch prediction costs and branch-free alternatives.

59

8. Aggregation and Grouping

Haswell architectures forced us to break with the column-oriented processing model. We
therefore optimized aggregation in a NSM. The key idea, of updating multiple aggregates
of a single group in parallel, was originally presented by Zukowski et al. in [26]. We
generalized this approach to algorithmically determine an optimal data layout for hash
buckets for arbitrary queries. The underlying cost function considers the latencies of
instructions from different instruction sets. We demonstrated the instruction selection
optimization with x86, SSE and the AVX-2 instruction sets. Further, we introduced the
up-casting strategy to optimally utilize SIMD capabilities.
The implication of row-based aggregation is that the database system has to switch

the processing model on-the-fly within the query processing pipeline, which might cause
considerable costs due to branch mispredictions. We therefore evaluated two different
branch-free implementations to reduce this “friction loss” that arise at the breaking point,
which resulted in a saving of up to 150 CPU cycles per block.
We did not cover the topic of (re-)designing the hash table data structure in general, as

we don’t see great improvement potential through SIMD. In principle, applying the hash
function to the attributes can be done in parallel. But as already shown in section 6.6, the
benefits of SIMD is very limited. However, Q1 is a rare exception, because the grouping
attributes are two 8-bit values we can apply the hash function (l_returnflag << 8)|
l_linestatus which can be efficiently computed using SIMD instructions. Nevertheless, we
argue that existing hash table implementations can take advantage of a SIMD-optimized
bucket layout.

60

9. Prototype

The implemented prototype follows the classical database system architecture and basi-
cally consists of a compile time system (CTS) and a runtime system (RTS). The CTS is
further subdivided into a parser that transforms the query into a relational operator tree;
an optimizer that performs logical optimizations and transforms the operator tree into
a physical algebra; and a code generator that compiles the queries into executable code.
In this case, the code generator emits C++ code that is compiled by the LLVM/Clang++
compiler into a shared object file. The RTS dynamically loads and executes the generated
shared object file and prints the results to the standard output stream. A small web-server
glues everything together and provides a REST-interface and a web frontend for automatic
and manual testing/benchmarking.

9.1. Low-Level Query Language

For experimental evaluations we developed a small low-level query language (LLQL) which
gives control over the query compilation process. The LLQL especially allows the user
to specify the data types of intermediate results and aggregates. Further it provides a
branch annotation for comparison operators that allows the user to introduce conditional
jumps ad libitum. In principle, LLQL is considered as a tool that simplifies experiments
and benchmarks. Nevertheless, it gives insights into the query compiler and its range of
functions. Therefore, we briefly introduce LLQL and show the full source code of the
TPC-H queries 1 and 6 as they where used in benchmarks.

9.1.1. Language Features

LLQL is an easy to compile, statically typed and lexically scoped language that allows to
formulate read-only database queries. It supports arbitrary complex arithmetic expres-
sions and conjunctive boolean expressions. The language basically supports queries over
multiple relations, but the underlying compiler is restricted to a single relation. The fol-
lowing paragraphs give an overview about the LLQL syntax and semantics. The listings
9.1 and 9.2 on page 64 show how Q1 and Q6 are implemented in LLQL.

Type Definitions Attributes and variables in LLQL are statically typed by specifying
a triple consisting of the high-level SQL type, the low-level (internally used) type and
an optional range that specifies the min. and max. values. For example, an attribute
discount can be declared as

num(3,2):i8:[0,100] discount

Where num(3,2) is the short form of the SQL type Numeric(3,2) or Decimal(3,2) re-
spectively. The attribute values of discount are internally represented as 8-bit integers
(i8). The third component specifies, that the attribute values are within the range from 0
to 100, where the range refers to the internal representation. In this example, a discount
of 0.03 is internally represented as 3.

61

9. Prototype

The high-level types are restricted to: num(precision,scale), date and char(1). For
the internal representations, 8-, 16-, 32- and 64-bit signed integers are supported which
are denoted as i8, i16, i32 and i64. Note that char(1) can only be mapped to i8.
Because boolean values are only supported in selection predicates, they must not be

typed explicitly. Instead LLQL provides the predicate keyword that binds boolean ex-
pressions to variables:
predicate cond = attribute1 == attribute2

Like in many common programming languages, the single equality sign is the assignment
operator whereas the == is an equality check.

Type Inference For simplicity, the query compiler does not infer any data types. Thus,
it does not support literals in arithmetic and boolean expressions. - Literals can only be
used to declare statically typed constants. For instance the expression e = 1− discount is
translated into:
num(3,2):i8 one = 100
num(12,2):i8 e = one - discount

Tuple Variables LLQL provides tuple variables to access the contents of relations. For
instance, the statement t <- relation is equivalent to the SQL statement SELECT ...
FROM relation AS t. Like in SQL, the individual attributes can then be accessed using
the dot-notation, e.g. t.attribute.

Branch Control By default, all selection predicates are compiled without conditional
jumps, thus the entire relation is read during query processing. LLQL allows to override
the default behavior, by appending an “*” (asterisk) symbol to the comparison operators.
The query compiler then introduces a conditional jump as shown in chapter 5.
In the following example, a branch is introduced right after the evaluation of the given

range predicate. Note, that the comparisons are performed in reverse order as they are
specified in the source.
date:i16 shipdate_lo = ...
date:i16 shipdate_hi = ...

select l.l_shipdate >* shipdate_lo
and l.l_shipdate < shipdate_hi

9.1.2. Manual Overflow Prevention in LLQL
As mentioned in chapter 6, the prototypal query compiler does not automatically prevent
integer overflows, but it is able to either generate code with or without overflow checks.
In case of disabled overflow checks, the responsibility for choosing the right data types is
exposed to the user through LLQL.
For instance, the following LLQL code snippet evaluates the arithmetic expression 1−

discount as it appears in TPC-H query 1, where the type of discount is num(3,2):i8
:[0,100].

num(12,2):i8:[100,100] one = 100 // constant declaration
num(12,2):i8:[0,100] t = one - discount

62

9.2. Optimizations

There are two things to consider:

• First, for the constant declaration the user has to consider the scale of the numeric
type. The scale of both operands need to be compatible w.r.t. the arithmetic
operation. Here, both operands have two decimal places. Therefore, the constant’s
value 1.00 is represented as 100.

• Second, the result value is guaranteed to fit into an 8-bit integer. More precisely,
t ∈ [0, 100] because if we perform the subtraction on the given intervals, we get
[100, 100]− [0, 100] = [100, 0] = [0, 100].

9.2. Optimizations
During the query compilation process the system performs the following logical optimiza-
tions:

1. Push Mappings: Pushes all map operators down the operator tree.

2. Push Selections: Pushes all selections down the operator tree and conjunctive selec-
tion predicates are broken-up beforehand.

3. Decompose AVG Aggregations: Decomposes AVG aggregations into a SUM and a COUNT(*)
aggregation. Further a map operator is introduced that performs a division. Thereby,
the system makes use of already existing aggregations.

Further, the group-by operator (physically) optimizes the bucket layouts as described in
chapter 8.

9.3. Query Compiler Flags
Parameters like the block size, available instruction sets and overflow handling are specified
as compiler flags. The compiler supports the instruction sets default, sse2, sse41,
sse42 and avx2 where default refers to x86 instruction set.
Throughout this work we only distinguish between x86, SSE and AVX-2, whereas SSE

includes default ∪ sse2 ∪ sse41 ∪ sse42 and AVX-2 := SSE ∪ avx2. Thus, a query
that is compiled with AVX-2 may also make use of instructions from earlier instruction
sets.

63

9. Prototype

q1 = {
l <- tpch.lineitem

date:i16 d = 10473 // = 1998-12-01 - 90 days + 1
select l.l_shipdate < d

num(3,2):i8 one = 100 // = 1.00
num(12,4):i64 disc_price = l.l_extendedprice * (one - l.l_discount)
num(12,4):i64 charge = disc_price * (one + l.l_tax)

group by l.l_returnflag, l.l_linestatus
num(12,4):i64 sum_disc_price = sum(disc_price)
num(12,2):i64 sum_qty = sum(l.l_quantity)
num(12,2):i64 sum_base_price = sum(l.l_extendedprice)
num(12,6):i64 sum_charge = sum(charge)
num(12,2):i64 count_order = count(*)
num(12,2):i64 avg_qty = avg(l.l_quantity)
num(12,2):i64 avg_price = avg(l.l_extendedprice)
num(12,2):i64 avg_disc = avg(l.l_discount)

}

q1()

Listing 9.1: TPC-H Query 1 in LLQL

q2 = {
l <- tpch.lineitem

date:i16 shipdate_lo = 8766 // 1994-01-01 - 1
int:i16 one_year = 366 // one year + 1
date:i16 shipdate_hi = shipdate_lo + one_year // 1995-01-01
num(12,2):i8 discount_lo = 4 // = 0.05 - 0.01
num(12,2):i8 discount_hi = 8 // = 0.07 + 0.01
num(12,2):i8 quantity_hi = 24

num(12,4):i64 r = l.l_extendedprice * l.l_discount

select l.l_shipdate > shipdate_lo
and l.l_shipdate < shipdate_hi
and l.l_quantity < quantity_hi
and l.l_discount > discount_lo
and l.l_discount < discount_hi

aggregate
num(12,4):i64 revenue = sum(r)

project revenue
}

q2()

Listing 9.2: TPC-H Query 6 in LLQL

64

10. Experimental Evaluation

In this chapter we present the results of our experimental evaluations with TPC-H Q1
and Q6. We examine different aspects of the query compilation process and their impacts
on query runtimes. Further we show by comparison how wider data types affect query
runtimes.
In this chapter we often refer to the two different internal representations of the TPC-H

data set, namely “narrow” and “wide” which we introduced in section 2.4. If not stated
otherwise, we set the block size B in all experiments so that B elements of the narrowest
attribute amin, referenced by the query Q, fill an entire SIMD register:

amin = arg min
a∈schema(Q)

bit-width(a)

B = bit-width(SIMD-REG)
bit-width(amin) (10.1)

10.1. TPC-H Queries

Figure 10.1 on the following page depicts the runtimes of Q1 and Q6 with the narrow and
the wide data set. The hatched bar denotes the query runtimes on the HyPer database
system [6].

Q1: With the block-wise approach, Q1 shows a speedup of 1.5 x compared to the se-
quential execution. Q1 primarily benefits from efficient arithmetics in the map and the
group-by operator. 70% of the performance improvements are due to the row-oriented ag-
gregation in the group-by operator. Whereas the evaluation of arithmetic expressions in
the map operator are dominated by type conversions. In contrast, the type conversions in
the group-by operator do not incur additional cost, because they are performed in regular
CPU registers. With the wider data types, we see a 14% decreased performance, although
no type conversions occur. The performance degradation is due to the lower degree of
parallelism in the map operator. Especially the 64-bit integer multiplications have neg-
ative effects on the overall performance. A single 64-bit multiplication on four elements
issues 9 vector instructions, which results in a DoP of 0.44. Therefore the performance of
Q1/wide can be improved by pulling the 64-bit multiplications into the sequential code
part.
The relatively large differences in performance compared to HyPer are mainly caused

by the different overflow handling strategies. In this experiment we applied the overflow
prevention strategy, thus no overflow checks are performed at runtime. The impacts of
overflow detection are shown in the later section 10.2.

Q6: In contrast to Q1 Q6 benefits significantly from narrow data types. Compiled with
the AVX-2 instruction set, the overall query runtime can be improved by factor 2.8 com-
pared to the “wide” version. The poor sequential performance with the narrow data types

65

10. Experimental Evaluation

Query 1 Query 6 Query 1 Query 6
Narrow Data Types Wide Data Types

0

100

200

300

400

500

Sequential (x86) Blockwise (SSE)
Blockwise (AVX-2) HyPer

R
u

n
tim

e
 [

m
s]

Speedups Narrow Wide
Q1 Q6 Q1 Q6

SSE 1.8 2.3 1.6 1.4
AVX-2 2.2 4.5 1.9 1.6

Figure 10.1.: Performance comparison with HyPer (overflow prevention)

is a result of compiler “optimizations” performed by LLVM/Clang++. The underlying com-
piler automatically introduces conditional jumps in native code, although the generated
C++ code is entirely branch-free. As we focus on SIMD processing, we do not investigate
further on the sequential performance. Instead we consider this as an outlier.

The entire query pipeline from the table scan (source) to the aggregation operator
(sink) can be compiled into SIMD code. The pipeline consists of twelve operations like
comparisons, logical ANDs and arithmetics, as show in table 10.3a on page 68. Whereas
the involved type conversions are considered to be as SIMD-overhead. With narrow data
types the query issues 73 vector instructions per block of 32 tuples, whereas 36 instructions
are due to type conversions. With the wide data types the query is compiled into 39
instructions, where only 2 are considered to be as overhead. However, the block size
is four times smaller and therefore the total number of instructions issued during query
processing is more than two times higher compared to the narrow version. In terms of
DoP, with the narrow data types 5.3 elements are processed per instruction in average.
With wider types the DoP degrades to 2.5

[
elements

instruction

]
.

As mentioned in chapter 5, introducing branches does not improve performance with
narrow data types for two reasons: (i) The block selectivity is much higher than the tuple
selectivity and (ii) re-ordering the predicates by their selectivity causes additional type
conversion costs. With the wider types the picture changes (at least) for small block sizes
used with SSE. Introducing a conditional jump can improve query performance by ~8%.
However, executing the query branch-free with AVX-2 is still ~14% faster. The tables 10.1
and 10.2 show the selection predicates of Q6 and how they affect query runtime when the
query is compiled with branches.

66

10.2. Overflow Detection

Predicate Selectivity
p1 l_shipdate > 1993-12-31 ∧ l_shipdate < 1995-01-01 0.15
p2 l_discount > 0.04 ∧ l_discount < 0.08 0.27
p3 l_quantity < 24 0.46

Table 10.1.: Selection predicates and selectivities. (Q6)

p1 p1 ∧ p2 p1 ∧ p2 ∧ p3

Sequential (x86) -14.9% -25.3% -20.1%
Blockwise (SSE) -8.1% -1.5% +0.7
Blockwise (AVX-2) +3.7% +24.1% +26.9%

Table 10.2.: Relative changes in runtime with Q6/wide when introducing branches after
predicate evaluation.

10.2. Overflow Detection
In chapter 6 we presented fine-tuned implementations to detect integer overflows in SIMD
arithmetics. Micro-benchmarks have shown that manual overflow checks in AVX-2 can
outperform hardware supported checks in scalar arithmetics with one exception, the 64-
bit multiplication, which is 30% slower than the scalar multiplication. Thus it should
be avoided whenever possible. Especially Q1 suffers from the performance impacts of
multiplications. In the narrow case, the multiplication in expression charge = disc_price∗
(1 + l_tax) is performed in 64-bit, and in the wide case the expression disc_price =
l_extendedprice∗(1−l_discount) additionally results into a checked 64-bit multiplication.
Due to the fact that Q1 falls back to sequential execution, the overall performance can be
improved by moving 64-bit multiplications from the parallel code section to the sequential
section. Through this optimization the runtime decreased by 14% (to 338ms) with narrow
data types and by 20% (to 375ms) with wide data types.
Q6 also suffers from the 64-bit multiplication when the wide data set is used. In case

of Q6 the entire query consists only of a parallel code section, thus the move-optimization
cannot be applied. Instead the query compiler has to mix-in scalar instructions into the
parallel code part, which happens by default if the inefficient parallel 64-bit multiplica-
tions are removed from the query compilers instruction set. The disadvantages of mixing
scalar and vectorized code have been discussed in section 7.4. However, due to the high
inefficiencies of a check 64-bit multiplication in SIMD, mixing in scalar code results in 16%
faster query execution with AVX-2. With SSE instructions, the benefits are even higher:
25% through scalar multiplication plus another 25% through introducing a branch, which
results in a runtime of 135ms. Q6 in general benefits from introducing a branch after se-
lection, because the costs of the remaining operators have been increased due to overflow
detection. Figure 10.2 on page 69 shows a comparison of the best performing implemen-
tations.

10.3. Block Size
Processing multiple tuples at a time was the decisive modification on the query execution
model to enable SIMD processing. Throughout this work we used the smallest possible

67

10. Experimental Evaluation

Operation P I IB

Se
le
ct

1 sel = l_discount <i8 0.08 32 1 1
2 t0 = l_discount >i8 0.04 32 1 1
3 sel = sel &i8 t0 32 1 1
4 t1 = l_quantity <i8 24 32 1 1
5 sel = sel &i8 t1 32 1 1
6 sel0 = converti8→i16(sel) 16 1 2
7 t2 = l_shipdate <i16 1995-01-01 16 1 2
8 sel0 = sel0 &i16 t2 16 1 2
9 t3 = l_shipdate >i16 1993-12-31 16 1 2
10 sel0 = sel0 &i16 t3 16 1 2

M
ap

11 l_extendedprice0 = converti32→i64(l_extendedprice) 4 1 8
12 l_discount0 = converti8→i64(l_discount) 32 14 14
13 r = l_extendedprice0 ∗i32→i64 l_discount 4 1 8

A
gg

r. 14 sel1 = converti16→i64(sel0) 8 3 12
15 r_masked = sel1 &i64 r 4 1 8
16 revenue = revenue +i64 r_masked 4 1 8∑ 73

(a) Q6/narrow; B=32

Operation P I IB

Se
le
ct

1 sel = l_shipdate <i32 1995-01-01 8 1 1
2 t0 = l_shipdate >i32 1993-12-31 8 1 1
3 sel = sel &i32 t0 8 1 1
4 sel0 = converti32→i64(sel) 4 1 2
5 t1 = l_discount <i64 0.08 4 1 2
6 sel0 = sel0 &i64 t1 4 1 2
7 t2 = l_discount >i64 0.04 4 1 2
8 sel0 = sel0 &i64 t2 4 1 2
9 t3 = l_quantity <i64 24 4 1 2

10 sel0 = sel0 &i64 t3 4 1 2
Map 11 r = l_extendedprice0 ∗i64 l_discount 4 9 18

A
gg

r. 12 r_masked = sel0 &i64 r 4 1 2
13 revenue = revenue +i64 r_masked 4 1 2∑ 39

(b) Q6/wide; B=8

Table 10.3.: Operations performed by Q6 including type conversion overheads.

68

10.3. Block Size

Query 1 Query 6 Query 1 Query 6
Narrow Data Types Wide Data Types

0

100

200

300

400

500

Blockwise (SSE) Blockwise (AVX-2) HyPer

R
u

n
tim

e
 [

m
s]

Speedups Narrow Wide
Q1 Q6 Q1 Q6

SSE 1.2 2.7 1.1 1.3
AVX-2 1.4 3.7 1.3 1.3

Figure 10.2.: Performance comparison with HyPer (enabled overflow detection).

block size (according to the equation 10.1 on page 65) as we preferred to keep attribute
values in registers as long as possible. In all previous experiments the minimum block size
led to the best results in terms of lower query runtimes. In general, the block size has
significant impacts on the overall performance. If the block size is too small, the compiler
can not make use of SIMD instructions and therefore must rely on scalar instructions.
On the other hand, larger block sizes results in higher register pressure and eventually
to register spilling. Figure 10.3 on the following page illustrates this on the example of
Query 1. The smallest attribute accessed by Q1 is 8-bit wide. Thus, a block size of six-
teen is required to fully utilize SSE instructions, and a block size of thirty-two for AVX-2.
Reducing the block size leads to many small arrays in the generated code which are
sequentially processed in regular registers using scalar instructions. As a result, attribute
values are spilled to (cache) memory at operator boundaries, due to the limited amount
of registers. On the other hand, larger blocks also result in performance decreases, but it
degrades much slower due to higher capacities of SIMD registers. The speed of degradation
naturally depends on the (minimum) number of registers that are required to process a
single block of tuples, where not only the block size plays a crucial role. Other important
factors are:

• type conversions: Up-casting attributes into larger types increases the register usage
by factors.

• number of intermediate results: For the evaluation of arithmetic expressions, registers
are allocated to hold the intermediate results. Especially when the expression tree
is bushy, the minimum number of registers increases.

• the total number of referenced attributes: Especially attributes that are live across
multiple operators increase register pressure. In our model, the selection mask can
also be considered as a attribute, and the selection mask is live from the table scan
to the next pipeline breaker (or sequentialization point).

69

10. Experimental Evaluation

• operation complexity: Typically, checked arithmetics issue multiple instruction for a
single (primitive) operation, which in all cases leads to higher register usage.

Further, smaller block sizes are beneficial for low selectivity queries because smaller blocks
can more likely be eliminated during selection what effectively increases the degree of
parallelism.

1 2 4 8 16 32 64 128 256 512 1K 2K 4K
100

200

300

400

500

600
x86 SSE AVX-2

Block size

E
xe

cu
tio

n
 t

im
e

 [
m

s]

Figure 10.3.: Runtime of Q1 with varying block sizes.

10.4. Query 1: Generated vs. Handwritten
Finally, we present a performance comparison of the generated code and the handwrit-
ten code which we introduced at the beginning of this thesis in chapter 3. Figure 10.4
shows, that the performance of the generated code is very close to the performance of
the handwritten code. The generated Q1, is only 3% slower than the handwritten ver-
sion. Compared to the hand-tuned version, our query compiler produces 6.4% slower
code. However, as mentioned at the beginning, the hand-tuned version makes use of some
implementation “tricks” that are not applicable in database systems like HyPer.
The 3% performance difference between the generated and the handwritten version is

basically due to lower materialization costs in the handwritten query. The materializa-
tion costs in the manual implementation have been reduced by cleverly interleaving the
arithmetic and type conversion operations. Thus, the operator boundaries are even more
blurred as in the generated code. However, this degree of interleaving cannot be achieved
with the our extended produce/consume model.

AVX-2 (hand-tuned)

AVX-2 (handwritten)

AVX-2 (generated)

0 50 100 150 200 250

Runtime [ms]

Figure 10.4.: Performance comparison of generated and handwritten code (Q1).

70

11. Conclusion and Future Work

11.1. Conclusions

In this work we have presented a method to accelerate analytical database queries using
the SIMD capabilities of Intel’s latest Haswell architecture. In contrast to previous works,
we did not focus on a single database operator, instead we aimed to parallelize large parts
of the query plans. Thereby, we investigated many aspects and revealed hidden costs that
arise when multiple successive operators are parallelized using SIMD instructions.
The presented code generation model adapts features from existing high-performance

database systems like HyPer and MonetDB (which evolved into the commercial product
VectorWise). Even though, both systems follow very different philosophies in their query
execution model, we fused together parts from both worlds and implemented a prototypal
query compiler that produces very efficient code which is almost as fast as handwritten
code. The presented block-wise approach is based on the data-centric code generation
model of HyPer which originally processes tuple-at-a-time. The philosophy behind the
block-wise approach is to process multiple tuple at a time without adding additional
instructions that do not directly contribute to the query result. E.g. data movements
are avoided along the query pipeline, only type conversions produce copies of the source
attribute values. Especially at operator boundaries, the system does not prune non-
qualifying tuples from the current block as this would introduce costly mem-copys and
a level of indirection when accessing attributes. Instead, non-qualifying tuples remain
in place and are passed to the subsequent operators. The performance evaluation with
TPC-H query 6 has shown, that even low-selectivity queries with a large amount of non-
qualifying tuples can highly benefit from this approach.
The overall query performance highly depends on the bit-width of the used data types

and on efficient arithmetics. The fact that SIMD in x86 architecture is designed and im-
plemented using fixed-width registers, has the consequence that the number of elements
that can be processed in parallel depends on the bit-width of their data types. We have
shown that narrowing down the attributes can increase the query performance by sig-
nificantly, even though that attributes must be up-casted into wider types during query
processing. Further, due to the fact that SIMD arithmetic lacks of hardware supported
overflow detection, checked arithmetics had to be implemented manually and are there-
fore considerably more expensive than unchecked arithmetic operations. The presented
implementations for checked arithmetics outperform scalar arithmetics by factors, with
one exception, the 64-bit integer multiplication. However, applying an overflow preven-
tion strategy can increase the performance significantly. E.g. the overall runtime of Q1 is
reduced by almost 40% when no overflow checks are performed at runtime. But in gen-
eral, relying only on overflow prevention can induce negative performance impacts when
attributes are unnecessarily up-casted into wider data types. Due to the fact that overflow
prevention and overflow detection are not mutual exclusive, we conclude that the overflow
prevention strategy can be used to optimize arithmetics primarily with narrow data types.

71

11. Conclusion and Future Work

We further evaluated the performance gains through SIMD in the aggregation opera-
tor which perfectly fits into the block-wise processing model. The more or less obvious
implementation idea behind the scalar aggregation has been originally presented in [24]
and the authors reported speedups in micro-benchmarks that are equivalent to the num-
ber of packed elements. However, in a “multi-operator scope” we also have to take type
conversions into account. In our experiments, this resulted into speedups of less than
1/2 · P .
The presented group-by aggregation operator breaks with the column-oriented query

processing scheme, due to missing hardware instructions. We therefore generalized the
row-oriented approach presented in [26] where multiple aggregates are updated within a
single SIMD instruction. Our contribution is an algorithm that determines an optimal
layout for hash buckets that can be efficiently updated using SIMD instructions. Thereby
the algorithms considers not only all available SIMD instruction sets, it also considers
scalar instructions to minimize update latencies. In case of TPC-H Query 1, optimizing
the hash bucket updates in the group-by operator led to a overall performance improvement
of 26%.
As part of the group-by operator we have shown how block-wise processing integrates

with non-parallelized query parts. We evaluated three different approaches on how the
transition from parallel to sequential code sections can be efficiently performed, depending
on the query’s selectivity. The transition between SIMD- and non-SIMD code is consid-
ered important, as we in general do not expect that entire query plans can be compiled
with the block-wise model. It should rather be seen as a supplement to existing models.
Combining the three different approaches, the transition from block-wise to sequential can
be performed in 16 cycles/tuple in average and in 6.3 cycles/tuple in best case. Where a
block that only consists of qualifying tuples represents the best case.
In general, the block-wise approach fits best for high selectivity queries. Queries that

are more selective typically reduce the effective degree of parallelism, because the non-
qualifying tuples are passed through the query pipeline even though they do not contribute
to the query result. Only blocks that contain no qualifying tuple at all can be skipped
during query processing. Depending on the block-size, the block selectivity is much higher
than the tuple selectivity, thus with a increasing block size it becomes more likely that a
block contains at least one qualifying tuple. Due to the fact, that in our model, costs are
incurred on a per-block basis, a query optimizer can apply Yao’s formula to estimate the
number of qualifying blocks and decide whether to introduce branches or to compile the
query plan into sequential code. However, we did not establish a cost or decision model,
thus we leave it for future work. Nevertheless, we identified the performance critical
aspects that must be considered.
In conclusion, this work has shown that the benefits of using the widespread SSE instruc-

tion set in query processing is very limited. On the other hand, Intel’s AVX-2 instruction
set shows great potentials to accelerate analytical database queries. Therefore, with the
spread of the new processor generation, we expect that query engines will adapt the data-
parallel approach in near future. Beside Intel’s Haswell micro-architecture, AMD released
a very promising CPU generation (namely “Kaveri”) with an integrated graphics process-
ing unit (GPU). The special feature of this architecture is that the GPU has full access
to the main memory, which allows a closer cooperation with the CPU. The integrated
GPU consists of eight compute units where each compute unit can process 64 elements
in parallel. We expect even higher speedups with the Kaveri architecture, because the
number of elements that can be processed in parallel is independent from the used data
types. Unfortunately, current operating systems do not support the new capabilities of

72

11.2. Future Work

AMD’s latest processor generation.

11.2. Future Work

As this work primarily wanted to answer the question, how much can database queries
be accelerated using the latest x86 SIMD instruction set, we focused our work on aspects
that are closely related to the underlying hardware. To experiment with the different
aspects that arise with SIMD processing, we decided to develop a small query compiler
from scratch instead of directly integrate SIMD processing into a existing database system,
because this allowed us to deal with the different aspects of SIMDmore quickly and flexible.
Nevertheless, the design decisions have been made with a subsequent integration in mind.
In this section we want to propose how the findings that have been made in this work can
be integrated into the main-memory database system HyPer.

11.2.1. Integration Into a Existing Database System

In this section we will discuss the implications for the individual system components.
Thereby the focus is on integrating the block-wise approach with the tuple-at-a-time
model. The goal pursued through this proposal, is to parallelize possible large parts
of query execution plans using SIMD. In general we expect each pipeline to be split into a
parallel and a sequential section. Whereas the goal is to push as many operators into the
prior parallel code section. In the ideal case, as we have seen in Q6, the sequential section
does not contain any operators at all and the entire pipeline only consists of a parallel
code section. The more common case is that the pipeline is “sequentialized” at some point
like in Q1.
Integrating the block-wise approach affects many parts of the database system architec-

ture. We briefly cover the affected system components and discuss the necessary changes.

Storage Only minor changes are required to prepare the storage for SIMD processing.
The storage system has to ensure that each column (in each partition) is 32-byte aligned.
Further, it must be guaranteed that the amount of allocated memory of each column is a
multiple of 32 bytes. Otherwise, load instructions would access unallocated memory.
To fully utilize SIMD instructions, the system should represent attribute values using the

smallest possible data type. Further, meta data like min/max values have to be collected
to enable overflow prevention.

Code Generation As the code generation model presented in this work is basically an
extension to the existing code generation in HyPer, it is possible to extend the affected
operators to produce/consume multiple tuples at a time. However, this would increase
the implementation complexity and might affect the maintainability of the code base.
Therefore, we suggest to implement the parallel operators separately from their sequential
counterparts. Thereby, special care is needed with pipeline breakers that materialize tuples
to memory. Both implementations of the same operator have to be compatible w.r.t. the
data structures, because materializing might take place in parallel and whereas reading
the materialized data might be performed sequentially.
The more common case, where a pipeline consists of a parallel and a sequential section,

can be handled by a special operator, that performs the transition to the sequential part.
Conceptually, the SIMD and non-SIMD operators do not share the same interface. Thus,

73

11. Conclusion and Future Work

an adapter needs to be implemented that consumes blocks and produces tuples. The
following listing shows how the generated code might look like.
for each block b in R

// parallel code section
[...]
for each qualifying tuple t in block b

// sequential code section
[...]

end for
end for

This “sequentialization” operator basically emits a loop that iterates over the current
block. Thereafter, the produce function of the subsequent sequential operator is called. It
is noteworthy, that the presented query compilation method can also be integrated with
database systems that make use of other execution model. E.g. the integration with the
iterator model can be achieved by wrapping the generated parallel code into a iterator
interface.

Query Optimizations Throughout this work we discovered and discussed many perfor-
mance related aspects of query processing in SIMD. Depending on the query, different
individual optimizations have been performed, such as introducing branches, pulling in-
efficient SIMD operations to the sequential code section, reordering of selections, etc.
Integrating the block-oriented approach into a full-featured database system requires that
these optimization step are performed by the query optimizer. Most database systems,
including HyPer, use a cost-based optimizer to find efficient query plans. Therefore, a cost
model needs to be established that covers the aforementioned aspects. Due to the fact
that we have investigated only unary operators the optimizations can be performed on
each pipeline individually in an additional optimization phase, after a (sequential) query
plan has been determined.

74

A. Appendix

Implementation of 8-Bit Integer Multiplication Using AVX-2
Instructions Only
In the following, we show an alternative implementation of a type-preserving 8-bit multi-
plication. In contrast to the implementation presented in section 6.3.2, this version does
not mix AVX-2 with SSE instructions and therefore avoids the data movements from the
upper 128 bits of a YMM register into a XMM register. As mentioned before, this version is
approximately 14% slower, due to the high latencies of the _mm256_permute2x128_si256
instruction. However, if we add overflow detection we can hide these latencies and we
observe a 13% better performance compared to the “mixed” version, which makes this
implementation the first choice with the overflow detection strategy.

convert

b
0 b

31

convert

a
0 a

31

a
0 a

31

255

b
0

b
1 ... b

31

0

_mm256_mullo_epi16

_mm256_or_si256

... a
31

∙ b
31

a
0
∙ b

0 ...

127 255 0127

...a
0
∙ b

0 ... a
31

∙ b
31

_mm256_mullo_epi16

a
0
∙ b

0 ...00 00... a
31

∙ b
31

a
0
∙ b

0 ...00 0 0...a
31

∙ b
31

255 0127 255 0127

convertconvert

Figure A.1.: SIMD multiplication of 8-bit integers using AVX-2 instructions only.

75

A. Appendix

76

Bibliography

[1] Austin Appleby. Murmurhash. https://sites.google.com/site/murmurhash/,
2014. [Online; accessed June 25, 2014].

[2] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and Tamer Özsu. Main-memory hash
joins on multi-core CPUs: Tuning to the underlying hardware. In ICDE, 2013.

[3] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In CIDR, pages 225–237, 2005.

[4] M. Flynn. Some computer organizations and their effectiveness. Computers, IEEE
Transactions on, C-21(9):948–960, Sept 1972.

[5] Intel Corporation. Intel intrinsics guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/, 2014. [Online; accessed August 14, 2014].

[6] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main mem-
ory database system based on virtual memory snapshots. In ICDE, pages 195–206,
2011.

[7] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. Generating code for
holistic query evaluation. In ICDE’10, pages 613–624, 2010.

[8] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[9] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. 2013 IEEE 29th International Conference on
Data Engineering (ICDE), 0:38–49, 2013.

[10] Raymond A Lorie. XRM: An extended (N-ary) relational memory. IBM, 1974.

[11] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 7 2003.

[12] Guido Moerkotte. Building query compilers (pre-print). http://pi3.informatik.
uni-mannheim.de/~moer/querycompiler.pdf, September 2009. [Online; accessed
August 10, 2014].

[13] Tobias Mühlbauer, Wolf Rödiger, Robert Seilbeck, Angelika Reiser, Alfons Kemper,
and Thomas Neumann. Instant Loading for Main Memory Databases. Proc. VLDB
Endow., 6(14), August 2013.

[14] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.
Proc. VLDB Endow., 4(9):539–550, June 2011.

77

https://sites.google.com/site/murmurhash/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf

Bibliography

[15] S. Padmanabhan, T. Malkemus, A Jhingran, and R. Agarwal. Block oriented pro-
cessing of relational database operations in modern computer architectures. In Pro-
ceedings of the 17th International Conference on Data Engineering, ICDE ’01, pages
567–, Washington, DC, USA, 2001. IEEE Computer Society.

[16] W.W. Peterson and D.T. Brown. Cyclic codes for error detection. Proceedings of the
IRE, 49(1):228–235, Jan 1961.

[17] Orestis Polychroniou and Kenneth A. Ross. High Throughput Heavy Hitter Ag-
gregation for Modern SIMD Processors. In Proceedings of the Ninth International
Workshop on Data Management on New Hardware, DaMoN ’13, pages 6:1–6:6, New
York, NY, USA, 2013. ACM.

[18] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. Micro adaptivity in vec-
torwise. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 1231–1242, New York, NY, USA, 2013.
ACM.

[19] Transaction Processing Performance Council (TPC). TPC Benchmark H (Decision
Support) - Standard Specification, 2013.

[20] H.S. Warren. Hacker’s Delight. Pearson Education, 2012.

[21] SJ Waters. Hit ratios. The Computer Journal, 19(1):21–24, 1976.

[22] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. SIMD-Scan: Ultra Fast in-Memory Table Scan using on-
Chip Vector Processing Units. PVLDB, 2(1):385–394, 2009.

[23] S. B. Yao. Approximating block accesses in database organizations. Commun. ACM,
20(4):260–261, April 1977.

[24] Jingren Zhou and Kenneth A. Ross. Implementing database operations using simd
instructions. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’02, pages 145–156, New York, NY, USA, 2002.
ACM.

[25] Marcin Zukowski, Sándor Héman, and Peter A. Boncz. Architecture-conscious hash-
ing. In DaMoN, page 6. ACM, 2006.

[26] Marcin Zukowski, Niels Nes, and Peter Boncz. DSM vs. NSM: CPU Performance
Tradeoffs in Block-oriented Query Processing. In Proceedings of the 4th International
Workshop on Data Management on New Hardware, DaMoN ’08, pages 47–54, New
York, NY, USA, 2008. ACM.

78

	Introduction
	Motivation
	Related Work
	Research Questions
	Scope
	Approach
	Organization

	Fundamentals
	SIMD in x86 Architectures
	Relational Operators
	Query Execution Models
	Benchmark Setting

	Motivation for SIMD Processing
	Block-Wise Query Execution
	Code Generation
	Degree of Parallelism
	Block Size

	Evaluation of Selection Predicates
	Available Compare Instructions
	Selection Mask
	Type Conversions
	Branches
	Qualifying Blocks
	Implementation Issues

	Arithmetics and Special Math Functions
	Available Instructions
	Relevance of Arithmetic Operations
	Vectorized Multiplication
	Overflow Handling
	Min/Max
	Hashing
	Summary

	Type Conversion
	Arithmetic Expressions
	Implementation Details
	Performance Comparison SSE vs. AVX-2
	Mixing SIMD with Scalar Operations
	Summary

	Aggregation and Grouping
	Scalar Aggregation
	Group-By Aggregation
	Summary

	Prototype
	Low-Level Query Language
	Optimizations
	Query Compiler Flags

	Experimental Evaluation
	TPC-H Queries
	Overflow Detection
	Block Size
	Query 1: Generated vs. Handwritten

	Conclusion and Future Work
	Conclusions
	Future Work

	Appendix
	Bibliography

