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Abstract

Property graphs are networks of nodes, in which each entity - vertex or edge - can be tagged with
labels and assigned properties. Property graph databases store the topology of the connected
entities, as well as their attributes. The data can then be queried with dedicated graph query
languages (GQLs) that provide subgraph discovery, path discovery or graph analytics through
specialized algorithms. G-CORE is a new GQL proposed by the Linked Data Benchmark Council
as the sum of the most useful and expressive features in state-of-the-art GQLs for property
graphs, with the purpose of guiding the emergence of a standard. G-CORE also brings novelties
into the world of GQLs, with queries that return graphs instead of tabular data and by elevating
paths to first-class citizens in the graph.

The language definition and semantics of G-CORE are provided in [20]. The goal of this
thesis is to verify whether G-CORE is a rich enough language for path property graph databases
and whether there can be any improvements we can bring to its design. We achieve this by
implementing a G-CORE interpreter that uses SparkSQL and GraphX to leverage the query
execution. We cover a subset of the language, that includes pattern matching, graph construction
and a particular use-case of path finding and show that we can find a suitable storage model and
algebraic primitives to solve G-CORE queries in polynomial time. We also provide a list of issues
and ambiguities we have found in the language definition while implementing the interpreter.
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Chapter 1

Introduction

The network-like structure of graphs makes them particularly relevant for modeling the world we
live in. As Newman points out in [29], we inherently create social networks - in which groups of
people interact with each other through friendships, acquaintanceships, business relations, family
ties -, disseminate knowledge through information networks that relate information items of any
type to each other with one famous example being that of a paper citation network -, surround
ourselves with technological networks - which model the distribution of man-made resources,
such as networks of roads, railways, means of communication - and become part of biological
networks - that are representations of biological systems, such as genes, proteins, the ecosystem.

In practice, graph data is stored in graph databases, which encode data for the graph items,
as well as the network topology. Graph query languages can then be used to navigate the
network in order to extract or infer information. The Resource Description Framework (RDF)
is a popular data format for graph databases, with SPARQL as its effective language standard.
As an alternative to RDF, the graph storage can be modeled under the property graph format,
which encodes the graph item data inside the items themselves. Numerous property graph
query languages have been proposed in academia and some have already proven themselves in
the industry. However, none of them has emerged as a standard yet.

The Linked Data Benchmark Council (LDBC) proposed in [20] the new property graph query
language G-CORE, designed as the sum of the most common and useful features provided by
state-of-the-art property graph query and analytics languages. Among the novelties brought by
G-CORE into the field we count queries that return a graph instead of a tabular view over the
result, thus enabling query composability, and promoting a new data model, the path property
graph, by elevating paths to first-class citizens. Currently, there is no implementation of G-
CORE in industry or academia. Our goal is to implement the first G-CORE interpreter starting
from its definition and formal semantics provided in [20] and assess G-CORE’s graph querying
model and whether its design is complete, rich and expressive enough for path property graph
databases. The challenges will be to find suitable storage primitives for the new data model,
as well as designing and implementing the interpretation pipeline with the goal of guaranteeing
that the evaluation of queries respects the language semantics. It is not our goal to find the most
efficient algorithms for implementing the interpreter or to optimize those that we do propose
and we leave this as future work.
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2 CHAPTER 1. INTRODUCTION

1.1 Research questions

Our research questions can therefore be summarized into two categories. First, we aim to assess
G-CORE’s formal definition:

(Q1) Given its formal definition as presented in [20], are G-CORE semantics rich and expressive
enough for path property graph databases?

(Q2) Is G-CORE’s formal definition presented in [20] complete? Are there issues with this
definition, can improvements be brought to the existing syntax definition and semantics?

(Q3) Is G-CORE indeed a tractable language, as claimed in [20], i.e. can we find suitable
tractable algorithms to implement G-CORE’s features?

We are also interested in answering more pragmatic questions, closely related to the inter-
preter implementation:

(Q4) What is a suitable logical representation of the graph data model?

(Q5) What algebraic primitives does G-CORE need beyond normal relational operators?

(Q6) What is a suitable physical representation of the graph data model? What are the trade-
offs between various representations?

1.2 Contributions

This thesis outlines our contributions: we present a working prototype system that translates
G-CORE to SQL queries and runs them on Apache Spark. We logically model graph data into
tables and use DataFrames for the physical representation. Our implementation covers a subset
of the language features presented in its design. As a conclusion to our work, we raise a list of
questions about less understood G-CORE features and provide ideas on how future work could
improve our implementation or enhance the language support.

The remainder of the thesis is structured as follows: Chapter 2 clarifies notions used through-
out our work that are related to graph databases and offers a few examples of G-CORE queries
that align to the language subset we cover. Related work from industry and academia is pre-
sented in Chapter 3. Chapter 4 presents design principles that have guided and influenced the
implementation of the interpreter, while Chapters 5, 6 and 7 present in detail the implementa-
tion of the modules that comprise the interpreter. In Chapter 8 we outline ideas for improving
our solution in order to optimize the query execution and to bring more of G-CORE’s features
into the proposed prototype and in Chapter 9 we discuss ambiguities we found in G-CORE’s
language definition. Finally, Chapter 10 provides a summary of our work and answers to the
research questions.



Chapter 2

Background

This chapter offers useful background information for understanding the design concepts and
implementation details presented further in the thesis. We introduce property graphs and show
how G-CORE builds on this data model and extends it to path property graphs. We also provide
a short introduction to the G-CORE syntax and semantics and showcase some of G-CORE’s
features through example queries.

2.1 Property graphs

Property graphs are a particular type of graphs that encode network topology, as well as network
data stored inside the elements themselves. The items that comprise a property graph are vertices
(or nodes) and edges (the relationships between them). A vertex has a unique identifier, a set
of incoming edges and a set of outgoing edges, can be tagged with zero or more labels that
describe the role or type of that vertex in the graph and can be annotated with a set of key-
value pairs called properties or attributes, possibly multi-valued. Edges have direction, a source
and a destination vertex and, similar to the nodes, they can be labeled and assigned properties.

Graph databases are defined by Angles et al. in [23] as a particular class of databases,
that can store both entity data and information about how the entities connect to each other,
which makes them a specifically useful tool for working with graphs, in general, and property
graphs, in particular. While in practice the actual physical data model will vary from one
system implementation to another, the main feature of the property graph database is that the
data instances are organized as graphs with nodes and a connection overlay, with the schema of
directed labeled property graphs.

At their core, graphs are data structures that have been studied extensively in the fields
of mathematics and computer science. Algorithmic graph theory can be used to analyze and
draw useful insights from networks: identifying "central" nodes in a graph, in order to find
the most influential and prominent vertices; path analysis to find vertices that can be chained
by a set of edges; finding densely connected groups of vertices in the graph, that form so-
called "communities"; sub-graph isomorphism to determine whether a structural pattern can be
detected within another graph. Lately, standalone graph processing systems, such as Pregel [28],
GraphX [27], Apache Giraph [1], have specialized in large-scale graph computations with efficient
implementations of iterative algorithms on graphs of billions of vertices and edges.

Graph query languages (GQLs) can be used for navigating the topology of graphs within
graph databases and for accessing the data stored along the traversal. The core features of graph
query languages are that they support graph pattern matching and path expressions for graph
navigation [22]. A graph pattern is nothing more than specifying the shape of a property graph,
using variables for nodes and edges, and trying to find a mapping in the graph database for the
pattern variables, while preserving the original structure of the graph. Two semantics can be

3



4 CHAPTER 2. BACKGROUND

used for finding this mapping. Under graph homomorphism semantics, a function maps nodes in
the database to node variables in the pattern, while preserving the edge structure; the function
need not necessarily be injective and multiple variables in the pattern can be mapped to the same
database entity, as long as the overall edge structure is preserved. This type of pattern matching
is very close to the select-from-where semantics of relational database systems [22]. In the case
of graph isomorphism, the mapping function needs to be a structure preserving bijection, in
which two distinct query variables can no longer be matched to the same graph entity.

With path expressions the structure of the graph can be navigated in more depth than
vertex or edge pattern matching. They can be used to determine whether two nodes can be
linked through a sequence of edges (for example, searching for friends-of-friends paths in a social
network to suggest new friendships) or to find (weighted) shortest routes between nodes in
a graph. In practice, the query space of an arbitrary path can become very large, therefore
restrictions on node and edge properties and labels can be used in the query to limit the search
space. Regular expressions are a common type of constraints used for defining a language on
the labels of the edge sequence along the path.

2.2 The G-CORE language and path property graphs

G-CORE [20] is a new graph query language designed by the Linked Data Benchmark Council1

for property graph databases. A standard GQL for property graph databases has yet to be
defined and adopted, so G-CORE emerges as a collaborative effort between members of the
industry and academia interested in synthesizing the desirable aspects of such a standard. To
this end, the proposed language was designed with the goal of capturing the core features of
existing GQLs, thus being similar in syntax and semantics to PGQL [15], Cypher [11] and
Gremlin [3], while still bringing new and interesting characteristics to the table.

G-CORE is a high-level SQL-like language, using an ASCII-art syntax similar to existing
GQLs’ to express graph patterns. A unique characteristic of G-CORE is that it treats paths
(sequences of nodes and labels in the graph) as first-class citizens, which means that paths
are part of the data model alongside nodes and edges. Paths are stored in the database, have
an identity and can be labeled and assigned properties. G-CORE thus extends the notion of
property graphs to that of path property graphs (PPGs). Another novelty in G-CORE is that
it is a composable language, meaning that graphs are the input and output of queries. In this
way, users can chain commands and create data analysis pipelines over graph databases. We
will compare G-CORE with existing GQLs in Chapter 3.

In the remainder of this section we will showcase the main features of G-CORE through
examples on the toy graph we introduce in Figure 2.1. The graph represents a social network
of a number of characters from the book A Storm of Swords, part of the popular series A Song
of Ice and Fire by George R.R. Martin. The information presented in the graph has been
sourced from [25]2, [8] and [12]3 and combined to create a property graph henceforth named
"got_graph". The orange circles in Figure 2.1 are nodes tagged with the label Character and
each of them has a property "name", for which the value is drawn in a box close to the node. The
mauve triangles are nodes labeled House and represent the family or military order the characters
belong to. Similar to the characters, the houses have a "house_name", shown in a box next
to the node. Using the data from [25] we added a blue edge labeled HAS_MENTION_WITH
between two characters that are mentioned in the book no more than 15 words apart. The
number of co-occurrences of two characters has been added as the property "#times" to each
blue edge. Characters are bound by allegiance to various houses. This relationship has the label

1http://ldbcouncil.org/
2https://www.macalester.edu/~abeverid/thrones.html
3https://neo4j.com/blog/graph-of-thrones/#_teaching_graphs

http://ldbcouncil.org/
https://www.macalester.edu/~abeverid/thrones.html
https://neo4j.com/blog/graph-of-thrones/#_teaching_graphs


2.2. THE G-CORE LANGUAGE AND PATH PROPERTY GRAPHS 5

HAS_ALLEGIANCE_TO and is shown as the pink dotted edges between a Character and one
or more House nodes. Finally, houses can fight battles against one another and we represent
this with the red edges labeled ATTACKED, between a House node and the other houses it
has attacked. The property-key of this type of edge is "battle_name". There are three stored
paths in the graph, under the label CATELYN_TO_DROGO. Each path has the property-key
"#hops", which represents the number of edges in each path. The graph in Figure 2.1 will be
used throughout the rest of this thesis for examples of showcasing various G-CORE features.
Figure 2.2 contains an UML diagram describing the graph’s data.
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Figure 2.1: An example property graph modeling a restricted view of the universe of the book
A Storm of Swords by George R.R. Martin. The name of the graph is "got_graph". There
are two types of vertices, Character and House, three types of edges, HAS_MENTION_WITH,
HAS_ALLEGIANCE_TO and ATTACKED, and one path type, CATELYN_TO_DROGO.
The Characters have a property "name" and the Houses a property "house_name". Each edge
HAS_MENTION_WITH has a property "#times" and each edge ATTACKED has a property
"battle_name". The stored paths have the property "#hops".

2.2.1 A short introduction to G-CORE syntax and semantics

A G-CORE query has clauses, similar to a SQL query, that are chained together, creating
variable contexts and passing the results between each other. G-CORE, as presented in [20] is
a query language that exclusively supports data manipulation and does not implement the data
definition, update or removal operators. Even though a query returns a graph, and the labels
and properties of the graph elements can be updated in the result, this represents solely a view
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Character
name: String

House
name: String

0..*

0..*

HAS_MENTION_WITH
#times: Integer

ATTACKED
battle_name: String

0..*

1..*

1

0..*

HAS_ALLEGIANCE_TO

CATELYN_TO_DROGO
#hops: Integer

Figure 2.2: Schema of the dataset used to build the graph in Figure 2.1.

returned to the user and is not backed up by changes in the database.
The three basic clauses in G-CORE are the mandatory MATCH and CONSTRUCT and the optional

PATH clause. In the listing below we show the basic query structure, using <token_name> for
tokens. Note that the PATH, WHEN, ON, WHERE and OPTIONAL clauses can be excluded from a
syntactically correct query.� �

1 PATH <path_macro >, PATH <path_macro >, ...
2 CONSTRUCT
3 <construct_pattern > WHEN <condition >,
4 <construct_pattern > WHEN <condition >,
5 ...
6 MATCH
7 <match_pattern > ON <graph_query_or_graph_name >,
8 <match_pattern > ON <graph_query_or_graph_name >,
9 ...

10 WHERE <condition >
11 OPTIONAL <graph_pattern > WHERE <condition >
12 OPTIONAL <graph_pattern > WHERE <condition >
13 ...� �

Listing 2.1: Basic structure of a graph query in G-CORE.

The MATCH clause is used to specify a pattern to be searched within the graph database. A
mapping is created between pattern variables and elements of stored graphs using homomorphic
semantics. We call this mapping a binding table. Conceptually, the binding table will contain a
column for each variable used in the MATCH clause and the values will be the corresponding objects
of the database. Restrictions can be applied to the elements of the pattern to limit the search
space to nodes, edges or stored paths with certain labels. MATCH can also be used to fire up a path
discovery process within the graph. The WHERE clause applies extra conditions on the pattern, by
filtering potential results based on property predicates or existential sub-queries. Matching can
be performed on multiple graphs at the same time. The OPTIONAL sub-clause can be used with
left-outer-join semantics to enrich the result with more information from the optional pattern.

The binding table produced by the MATCH clause is then used in CONSTRUCT to create a new
graph. CONSTRUCT patterns can re-use variable names from the binding table - in which case the
identity of the matched item needs to be preserved -, or can introduce new variables - in which
case new items are created by respecting the shape of the binding table. For example, if we
matched all the Character nodes in the graph in Figure 2.1 under the variable name ch, then
constructing a new graph with the node variable ch will simply mean reusing the data already
mapped to ch. In contrast, constructing a new graph with the node variable foo (any random
name different from ch) means that we will need to create additional nodes for the result, but
we will create as many new nodes, as have been matched for ch. The graph built by a CONSTRUCT
clause is the union of all the sub-graphs built by each pattern in the clause. CONSTRUCT uses
implicit grouping of the matched variables to create unique nodes, edges and paths. Additionally,
explicit GROUPing can be used by hand for custom aggregation of the binding table.
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PATH can be used to define complex patterns for path finding. Remember that path patterns
can also be specified in the MATCH clause. However, these patterns can only use simple edge labels
to define their structure. For example, in a network of roads (edges) linking towns (nodes), we
could match towns that connect through any number of roads. Using PATH we can define a new
path structure: roads that are exclusively highways (a road property) and there is a metropolis
(node) between each two such roads. We then alias this structure with a macro, say "superRoads"
and then try to match towns that are linked by any number of superRoads.

Useful path finding features have been incorporated into G-CORE, such as shortest path
finding, all paths finding, reachability tests, weighted paths. Flexible Kleene* expressions can
be used to specify desired path structures.

G-CORE supports the following notations for expressing the graph entities comprising a
graph pattern:

Nodes (), (v)
The shape of a node. The node variable can be left unnamed, or can be given a name - v,
in our case.

Edges (a)-[e]->(b), (a)-[]->(b), (a)-->(b), (a)->(b)
Relationships between nodes are described with an arrow, either oriented from the source
node to the destination node, bidirectional, or undirected. The supported edge orientations
are: ->, <-, <-> (bidirectional) and - (undirected). The edges, exactly as nodes, can be
named - e, in the above - or be left unnamed. We use square brackets to denote the shape
of an edge, but the brackets can also be omitted. Node variable names can be omitted
altogether.

Paths (a)-/p/->(b), (a)-/@p/->(b), (a)-/ /->(b), (a)-/@ /->(b), (a)-/p <:EDGE_LABEL*>/->(
b)
Paths are denoted between two slash signs and can optionally be bound to a variable (p,
in our example). For paths in particular, not using a variable makes it a reachability
query, whereas a bound path will need to be materialized into a chain of edges and nodes.
Stored paths, i.e. paths for which information is stored (or is to be stored) in the database,
are denoted with @. Endpoint names can be omitted and the path orientation is expressed
through arrows, exactly as for edges. Sharp brackets can be used to specify a path structure
with Kleene* notation, unions and concatenations of multiple Kleene expressions.

Labels (a:Foo), ()-[e:BAR]->(), ()-/@p:BAZ/->()
To match graph items with certain labels, or to assign new labels in the CONSTRUCT clause,
we use the item_name:LabelName notation. Complex patterns of labels can express label
conjunctions and disjunctions, but these do not make the subject of out thesis, as we shall
see later on in Chapter 4.

Properties WHERE a.employer = ’Foo’, MATCH (a {employer = e}), CONSTRUCT (a {employer
:= ’Foo’})
To limit the matching space to only those graph items for which a certain property pred-
icate holds, we add the respective predicate in the WHERE sub-clause of the MATCH block.
G-CORE supports multi-valued properties. To unroll the values of such properties into
multiple bindings on single values, we can use curly brackets and the = notation when
specifying the shape of the element we want to match. Here, we bind the multi-valued
property "employer" to the variable e and, when binding data for the node a, we will
actually bind as many entries for a as there are values for its "employer" property, but
under the variable name e. In the CONSTRUCT clause we can assign new properties to the
(new) graph elements using the property_key := property_value syntax.



8 CHAPTER 2. BACKGROUND

Chaining patterns (a)-[:LIVES_IN]->(city)<-[:LIVES_IN]-(b), (a)-[:FRIEND]-(b)
Graph patterns can be linked either in the same longer pattern, or by separating them
through commas. Here, we are looking for two node variables, a and b, that both have an
outgoing edge labeled LIVES_IN to the same node city, adding the condition, through
the second pattern, that both be linked by an edge FRIEND (that can be directed from
either a to b, or from b to a). Pattern chaining in the MATCH clause has inner-join semantics,
in that common variables between different patterns will keep those bindings that match
in all the patterns they appear in.

Among other graph operators supported by G-CORE we list the graph UNION, difference
(MINUS) and INTERSECTion, which take the expected meaning. As G-CORE is a closed language
under the path property graph model, the GRAPH VIEW <view_name> AS (<query>) operator can
be used to create named views of sub-queries, which can be later used as operands to graph
operators or as inputs to the MATCH clause in other queries.

Examples in Section 2.2.2 will illustrate more clearly the concepts discussed above. [20]
abounds in other practical examples, further explanations and a formal definition of the language.
An open-source grammar is also available on Github [7].

2.2.2 Examples

This section presents hands-on examples of G-CORE queries that aim to cover the definitions
presented in 2.2.1. Some of the examples are inspired from [12] and [20]. We will start with a
very simple query that showcases the extraction of a subgraph from the graph in Figure 2.1:� �

1 CONSTRUCT (c1) -[e]->(c2)
2 MATCH (c1:Character)-[e:HAS_MENTION_WITH ]->(c2:Character) ON got_graph� �

Listing 2.2: Extract the subgraph of Characters and HAS_MENTION_WITH edges from the
got_graph.

In the above, we are first MATCHing the pattern of a HAS_MENTION_WITH relationship,
using the variable name e. The edge endpoints are labeled Character and have variable names
c1 and c2. We then CONSTRUCT a new graph from the matched nodes and edges and return this
as a result. The new graph will be a sub-graph of the got_graph and will only contain the
Character nodes in got_graph and all the blue edges between them. No other node or edge type
is present in the new graph. Note that the Character Jon Arryn will not appear in the resulting
graph, because it is neither the source, nor the destination of any HAS_MENTION_WITH
relationship.

In G-CORE we can set a graph as the default graph for all the queries, thus eliminating
the need of using the ON sub-clause. From now on, we set got_graph as the default one in our
database.

In Listing 2.3 we showcase multiple G-CORE features. The input graph of the outer query
is constructed through a sub-query. Within the sub-query we first MATCH Houses h that have
participated in a battle on either side, by leaving the edge a as undirected. The binding table of
this MATCH is shown in Table 2.1. The header of the table contains each variable used in the sub-
query and we use the "name" property of the House nodes and the "battle_name" property of
the ATTACKED edges to distinguish between the table objects. The semantics of an undirected
edge are that the match is performed both as if the edge was an out-connection and as if it were
an in-connection, thus duplicating the edge matching in the binding table. To highlight this,
we add the extra column "h was" to the table, to represent whether the h is the source or the
destination vertex, and the column "other endpoint", to represent the node that is at the other
end of the matched edge. The two extra columns are not part of the actual binding table.
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� �
1 CONSTRUCT got_graph , (h1) -[:ALLY {in_battle := b.name}]->(h2)
2 MATCH (h1:House) -[w1:WAS_IN]->(b:Battle) <-[w2:WAS_IN]-(h2:House)
3 ON (
4 CONSTRUCT
5 (b GROUP a.battle_name :Battle {name := a.battle_name }),
6 (h) -[:WAS_IN {role := "attacker"}]->(b) WHEN (h) -[a]->(),
7 (h) -[:WAS_IN {role := "defender"}]->(b) WHEN (h) <-[a]-()
8 MATCH (h:House) -[a:ATTACKED ]-()
9 )

10 WHERE w1.role = w2.role AND h1.name != h2.name� �
Listing 2.3: Add an edge labeled ALLY between Houses that have fought on the same side in a
battle.

h a h was other endpoint
House Lannister Battle of Fords source House Tully
House Tully Battle of Fords destination House Lannister

House Baratheon Battle of Blackwater source House Lannister
House Lannister Battle of Blackwater destination House Baratheon
House Baratheon Siege of Winterfell source House Bolton
House Bolton Siege of Winterfell destination House Baratheon

House Baratheon Siege of Winterfell source House Frey
House Frey Siege of Winterfell destination House Baratheon

House Bolton Red Wedding source House Stark
House Stark Red Wedding destination House Bolton

House Mormont Siege of Winterfell source House Bolton
House Bolton Siege of Winterfell destination House Mormont

House Mormont Siege of Winterfell source House Frey
House Frey Siege of Winterfell destination House Mormont
House Frey Red Wedding source House Stark
House Stark Red Wedding destination House Frey

Table 2.1: The binding table generated by the inner-query in Listing 2.3, with two additional
column that better explain the bindings.

The inner CONSTRUCT then creates the nodes b by GROUPing the binding table by the a.battle_name
key. This operation creates four b nodes, as there are four distinct battle names in the table:
Battle of Fords, Battle of Blackwater, Siege of Winterfell and the Red Wedding. These nodes
receive the label Battle and a property "name", which takes the value of the grouping key. We
then proceed to add a relationship labeled WAS_IN between the matched Houses and the Bat-
tles these Houses were part of. We use WHEN to logically partition the binding table into two
categories: Houses that were the source of an ATTACKED edge and Houses that were the desti-
nation of an ATTACKED edge. Remember that CONSTRUCT uses implicit grouping of the binding
table for variables that appear in its header and then reuses the identities of these variables,
rather than creating new graph instances. In our case, as the node h is a matched variable, we
will not create new nodes for it and instead use the ones we have already bound. Moreover,
since we have already created the nodes b, we will group both by source (h) and destination (b)
when creating the edges. Thus, when adding the new edge WAS_IN to the result, we will create
six edges with "role" set to value "attacker" between five existing Houses and the four Battles
(one with source Lannister, two with source Baratheon, one from Bolton, one from Mormont
and one from Frey) and five edges with "role" set to value "defender" between five Houses and



10 CHAPTER 2. BACKGROUND

the four Battles (one from Tully, one from Lannister, one from Bolton, one from Frey and one
from Stark).

We show the graph created by the inner query in Figure 2.3. As before, property values are
drawn in boxes next to nodes or on top of edges.

House 
Baratheon

House Frey

House BoltonHouse 
Lannister

House Tully House Stark

Battle of Fords

Battle of 
Blackwater

Siege of 
Winterfell

Red Wedding

House 
Mormont

defender

attacker

attacker

defender attacker

defender

defender

attacker

defender

attacker

attacker

House Battle WAS_IN

Figure 2.3: Houses and their roles in Battles. The result of the sub-query in Listing 2.3

In the outer MATCH we use a chained pattern to search for two Houses h1 and h2 that were
in the same Battle with an additional condition in the WHERE clause that they have had the
same role - either both have been attackers or both have been defenders. The chained pattern
has inner-join semantics with b being the join key. Because of the join, we will generate in the
binding table all possible pairs of Houses that have participated on the same side in the same
battle.

Finally, in the outer CONSTRUCT we use a short-hand for the graph UNION by specifying the
name of the base graph as a construction argument. We add an edge between h1 and h2 if their
role in battle was the same, label it ALLY and add to it the property in_battle, which takes as
value the name of the battle in which the Houses have been allies. The graph union will enrich
the got_graph with the new ALLY edges.

Path finding can be expressed as easily with G-CORE. For example, the stored paths in the
got_graph could have been added with the query in Listing 2.4:� �

1 CONSTRUCT got_graph , (c)-/@p :CATELYN_TO_DROGO {#hops := cst}/->(d)
2 MATCH (c:Character) -/3 SHORTEST p <:HAS_MENTION_WITH*> COST cst/-(d:

Character)
3 WHERE c.name = ’Catelyn ’ AND d.name = ’Drogo ’� �

Listing 2.4: Compute and add at most three shortest paths between the Characters
Catelyn and Drogo navigating only HAS_MENTION_WITH edges to the got_graph, labeled
CATELYN_TO_DROGO.

In this query, we first search for at most three shortest paths starting from the Character
Catelyn to the Character Drogo, going over HAS_MENTION_WITH edges, ignoring their
direction. We bind the variable c to the cost of the each generated path. When searching for
paths in the MATCH clause, the cost defaults to the number of edges along the path. For the
graph in Figure 2.1 we obtain the following three paths of cost four (five nodes and four edges):
Catelyn-Jaime-Barristan-Jorah-Drogo, Catelyn-Jaime-Robert-Daenerys-Drogo, Catelyn-Jaime-
Barristan-Daenerys-Drogo. As paths are first-class citizens in G-CORE, we store the result back
in the got_graph under the label CATELYN_TO_DROGO. This allows us to later interrogate
the database for the known shortest path between the two Characters:
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� �
1 CONSTRUCT (c) -/p/->(d)
2 MATCH (c)-/@p:CATELYN_TO_DROGO /->(d)� �

Listing 2.5: Query the got_graph for paths labeled CATELYN_TO_DROGO.

To search for the weighted shortest path between Catelyn and Drogo we will use the PATH
clause, which allows to specify a cost for the path pattern in the clause:� �

1 PATH wHasMention = () -[e:HAS_MENTION_WITH ]->()
2 COST e.#times
3 CONSTRUCT got_graph , (c)-/@p :W_CATELYN_TO_DROGO /->(d)
4 MATCH (c:Character)-/p <~wHasMention *>/-(d:Character)
5 WHERE c.name = ’Catelyn ’ AND d.name = ’Drogo ’� �

Listing 2.6: Same as the query in Listing 2.4, only this time use the property #times of each
traversed edge as its cost.

Here we create a path pattern that traverses HAS_MENTION_WITH edges and specify
that the hop cost be the edge’s property #times, i.e. the number of times a Character has a
mention with the Character of the other endpoint of the edge. Then, in the MATCH clause we use
this pattern to search for the weighted shortest path between Catelyn and Drogo and add the
result to the got_graph under the label W_CATELYN_TO_DROGO. The path that includes
Characters with the least co-occurrences in the book is Catelyn-Jaime-Barristan-Jorah-Drogo,
with the cost 40 = 19 + 4 + 11 + 6.

The path pattern can be more complex. For example, we could run the same query, but with
the additional constraint that the Character Barristan not be part of the path:� �

1 PATH wHasMention = (b1) -[e:HAS_MENTION_WITH ]->(b2)
2 WHERE b1.name != ’Barristan ’ AND b2.name != ’Barristan ’
3 COST e.#times
4 CONSTRUCT got_graph , (c)-/@p :W_CATELYN_TO_DROGO /->(d)
5 MATCH (c:Character)-/p <~wHasMention *>/-(d:Character)
6 WHERE c.name = ’Catelyn ’ AND d.name = ’Drogo ’� �

Listing 2.7: Same as the query in Listing 2.6, only this time the Character Barristan must not
be part of the path.

The result will be the path Catelyn-Jaime-Robert-Daenerys-Drogo, with the cost 59 = 19 +
17 + 5 + 18.

The final feature we will showcase are the aggregate functions supported by G-CORE. Using
the count aggregation in CONSTRUCTion we can, for example, compute the degree centrality of
each Character, i.e. the total number of edges incident to the node. This measure shows us how
many other Characters each Character has co-mentions with.� �

1 CONSTRUCT got_graph , (c {degree_centrality := COUNT (*)})
2 MATCH (c:Character) -[: HAS_MENTION_WITH ]-(: Character)� �

Listing 2.8: Add to each Character node its degree centrality as a new property.

If we want to compute the weighted degree centrality to find the total number of co-
occurrences of each Character in the graph, we can instead use the query:� �

1 CONSTRUCT got_graph , (c {w_degree_centrality := SUM(e.#times)})
2 MATCH (c:Character)-[e:HAS_MENTION_WITH ]-(: Character)� �

Listing 2.9: Add to each Character node its weighted degree centrality as a new property.
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During the CONSTRUCTion of the node c the binding table is aggregated by c’s identity. As
this operation has group-by semantics, we can use aggregations to create new properties for the
constructed node.



Chapter 3

Related Work

Graph query languages have been the focus of extensive study in the past decades, however,
a language standard for property graph databases has yet to be adopted. The Resource De-
scription Framework1 (RDF) represents an alternative to the (path) property graph data model.
SPARQL2 is the effective standard graph query language for RDF graph data, which is directed
and labeled. While a popular data model, in the RDF format constant literals are encoded as
vertices of the graph, making data analysis much more complicated than for property graphs [34].
In comparison, the (path) property graph models information more naturally, by encoding it as
properties to graph objects.

Several graph query languages for property graphs have been designed and implemented in
practice, but none has been adopted as a standard yet. In [20] LDBC propose G-CORE not
as a standard, but rather as a solution to industry’s and academia’s desires and needs from a
query language for graph databases. G-CORE has been designed starting from relevant features
offered by three well-established, state-of-the-art property graph query languages, which we will
discuss in the following.

Cypher [26] is a declarative language that emerged as a Neo4j product and has later been
picked up by other commercial graph database vendors. The openCypher project [18] aims
to collect Cypher’s capabilities into an open-source grammar and language specification, thus
enabling developers and enterprises to leverage Cypher for their own products.

Cypher is currently standardized by the openCypher project at version 9 [5], therefore this
version will be the focus of our comparison. Extensive parallels between the semantics and
concepts of G-CORE and Cypher 9 are drawn by [20] or [26]. Among them, we mention first
the data model, which is that of a property graph for Cypher, while G-CORE elevates paths
to first-class citizens and uses a path property graph (PPG) model. There are also differences
in query structure and semantics. While both languages use an ASCII-art syntax for graph
patterns, G-CORE is closed under the PPG model and constructs a single graph as the result
of a query. In contrast, Cypher queries return the matched data in a tabular form, though
the WITH clause can be used to chain multiple MATCH clauses. In Cypher, WITH projects columns
from the table returned by the first MATCH, which become the driving table for the subsequent
MATCH clause. Moreover, Cypher assumes an implicit graph for all queries, whereas G-CORE
features multi-graph queries under join semantics. Given the output format of a Cypher query,
its syntax is closer to SQL than G-CORE’s. However, [20] proposes a SQL extension for G-
CORE for projecting and using tabular data as input to queries. In terms of path matching,
Cypher offers similar capabilities to G-CORE, by supporting path queries as regular expressions.

Neo4j [17] is a graph database system that uses Cypher to query natively stored graphs. As

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-query/
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outlined in [26], the Neo4j implementation largely translates the Cypher query into a logical
algebraic plan and uses a cost-based approach to convert it into an optimal physical plan.
This is then either evaluated under a tuple-at-a-time iterator-based model, or compiled to Java
bytecode. As a more mature system than the one we will implement in this thesis, Neo4j
offers built-in Cypher procedures for common graph algorithms3, such as centrality measures,
community detection and path finding.

Cypher for Apache Spark [4] (or CAPS) is a new open-source project that uses Apache Spark
as backend for Cypher queries. Apache Spark [2] is a widely adopted open-source system for
large-scale distributed data processing. Spark offers its users the SparkSQL [24] component, a
very powerful framework for expressing relational queries on Spark’s resilient distributed datasets
(RDDs). SparkSQL uses DataFrames, a relational abstraction of RDDs, and the Catalyst op-
timizer to optimize DataFrame queries. In CAPS, graph data is strongly typed and stored in
a tabular form in DataFrames4. Cypher queries over the graphs are parsed into a tree-based
representation of Cypher-specific and relational operators. After optimizations, the query plan
is translated into operations on DataFrames using the DataFrame Scala API5. Key contributions
of CAPS to Cypher are that the results of queries are graphs and not tables, thus allowing query
composability, exactly as G-CORE. The new system also allows working with multiple graphs,
instead of a single global graph.

G-CORE also draws inspiration from Oracle’s Property Graph Query Language (PGQL) [34].
The standard considered in [20] is 1.1 [14], therefore we will focus our comparison on this version.

Similar to Cypher, the data model in PGQL is that of the property graph. PGQL queries
return the set of bindings that matched the given graph patterns in a tabular form. The motiva-
tion behind this format is outlined in [34]: PGQL has been designed to offer the users analysis
capabilities over graph topologies, but also over the data stored in vertices and edges (their prop-
erties). PGQL’s syntax is very close to SQL, i.e. queries have the select-from-where structure,
with the graph pattern being specified in the FROM clause. This naturally allows the user to
extract, process and analyse the structured information inside the graph in the SELECT clause.
Patterns are specified in the same ASCII-art syntax as in G-CORE and Cypher. By default,
PGQL uses isomorphic semantics for pattern matching, but homomorphic semantics are also
supported when so activated in the query. A particularity of PGQL are the expressive path
queries that have also found their way into G-CORE and that can be used in the PATH clause
to form complex path patterns. PGQL’s design [34] shows that queries could also return graphs
but the semantics are different from G-CORE’s: a PGQL query will construct multiple graphs
and add them to the tabular result as a graph type; G-CORE, on the other hand, unions all the
sub-graphs produced by the construct patterns and returns a single PPG.

PGX.D/Async [31] is a distributed in-memory graph pattern matching engine for PGQL
queries. The system compiles a PGQL query into a logical plan, then rewrites it to a distributed
query plan. The final step is to create an execution plan from the distributed one, by splitting
the PGQL query into separate stages, each responsible for matching one vertex. The system uses
asynchronous depth-first traversal in a sequential manner. Changes between stages are called
"hops" and happen between adjacent graph nodes based on the query pattern. Each stage adds
its findings to an output context and, when hopping accross machines, this contex is passed as
a message.

Sevenich et al. present in [33] a graph database system that offers graph data consistency and
a framework for efficient graph data analysis, called PGX. The authors use PGQL for pattern

3https://neo4j.com/developer/graph-algorithms/
4https://s3.amazonaws.com/artifacts.opencypher.org/website/ocim2/slides/13-15+Cypher+for+

Apache+Spark.pdf
5https://spark.apache.org/docs/latest/sql-programming-guide.html

https://neo4j.com/developer/graph-algorithms/
https://s3.amazonaws.com/artifacts.opencypher.org/website/ocim2/slides/13-15+Cypher+for+Apache+Spark.pdf
https://s3.amazonaws.com/artifacts.opencypher.org/website/ocim2/slides/13-15+Cypher+for+Apache+Spark.pdf
https://spark.apache.org/docs/latest/sql-programming-guide.html
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matching queries, coupled with Green-Marl6 to express graph algorithms. The motivation be-
hind using two different domain-specific languages is that it is difficult to express complex graph
algorithms with declarative languages like PGQL, that only specify what data to retrieve/com-
pute, not how. The authors highlight the need for the existence of an imperative language in
the system, that can express how a computation should be performed and that is more suitable
for creating graph algorithms. The graph storage is relational and offers ACID properties and is
built on top of Oracle RDBMS, Oracle NoSQL and Apache HBase. At runtime, data is loaded
from the relational graph storage into the analytical engine and the query is not compiled to
SQL, thus renouncing the benefits the database SQL optimizers could offer if the query had been
performed entirely in the relational world. The authors argue that graph-specific optimizations
can instead be applied with their method.

Gremlin [30] is a graph traversal machine and language born under the Apache TinkerPop
project [3]. Gremlin supports graph pattern matching semantics, in which query variables are
bound to concrete values within the database, as well as the imperative graph traversal model,
in which traversal instructions, called motif s, are explicitly provided by the user and then a set
of traversers move along the graph according to the instructions and collect the traversed objects
of the graph into a resulting set. If we view the graph as a physical machine, then the traversal
is a program running on it, while the traversers are different instances of the traversal, with
their own program counter, registers and data references [6]. The Gremlin traversal machine is
essentially an automaton. Traversals can be used to express complex path queries, with cycles,
branches and repetitions, being more expressive than the regular path queries.

Gremlin queries are compiled to Gremlin traversals, optimized and then run on the Gremlin
traversal machine. The traversal machine can execute the queries on a single machine, as well
as in a distributed cluster. TinkerPop implements the Gremlin traversal machine as a virtual
machine running inside the JVM. This allowed for numerous Gremlin bindings into programming
languages that can be run on the JVM, such as Java, Scala, Ruby, etc. Any graph system can be
TinkerPop-enabled, i.e. add support for the Gremlin traversal machine. Through TinkerPop’s
Gremlin compiler, vendors can register specific traversal optimizations that leverage their respec-
tive data model and underlying execution system. Noteworthy Gremlin implementations avail-
able in TinkerPop3 are Neo4j-Gremlin7, SparkGraphComputer8 or GiraphGraphComputer9.

In a graph database, graph data can be stored either in a relational model, or under a native
graph representation. GraphFrames [9] are an Apache Spark API that combine the relational
functionality of DataFrames for representing graphs, with GraphX’s powerful graph analytical
capabilities. A GraphFrame uses two DataFrames to abstract a graph: one for its vertices and
one for its edges. The data model is that of a property graph, where object properties are called
"attributes" and stored as DataFrame columns. Each graph object has a unique identifier, which
serves the same role as of a primary key, and the edge table contains two additional columns to
store the source and destination identifiers of their endpoints - these can be thought of as foreign
keys.

GraphFrames support motif finding, a process of graph pattern matching in which graph
patterns are described with the same ASCII-art syntax as we have seen before. Join semantics
are used to match edges. GraphFrames, however, lack the pattern matching expressivity we
have seen in the languages we have previously analyzed. First, in GraphFrames there is no
concept of label-based motif finding. Instead, vertices and edges can be attached their label as
an extra attribute, and the label condition can be applied as a filtering clause. Explicit labels

6https://github.com/stanford-ppl/Green-Marl
7http://tinkerpop.apache.org/docs/3.0.1-incubating/#neo4j-gremlin
8http://tinkerpop.apache.org/docs/3.0.1-incubating/#sparkgraphcomputer
9http://tinkerpop.apache.org/docs/3.0.1-incubating/#giraphgraphcomputer

https://github.com/stanford-ppl/Green-Marl
http://tinkerpop.apache.org/docs/3.0.1-incubating/#neo4j-gremlin
http://tinkerpop.apache.org/docs/3.0.1-incubating/#sparkgraphcomputer
http://tinkerpop.apache.org/docs/3.0.1-incubating/#giraphgraphcomputer
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have the advantage of generating a natural partitioning of graph data and acting as types for the
graph objects. Also, multi-graph queries cannot be expressed with GraphFrames, as the pattern
matching functionality is a specific method of a graph object. For this, data of multiple graphs
would have to be merged into a single GraphFrame before applying the pattern. Path patterns
are also less expressive. GraphX provides multi-source shortest path finding to a set of landmark
vertices out of the box, but more complex path algorithms need to be explicitly implemented by
the programmer. While this can easily be achieved by modifying GraphX’s algorithm10, it lacks
the elegance of a declarative syntax for path patterns.

10https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/
lib/ShortestPaths.scala

https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala


Chapter 4

Design

In this chapter we outline the design concepts of our prototype system that translates G-CORE
queries into SQL statements and then runs them through Apache Spark’s SparkSQL engine. We
will henceforth refer to this system as the G-CORE interpreter. We wrote the interpreter in
Scala1, used DataFrames to represent the physical data as tables and ran SQL queries on these
tables to extract information needed in the query. Compared to the related work discussed in
Section 3 our solution is most similar to the Cypher on Apache Spark (CAPS) project.

The design and implementation of the G-CORE interpreter are heavily influenced by prelim-
inary choices concerning the platform used for running queries, how we store and model graph
data and, to some extent, even the language subset we decide to cover, although our work strives
to be generic and expressive enough to allow more features to be added in the future. We iden-
tify three core decisions that considerably influence the rest of our work. The first two are that
we settle for a relational model for the graph database and that we translate G-CORE queries
into SQL statements. The motivation behind our decisions are that by using tables to store the
graph items and represent their topology, and SQL to access and operate with this data we can
leverage the functionality of existing RDBMSs, which will save us time from designing our own
native or relational representation. Moreover, by translating to SQL as an intermediary step we
provide portability to other platforms. The final decision we take is to not strive for performance
from the beginning. Our research questions are listed in Sections 1.1 and can be summarized
into the main goal of verifying G-CORE’s definition through an actual implementation. We
leave aside specific optimizations of our interpreter, and instead rely on what the platform we
will use for storage and execution can provide. Improvements to our project will be the subject
of future work.

Table 4.1 presents the language subset that is covered by our implementation. We list avail-
able G-CORE features presented in [20] or available through G-CORE’s open-source grammar [7]
and highlight how our interpreter deals with each of them.

4.1 Our choice of backend

As the execution and storage layer for our interpreter we decided to use a system that is already
well supported and has been proven to be effective in practice. To this end, we considered two
candidates, Apache Spark [2] and MonetDB [13] and decided to utilize Spark, due to a better
familiarity with the framework. The Spark version we use is 2.2.0. From Spark, we also import
the SparkSQL module2, which allows us to work with structured data. SparkSQL supports SQL
queries and uses the Catalyst optimizer to improve performance of query plans [24].

1https://docs.scala-lang.org/
2https://spark.apache.org/docs/latest/sql-programming-guide.html
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coverage notes

graph view, union, minus, intersection ♠
path clause ♠
multi-valued properties, multi-labeled graph items ♣
SQL extension (tabular queries)
data types: integer, string, boolean �,♦,4
data types: date, time, timestamp �

MA
TC

H

graph location: default graphs, named graphs �,♦
graph location: graph query � ♥
vertices, edges, stored or virtual paths �,♦,4
chained patterns �,♦,4
labeled vertices, edges, stored paths �,♦,4
label disjunction, conjunction � ♥
property unrolling or aliasing � ♥
all stored paths �,♦,4
shortest, k-(disjunct) shortest stored paths � ♥2

cost of stored paths �,♦,4
path expressions on stored paths � ♥2

shortest virtual path �1,2, ♦1,2,
41,2

all, k-(disjunct) shortest virtual paths �2 ♥2

(weighted) cost of virtual paths �2, ♦2, 42

path expressions on virtual paths: simple kleene-star �2, ♦2, 42

path expressions on virtual paths: kleene-star with bounds, union or
concatenation, macro

�2 ♥2

WHERE clause: subset of expressions �,♦,4

CO
NS

TR
UC

T

set and remove clause �,♦,4
WHEN clause: subset of expressions �,♦,4
vertices, edges �,♦,4
path �
chained patterns in a basic construct �,♦,4
multiple basic constructs �,♦,4
copy pattern �
labels and properties added as part of the pattern �,♦,4
group declaration �,♦,4
incoming, outgoing edge �,♦,4
undirected or bidirected edge or path � ♥

ex
pr
es
si
on

s

unary: minus, not �,♦,4
aggregates: count, collect, min, max, sum, avg, group concat �,♦,4
arithmetic: mul, div, mod, add, sub �,♦,4
mathematical: power
conditional: (n)eq, gt(e), lt(e) �,♦,4
logical: and, or �,♦,4
list operators �,♦,4
predicates: is (not) null �,♦,4
existential sub-clause �,♦,4
function parameters
case statements
cast

Table 4.1: G-CORE features covered in our work. Legend: � parsed, ♦ translated to rela-
tional operators, 4 translated to SQL, ♣ not covered by data model, ♠ syntactic exception, ♥
unsupported operation exception, 1 incomplete, 2 experimental branch at time of writing.
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SparkSQL operates on Datasets, a strongly typed immutable collection of distributed data
built on top of Spark’s RDDs. Datasets can be transformed in parallel through functional and
relational operators. DataFrames represent untyped views over Datasets of generic tuples. In
fact, in Scala, the DataFrame is exactly a type alias of a Dataset of rows3. With DataFrames,
data can be organized into tables of named columns, which perfectly fits one of our core decisions,
namely to use a relational model for our data representation. To manipulate Datasets and
DataFrames, we can either use the Dataset Scala API4, or directly SQL statements. This aligns
with our desire to translate G-CORE into SQL.

There are, of course, differences between using Datasets versus DataFrames, or the Scala
API versus SQL. Compile-time type safety favors certain semantic validations of the query with
Datasets when using the API, but not with DataFrames, such as column names and types
(columns are typed objects with Datasets). This can increase the runtime errors of DataFrames,
even when using languages with static type checking, such as Scala. Another example is that
syntax errors will be detected at compile time for both Datasets and DataFrames when using
the API, but a SQL query will only be analyzed syntactically and semantically at runtime.
However, the common denominator between the two pairs of primitives (Datasets/DataFrames,
Scala API/SQL) remains that the Catalyst optimizer will power the transformation phases of
the query.

Besides DataFrames, we also considered Spark’s GraphFrames [9], which we discussed in
detail in Chapter 3. GraphFrames operate on top of DataFrames, but, as we have already
highlighted, they are not necessarily an appropriate tool for our use case. Instead of increasing
the complexity of our work by trying to modify the open-source GraphFrame code to suit our
needs (even if only on a private branch), we decided to use DataFrames directly and implement
the entire translation to SQL by ourselves.

4.2 The path property graph data model

This section introduces formal notations for the path property graph data model, that will be
used throughout the thesis. We closely follow the G-CORE and Cypher formalisms presented
in [20] and [26], respectively.

Let N be a set of node identifiers, E a set of edge identifiers and P a set of path identifiers,
with N , E and P countably infinite and pairwise disjoint. We denote members of the set as n, e
and p, respectively. We assume that we can never run out of identifiers in the system. Further,
let L be a countably infinite set of label names, K be a countably infinite set of property keys
and V a countably infinite set of literals. We use l to denote a label, k to denote a property key
and v to denote a literal (value).

Intuitively, identifiers are values. Our prototype covers three data types supported by G-
CORE: integer numbers in Z, finite strings over a finite alphabet Σ and the booleans true and
false. Numbers, strings and booleans are values. null is a special value signifying the lack of
information. In G-CORE, literals can be manipulated through functions (for example, strings
can be concatenated or arithmetic expressions can be applied on numbers).

Here and throughout the rest of the thesis, we use the notations [v1, v2, ..., vm] for lists and
{k1 → v1, k2 → v2, ..., km → vm, } for maps (dictionaries), where kj are keys and vj are the
associated values. Maps can be iterated key-by-key and if m is a map, then m(kj) is an access to
vj , the value associated with the key kj . Tuples are represented as (v1, v2, ..., vm) and to extract
the ith value of a tuple we can use the Scala-like notation (v1, v2, ..., vm)._i, where i ≤ m.

3https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.package@
DataFrame=org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]

4https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.package@DataFrame=org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.package@DataFrame=org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset
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As in [20] we use the notation FSET (X) for the set of all finite subsets of X and FLIST (X)
for the set of all finite lists that can be obtained from the elements of X. With this in mind, we
define the path property graph model exactly as in [20], as the tuple G = (N,E, P, ρ, δ, λ, σ),
where:

• N is a finite subset of N , E is a finite subset of E and P is a finite subset of P, with N , E,
P being pairwise disjoint. They represent the graph’s nodes, edges and paths, respectively.

• ρ : E → (N×N) is a total function that maps each edge identifier to the tuple of source and
destination node identifiers. For example, if n0 is the source of e and n1 is the destination
of e, then ρ(e) = (n0, n1).

• δ : P → FLIST (N ∪ E) is a total function that maps each path identifier to its chain of
vertex and edge identifiers. For a path p, δ(p) = [n1, e1, n2, e2, n3, ..., nk, ek, nk+1], where
k ≥ 0, ni ∈ N, ∀i ∈ {1, 2, .., k} and ei ∈ E and ρ(ei) = (ni, ni+1),∀i ∈ {1, 2, .., k}.

• λ : (N ∪ E ∪ P ) → FSET (L) is a total function that maps each node, edge and path
identifier to a finite, possibly empty, set of labels.

• σ : (N ∪ E ∪ P ) ×K → FSET (V) is a finite partial function that maps a node, edge or
path identifier and a property key to a set of values.

To extract path items, we can use nodes(p) and edges(p) to denote the list of nodes and
edges of a path p. For example, if δ(p) = [n1, e1, n2, e2, n3, ..., nk, ek, nk+1], then nodes(p) =
[n1, n2, ..., nk+1] and edges(p) = [e1, e2, ..., ek].

4.3 Physical and logical data model

We use the term graph database to denote the collection of the available PPGs in our system.
Graph data is assumed to be readily available and stored in the form we will describe below.
It is not in the scope of the interpreter to validate the data layout. We exclusively support
data interrogations - we do not support any data manipulation (such as updates, insertions or
deletions) or data definition operations (such as create, drop, import) on the underlying storage.
Any manipulation or change on the graphs used in a query will only reflect on the result of that
particular query. We are essentially keeping this feature consistent with the outline provided
in [20].

We add several changes to the path property graph data model presented in Section 4.2 for
the items in our graph database, in order to simplify the interpretation process and storage logic:

• Given that we work in a real, finite system, we will use L ⊂ L to denote the finite subset
of labels, K ⊂ K the finite subset of property keys and V ⊂ V the finite subset of literals
in the path property graph.

• We change the codomain of λ to L: λ : (N ∪E∪P )→ L. In this way, each node, edge and
path can only have one label. Further, the images λ(N), λ(E) and λ(P ) must be disjoint.

• We change the codomain of σ to V : σ : (N ∪E ∪ P )×K → V . In this way, we eliminate
the support of multi-valued properties. For each node, edge or path, a certain property
key can only take a single value. Because of this, we also disable property aliasing or
multi-valued property unrolling in graph patterns.
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Next, we model our graph database into a relational storage, in which we represent each label
l ∈ L as a named relation. We use the tuple (l,H,B) to denote this relation: l, a label (which
is, after all, nothing more than a string), is the name of the relation; the actual data is stored
within a table with header H and body B. The header of the table, H, is a finite set of names
and B is a collection of tuples with domain H. Let D be the relational database that stores the
graph data in the form expected by the G-CORE interpreter. If G is a PPG, then D(G) is the
relational representation of the graph and is the tuple (ν,R, LN , LE , LP , θ, τ), where:

• ν ∈ V is the name of the graph. We require that every stored graph have a unique name
across D.

• R is the set of all named relations that store the graph data. Each element of R is a tuple
of the form (l,H,B), where H ⊆ K. The notation has the previous explained meaning.

• LN , LE and LP are three, possibly empty, disjoint sets of labels, such that LN ∪LE∪LP =
L. They represent the labels of the nodes, edges and paths, respectively, of graph G. The
union of the three sets represents the totality of labels in the graph. In the current version
of the interpreter, each label must be defined for exactly one graph. However, this can be
easily addressed in the future by, for example, prefixing the labels with the graph’s name.

• θ : (LN ∪ LE ∪ LP ) → FSET (K) is a total function that associates to each label in G a
possibly empty sub-set of property keys. Property keys can repeat across labels, however,
they will be considered semantically different (for example, in Figure 2.1 if a Character
had a property "name" and a House had a property "name", we interpret them as two
different property keys, named the same).

• τ : (LE ∪LP )→ (LN ×LN ) is a total function that maps an edge or path label to a tuple
of two node labels, which represent, in this order, the label of the source and destination
nodes. The cardinality of the domain is given by the number of edge or path labels available
in the graph, so it can also be the empty set when E and P are the empty sets. We are
essentially introducing for each graph a constraint on its edge and path labels and require
that these only appear between predefined source and destination vertex labels. This will
prove useful later on during query analysis. In the current version of the interpreter, this
function must be bijective, so we do not allow the mapping of edge or path labels to be
multi-valued. This can be easily addressed in the future by changing the data structure
that holds this mapping and tweaking the current algorithms.

Depending on the type of label, the header H will be defined as:

• If l ∈ LN is a vertex label, H = {id} ∪ θ(l). In other words, for the label of a vertex, we
store the vertex identifier along the property keys mapped to that label. The identifier
column acts as the primary key of the table.

• If l ∈ LE is an edge label, H = {id, src_id, dst_id} ∪ θ(l). For each record in B with the
identifier e, src_id = ρ(e)._1 and dst_id = ρ(e)._2. In other words, for the label of an
edge, we store the edge identifier, the identifiers of the incident vertices and the property
keys mapped to that label. While the edge identifier is the primary key of the table, the
source and destination ids as foreign keys.

• If l ∈ LP is a path label, H = {id, src_id, dst_id, edge_seq} ∪ θ(l). For each record in B
with identifier p, src_id(p) = nodes(p)._1, dst_id(p) = nodes(p)._k + 1 and edge_seq =
edges(p), where k represents the length of the path. In other words, for the label of a
path, we store the same columns with the same roles as for an edge, but also a column
containing the sequence of edge identifiers along the path.
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Mapped on the available Spark primitives we considered in Section 4.1, each table will be
represented by a DataFrame. Note that even though we do not support multi-valued properties,
DataFrames do support complex data types5, such as arrays (of which we make use to store a
path’s edge sequence), maps and structures. This feature can be leveraged in the future to add
support for multi-valued properties.

A G-CORE query operates with graphs, rather than with their physical representation de-
scribed above. Our interpreter needs to be able to run several analysis and rewrite phases on
the given query, hence the need to introduce the constraints θ and τ . Moreover, the interpreter
needs to be able to infer a table’s schema in order to create data domains for the records (the
values of the properties). We make the assumption that this is an intrinsic property of the
storage and execution layer and with DataFrames this is indeed the case. Hence, θ is built from
the underlying data structure, but it could also be provided manually. τ must be explicitly
provided by the user, as it cannot be inferred from the underlying data. For example, in our
implementation, this information is specified through a configuration file when adding a new
graph to the database.

Given the relational representation D(G) of a graph G, we can reconstruct the graph as
follows: using LN ∪ LE ∪ LP we obtain L, the set of node, edge and path labels in G. For each
label in l ∈ LN ∪ LE ∪ LP , there is a named relation r ∈ R that stores graph data and each of
these relations has a column id. We can thus obtain N , E and P , the identifiers of nodes, edges
and paths in G. Further, the information returned by ρ for each edge in the graph is stored
in each record in an edge table (reachable through LE), under the columns src_id and dst_id.
We can reconstruct a path from its column edge_seq, which provides the edge identifiers along
the path, and the source and destination identifiers stored in separate edge tables. λ will be the
relation’s label for each identifier in a named relation. Finally, σ is exactly the mapping between
the header and the values stored in the body of a relation, for all the relations in R.

To better illustrate these concepts, we show in Table 4.2 how the graph in Figure 2.1 would
be represented in our data model.

In the interpreter implementation we make the distinction between the stored graph data and
the information we have about it. We use the term catalog to denote the global data structure
that stores all the graphs’ metadata and graph schema to denote a light-weight representation
of a PPG - it is the same tuple as D(G), but in which a relation is simply r = (l,H). In other
words, the graph schema is the available information about a PPG, modulo the actual vertex,
edge or path data: its name, its labels with their associated properties and its label restrictions.
Figure 4.1 highlights these concepts. In the Scala implementation, this is translated into a
Catalog singleton object, which stores a collection of PathPropertyGraph objects. Each PPG
inherits from the GraphData - with DataFrame fields - and GraphSchema - with the θ and τ
mappings and LN , LE , LP fields - classes. Additionally, each PPG also has a name ν.

The catalog offers several primitives: A is the set of all available graph names, with A ⊆ V ;
register_graph(D(G)) is a function through which metadata about a new graph can be added,
when the graph data is added to the database, with its inverse unregister_graph(ν), where
ν ∈ A; set_default_graph(ν) sets a graph as the default graph, given the graph has already
been registered in the catalog, with its inverse reset_default_graph; default_graph, which
returns the schema of the default graph, if any graph has been registered as default, or the empty
graph otherwise.

5https://spark.apache.org/docs/latest/sql-programming-guide.html#data-types

https://spark.apache.org/docs/latest/sql-programming-guide.html#data-types
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Character
id name
100 Catelyn
101 Sansa
102 Jon
103 Jaime
104 Tyrion
105 Cersei
106 Robert
107 Barristan
108 Daenerys
109 Viserys
110 Jorah
111 Drogo
112 Jon Arryn

House
id house_name
200 Kingsguard
201 Queensguard
202 Night’s Watch
203 House Targaryen
204 House Arryn
205 House Mormont
206 House Baratheon
207 House Lannister
208 House Bolton
209 House Frey
210 House Stark
211 House Tully

HAS_ALLEGIANCE_TO
id src_id dst_id
400 100 211
401 100 210
402 101 210
403 101 207
404 102 210
405 102 202
406 103 200
407 103 207
408 104 207
409 105 207
410 105 206
411 106 206
412 107 200
413 107 201
414 110 201
415 110 205
416 108 203
417 109 203
418 112 204

HAS_MENTION_WITH
id src_id dst_id #times
300 100 103 19
301 100 104 5
302 100 101 8
303 101 102 4
304 101 105 16
305 101 104 77
306 103 107 4
307 103 106 17
308 103 104 31
309 105 103 36
310 105 104 46
311 105 106 16
312 106 107 5
313 108 106 5
314 108 107 20
315 108 110 47
316 108 111 18
317 108 109 8
318 110 107 11
319 110 111 6

ATTACKED
id src_id dst_id battle_name
500 207 211 Battle of Fords
501 206 207 Battle of Blackwater
502 206 208 Siege of Winterfell
503 206 208 Siege of Winterfell
504 208 210 Red Wedding
505 208 210 Red Wedding
506 205 208 Siege of Winterfell
507 205 208 Siege of Winterfell

W_CATELYN_TO_DROGO
id src_id dst_id edge_seq cost
600 100 111 [300, 306, 318, 319] 40

Table 4.2: Logical data representation of the graph in Figure 2.1.
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graph data

vertex, edge, path data

graph schema

vertex, edge, path schema:
(ℓ, H = {k1->d1, k2->d2, … km->dm})

edge and path label restrictions:
ᶦ(ℓedge/path) = (ℓsource, ℓdest)

Catalog

PPG1 
schema

PPGi
schema

PPG2 
schema

stored and available at 
runtime

available at compile-time

default graph

path property graph

Figure 4.1: Graph metadata is stored in the catalog. The information about a graph is called
the graph’s schema and contains: a list of tuples (l,H) and a list of label tuples, called label
restrictions. l represents a label and H the header of the named relation in which we store data
for that label. We store the header as a mapping between property key and the data type of
the property values. The label restriction refers to the allowed labels for source and destination
vertices of an edge or stored path of a given label. One of the graphs in the catalog can be set
as the default graph.

4.4 Overview of the interpretation pipeline

In Figure 4.2 we present an overview of the interpreter and highlight its main components. Our
system loosely incorporates canonical compiler stages, but, given the level of maturity of our
prototype, is rather simple in its design. A G-CORE query is first run through the parsing
module that can detect and emit syntactic exceptions. This stage creates a parse tree and
reshapes it in case variable names are missing in the supported clauses. Given the subset of
language we support, the root of the parse tree will contain two children, the MATCH and the
CONSTRUCT sub-trees.

The algebraic module then transforms the two sub-trees into an algebraic plan that will
initially contain G-CORE-specific operators, but will be sequentially run through rewrite phases
that will transform it into a fully relational plan. At this step, the metadata provided by the
catalog is used to semantically validate the query or to power certain rewrite or analysis phases.
The algebraic module can emit semantic exceptions to signal logical errors in the query, or
analysis exceptions to signal coding errors in the interpreter itself. We discuss the difference
between the abstracted binding table and the materialized binding table in Section 4.5, but it
is important to note that the MATCH sub-tree will become one single relational tree, while for the
CONSTRUCT sub-tree we will need to create as many relational trees as there are variables to be
built. The construct rules will need to refer to the binding table created when solving the MATCH
block. Details about the implementation of this module are given in Sections 6.3 and 6.4.

Once an algebraic plan has been built it can be optimized, however, as mentioned before,
this is out of the scope of our project. Instead, the algebraic plan is passed directly to the target
module that will transform it into SQL queries. Path finding algorithms are implemented at
this level using the GraphX framework [27, 10]. The target module talks directly to the graph
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storage, from which it will scan data. Semantic exceptions and runtime exceptions can be raised
in this step. We will use one SQL query to evaluate the MATCH block and create the binding table
and one up to three queries to create each new graph entity. The reason for this is presented in
Section 6.4. The target module will finally build and return a path property graph as the result
of the query.

Formally, each module in the pipeline is a single-argument function that takes parameters
in an input domain I and outputs results in a codomain O. In Scala, each module extends
Function16. The function uses a chain of tree rewriters on the input. The codomain of one
module is the domain of its consecutive module, so the interpretation pipeline becomes the
composition of the three stages. If any of the modules throws an exception, the interpretation
halts and the subsequent stages are never fired.

We shape the information exchanged by the modules as trees with nodes of a certain data
type, also denoted the tree type. All tree types in the interpreter extend the base type TreeNode,
which offers common tree operations, such as traversals or pretty printing. Each node has a
possibly empty list of children, of the same type as itself. A node with no children is called a
leaf. A tree rewriter is a two-argument function f which takes as input a tree of type T and
a partial function p : T → T , and applies p recursively over the tree nodes, possibly changing
its structure. With Scala, each function p extends PartialFunction7. Depending on how the
tree is traversed during the application of p, we distinguish between top-down rewriters, which
start with the root and descend towards the leaves, and bottom-up rewriters, which start with
the leaves of the tree and ascend towards the root.

4.5 Binding table abstraction

We have seen in Chapter 2 that the MATCH clause is evaluated into a binding table, in which
variables in the graph pattern are mapped to the maximal set of values from the database that
satisfy the entire MATCH block. The binding set can be logically viewed as a table, where each
column corresponds to one variable in the clause and the values are complex objects that store
not only the identity of a matched object, but also its related properties. We identify the need
of materializing the binding table before solving the CONSTRUCT clause, as for each new graph
entity we will need to group the bindings to produce a PPG and then unite all the results into
a single result.

Thus, during the interpretation process we apply two views on the binding table. The
distinction between the two is represented in Figure 4.2. First, during the analysis and rewriting
phases of the query in the algebraic module, we use the same logical view as presented above,
i.e. we view the binding table as a relation over the variables in MATCH. This means that the
binding table can become the argument of traditional relational operators, such as joins and
unions. At this stage we can use the metadata in the catalog for analysis, so explicit graph data
is not needed.

The second view is the actual physical view of the binding table, which is produced when
the table is materialized before solving CONSTRUCT in the target module. As we have seen in
Section 4.3, graph data in D is modeled into named relations of the form (l,H,B), where the
header H is comprised of l’s property keys and the body B holds the records of the relation.
Each variable of the query is labeled or else its label is inferred during one of the rewrite phases
of the interpreter. This means that the bindings of all variables will be found in B, where they
can be matched to zero or more records, depending on the conditions in the WHERE clause. We
will also see that the bindings of all the variables in the query will be combined in B through
relational operations over their tables, followed by the groupings and other projections needed

6https://www.scala-lang.org/api/2.9.3-RC2/scala/Function1.html
7https://www.scala-lang.org/api/2.12.1/scala/PartialFunction.html

https://www.scala-lang.org/api/2.9.3-RC2/scala/Function1.html
https://www.scala-lang.org/api/2.12.1/scala/PartialFunction.html
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CONSTRUCT (u)-[e]->(v)
MATCH (u:ℓ1)-[e:ℓ2]->(v:ℓ3)

abstracted binding table

u e v

materialized binding table

θ(ℓ1 ) ∪θ(ℓ2 )∪θ(ℓ3 )

catalog

parse tree

MATCH CONSTRUCT

construct rules

u e vu v

new entities
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canonical rewrites

algebra

create tree of 
G-CORE operators
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table

solve construct 
rules

canonical parse tree
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G-CORE query
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graph

build parse tree

create PPG

Figure 4.2: An overviews of the interpretation pipeline that translates G-CORE queries into
SQL queries.

for construction. So far, these operations are expressed on the abstracted binding table of the
MATCH clause, but, right before solving the operations of the CONSTRUCT clause, they will need to
be executed and their result materialized. To this end, the physical view of the binding table will
become a single unnamed relation. The header of the binding table will contain all the property
keys of the MATCH variables and its records will be a combination between the bindings of each
variable.

To summarize, during the algebraic rewrites of the query, the binding table is viewed as a
relation over the variables of the query, where each value in the table is considered a complex
data structure holding the variable’s properties. In fact, we are not touching any value in the
table at this point. When executing the query, this abstract table is materialized into a relation
over the property keys of the labels of each query variable, in which the records will be relational
combinations of the bindings of all variables in the query.
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Parser

The interpretation of a G-CORE query starts with parsing the text of the query. This is the
first stage shown in Figure 4.2. For this purpose, we used an available open-source G-CORE
grammar and parser [7] developed with the Spoofax language workbench [19]. As our project is
written in Scala, we take a number of easy steps to import the language specification and use it
to parse queries. We first download the project from Github and compile it with Maven1. We
then zip the generated binary and other sources into a language component, which we finally
import into our project using the Spoofax Java API2 seamlessly from Scala. The Spoofax parser
produces a syntactic tree using the base type IStrategoTerm3. We found this type difficult to
use in our project, so instead we project this tree into a custom SpoofaxTreeNode, a Scala case
class. We will use interchangeably the terms parse tree, syntax tree or lexical tree to refer to the
result.

The first rewriting of the query is done on the parse tree and has the purpose of canonicalizing
it. As we have seen in Chapter 2 the G-CORE syntax accepts unnamed variables both in MATCH
and in CONSTRUCT, for node, edge and path patterns. We address this issue in the canonical
rewriter and introduce fresh variable names only for edges and vertices. The semantics of an
unnamed path are those of binding its two endpoints only if the destination is reachable from
the source, therefore we should not create a binding for paths that have none and thus avoid
bringing the path data into the binding table.

parsed pattern canonical pattern
() vi
()-(), ()- -(), ()-[ ]-() (vi)-[ej ]-(vk)
()->(), ()- ->(), ()-[ ]->() (vi)-[ej ]->(vk)
()<-(), ()<- -(), ()<-[ ]-() (vi)<-[ej ]-(vk)
()<->(), ()<- ->(), ()<-[ ]->() (vi)<-[ej ]->(vk)

Table 5.1: Canonical rewrite rules of the parse tree. Unnamed variables in MATCH and CONSTRUCT
are given a new name: the prefix is v for vertices and e for nodes, followed by a unique number.

For variable naming, we introduce a number generator G, that generates consecutive natural
numbers, starting from 0. If k was the last number generated with G, then at the next request
k+ 1 will be emitted. We reshape the parse tree from top to bottom. Depending on whether we
encounter an unnamed vertex or an unnamed edge, we will generate a new name for the item,
that will start with the prefix v for vertices and e for nodes, followed by the next number yielded

1https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
2http://www.metaborg.org/en/latest/source/core/start.html
3https://github.com/metaborg/mb-rep/blob/master/org.spoofax.terms/src/org/spoofax/

interpreter/terms/IStrategoTerm.java
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by G. Table 5.1 shows for which patterns we apply the rewrite rule. We use i, j and k to denote
numbers generated by G.

Figure 5.1 presents a query and part of its parse tree. Parse trees can become quite large, so
we limit our example to the simplest G-CORE query, CONSTRUCT () MATCH (), in which we try
to match an anonymous node on the default graph and then construct an anonymous unbound
node from the binding table. None of the variables in the query is bound to a variable name,
therefore we introduce two new sub-trees in the syntactic tree to create their names. The result
is a canonical parse tree.

QUERY

PATH CONSTRUCT MATCH

CONSTRUCT 
PATTERN

VERTEX

VAR_REF_DEF COPY GROUP OBJ_CONSTR_
PATTERN

LABELS PROPS

OPTIONALS PATTERN + 
CONDITION

GRAPH 
PATTERN CONDITIONLOCATION

VERTEX

VAR_DEF OBJ_MATCH
_PATTERN

LABELS PROPS

parse tree

QUERY

PATH CONSTRUCT MATCH

CONSTRUCT 
PATTERN

VERTEX

VAR_REF_DEF COPY GROUP OBJ_CONSTR_
PATTERN

LABELS PROPS

OPTIONALS PATTERN + 
CONDITION

GRAPH 
PATTERN CONDITIONLOCATION

VERTEX

VAR_DEF OBJ_MATCH
_PATTERN

LABELS PROPS

vm

vn

canonical parse tree

CONSTRUCT ( ) MATCH ( )

tree node

absent term, is None in tree

absent term to be replaced in parser

subtree added by parser

Figure 5.1: Example reshaping of the parse tree for the query CONSTRUCT () MATCH (). Neither
the CONSTRUCT, nor the MATCH variables are named, so the initial parse tree will contain an empty
node None for each, in place of a variable name. The canonical tree, however, will replace this
with the correct sub-tree that introduces the variable names, prefixed with v for vertices.



Chapter 6

Algebra

Once the lexical tree has been rewritten into a canonical form, we can semantically validate the
query and then reshape it into a tree of relational operators to create the abstracted binding
table and then use it to construct the resulting path property graph. This reshaping is possible
because we store graph data into tables, where each table holds the information of a label. We
can rewrite the MATCH clause into relational operations that build an abstracted binding table.
Further, because the binding table is created as a relation over the variables of a query, we
can rewrite the CONSTRUCT clause into relational operations over this table. It is necessary to go
through a number of analysis and rewriting steps to validate and transform the two clauses into
fully relational sub-trees. In this chapter we detail each step we took and show how the clauses
and sub-clauses of the query can be solved through relational operators.

6.1 The algebraic tree

The parser evaluates a G-CORE query into a raw syntactic tree, which can be cumbersome
to validate and process. Therefore, the syntactic tree is iteratively reshaped into an algebraic
tree, with the purpose of modeling the query by G-CORE’s formal specification [20] and then
changing it into relational operations that preserve G-CORE’s semantics and produce a PPG.

In the example parse tree in Figure 5.1 we have seen that the root of three is the graph query,
which branches into the three G-CORE clauses, PATH, CONSTRUCT and MATCH. If any of the clauses
or sub-clauses is missing from the query, it will be replaced by the token None in the parse tree
(the orange nodes in Figure 5.1 are, in fact, missing nodes, but we draw them for clarity). In the
G-CORE grammar [7] we make the distinction between full G-CORE queries and graph queries.
A G-CORE query is a combination of one or more graphs under the operators UNION, INTERSECT
and MINUS. Graphs can be specified through their names, or through graph queries. A graph
query contains a possibly empty list of PATH clauses, exactly one CONSTRUCT clause and exactly
one MATCH clause. Therefore, in Figure 5.1 we are showing a graph query.

The evaluation of the MATCH sub-tree must result in a maximal set of bindings that satisfy the
entire MATCH block. We will represent the binding set as a relation in which the header contains
every variable in the MATCH block and the body contains the bindings for each variable. In the
evaluation of the CONSTRUCT block we will use the materialized view of the binding table to build
a new PPG. Given our relational representation of both stored data and binding table we will
make use of several of the extensive relational operators supported by DataFrames. For a quick
reference, we define them in Table 6.1, using the unnamed relations, r = (H,B), r1 = (H1, B1)
and r2 = (H2, B2), where Hi represents the header of the relation and Bi its body, i.e. the actual
records.

The base type of all the operators in the algebraic tree is the AlgebraTreeNode. As we have
seen in Table 4.1, we exclusively support graph queries, therefore the root of the algebraic tree

29



30 CHAPTER 6. ALGEBRA

Notation Semantics
r1 ./P r2 The two relations are inner-joined based on condition P , a predicate that

tests a relation between attributes of r1 and r2. This operation will produce
all combinations of records in B1 and B2 that satisfy the join condition.

r1 ./P r2 The two relations are left-outer-joined on condition P . This operation will
join the records in r1 and r2 on their common attributes, but records in B1

that do not participate in the join will also be preserved in the result.
r1 nP r2 The two relations are left-semi-joined (or semi-joined, for short) on con-

dition P . The semantics are similar to the inner-join, except that the
attributes of r2 do not appear in the result and a matched record in r1 will
only appear once in the result.

r1 × r2 The two relations are cross-joined. The operation produces all possible
tuples (b1, b2), with b1 ∈ B1 and b2 ∈ B2.

Πa1,a2,...(r) All the tuples in r’s bodyB are restricted to the set of attributes {a1, a2, ...},
where aj ∈ H.

σP (r) Selects those records in B that conform to the predicate P .
Γk1,k2...;f1(a1),f2(a2)...(r) The relation r is aggregated using the combination of attributes k1, k2, ...

as key. An arbitrary number of aggregation functions fj are applied on to
attributes aj that are not part of the key.

r1 ∪ r2 The two relations are combined under set union into a new relation. The
header of the result will contain all the common attributes in H1 and H2,
but also attributes that appear in either one of the relation, but not in the
other. The body of the result will contain all the records in r1 and all the
records in r2. If, for a record, a given attribute is not defined in the relation
of origin, we bind it to the value null in the result.

Table 6.1: Relational operators used throughout this chapter and their meaning.

will be a node Query and, as we do not support the PATH clause, its children will be a Match
and a Construct node. The types of the algebraic nodes are implemented as Scala case classes.
Starting from the AlgebraTreeNode, we define algebraic types, expressions and operators, each
as an algebraic node type. Algebraic types can be various graph types or items that occur in a
match or construct pattern. Vertices, edges, paths, edge and path orientation are all algebraic
types, as well as the default graph, a named graph or a graph expressed through a sub-query. The
algebraic expressions can be unary or binary expressions, conditional, logical, predicates, and so
on, that can be applied on bindings. Labels and property keys are also algebraic expressions.
Algebraic operators model the main clauses of a query and also relational statements. For
example, Match and Construct are operators, but also Project, GroupBy or Select.

There is also a distinction between G-CORE-specific and relational operators. At first, a
parse tree will be mapped to G-CORE-specific node types, which closely follow the tokens and
statement structure in the G-CORE grammar [7]. Iterative rewriting steps will combine the
G-CORE operators to create or to operate with the binding table, transforming the algebraic
tree into a fully relational tree. Sections 6.2, 6.3 and 6.4 provide details abot expressions and G-
CORE specific operators that we used in the interpreter, and elaborate the mentioned rewriting
phases.
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6.2 Expressions

Expressions can be used in a G-CORE query in the WHERE and WHEN sub-clauses to filter the
binding table, or to define objects that will be constructed. In Table 4.1 we showed which
expressions are supported by our interpreter. In our implementation, all expressions extend the
base class AlgebraExpression, but we further split them into different expression types, as we
will see below.

Let x be a bound variable, k a property key and l a label. Basic expressions are liter-
als (values) and variable references, labels and property keys, property values x.k, label pred-
icates x : l, label disjunction ∨lk = l1 ∨ l2 ∨ ... ∨ lk and conjunction of label disjunctions
(∨lk1)∧ (∨lk2)∧ ...∧ (∨lkm), lists of labels [l1, l2, ...lk] or property keys [k1, k2, ...km], object pat-
terns in pattern and construct tuples, the aggregation star symbol * and the existential sub-query
EXISTS q. Unary expressions are the unary minus, negation NOT and the predicate expressions
IS NULL and IS NOT NULL. Aggregate expressions are a particular type of unary expressions and
are one of the functions collect, count, min, max, sum, avg, group-concat. All other expressions
supported by the interpreter and enumerated in the following are binary expressions. Arithmetic
expressions are the multiplication *, division /, modulo %, addition + and subtraction -. Condi-
tional expressions are the comparison operators for equality = and non-equality !=, greater than
> and greater than or equal to >=, lower than < and lower than or equal to <=. Logical expressions
are and and or. The power function pow is an example of a mathematical expression.

As all expressions extend the same base type and are implemented as Scala case classes, they
are composable, so they can receive as argument any other expression from the ones enumerated.
The rules for evaluating each type of expression are detailed in G-CORE’s design [20]. At the
algebraic level, we do nothing more besides creating the expression sub-tree. Ideally, semantic
checks should be performed on this sub-tree to validate it - for example, argument type compat-
ibility should be implemented. However, this is not available in the implementation at the time
of writing.

[20] also mentions that evaluating an existential condition WHERE <graph_pattern> is equiva-
lent to evaluating the existential sub-query WHERE EXISTS (CONSTRUCT () MATCH <graph_pattern
>). We note that EXISTS evaluates to true iff the graph constructed in the sub-query has a
non-empty set of nodes, and to false otherwise. This is in fact very similar in semantics to
SQL’s EXISTS clause, which can be solved through a semi-join. In the implementation of the
interpreter we do not apply the suggested translation. Instead, we wrap the graph pattern into
an Exists node and evaluate this pattern into a binding table in the target module, followed by
a translation to SQL’s EXISTS. We show below why this works.

Let ϕ1 and ϕ2 be two graph patterns, MATCH ϕ1 WHERE ϕ2 a G-CORE query with an existential
predicate, Ω1 the binding table produced by the evaluation of ϕ1, Ω2 the binding table produced
by the evaluation of ϕ2 and Ω the binding table of the entire MATCH block. Then Ω = Ω1 nP Ω2,
where the condition P is either the equality predicate on common attributes of Ω1 and Ω2 if the
two patterns ϕ1 and ϕ2 are correlated (they share variables) or Ω2 6= ∅ otherwise, where ∅ is
the empty set.

For an easy informal proof, let’s first assume that ϕ1 and ϕ2 are correlated and share a
variable x. If x is a vertex and Ω2 is non-empty (i.e. we did find bindings for the vertex x that
satisfied the pattern ϕ2) it means that the graph that would have been constructed from Ω2

would have been non-empty and WHERE ϕ2 would evaluate to true for each binding tuple in Ω1

in which x has one of the values to which it has been bound in Ω2. As an example, if x was
bound to three vertices with ids {1, 2, 3} in Ω1 and to four vertices with ids {2, 3, 4, 5} in Ω2, in
Ω x will retain the ids {2, 3}. If x is an edge or a path and Ω2 is non-empty, it follows that there
would be nodes in the graph built from Ω2, because an edge always has two incident nodes and a
path is comprised of edges. Therefore, the same logic that applied for a vertex also applies here.
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Now, regardless of x’s type, if Ω2 were empty, the graph built from it would be empty, so none
of the tuples in Ω1 should be selected into the result, which is indeed the case with our rewrite
rule. Finally, for non-correlated patterns ϕ1 and ϕ2, the evaluation of the predicate Ω2 6= φ
depends on Ω2’s size (or number of bindings). Using the same logic as before, this means that if
ϕ2 cannot be satisfied by any binding, Ω2 will be empty and no tuple from Ω1 will be selected.
Otherwise, whatever the number of bindings in Ω2, all tuples in Ω1 will be added to the result.

6.3 The MATCH clause

The role of the MATCH clause in a graph query is to bind all the variables used in its block
to actual values stored in the graph database, by preserving the structure of the given graph
patterns. G-CORE uses homomorphic semantics to match the patterns. Graph patterns can be
specified directly after the MATCH keyword, in the attached OPTIONAL sub-clauses or even in the
WHERE expression. The evaluation of the entire MATCH block must result in the maximal set of
bindings that satisfy the entire block.

We initially build the algebraic MATCH sub-tree from G-CORE-specific operators that emulate
the syntax defined at [7]. We introduce these operators in the current section. We will then
translate this sub-tree of G-CORE operators into a tree of relational operators that will keep the
evaluation on par with the semantics described in [20]. This section will provide details about
each analysis routine and rewrite rule that we used to achieve this purpose. At the end of the
entire rewriting pipeline, we will have transformed the MATCH clause into a chain of operations
that can be run on the tabular representation of the graph data to create the required maximal
set of bindings.

6.3.1 Algebraic representation of vertices, edges and paths

Vertices, edges and paths are graph entities used in the graph topologies of the MATCH block.
We implement the three types Vertex, Edge and Path as case classes that extend the same base
class. Formally, we represent each type as a tuple of various items with specific meaning. We
will use π to denote an entity pattern.

The pattern of a vertex is the tuple (v, Lv), where v represents the variable used in the query
to denote the vertex and Lv is a possibly empty finite set of labels. While the query need not
necessarily label its vertices, we restrict the cardinality of Lv to at most one. This restriction
is enforced through a semantic check on the vertex tree node and stems from our data model,
which exclusively supports graph entities with a single label, and from the supported language
set, which disables label disjunction in the queries. Therefore, Lv is either the empty set ∅,
or Lv = {lv}. Note that Lv ⊂ LN

1. For example, the vertex pattern (c) is πc = (c,∅) and
the pattern (c:Character) is πc = (c, {Character}). The pattern (c:Character|House), which
matches either Character or House, would generate an unimplemented operation exception.

The pattern of an edge is the tuple (e, Le, πL, πR, d), where e is the variable used in the query
to denote the edge, πL and πR are the patterns of the two left and right endpoints, d ∈ {→,←} is
the edge’s direction and Le holds the same meaning as Lv from above, only that it is applied for
the edge e. Note that G-CORE also accepts undirected or bidirectional edges, but we currently
do not support them, hence the restricted domain for d. For example, the edge pattern (c)-[e
]->(h) is π

c
e−→h

= (e,∅, (c,∅), (h,∅),→) and the edge pattern (h)<-[e:HAS_ALLEGIANCE_TO]-(c)
is π

c
e−→h

= (e, {HAS_ALLEGIANCE_TO}, (h,∅), (c,∅),←).
The pattern of a path is the tuple (p, rt, Lp, q, πL, πR, d, o, c, r), where p is the variable name

used in the query to denote the path, πL, πR and d hold the same meaning as for edge, with
1In Section 4.3 we denoted with LN , LE and LP the three disjoint sets of labels of nodes, edges and paths,

respectively, in a graph G
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the same restrictions and Lp is the same as Lv or Le, only that it is applied for the path p. rt
and o are boolean values - the former encodes whether the path is a reachability test and the
latter whether the path is stored - if false, the it is virtual and must be computed. q represents
the path quantifier and is either ALL (meaning that we are searching for all paths between the
two nodes) or the tuple (n, distinct), where n is the maximal number of bindings we accept for
path p and distinct is a boolean showing whether we are looking for distinct paths or not. r is
a regular path expression and can either be omitted from the query, in which case we use the
empty set notation ∅, or a Kleene expression. We only support Kleene-star expressions on a
single label, so r can then be the single-element list {lr}, where lr is the edge label. Finally,
c is either the variable name that binds the cost of the path, if specified, or the ∅ notation,
otherwise.

In Chapter 5 we noted that the parser will rewrite the syntactic tree into a canonical form, in
which it will add fresh variable names for the unnamed vertices and edges. The semantics of an
unnamed path are that it is a reachability test. However, to be able work with the path pattern
during algebraic rewritings, we need to be able to refer it by name. Therefore, when transforming
the syntactic sub-tree of a path into its algebraic representation, if the path is unnamed, we create
a new name for it and set rt to true. Otherwise, if it was named, rt =false.

To showcase path representation, the pattern (c)-/p/->(d) is π
c

p
=⇒d

= (p, false,∅, (1, false),

(c,∅), (d,∅),→, false,∅,∅), (c)-/@p/->(d) is π
c

@p
=⇒d

= (p, false,∅, (1, false), (c,∅), (d,∅),→
, true,∅,∅) and (c)-/<:HAS_MENTION_WITH*>/->(d) is π

c
@p

=⇒d
= (p, true,∅, (1, false), (c,∅),

(d,∅),→, false,∅, {HAS_MENTION_WITH}).
Using the above algebraic representations, variable names will always be defined for each item

of a pattern. On each representation we perform semantic checks and, when the combination of
tuple elements is not support, we throw an unsupported operation exception. For each vertex,
we check that any label used in Lv is part of the graph on which the vertex is matched. The
same check is done for edge and path representation, with the additional constraint that they
are valid iff their endpoints have passed the sanity check.

6.3.2 MATCH operators

The interpreter translates the entire MATCH block, including OPTIONAL matches and the WHERE
sub-clause, into a tree-like representation of G-CORE-specific algebraic operators. The result is
the MATCH sub-tree in the algebraic tree.

We previously defined object patterns as graph objects with a variable name attached, that
need to be bound to values in the database, and denoted them with π. We now define graph
patterns as per the G-CORE grammar [7] as either a vertex pattern, or a vertex pattern followed
by zero or more connection patterns. A connection pattern is either the pattern of an edge, or
the pattern of a path, followed by the pattern of the destination vertex. In the previous section
we showed how we represent each graph object - vertex, edge or path - in the algebraic tree.
Graph patterns are more than simple graph objects, as they can also encode chained patterns.
For example, (a), (a)->(b), (a)->(b)<-(c), (a)-/ /->(b)<-/ /-(c) are all examples of graph
patterns. We will use ϕπ1π2...πn = [π1, π2, ...πn] to denote the algebraic representation of a graph
pattern with n ≥ 1 graph objects. The algebraic form of the graph pattern is an n-ary list:
if n = 1 the only element of the list can be a vertex, edge or path; if n > 1 the list can only
contain edges or paths. The order of the elements in the list is important and must be the same
as the order in which the graph objects appear in the pattern. In the Scala implementation
the GraphPattern is a case class which takes as argument a list of Connection objects, which
are either Vertex, Edge or Path objects. For example, the pattern (a) becomes ϕa = [(a,∅)],
(a)-[e]->(b) becomes ϕ

a
e−→b

= [(e,∅, (a,∅), (b,∅),→)] and (a)-[e]->(b)-[f]->(c) becomes
ϕ
a

e−→b
f−→c

= [(e,∅, (a,∅), (b,∅),→), (f,∅, (b,∅), (c,∅),→)].
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Next, we use the term match tuple to denote a graph pattern followed by a location - the
default graph, a named graph, or a graph sub-query. As shown in Table 4.1 graph sub-queries
are parsed, but an unsupported operation exception is thrown when one is encountered. Using
syntactic tokens, the match tuple can be expressed as <match_tuple> ::= <graph_pattern> |
<graph_pattern> <location>. When the location is not provided in the tuple, it becomes the
default graph. The match tuple is the first G-CORE-specific operator we introduce in the
interpreter and is a tuple M = (ϕπ1π2...πn , G), containing a graph pattern and a graph G, which
is either the default graph G0 or a named graph Gname. For example, (a)->(b) ON got_graph is
the match tuple M = (ϕ

a
e−→b
, Ggot_graph) and (a)->(b), in which we do not specify the graph,

is the match tuple M = (ϕ
a

e−→b
, G0).

The second G-CORE operator we introduce is the conditional match Ṁ = ([M1,M2, ...Mn], ξ).
It consists of a list of n match tuples, with n ≥ 1, and a condition ξ that filters the binding table
produced by the combined evaluation of all match tuples. ξ is, in fact, an expression. When
the condition is not specified in the query, we fill it in as true for uniformity. For example, the
query (a)->(b), (c) is a conditional match with the condition left unspecified and with two
match tuples. It will become Ṁ = ([(ϕ

a
e−→b
, G0), (ϕc, G0)], true). The query (c) WHERE c.name

= ’Catelyn’ becomes Ṁ = ([(ϕc, G0)], c.name = ’Catelyn’).
The final G-CORE operator we introduce is the full match clause M = (Ṁ1, [Ṁ2, Ṁ3, ...Ṁn]),

which encodes the entire MATCH block of a graph query and consists of one conditional match -
the non-optional component of the clause - and a possibly-empty list of conditional matches -
the OPTIONAL sub-clauses. Figure 6.1 presents the breakdown of a match clause into conditional
matches and match tuples and Table 6.2 summarizes the patterns and G-CORE operators in-
troduced in this section.

MATCH

OPTIONAL

WHERE e.#times >= 5

(c1 : Character) -[e1 : HAS_MENTION_WITH]-> (c2 : Character) ON got_graph

(c1) -[e2 : HAS_ALLEGIANCE_TO]-> (h : House) <-[e3 : HAS_ALLEGIANCE_TO]- (c2)

M1 = (φc1-e1->c2, Ggot_graph)

M2 = (φc1-e2->h<-e3-c2, G0)

M1 = ([M1], e.#times >= 5)

M2 = ([M2], true)

M = (M1, [M2])

match tuple

conditional match

match clause

1

2

1

2

3

3

Figure 6.1: Breakdown of the algebraic representation of the MATCH block.
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denomination
syntax
algebraic notation

notation breakdown

vertex pattern
(v), (v:V)
πv = (v, Lv)

The pattern of a vertex. v is the vertex reference, Lv ⊆ LN
is a possibly empty set of labels.

edge pattern
-[e]->, -[e:E]->
π
a

e−→b
= (e, Le, πL, πR, d)

The pattern of an edge. e is the edge reference, Le ⊆ LE
is a possibly empty set of labels, πL, πR are the represen-
tations of the left and right endpoint, d ∈ {→,←} is the
direction.

path pattern
-/@p:P/->, -/p/->
π
a

@p
=⇒b

= (p, rt, Lp, q, πL, πR, d, o, c, r)
The pattern of a path. p is the path reference; rt is a
boolean, shows if the path is a reachability test; Lp ⊆ LP
is a possibly empty set of labels; q is either the path quan-
tifier ALL or (n, distinct), with n the number of paths to
compute and distinct a boolean; πR, πL are the represen-
tations of the left and right endpoint; d ∈ {→,←} is the
direction of the path; o is a boolean, shows whether the
path is stored; c is either ∅ or a reference binding the cost
of the path; r is either ∅ or a Kleene-star expression {lr}
on the label lr.

graph pattern
π1π2...πn
ϕπ1π2..πn = [π1, π2, ...πn]

A (chained) sequence of one or more entity patterns. If
n = 1, π1 can be a vertex, edge or path pattern. If n > 1,
πi can only be an edge or a path pattern.

match tuple
π1...πk ON G1, πk+1...πk+m ON G2, ...
M = (ϕπ1π2...πn , G)

A graph pattern applied on a graph G ∈ {G0, Gname},
where G0 is the default graph and Gname is a graph spec-
ified through its name.

conditional match
M WHERE ξ
Ṁ = ([M1,M2, ...Mn], ξ)

A list of match tuples conditioned by predicate ξ and with
n ≥ 1.

match clause
MATCH Ṁ1 OPTIONAL Ṁ2 OPTIONAL Ṁ2 ...
M = (Ṁ1, [Ṁ2, Ṁ3, ...Ṁn])

The entire MATCH block, with the non-optional conditional
match and a possibly empty list of OPTIONAL conditional
matches.

Table 6.2: MATCH algebra.
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6.3.3 Label inference on graph patterns

We use the term label inference to refer to the process of finding the minimal set of labels for
each variable in the MATCH block, given all the existing constraints of the block and the label
constraints in the database D. The G-CORE syntax allows variables to be specified without a
label, however, because we store data per-label, we are interested in annotating each variable
with at least one label, such that we identify which tables will be queried during the evaluation
of the MATCH clause. It is essential to find the minimal set of labels, as the runtime of solving a
query is directly related to the scan size of these tables.

Algorithm 1 presents a very basic approach we use in the interpreter for solving label in-
ference. The input is a list containing all the match tuples in the MATCH block, i.e. the tuples
in the non-optional conditional match, the tuples in the OPTIONAL sub-clauses and the tuples
appearing in any EXISTS expression in the entire block. The algorithm splits each tuple into
individual patterns (lines 2-4) and then creates an initial mapping ρ between each variable in
each tuple and a set of labels (lines 8-15). The set of labels we choose is very loose, as we assign
all the available vertex labels (LN ) to each vertex variable, all the available edge labels (LE) to
each edge variable, all the available stored path labels (LP ) to each stored path variable and
all the available edge labels (LE) to each virtual path2 - as we only support simple Kleene-star
expressions for the regular path expressions of virtual paths, all the edges along the path will
have the same label in LE .

A recursive function is then called (line 16) until the restrictions in ρ no longer change during
the execution of its block. Within the function, we iterate over the list of patterns (line 19).
If we encounter a vertex pattern we check whether the vertex had already been labeled in the
pattern and, if it had, we update its mapping in ρ to the specific label, if necessary (lines 22-23).
Otherwise, if we encounter an edge or a stored path pattern we try to update each pattern
element iteratively (lines 24-35). First, we perform the same checks as for a simple vertex for the
source endpoint (lines 25-29). This time, if there was no label specified in the pattern, (1) we
extract the labels of the edge/path from ρ, (2) we extract the endpoint label tuple from each of
these labels using the function τ3, (3) we retain only the source label from each of these tuples
into a set, (4) we compare this new set of labels to the vertex’s mapping in ρ and update the
mapping if it was different from the set we have just computed. After the source endpoint, we
perform similar checks for the edge/path (lines 30-34), but this time, if the edge/path is not
labeled in the pattern, we try to update its label by (1) considering all the labels in LE or LP
(depending on the case), (2) extracting the source-destination label tuples with function τ for all
these labels, (3) retaining only those tuples for which the source label is in ρ(source variable) and
the destination label is in ρ(destination variable), (4) retaining the edge/path labels for which
the source-destination label tuple has passed the previous test. After updating the edge/path,
we try to update the mappings of the destination vertex exactly as we did for the source vertex.
Finally, if we encounter a virtual path pattern, we do the same as for an edge or stored path,
only that the virtual path label is already known, as is the edge label used in the Kleene-star
expression.

Each time a mapping in ρ changes, a boolean value is set to true. At the end of the function,
if this boolean was true, we call the function recursively. Otherwise, ρ is returned as the output
of the algorithm, the restriction on all variables’ labels we were aiming to compute. We provide
a simple example of how the algorithm runs on a chained pattern in Figure 6.2.

2The label of a virtual path is symbolic - it is actually the label of the edges along the path.
3τ restricts an edge or stored path label to a fixed tuple of source and destination labels in our physical data

model.
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Algorithm 1: Label inference algorithm. We use← to denote that we assign the value on
the right hand-side to the expression on the left hand-side. Tuple items are replaced with
underscore when their value is not used in the algorithm. We express the algorithm with
notations introduced in Table 6.2 and Section 4.3.

input : [M1,M2, ...Mn] the list of all match tuples in the MATCH block
output: ρ a map from variable name to the minimal set of labels that determine it, for

all variables in the MATCH block
1 begin
2 Π← ∅
3 for (ϕπ1π2...πm , G) ∈ [M1,M2, ...Mn] do
4 for πk ∈ π1π2...πm do Π← Π ∪ (πk, G)

5 ρ ← RestrictLabels(Π)
6 return ρ

7 Function RestrictLabels(Π):
8 ρ← ∅
9 for (π,G) ∈ Π do

10 (_,_, LN , LE , LP ,_,_)← D(G)
11 switch π do
12 case vertex πa do ρ(a)← LN
13 case edge π

a
e−→b

do ρ(a)← LN , ρ(b)← LN , ρ(e)← LE

14 case stored path π
a

@p
=⇒b

do ρ(a)← LN , ρ(b)← LN , ρ(p)← LP

15 case virtual path π
a

p
=⇒b

do ρ(a)← LN , ρ(b)← LN , ρ(p)← LE

16 return RestrictLabels (Π, ρ)

17 Function RestrictLabels(Π, ρ):
18 changed ← false
19 for (π,G) ∈ Π do
20 (_,_,_,_,_,_, τ)← D(G)
21 switch π do
22 case vertex πa do
23 if La = {la} and ρ(a) 6= {la} then ρ(a)← {la}, changed ← true
24 case edge or stored path π

a
x−→b

or π
a

@x
=⇒b

do
25 if La = {la} then
26 if ρ(a) 6= {la} then ρ(a)← {la}, changed ← true

27 else // La = ∅
28 L′

a ← {lsrc, ∀(lsrc, ldst) ∈ τ(ρ(x))}
29 if ρ(a) 6= L′

a then ρ(a)← L′
a, changed ← true

30 if Lx = {lx} then
31 if ρ(x) 6= {lx} then ρ(x)← {lx}, changed ← true

32 else // Lx = ∅
33 L′

x ← {lx,∀lx ∈ LE/P : (lsrc, ldst)← τ(lx) ∨ lsrc ∈ ρ(a) ∨ ldst ∈ ρ(b)}
34 if ρ(x) 6= L′

x then ρ(x)← L′
x, changed ← true

35 update ρ(b) similar to ρ(a)

36 case virtual path π
a

p
=⇒b

do // r = {lr}
37 update ρ(a) as before
38 if ρ(p) 6= {lr} then ρ(p)← {lr}, changed ← true
39 update ρ(b) as before

40 if changed then return RestrictLabels(Π, ρ) else return ρ
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(c1) -[e1]-> (c2) -[e2 : HAS_ALLEGIANCE_TO]-> (h)

(c1) -[e1]-> (c2) (c2) -[e2 : HAS_ALLEGIANCE_TO]-> (h)

⍴(c1) = {Character, House}
⍴(h) = {Character, House}
⍴(c2) = {Character, House}
⍴(e1) = {HAS_MENTION_WITH, HAS_ALLEGIANCE_TO, ATTACKED}
⍴(e2) = {HAS_MENTION_WITH, HAS_ALLEGIANCE_TO, ATTACKED}

⍴(c1) = {Character, House}
⍴(h) = {Character, House}
⍴(c2) = {Character, House}
⍴(e1) = {HAS_MENTION_WITH, HAS_ALLEGIANCE_TO, ATTACKED}
⍴(e2) = {HAS_MENTION_WITH, HAS_ALLEGIANCE_TO, ATTACKED}

(c2) -[e2 : HAS_ALLEGIANCE_TO]-> (h)

⍴(c1) = {Character, House}
⍴(h) = {House}
⍴(c2) = {Character, House}
⍴(e1) = {HAS_MENTION_WITH, HAS_ALLEGIANCE_TO, ATTACKED}
⍴(e2) = {HAS_ALLEGIANCE_TO}

(c2) -[e2 : HAS_ALLEGIANCE_TO]-> (h : House)

⍴(c1) = {Character, House}
⍴(h) = {House}
⍴(c2) = {Character}
⍴(e1) = {HAS_MENTION_WITH, HAS_ALLEGIANCE_TO, ATTACKED}
⍴(e2) = {HAS_ALLEGIANCE_TO}

(c1) -[e1]-> (c2 : Character)

⍴(c1) = {Character, House}
⍴(h) = {House}
⍴(c2) = {Character}
⍴(e1) = {HAS_MENTION_WITH}
⍴(e2) = {HAS_ALLEGIANCE_TO}

(c1) -[e1 : HAS_MENTION_WITH]-> (c2 : Character)

(c1 : Character) -[e1 : HAS_MENTION_WITH]->
(c2 : Character) -[e2 : HAS_ALLEGIANCE_TO]-> (h : House)

Figure 6.2: Label inference on a chained pattern. Initially, the restriction ρ for each variable
is loose - all the available labels per item type. For each pattern tuple we try to update the
restrictions of its variables. Source vertex is updated based on its strict label (if there is any) or
on the edge restriction. Edge restriction is updated based on its strict label (if there is any) or
on the restrictions of incident vertices. Destination vertex is updated based on its strict label (if
there is any) or on the restriction of the edge. At each step, the restriction set for each variable
either decreases in size, or remains constant. When no variable changes any more, the algorithm
stops.

Complexity analysis

To determine the complexity of the entire process, we will look at worst-case scenarios for the
function RestrictLabels. We start by determining the number of steps for one pattern to change
the restrictions of its variables. For a vertex pattern, the vertex can be unlabeled, in which case
the condition on line 23 is false and we return LN . We assume this can be done in constant time
O(1). If the vertex is strictly labeled in the pattern, the operation on line 23 can be computed in
O(1) time. For an edge or path (stored or virtual), there are three checks/updates we perform.
For the source vertex, if it is strictly labeled, we can solve it as before in O(1). Otherwise, we
create a new set of labels on line 28 in O(max(|LE |, |LP |)) (ρ(x) has at most |LE | elements for
an edge and at most |LP | elements for a path) and on line 29 we intersect this new set of labels
with the restrictions of the source in O(|LN | + max(|LE |, |LP |)) steps (there are at most |LN |
labels in the vertex’s restriction). In total, there are O(|LN | + 2 ∗max(|LE |, |LP |)) we take to
restrict the source’s labels. The same applies for the destination vertex. For the edge or path
variable, we will need O(1) if it was strictly labeled, or else we create a new label set on line 33 in



6.3. THE MATCH CLAUSE 39

O(max(|LE |, |LP |)) (because we iterate either LE or LP ) and we intersect it with the previous re-
strictions on line 34 in O(max(|LE |, |LP |)+max(|LE |, |LP |)) = O(2∗max(|LE |, |LP |)). In total,
for a single edge or path, we will need 2∗O(|LN |+2∗max(|LE |, |LP |))+O(2∗max(|LE |, |LP |)) =
O(6∗max(|LE |, |LP |)+2∗ |LN |) = O(max(|LE |, |LP |)+ |LN |) steps. This is also the worst-case
complexity for any pattern type.

In the general case, we will restrict labels for more than one pattern in each match tuple. In
this case, all the patterns are either paths or edges. Let |QM | be the number of patterns across all
match tuples in the MATCH block. At each step of the algorithm, the restrictions for each pattern
either decrease, or remain constant. A change in the restrictions is either internal (caused by the
restrictions of source/destination vertex or edge) or external (caused by the decrease in other
patterns). In the beginning of the algorithm, each pattern can be labeled in O(max(|LE |, |LP |))
ways, because we are also bound by the label restrictions in τ . We consider the worst possible
case for restriction changes generated externally: in turn, each pattern decreases its number of
labeling possibilities with one, triggered by a change in another pattern, until it converges to a
single label combination. Internally, when a change occurs for any of its variables, a pattern will
need the previous O(max(|LE |, |LP |)+|LN |) steps to adjust the labels of its variables. Therefore,
to update all |QM | patterns we will need O(|QM |∗max(|LE |, |LP |)∗(max(|LE |, |LP |)+ |LN |)) =
O(|QM | ∗max(|LE |, |LP |)2 + |QM | ∗max(|LE |, |LP |)∗ |LN |) = O(|QM | ∗max(|LN |, |LE |, |LP |)2)
steps.

6.3.4 Rewrite graph patterns

In the previous section we provided a basic algorithm for computing ρ, a mapping between each
variable in the MATCH block and its minimal set of labels that satisfy the pattern constraints in the
entire block, as well as the label constraints τ in the graph. Having acquired this information,
we rewrite each match tuple M by splitting its graph pattern ϕ into individual, fully-labeled
patterns. We wrap each such pattern into a match tuple. We provide the rewrite rules in
Table 6.3.

As an outcome of these rewrite rules, the number of children of a conditional match increases
(or, in the best case, it stays the same), however each of these children will be a match tuple with a
single patterns in which each variable has been labeled. Note that multiple new match tuples may
share the set of variables when their combination can be labeled in multiple ways. For example,
the graph pattern (a)-[e]->(b) can be labeled in three ways in the got_graph: Character-
HAS_MENTION_WITH-Character, Character-HAS_ALLEGIANCE_TO-House and House-
ATTACKED-House.

Original operator Rewrite rule
πa (a, la), ∀la ∈ ρ(a)

π
a

e−→b
(e, le, (a, τ(le)._1), (b, τ(le)._2),→), ∀le ∈ ρ(e)

π
a

@p
=⇒b

(p, rt, lp, q, (a, τ(lp)._1), (b, τ(lp)._2),→, true, c,∅), ∀lp ∈ ρ(p)

π
a

p
=⇒b

(p, rt,∅, q, (a, τ(lr)._1), (b, τ(lr)._2),→, false, c, {lr})
M = (ϕπ1π2...πn , G) {M1,M2, ...Mn}, where Mk = (ϕπk , G)

Ṁ = ([M1,M2, ...Mn], ξ) Ṁ = ([M1
1 ,M

2
1 , ...M

m1
1 ,M1

2 ,M
2
2 , ...M

m2
2 , ...M1

n,M
2
n, ...M

mn
n ], ξ),

where Mk has been rewritten to {M1
k ,M

2
k , ...M

mk
k }

Table 6.3: Rewrite rules for graph patterns.

6.3.5 Rewrite conditional match

As we have seen in the previous sections, the children of the conditional match nodes have become
match tuples of single vertex, edge or path patterns, in which all the variables are strictly labeled.
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In this section we show how we rewrite the algebraic MATCH sub-tree from G-CORE operators
to relational operators. During this rewrite phase we make no assumptions on the structure of
the stored data tables, so the graph patterns are not changed and instead will be resolved at
the target level. In a way, we can think of vertex, edge or path patterns as database scans, so
we leave the actual scan operation to be fulfilled by a specific target, which is aware of the data
layout.

The entire rewrite logic of this step will be based on the fact that match tuples of graph
patterns of length one are the leaves of the relational tree. We view them conceptually as tables
with data provided by the storage layer. The evaluation of each graph pattern is, in fact, a
binding table on its own, therefore a relation over the variables in the pattern. To evaluate the
entire MATCH block we then need to combine the binding tables of each graph pattern through
relational operators.

We describe how conditional match operators are handled in Algorithm 2. Remember that
the match tuples in the algorithm’s input now contain graph patterns of only one graph item -
vertex, edge or path. We introduce a function β on line 2 that, given an operator (match tuple
or relational operator) yields the operator’s binding set, i.e. a set that contains all the variable
names that appear in that operator. For example, the pattern (a)-[e]->(b) has the binding set
{a, e, b}. The binding set of a relational operator is the union of the binding sets of each graph
pattern in that operator’s sub-tree.

Starting from the list of match tuples in the input conditional match, we create a mapping
B on line 4 between binding sets and the set of match tuples that share the binding set. As
multiple combinations of labels can be applied to the same graph pattern, there can be cases
when a binding set maps to more than one match tuple. Given that each match tuple is a binding
table and that each of these binding tables will share the header, we can create a single unified
binding table from all the match tuples that share the binding set by unioning their individual
binding tables. On line 6 we define U , the set of all resulting union operators.

The initial list of match tuples has now become a list of union operators and the remaining
match tuples that did not participate in any union. In other words, we are left with operators
that have distinct binding sets. However, there can still be operators that share one or more
variables between their binding sets. As each operator is a binding table, it means we can find
tables that share one or more attributes. To combine them into a single binding table, we need
to inner-join these operators on their common variable(s). For this, we first create V on lines
10-11, a mapping between a variable name and the set of operators that share the variable name
in their binding set. Lines 12-20 change the mapping V in order to create the inner-joins. At
each step, we take the first key v in V that is mapped to at least two operators (line 13). If such
a key exists, we inner-join its values on line 15. After this, we need to update V for each variable
name that appears in the join’s binding set (line 16): we remove from its mapped operators the
ones that are now part of the join (lines 17-18) and add the join operator itself to its mapping
(line 19).

At the end of this computation, V will remain the same mapping between variable name
and operators, however now each key in V will be mapped to exactly one operator - either (1) a
match tuple that does not share any variables with any other match tuple in the input, (2) a
union of match tuples that have the same binding set, but do not share any variable with any
other match tuples in the input, or (3) the join of match tuples or unions that share at least one
variable with at least one other operator in the join. If there is more than one unique operator
left in V , we cross-join them to combine their respective binding tables.

Finally, the resulting operator (either match tuple, union, inner-join or cross-join) replaces
the first member in the conditional match’s tuple. We provide a simple example in Figure 6.3
showing how four graph patterns will be combined by Algorithm 2 into a sub-tree of relational
operators. This is the sub-tree that becomes the first child of the rewritten conditional match.
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Algorithm 2: Rewrites conditional match operators. The list of match tuples in a condi-
tional match is replaced by a single relational operator, in which match tuples that share
the binding set are unioned, operators that share at least one variable are inner-joined and
operators that do not share any variable are cross-joined.

input : A conditional match operator Ṁ = ([M1,M2, ...Mn], ξ).
output: A modified Ṁ in which the list of match tuples has been replaced by the

combination of the tuples under union, inner-join and cross-join operators.
1 begin
2 β(op) - the binding set of an operator (match tuple, union, join), i.e. a set containing

all the variable names used by the operator
3 B - a mapping between binding set and the set of match tuples that share the

respective binding set. If b is a binding set, then B(b) = ∅ if b /∈ B, i.e. for any key
that is not in B, the result of accessing that key’s value yields the empty set.
Initially, B is the empty mapping ∅.

4 for Mk ∈ [M1,M2, ...Mn] do b← β(Mk), B(b)← B(b) ∪ {Mk}
5 U - the set of match tuples that will be combined under the union operator
6 U ←

⋃
Mk∈B(b)

Mk, ∀b ∈ B for which B(b) has size ≥ 2

7 J - the set of operators (match tuples or unions) that will be combined under the
inner-join operator

8 Mu - the initial list of match tuples in Ṁ minus all the match tuples used in U
9 V - a mapping between variable name and the set of operators (match tuple, union or

join) that have the respective variable in their binding set. V has the same
properties as B.

10 for op ∈Mu ∪ U do
11 for v ∈ β(op) do V (v)← V (v) ∪ {op}
12 repeat
13 v ← first variable name in V for which V (v) has size ≥ 2, or ∅ otherwise
14 if v 6= ∅ then
15 opsj ← V (v), j ← ./

opj∈opsj
opj , J ← J ∪ {j}

16 for w ∈ β(j) do
17 opsi ← opsj ∩ V (w)
18 for opi ∈ opsi do V (w)← V (w) \ {opi}
19 V (w)← V (w) ∪ {j}

20 until v 6= ∅
21 C - the final result, the combination of all operators left in V (match tuples, unions or

joins) under the cross-join operator, if there is more than one operator
22 V - the previous mapping that has been updated with joined operators. Note that

after computing J , every variable name in V will be mapped to exactly one operator.
Also note that each variable that appears in one graph pattern will be mapped to
the same operator, therefore we use set union below to discard duplicates from the
final result.

23 C ← ×
op∈ops

op, where ops are all the unique operators in V , if ops has the size ≥ 2

24 rewrite Ṁ to the tuple (C, ξ)

25 return the new Ṁ
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(u:ℓ1) [e1:L2] (v:ℓ3) (u:ℓ1) [e1:L4] (v:ℓ3) (u:ℓ1) [e2:L5] (w:ℓ6) (t:ℓ6)

u e1 v u e1 v u e2 w t

union

join

cross-join

Figure 6.3: Example of how a conditional match operator is rewritten. Its list of match tuples
becomes one relational operator, in which the tuples that have the same binding set are unioned,
operators that share at least one variable are inner-joined and operators that share no variable
are cross-joined. The result is a left-deep algebraic plan.

Complexity analysis

To estimate the number of steps needed to reach convergence, we will again look at worst-case
scenarios. Let |QM | be the number of match tuples in the input. Building B on line 4 costs
O(|QM |) and building U on line 6 costs O(|QM |2) - we consider the cost of building a left-deep
union sub-tree as O(|QM |). The cost of building V on lines 10-11 is O(3 ∗ |QM |), as each match
tuple can have at most three variables (edge or path), all distinct from other match tuples. To
create J we will need O(|QM |3) steps - we find v on line 13 in O(|QM |); we iterate over each
variable name in j on line 16 in O(3 ∗ |QM |) and need O(|QM |) steps for each such variable on
line 18 to update its set of operators; in the worst case, the condition on line 13 passes at each
iteration for all 3 ∗ |QM | variables. In total, we will need O(|QM |3) steps to merge the n match
tuples of a conditional match.

6.3.6 Rewrite MATCH operators

Using the previous rewrite phase, we can now rewrite each conditional match into a tuple consist-
ing of a sub-tree of relational operators that combine the match tuples of the conditional match,
and an expressions that should act as a predicate over the evaluation of the relational sub-tree.
We now have all the ingredients to rewrite the entire MATCH block. We do this bottom-up with
the rewrite rules summarized in Table 6.4.

A conditional match over a relation becomes a selection over that relation, because the
semantics of the WHERE sub-clause are that the expression in the sub-clause is used to filter the
bindings generated by its attached list of match tuples. This rewrite applies over all conditional
matches in the MATCH block, therefore on both non-optional and optional sub-clauses. The entire
MATCH block then becomes the left-outer-join of all the block’s conditional matches, starting from
the non-optional clause.
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Original operator Rewrite rule
Ṁ = ([M1,M2, ...Mn], ξ) Ṁ = (C, ξ), where C is the operator returned by Algorithm 2
Ṁ = (C, ξ) σξ(C)

M = (Ṁ1, [Ṁ2, Ṁ3, ...Ṁn]) ./
Mk∈[Ṁ1,Ṁ2,Ṁ3,...Ṁn]

Mk

Table 6.4: Rewrite rules of MATCH operators.

6.4 The CONSTRUCT clause

The purpose of the CONSTRUCT clause is to provide rules on how to build a new graph from the
bindings produced in the MATCH clause. These rules act as a "stamping pattern" on the binding
table, from which new PPGs are constructed: for each binding row it generates graph content by
"stamping" the pattern with bound parameters into the resulting graph. The CONSTRUCT clause
contains a non-empty list of graphs: named graphs and/or sub-queries and/or graph construct
patterns. The list of graphs is followed by zero or more SET clauses that add properties or labels
to the construct variables, and zero or more REMOVE clauses that remove properties or labels from
construct variables. The evaluation of the entire CONSTRUCT block must produce one PPG, which
is the graph union of all the graphs provided as arguments.

As we previously did with the MATCH clause, we initially create the CONSTRUCT sub-tree from
G-CORE algebraic operators that closely follow G-CORE’s grammar defined at [7] and subse-
quently reshape this tree into relational operators.

6.4.1 Algebraic representation of vertices, edges and paths

Vertex, edge and path patterns specified in the CONSTRUCT block have a different meaning from
their MATCH counterpart - they act as rules for how to create the new entities in the constructed
graph. However, from an implementation point of view, they are still nodes in the algebraic tree
and we can again model them as tuples of various items. We will use κ to denote the construct
pattern of an entity.

The construct pattern of a vertex is the tuple (v, γ, λS , σS), where v represents the variable
name used in the pattern, γ is the group declaration of the vertex or the empty set, if no grouping
was explicitly given, and λS and σS represent the set of inline label SET assignments and the
set of inline property SET assignments4, respectively, or else the empty set if there are no inline
assignments for this vertex. Construct patterns can also specify a copy pattern for the new
entities, but, as shown in Table 4.1 we only parse copy patterns and do not yet implement them,
so for simplicity we omit them from the construct tuple. The group declaration is represented
through a set that can contain property references x.k, where x must be a variable bound in
MATCH and k is a property key, or simple variable references. Explicit groupings provided under
the GROUP key-word in a pattern can only be property references, but we will see in later rewrite
phases that we also need to accept variable names in this set. We will denote the assignment of
label l to the vertex v with (+v : l) and the assignment of the property-key k to value ξ for the
vertex v with (+v.k = ξ), where ξ is an expression.

For example, the vertex construct pattern (c) is the tuple κc = (c,∅,∅,∅), while the
pattern (b GROUP a.battle_name :Battle {name := a.battle_name}) is the construct tuple κb =
(b, {a.battle_name}, {(+b : Battle)}, {(+b.battle_name = a.battle_name)}).

The construct pattern of an edge is the tuple (e, κL, κR, d, γ, λS , σS), where e is the variable
name used in the pattern, κL and κR and the construct patterns of the right and left endpoint,

4Recall that in the PPG model described in Section 4.2 λ is the function that maps an entity identifier to its
set of labels, while σ is the function that maps an entity identifier and a property key to a value.
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d ∈ {→,←} is the edge’s direction, and γ, λS and σS hold the same meaning as before. As
in the MATCH clause, we do not support undirected or bidirectional edges, even though they are
syntactically valid in G-CORE queries. For example, we would represent the edge construct
pattern (a)-[e]->(b) as κa→eb = (e, (a,∅,∅,∅), (b,∅,∅,∅),→,∅,∅,∅) and the pattern (b)
<-[w :WAS_IN {role := "attacker"}]-(h) as the tuple κh→wb = (w, (b,∅,∅,∅), (h,∅,∅,∅),←
,∅, {(+w : WAS_IN)}, {(+w.role = "attacker")}).

While we did not yet implement the construction of paths, we still parse their construct
patterns and add these to the algebraic tree. We represent the patterns of paths as the tuple
(p, κL, κR, d, o, γ, λS , σS), where p is the variable used in the pattern, κL, κR, d, γ, λS , σS hold
the same meaning as for an edge - however, γ in this case must be empty in the parse tree
(path patterns do not allow the GROUP keyword), but leave it as part of the tuple because we
can populate it with an implicit value during the rewrite phases. o is a boolean value which
tells us whether the path is stored (true) or virtual (false). For virtual paths, λS and σS must
be the empty set. As an example, the construct pattern (c)-/@p :CATELYN_TO_DROGO {#hops
:= cst}/->(d) will become the tuple κc⇒@pd = (p, (c,∅,∅,∅), (d,∅,∅,∅),→, true, {(+p :
CATELYN_TO_DROGO)}, {(+p.#hops = cst)}).

Each entity construct pattern will always have the variable name defined - it was either
specified in the query, or otherwise replaced with a fresh name generated by the canonical
rewrite of the parse tree.

6.4.2 CONSTRUCT operators

The parsed CONSTRUCT block is translated into a tree-like representation of G-CORE operators,
which becomes the CONSTRUCT sub-tree in the algebraic tree. Exactly as we broke down the MATCH
block into several operators, we will split CONSTRUCT into self-contained sub-clauses.

We start by defining the graph construct pattern as either a vertex construct pattern, or a
vertex construct pattern followed by zero or more connection construct patterns. A connection
construct pattern is either the construct pattern of an edge, or that of a path, followed by the
construct pattern of the right endpoint. Therefore, graph construct patterns can define graph
shapes of various complexities, from simple vertices to intricate edge or path topologies. We
will use ψκ1κ2...κn = [κ1, κ2, ...κn] to denote the algebraic representation of a construct pattern
consisting of n ≥ 1 individual entity patterns, linked into a graph topology. Its algebraic form
is an n-arry list: if n = 1, then the single element κ1 can only be a vertex construct pattern,
otherwise, if n > 1, the elements of the list can only be edge or path construct patterns. Graph
construct patterns are similar to the graph patterns ϕ we introduced for the MATCH clause.

We now introduce the first G-CORE operator used in the CONSTRUCT clause, namely the
conditional construct Ċ = (ψκ1κ2...κn , ξ). It represents the most basic sub-clause in CONSTRUCT,
which specifies a graph construct pattern which has to be applied on the binding table filtered by
the condition ξ. Yet again, ξ is an expression. When the condition is not specified in the query,
we will fill it in as true for uniformity. For example, the construction (a)-[e]->(b) becomes
Ċ = (ψ

a
e−→b
, true), while (a)-[e]->(b) WHEN a.prop >= 2 is Ċ = (ψ

a
e−→b
, a.prop >= 2).

The second and final G-CORE operator we introduce is the construct clause C = ([Ċ1, Ċ2, ...
Ċn], λS , λR, σS , σR), comprised of n ≥ 1 conditional constructs, label and property SET assign-
ments λS and σS and label and property REMOVE assignments λR and σR. When previously
defining entity construct patterns we introduces the notion of inline label and property assign-
ment, which can only add labels or properties to the variable they are inlined with. Labels and
properties can also be added to any variable that appears in the CONSTRUCT block with the help
of SET sub-clauses and we will use the same notation as before for them: (+x : l) denotes that
variable x is added a new label l and (+x.k = ξ) denotes that variable x is assigned a new
property with key k and value ξ. The REMOVE sub-clauses define the labels or properties to be
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removed from construct variables and we will use the (−x : l) and (−x.k) notations for these
REMOVE assignments, with the obvious meaning. Note that the canonical CONSTRUCT clause
in G-CORE, as designed in [20], also takes graph names or graph queries as arguments. As we
did not implement this feature, we left its representation aside from the operator we have just
defined.

Figure 6.4 presents the breakdown of the CONSTRUCT clause into its specific operators and
Table 6.5 summarizes the concepts introduced in this section.

CONSTRUCT

(b GROUP a.battle_name),

WHEN (h) -[a]-> ( ),(h) -[e1 :WAS_IN {role := “attacker”}]-> (b)

WHEN (h) <-[a]- ( )(h) -[e2 :WAS_IN {role := “defender”}]-> (b)

1

2

3

5

ᶪ1 = [(b, {a.battle_name}, Φ, Φ)] C1 = (ᶪ1, true)

C2 = (ᶪ2, (h)-[a]->( ))

C = ([C1, C2, C3], λS, λR, Φ, Φ)

1

2

5

C3 = (ᶪ3, (h)<-[a]-( ))3

graph construct pattern

conditional construct

construct clause

SET b:Battle 4

ᶪ2 = [(e1, (h, Φ, Φ, Φ), (b, Φ, Φ, Φ), ➝), Φ, 
{(+e1:WAS_IN)}, {(+e1.role = “attacker”)}]

SET h:Family REMOVE h:House

ᶪ3 = [(e2, (h, Φ, Φ, Φ), (b, Φ, Φ, Φ), ➝), Φ, 
{(+e2:WAS_IN)}, {(+e2.role = “defender”)}]

4 λS = {(+b:Battle), (+h:Family)} λR = {(-h:House)}

label SET assignment

label REMOVE assignment

Figure 6.4: Breakdown of the algebraic representation of the CONSTRUCT block.

6.4.3 Vertex and edge creation

Graph construct patterns contain multiple vertex construct patterns, interlinked through edge
or path construct patterns. As we did not implement path creation, we will not discuss it in
this section. We will focus on how new vertices and edges can be created, by starting with the
simplest case - the vertex construct pattern. Let v be the construct variable of the vertex. The
construct pattern is evaluated in the presence of the binding table created by the MATCH clause.
We denote the binding table with Ω and, as stated before, we view it as an unnamed relation
Ω = (H,B), with a header H and a body B. The header contains the set of all variables that
participate in the MATCH block and the body contains the bindings of each of the variables. We
distinguish three cases for vertex construction, which we discuss in turn below.

Case 1. We are creating a vertex using a variable name that has already been matched
in the binding table, so v ∈ H and there are bindings of v in B. The identity of the vertex
is given by its unique identifier in D(G), so we consider it an error for the query to specify
an explicit GROUP-ing for bound variables, because vertices with different identifiers but equal
grouping attributes would be coalesced into a single entity through this aggregation, effectively
violating the identities of the participating bindings. However, in this case, there is an implicit
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denomination
syntax
algebraic notation

notation breakdown

label SET assignment
(x:l), SET x:l
(+x : l)

Construct variable x is assigned the label l, which is added
to its set of labels.

property SET assignment
(x {k := v}), SET x.k := v
(+x.k = v)

Construct variable x is assigned a new property, with key
k and value v.

label REMOVE assignment
REMOVE x:l
(−x : l)

Label l is removed from construct variable x’s set of labels.

property REMOVE assignment
REMOVE x.k
(−x.k)

Property k is removed from the construct variable x’s set
of properties.

vertex construct pattern
(v), (v :l {k := expr})
κv = (v, γ, λS , σS)

The construct pattern of a vertex. v is the vertex refer-
ence, γ is a possibly empty set of explicit grouping at-
tributes, λS is a possibly empty set of inline label assign-
ments and σS is a possibly empty set of inline property as-
signments. The elements of γ are property references x.k,
where x is one of the matched variables and k a property
key of x.

edge construct pattern
-[e]->, -[e :l {k := expr}]->
κ
a

e−→b
= (e, κL, κR, d, γ, λS , σS)

The construct pattern of an edge. e is the edge refer-
ence, κL and κR are the representations of the left and
right endpoint, d ∈ {←,→} is the direction of the edge
and γ, λS and σS hold the same meaning as for a vertex
construct pattern.

path construct pattern
-/p/->, -/@p :l {k := expr}/->
κ
a

@p
=⇒b

= (p, κL, κR, d, o, γ, λS , σS)
The construct pattern of a path. p is the path reference,
κL and κR are the representations of the left and right
endpoint, d ∈ {←,→} is the direction of the path, o is a
boolean that shows whether the path is stored and γ, λS
and σS hold the same meaning as for the vertex and con-
struct patterns. For paths, γ must be ∅ in the parse tree.
For virtual paths (o = false) λS and σS must be empty
as well.

graph construct pattern
κ1κ2...κn
ψκ1κ2...κn = [κ1, κ2, ...κn]

The entire chain of individual construct patterns that de-
fine the shape of a new graph. If n = 1, κ1 can be a
vertex, edge or path construct pattern. If n > 1, κi can
only be an edge or path construct pattern.

conditional construct
κ1κ2...κn WHEN ξ
Ċ = (ψκ1κ2...κn , ξ)

A graph construct pattern built from the binding table on
which condition ξ is applied.

construct clause
CONSTRUCT Ċ1, Ċ2, ...Ċn

SET λS/σS REMOVE λR/σR
C = ([Ċ1, Ċ2, ...Ċn], λS , λR, σS , σR)

The entire CONSTRUCT block, with n conditional constructs
and the SET and REMOVE sub-clauses.

Table 6.5: CONSTRUCT algebra.
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grouping of the binding using v’s identity. Grouping by v is essential because the binding table
might contain duplicate values bindings v. These duplicates can occur when, for example, non-
correlated match tuples are used in MATCH, which leads to a cross-join of the respective bindings,
or when edges originating from the same endpoint v are matched. The new vertex must only
be created from the unique bindings of v, hence the necessary aggregation. Given the abstract
view of the binding table we use in the algebraic module, this simply means that we need to
group the binding table by v itself and the creation of a new vertex in this case starts from the
relation Γv(Ω).

Case 2. We are creating a vertex using a variable name that has not been matched in the
binding table and does not have explicit GROUP-ing, so v /∈ H. Moreover, γ, v’s set of explicit
grouping attributes, is empty. No aggregation is necessary in this case and instead we use v’s
construct pattern as a "stamping" device on the binding table, in that for each individual binding
tuple we create a new vertex. Therefore, the creation of a new unbound vertex starts from the
binding table Ω to which we add a new column v, in which the values are new vertices with
unique identities. For simplicity, we will denote this operation with ΠH∪{v}(Ω), a projection
on the binding table of all the attributes in its header H, plus the new variable v. Note that
because there is no grouping in this case, using aggregate expressions to set new properties for
v is considered an error.

Case 3. We are creating a vertex using a variable name that has not been matched in the
binding table and has explicit GROUP-ing. As in the previous case, v /∈ H, but now γ 6= ∅. In this
case, the creation of the new vertex will start from the relation ΠH∪{v}(Γγ;f1(a1),...fn(an)(Ω)), in
which we group the binding table by the grouping attributes specified in γ and subsequently add
to the result a new column with fresh bindings for v. This is also a case in which properties can
be added to the new vertices by way of aggregate expressions f1, f2, ...fn on property references
of bound variables a1, a2, ...an /∈ γ.

Once we established the creation rules for vertices, we can define them for edges as well.
The creation of an edge starts with the creation of its two incident vertices. Let κ

a
e−→b

be the
construct pattern of the edge we are creating. The binding table is implicitly grouped by the
identities of the the two endpoints a and b, regardless of whether the edge has been matched or
not. If we are creating the edge e ∈ H, a and b must also be in H, otherwise the edge’s identity
is violated - if a and b would not be bound variables, the same matched vertex e would become
a link between two different pairs of vertices. To create the edge, we must first create both a
and b, such that their identities are available for grouping. If e ∈ H, we simply keep e’s existing
identities. Otherwise, we add a new column to the grouped binding table with fresh identities
for e. Additionally, edge construct patterns for edges e /∈ H can include an explicit GROUP
declaration. In this case, the grouping attributes are added to the aggregation key established
before.

6.4.4 Rewrite conditional construct

We saw that the vertex and edge construct patterns use implicit grouping of the matched vari-
ables to create new unique entities. Additionally, explicit GROUPing can be used by hand for
custom aggregation of the binding table. With this in mind, the definition of the WHEN sub-
clause in a conditional construct becomes somewhat ambiguous in [20]. On the one hand, it
can accomplish a similar role to that of WHERE and filter the binding table before creating the
new graph elements. On the other hand, it can also serve the role of the SQL HAVING clause,
which filters the result of an aggregation. Indeed, examples of both interpretations are provided
in [20]. In our implementation, we decide to treat WHEN exactly as the WHERE clause, so it becomes
a pre-aggregation filter operation.
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Let Ċ = (ψκ1κ2...κn , ξ) be a conditional construct we translate into relational operators.
Algorithm 3 shows how Ċ is resolved starting from the binding table Ω and the label and
property SET and REMOVE assignments of the outer construct clause. It is important to note
that at this stage in the rewriting process we do not have access to the actual data of the binding
table - this data will only be computed in the target module, when the rewritten MATCH block will
be evaluated against the graph database. We solve this issue by introducing a TableView node
to act as a proxy for the binding table and apply all the relational operations on this view. The
target is responsible for registering the view on the materialized binding table before starting to
execute the construct queries.

The algorithm starts on line 2 by creating a mapping between construct variable and all
its inline label and property SET and REMOVE assignments and from the assignments of the
outer construct clause that pertain to that variable. For example, in the query CONSTRUCT (a {
prop1 := b.prop1 + 1 }) SET a.prop2 := b.prop2 * 3, a’s property SET assignments are both
(+a.prop1 = b.prop1 + 1) and (+a.prop2 = b.prop2 ∗ 3).

We first create all the vertices in the conditional construct (lines 7-13). ΩV is the table
that will store all the vertices and we build it in the same time as we generate the vertex
create rules. The process starts from a selection over the binding table by expression ξ (line 6).
Here we emphasize again that ξ is an expression that filters the binding table before starting
the variable creation, so aggregates are not allowed in the expression sub-tree. On line 9 we
treat vertex variables that do not appear in the binding table’s header and do not have explicit
aggregation (case 2 from the previous section) and add one new column to ΩV for each of them.
For vertex variables that appear in the binding table’s header (case 1 from the previous section)
we group the filtered binding table by the vertex identity on line 11. For vertex variables that
do not appear in the binding table’s header but have explicit grouping (case 3 from the previous
section) we first group the filtered binding table by the explicit grouping attributes, then add a
new column to the result with fresh bindings. For cases 2 and 3 we use the previous convention
of expressing the column addition by projecting the new variable from the binding table, even
though that variable does not appear in the header of the table. We will respect this convention
when translating to SQL queries in the target module.

On line 11, when creating the new relation for case 3, we also pass to the group by operation
property SET assignments that use aggregate expressions. In our implementation we pass the
entire expression sub-tree, if it contains an aggregation at any of its levels. As we eventually
translate the algebraic operators into SQL queries, we will later on make use of SQL’s feature
of computing column aggregates during the group by process.

Each new vertex relation built for case 3 is joined back to ΩV on line 12, to bring the
vertex’s fresh bindings into the table. It is necessary to use the grouping attributes γ as the join
condition. These are property references of the bound variables, therefore they will exist in the
binding table. Hence, on line 11, the right argument of the join is a projection of the grouping
attribute set γ and the new vertex from the vertex’s construct relation. This is a case where we
need to break away from the abstracted view of the binding table presented in Section 4.5, but
it is nonetheless necessary: when aggregating the binding table, properties that are not part of
the grouping key will be coalesced into a single value for equal keys and will lose their original
meaning. Therefore, if we used them in the join key afterwards, the join would not make sense.
It is only the aggregation keys that are safe to use for this purpose and we pass this information
to the target by adding γ to the projection set.

The set of construct rules for vertex variables is expanded on line 13 with the relation from
which the vertex can be created and its information from σS , σR, λS , λR. It is the target’s task
to make to use the construct relation and to create the vertex, i.e. to add or remove labels and
properties from the vertex. The construct relation we create still contains the bindings of the
matched variables, so their properties can be used to generate new ones for the vertex.
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Algorithm 3: Rewrites a conditional construct operator to a tuple of two sets of construct
rules, one for the vertex and one for the edge construct variables in the clause. A construct
rule is a tuple that contains the construct variable, a relation from which the new entity
can be built, along the label and property SET and REMOVE assignments for that entity
- both inline assignments and the ones in the SET and REMOVE sub-clauses.

input : A conditional construct operator Ċ = (ψκ1κ2...κn , ξ), the binding table
Ω = (H,B), the label and property SET and REMOVE assignments
λS , λR, σS , σR, from SET and REMOVE sub-clauses.

output: A modified Ċ that becomes a tuple of two sets with construct rules, one for the
vertex construct variables in Ċ and one for the edge construct variables in Ċ.
Each construct rule is a tuple containing the construct variable, a relation from
which one vertex or edge can be built, as well as its label and property SET and
REMOVE assignments.

1 begin
2 λS , λR, σS , σR are transformed such that now they map variable constructs to their

respective label and property SET and REMOVE assignment both in inline patterns
and in the initial λS , λR, σS , σR. For example, λS(v) will yield all of v’s inline label
SET assignments in Ċ and all of v’s label SET assignments in the SET sub-clause.

3 V - the set of vertex construct variables in Ċ
4 E - the set of edge construct variables in Ċ
5 VC , EC - the sets of construct rules for the vertex and edge construct variables in Ċ.

Initially, VC , EC ← ∅.

6 Ω′ ← σξ(Ω), the binding table filtered by condition ξ
7 Vno_grp ← {v ∈ V : v /∈ H and γ = ∅}, where γ is v’s grouping attributes set
8 Vgrp ← V \ Vno_grp
9 ΩV ← ΠH∪Vno_grp(Ω′), the binding table filtered by condition ξ to which all new

vertices have been added
10 for v ∈ Vgrp do
11 r ← if v ∈ H then Γv(Ω

′) else ΠH∪{v}(Γγ;f1(a1),...fn(an)(Ω
′))

12 if v ∈ H then ΩV ← ΩV ./γ Πγ∪v(r)
13 VC ← VC ∪ {(v, r, λS(v), λR(v), σS(v), σR(v))}

14 for e ∈ E do // a, b endpoints of e
15 r ← if e ∈ H then Γa,b,e(ΩV ) else ΠH∪{e}(Γa,b(ΩV ))

16 EC ← EC ∪ {(a, b, e, r, λS(e), λR(e), σS(e), σR(e))}

17 rewrite Ċ to tuple (VC , EC)

18 return the new Ċ
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Once all the vertices in the conditional construct appear as bindings in ΩV , we can create
the edges (lines 14-16). If the edge has already been used in the MATCH clause, we group the
construct table and use the identity of the edge and of as the group by key. As multiple edges
can occur between a pair of endpoints, we need to add the edge as well to the key. Otherwise,
if the edge had not been bound, we group by the identities of the two endpoints and add a new
column to the result with fresh bindings for the edge. The construct rule for the new edge is
then added to the list of edge rules.

The final step in the rewrite phase is to rewrite the conditional construct operator to a tuple
of construct rules for vertices and edges on line 17. We will now analyze the number of operations
applied to the filtered binding table to create a variable. For vertices, we will need one operation
if the vertex was unmatched and did not have explicit aggregation (a column addition); one
operation if the vertex was matched (group by); three operations if the vertex was unmatched
and had explicit aggregation (group by, followed by a column addition and a join). For edges, we
will need one operation if the edge was matched (group by) or two operations otherwise (group
by followed by column addition). The target will need to add its own projections to extract the
vertex and edge information from its construct relation.

Complexity analysis

Once again, we examine the number of steps needed by the previous algorithm to rewrite a
conditional construct operator. The rewrite starts on line 2 with the creation of the mapping
between variable and its respective SET and REMOVE assignments in the entire CONSTRUCT
block. We need O(|QC |) steps to achieve this, where |QC | represents the number of construct
variables in the conditional construct. Lines 7, 8 and 9 require an iteration over the set of
vertex construct variables in the conditional construct, or over a subset of this, therefore, each
will require O(|QC |) time. Each of the two for-loops on lines 10-13 and 14-16 will evaluate in
O(|QC |) steps - we make the assumption that testing whether a variable is present in the header
of the binding table can be achieved in constant time. Overall this means that the runtime
complexity of Algorithm 3 is O(|QC |).

6.4.5 Rewrite CONSTRUCT operators

The rewriting of the CONSTRUCT block is done bottom-up by first rewriting each conditional
construct in the block as described in the previous section. The enclosing construct clause is
then transformed with Algorithm 4, in which all the vertex construct rules and all the edge
construct rules from all the conditional construct operators are gathered into a set of construct
rules for each. The conditional construct then becomes a tuple that contains the two sets. We
summarize this phase in Table 6.6.

Original operator Rewrite rule
Ċ = (ψκ1κ2...κn , ξ) Ċ = (VC , EC), where VC and EC are the sets of vertex

and edge construct rules returned by Algorithm 3
C = ([Ċ1, Ċ2, ...Ċn], λS , λR, σS , σR) C = (VC , EC), where VC and EC are the sets of vertex

and edge construct rules returned by Algorithm 4. Each
conditional construct Ċj has previously been rewritten.

Table 6.6: Rewrite rules of CONSTRUCT operators.

The process of combining the construct rules of vertices and edges in Algorithm 4 is relatively
straightforward. As construct rules contain the variable name of the created vertices or the
variable name of the edge and of its endpoints, we can create a mapping between a set of
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Algorithm 4: Rewrites a construct clause to a tuple of two sets of construct rules, one
for the vertex and one for the edge construct variables in the entire CONSTRUCT block. It
is expected that the conditional match operators in the input have already been rewritten
using Algorithm 3.

input : The construct clause C = ([Ċ1, Ċ2, ...Ċn], λS , λR, σS , σR), where each conditional
construct Ċj has been rewritten to Ċj = (VCj , ECj ), a tuple of two sets of
construct rules for the vertex and edge construct variables, respectively. Each
create rule is a tuple containing the construct variable of the vertex or the
construct variables of the edge and incident vertices, a relation from which the
new entity can be built and the label and property SET and REMOVE
assignments for the new entity.

output: A modified C that contains all the vertex and edge construct rules in
[Ċ1, Ċ2, ...Ċn]. Construct rules for the same vertex and edge are unioned.

1 begin
2 Create mapping B between a set of variable names and a set of construct rules that

contain the respective construct variable(s). B is created over all the construct rules
in [Ċ1, Ċ2, ...Ċn].

3 VC , EC - the sets of vertex and edge construct variables in C. Initially, VC , EC ← ∅.
4 for set of variable names b ∈ B do
5 r ← if size B(b) = 1 then B(b) else

⋃
c∈B(b)

c

6 switch b do
7 case vertex variable v do VC ← VC ∪ r
8 case endpoints and edge variables a, b, e do EC ← EC ∪ r

9 rewrite C to tuple (VC , EC)

10 return the new C

variable names and the construct rules in which the variable(s) appear. Then, for each set of
variables that appears in a single construct rule, we add that rule as is to the set of vertex
construct rules or to the set of edge construct rules, as per the case. For variables that appear
in more than one construct rule, we add the union of all their respective construct rules. The
semantics of the union are that the target should first create from each rule the table that will
contain the new entity’s data (this means evaluating the relation in the rule and add or remove
labels and properties, as necessary) and then union these tables. Algorithm 4 has O(|QC |)
runtime complexity, where |QC | represents the number of construct variables in the construct
clause.

6.5 Complexity analysis

In this section we discuss the runtime complexity of the analysis and rewrite phases in the
algebraic module in terms of query size. As an overview of all the steps described so far, we
present in Figure 6.5 the interpretation pipeline for the query CONSTRUCT (c {degree_centrality
:= COUNT(*)}) MATCH (c:Character)-[:HAS_MENTION_WITH]-(:Character), in which we add a
new property to the Character nodes in the got_graph. We previously used this query as an
example in Listing 2.8 when discussing G-CORE’s features, in which we also used a graph
aggregation in the CONSTRUCT clause with the got_graph. Here, we omit the graph union from
the query, because we have not yet covered this feature in the interpreter.
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CONSTRUCT (c {degree_centrality := COUNT(*)})
MATCH (c:Character)-[:HAS_MENTION_WITH]-(:Character)

CONSTRUCT (c {degree_centrality := COUNT(*)})
MATCH (c:Character)-[e0:HAS_MENTION_WITH]-(v1:Character)

match clause

conditional 
match

match tuple

G0

true

(e0, HAS_MENTION_WITH,
(c, Character), (v1, Character), ➝)

construct 
clause

λS = Φ λR = Φ   σR = Φ   conditional 
construct

true(c, Φ, Φ,
{(+c.degree_centrality = COUNT(*))})

σS = Φ   

graph query

graph query

match tuple

G0(e0, HAS_MENTION_WITH,
(c, Character), (v1, Character), ➝)

select

true

construct 
clause

conditional 
construct

Ω’

select

Ω true

construct rule

group by

Ω’ c degree_centrality = 
COUNT(*)

parser creates 
canonical syntax tree

query is transformed 
into a graph algebra

graph algebra becomes 
relational algebra

Figure 6.5: Steps taken by the parser and the algebraic module to create a tree of relational op-
erators to solve the query CONSTRUCT (c degree_centrality := COUNT(*)) MATCH (c:Character
)-[:HAS_MENTION_WITH]-(:Character).

Sections 6.3 and 6.4 introduced the MATCH and CONSTRUCT algebra used by the interpreter,
as well as the necessary analysis and rewrite phases we needed for transforming the G-CORE-
specific operators in the algebraic tree into a combination of relational operators that preserves
the language semantics. The algorithms we described are an artifact of the physical and logical
data representation we have chosen for the interpreter. By changing this model, the steps we
described would, most likely, also need to change.

The rewrite efforts needed by the interpreter are polynomial in terms of query size and/or
number of labels in the graph. Let |QM | be the number of individual vertex, edge or path patterns
in the MATCH clause. To infer the labels of each pattern we need O(|QM |∗max(|LN |, |LE |, |LP |)2)
steps, therefore the number of labels plays an important role in the rewrite runtime. Once
each individual pattern has been annotated with labels, we reshape the MATCH sub-tree into its
relational equivalent. For this, we will need to split the graph patterns in each match tuple
into individual patterns, then rewrite each of the O(|QM |) conditional matches to unions and/or
joins - for this we will need O(|QM |) + |QM | ∗ O(|QM |3) = O(|QM |4). Finally, we apply the
selection condition on each conditional match and rewrite the OPTIONAL blocks into a left-outer-
join, which will have a runtime bound by O(|QM |). In total, the rewrite effort of the MATCH
block will be O(|QM | ∗ max(|LN |, |LE |, |LP |)2) + O(|QM |4) + O(|QM |) = O(|QM |4 + |QM | ∗
max(|LN |, |LE |, |LP |)2).

The CONSTRUCT clause also incurs rewriting overhead. We note that the algorithms used to
reshape CONSTRUCT were more challenging to write than those used for MATCH, i.e. even though
the code for CONSTRUCT is rather simple, it took considerably more effort to develop algorithms
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that preserve G-CORE’s semantics of building new graph entities, than it was to find suitable
operations on the MATCH block that respect the semantics of the language and our data model.
Moreover, it also takes less rewriting effort to translate the G-CORE CONSTRUCT algebra into
relational algebra. Let |QC | be the number of construct variables in the CONSTRUCT block. The
number of conditional constructs is then O(|QC |). We need O(|QC |) steps to generate construct
rules from each of the O|(QC |) conditional constructs and O(|QC |) to generate the construct
rules for the entire construct clause. In total, the complexity is O(|QC |2). As a final remark,
we note that the CONSTRUCT algebra is simple to rewrite, however, in our implementation, this
clause has a considerable runtime complexity in terms of data size, due to the implicit and
explicit aggregations of the binding table need by each construct variable (except for unbound
and ungrouped vertices, of course) and the joins needed to create the base construct table for
edges.



Chapter 7

G-CORE to SQL

In the previous chapters we saw how the G-CORE interpreter parses queries and transforms
them into an algebraic tree where the nodes are relational operators. The final step in the in-
terpretation pipeline shown in Figure 4.2 is to translate the query into SQL statements. The
module that implements this translation is the target module. Once SQL statements are gener-
ated, they are evaluated on the SparkSQL engine to produce DataFrames. GraphX is used for
finding shortest paths within the queried graph. In this chapter we discuss how graph data can
be made available in the interpreter, how the algebraic tree can be mapped to its SQL equivalent
or to a GraphX routine and how we can finally create a new path property graph after we have
evaluated the MATCH and CONSTRUCT sub-trees.

7.1 Importing graph data

Graph data used by the interpreter is stored in DataFrames. We offer the possibility to import
it from Parquet1 or JSON2 files using a GraphSource - a Scala singleton object that can import
graph data from one of the formats. In this case, we require that metadata about the imported
graphs be specified through a JSON config file with the format in Listing 7.1. Then graph data
can simply be imported as in Listing 7.2. Otherwise, data can be built manually, but it remains
necessary to specify the graph name, vertex, edge and stored path data, as well as the edge and
path label restrictions (exactly as we do in the JSON configuration above). Once data has been
brought into the system, we use the DataFrame schema to create the custom representation of
the graph schema required by the interpreter.

7.2 Evaluation of the algebraic tree

The rewriting phases in Sections 6.3 and 6.4 have shown how the G-CORE operators in the
algebraic tree are transformed into relational operators and in Section 6.2 we saw that no rewrite
rule is applied on the expression sub-trees. In the target module, each algebraic operator is either
mapped to its textual SQL representation or triggers the run of a GraphX routine to find shortest
paths, the result of which is stored into a DataFrame and subsequently used as a table view in
SQL statements. Given the relational operators in the algebraic tree, we are able to create
a single SQL query from the MATCH sub-tree that evaluates into the binding table, whereas in
order to evaluate the CONSTRUCT sub-tree we will need to create multiple queries for each of the
construct variables.

1https://spark.apache.org/docs/latest/sql-programming-guide.html#parquet-files
2https://spark.apache.org/docs/latest/sql-programming-guide.html#json-datasets
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1 {
2 "graph_name": "some_graph_name",
3 "graph_root_dir": "/path/to/graph/data",
4 "vertex_labels": ["label1", "label2" ...],
5 "edge_labels": ["LABEL1", "LABEL2" ...],
6 "path_labels": ["LABEL1", "LABEL2" ...],
7 "edge_restrictions": [
8 {
9 "connection_label": "LABELi",

10 "source_label": "labelj",
11 "destination_label": "labelk"
12 },
13 ...
14 ],
15 "path_restrictions": [
16 {
17 "connection_label": "LABELi",
18 "source_label": "labelj",
19 "destination_label": "labelk"
20 },
21 ...
22 ]
23 }� �

Listing 7.1: Structure of configuration JSON for importing graph data.

� �
1 GraphSource.json(sparkSession).loadGraph("/path/to/config.json")
2 GraphSource.parquet(sparkSession).loadGraph("/path/to/config.json")� �

Listing 7.2: Importing graph data with a GraphSource stored in JSON or Parquet format.

Creating a SQL query from a part of the algebraic tree means traversing the tree bottom-
up and, for each operator, emitting its SQL equivalent. Each node uses the SQL statements
generated by its children and combines them into its own SQL representation, which is passed
to its parent, and so on. The end result is a single statement that can be run with SparkSQL to
create a DataFrame. We exemplify this process in Figure 7.1, in which we generate a query that
groups a relation, adds a new column to the result with unique ids and joins the result back to
the named relation. There are also special nodes in the algebraic tree that cannot be mapped
directly to simple SQL operators and require instead an internal computation. This is the case
of MATCH and CONSTRUCT leaf nodes, which we discuss in the following sections.

7.2.1 Vertex, edge and path scans in the MATCH sub-tree

The leaves of the MATCH sub-tree are match tuples in which the graph pattern contains a single
vertex, edge or stored path pattern. Conceptually, these patterns are data scans. The evalua-
tion of leaves yields a DataFrame containing an entity’s data, which becomes the input of the
relational operators higher up in the tree. Tables 7.1, 7.2 and 7.3 provide the SQL templates we
use to read vertex, edge and stored path data. We detail the implementation of the three data
scan operators in the following paragraphs.

The simplest case for data scan is creating the DataFrame of a vertex - we refer here to
simple vertex patterns matched individually in the query, not edge or path endpoints, which
are treated differently. The vertex is brought into the system through a projection over all
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vertex scan
algebra M = (ϕv, G), ϕv = [(v, lv)]

SQL template SELECT lv AS ‘v$table_label‘, {k AS ‘v$k‘, ∀k ∈ θ(lv)} FROM lv

example MATCH (c:Character)

SELECT "Character" AS ‘c$table_label‘, id AS ‘c$id‘, name AS ‘c$name‘
FROM Character

Table 7.1: SQL template for reading vertex data.

edge scan

algebra M = (ϕ
a

e−→b
, G), ϕ

a
e−→b

= [(e, le, (a, la), (b, lb),→)]

SQL template edge ← SELECT le AS ‘e$table_label‘, {k AS ‘e$k‘, ∀k ∈ θ(le)} FROM le

src ← SELECT la AS ‘a$table_label‘, {k AS ‘a$k‘, ∀k ∈ θ(la)} FROM la

dst ← SELECT lb AS ‘b$table_label‘, {k AS ‘b$k‘, ∀k ∈ θ(lb)} FROM lb

SELECT * FROM (edge) INNER JOIN (src) ON ‘e$src_id‘ = ‘a$id‘ INNER
JOIN (dst) ON ‘e$dst_id‘ = ‘b$id‘

example MATCH (c:Character)-[e:HAS_ALLEGIANCE_TO]->(h:House)

SELECT *
FROM

(SELECT *
FROM

(SELECT "HAS_ALLEGIANCE_TO" AS ‘e$table_label‘,
id AS ‘e$id‘,
src_id AS ‘e$src_id‘,
dst_id AS ‘e$dst_id‘

FROM HAS_ALLEGIANCE_TO)
INNER JOIN

(SELECT "Character" AS ‘c$table_label‘,
id AS ‘c$id‘,
name AS ‘c$name‘

FROM Character) ON ‘e.src_id‘ = ‘c.id‘)
INNER JOIN

(SELECT "House" AS ‘h$table_label‘,
id AS ‘h$id‘,
name AS ‘h$name‘

FROM House) ON ‘e$dst_id‘ = ‘h$id‘

Table 7.2: SQL template for reading edge data.
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stored path scan

algebra M = (ϕ
a

@p
=⇒b

, G), ϕ
a

@p
=⇒b

= [(p, rt, lp, q, (a, la), (b, lb),→, true, c,∅)]

SQL template path, src, dst computed as for an edge
join ← SELECT * FROM (SELECT * FROM (path) INNER JOIN (src) ON
‘p$src_id‘ = ‘a$id‘) INNER JOIN (dst) ON ‘p$dst_id‘ = ‘b$id‘
if rt = true ⇒ SELECT ‘a$table_label‘, {‘a$k‘, ∀k ∈ θ(la)}, ‘b$table_label‘,
{‘b$k‘, ∀k ∈ θ(lb)}[, SIZE(‘p$edge_seq‘) AS c] FROM join
if rt = false ⇒ SELECT *[, SIZE(‘p$edge_seq‘) AS c] FROM join

example MATCH (c:Character)-/@p:CATELYN_TO_DROGO/->(d:Character)

SELECT *
FROM

(SELECT *
FROM

(SELECT "CATELYN_TO_DROGO" AS ‘p$table_label‘,
id AS ‘p$id‘,
src_id AS ‘p$src_id‘,
dst_id AS ‘p$dst_id‘,
edge_seq AS ‘p$edge_seq‘,
hops AS ‘p$hops‘

FROM CATELYN_TO_DROGO)
INNER JOIN

(SELECT "Character" AS ‘c$table_label‘,
id AS ‘c$id‘,
name AS ‘c$name‘

FROM Character) ON ‘p.src_id‘ = ‘c.id‘)
INNER JOIN

(SELECT "Character" AS ‘d$table_label‘,
id AS ‘d$id‘,
name AS ‘d$name‘

FROM Character) ON ‘p$dst_id‘ = ‘d$id‘

Table 7.3: SQL template for reading stored path data.
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ΠH ∪ {x}

Γp

r = (ℓ, H, B)

⋈p

r = (ℓ, H, B)

ℓ

SELECT * FROM (...) GROUP BY p

SELECT *, 
MONOTONICALLY_INCREASING_ID() AS x
FROM ( … )

ℓ

SELECT * FROM

(                                                                                                                   )

INNER JOIN (               ) USING (p)

SELECT *, MONOTONICALLY_INCREASING_ID() AS x

FROM (                                                                                     )SELECT * FROM (                ) GROUP BY pℓ

ℓ

Figure 7.1: Example of how an arbitrary algebraic sub-tree is translated into a single SQL
statement. Each node generates its textual representation and passes it to its parent. The query
is "collected" at the root.

the columns in the relation stored under the vertex’s label name. The projection prefixes each
column name with the vertex variable followed by a dollar sign, such that we can later refer to
the columns corresponding to the specific vertex when querying the binding table. The renaming
is also useful for certain internal analysis performed by the tree nodes before emitting SQL text.
Additionally, we also project a column that will contain the label name, a string constant.

The pattern of an edge contains the edge’s label, as well as the patterns of its two endpoints.
We read the data of the relations stored under the edge’s and the two vertices’ label names
exactly as for a simple vertex. This edge table will contain the two columns src_id and dst_id
which reference the unique ids of the two incident vertices. We use these columns to create a new
table in which each tuple holds data both for the edge as well as for its endpoints, by joining the
edge table with the source and the destination vertex tables. The result is now a single relation
that contains the properties of both endpoints and the edge’s, as well as a column for each of
the three with the label under which they have been matched.

Reading data for a stored path is solved exactly as for an edge. The difference is that a path
can be a reachability test, in which case we omit the path data from the result and only include
the data of the two endpoints. A cost variable can be defined for a path - in this case we use
the SIZE3 function to determine the length of the edge sequence column and project the result
into a separate column.

7.2.2 Computing paths with GraphX

When virtual path patterns (i.e. not stored) are used in the MATCH sub-tree, path data can no
longer be read from an existing relation and instead the graph needs to be traversed in order
to find it. The GraphX framework is a suitable tool for this task and can be easily integrated
into the SparkSQL evaluation pipeline, as we show below. At the time of writing this feature is
implemented as a proof of concept, in the sense that it treats only a particular query structure
- Kleene-star expressions over a given edge label -, but the existing functionality can be reused

3https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#size-org.
apache.spark.sql.Column-

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#size-org.apache.spark.sql.Column-
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#size-org.apache.spark.sql.Column-
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as is, if rewriting logic in the algebraic module is extended. We present a suggestion of how this
can be achieved in Section 8.2.

GraphX [10] is a Spark component that supports parallel graph computations and provides
an API for well-known graph algorithms. The data model in GraphX is the property graph,
which is abstracted through a Graph[VD, ED] class4 parameterized by VD and ED, the vertex
and edge property data types, respectively. This implies two things: (1) there is only one base
data type that can be used for vertex properties and only one base data type that can be used
for edge properties and (2) multiple properties corresponding to a single graph vertex or edge
must be "packed" in a single instance of the property base data type.

A GraphX Graph stores vertices and edges in optimized representations built on top of
RDDs. Besides the vertex and edge views, the Graph also offers an edge triplet view5, which is
a logical join between the vertex and edge tables. In other words, an edge triplet has access to
the edge id and property, as well as to the ids and properties of its incident vertices.

A key feature for our interpreter offered by GraphX is its Pregel operator6, which can be
used to execute graph algorithms iteratively. The Pregel computation is executed in a series of
super-steps. In each step, a graph vertex receives messages sent by other vertices in the graph at
the previous super-step. The messages are received in bulk. Based on the information contained
by the combined messages, the vertex can perform internal computations and transmit its own
messages. These messages will be delivered at the next super-step. The vertex computation uses
the triplet view to access its neighbors’ properties, as well as the incident edges’.

The GraphX API provides a shortest path algorithm7 that calls into the Pregel operator to
find shortest paths between each vertex in a Graph and a sub-set of the graph vertices, denoted
landmarks. The algorithm returns a Graph that contains all the vertices in the input, and
their property is a mapping between the id of each reachable landmark vertex and an integer
representing the number of hops needed to reach the landmark. This algorithm fits our use case,
but we need to bring minor modifications to it, such that we can also collect the identifiers of
the edges along the path. Another improvement we are interested in is to offer the capability to
compute weighted shortest paths, as in its current form the GraphX implementation does not
cover this option. To this end, we identify three changes we need to bring to the existing code:
(1) we need to convert between our internal data representation and the one used by GraphX
in a way that supplies all the necessary information to the shortest paths routine, (2) we need
to modify GraphX’s shortest paths such that edge ids are collected and the weight of one edge
is determined by a supplied cost function, (3) once the Pregel computation has returned the
resulting Graph, we need to convert it back to our internal representation.

As mentioned before, we only address a particular query case, in which the path we are
computing can traverse any number of edges with a single, particular edge label. Let lr be the
label used in the path regular expression. As per our data model, an edge tagged with the lr
label can only link two vertices of certain labels. Let lsrc and ldst be two vertex labels, such that
τ(lr) = (lsrc, ldst). We read from the graph storage the DataFrames that hold data for the three
labels and we will refer to them as lr, lsrc and ldst, respectively. This is the input to our shortest
paths algorithm, but it uses our own representation, so we need to convert it into the GraphX
model. More specifically, we need to create a single GraphX Graph from the three DataFrames.

To create the GraphX vertices, we only need to provide their ids, which are stored in lsrc
and ldst. We create a single RDD for vertices with the operation Πid(lsrc) ∪ Πid(ldst), in which
we project the id column from each vertex table and union the results into a single relation. To

4https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.Graph
5https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.

EdgeTriplet
6https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
7https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/

lib/ShortestPaths.scala

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.Graph
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.EdgeTriplet
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.EdgeTriplet
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
https://github.com/apache/spark/blob/master/graphx/src/main/scala/org/apache/spark/graphx/lib/ShortestPaths.scala
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Algorithm 5: Pseudo-code to compute the weighted shortest path between all the ver-
tices in a graph and a sub-set of them, called the landmark vertices. The algorithm uses
GraphX’s Pregel operator.

input : A GraphX Graph G and the set of landmark vertices L. If V is a vertex in G
and E an edge, then their property can be accessed with V .prop and E.prop.
The property of a vertex is its id, an integer. The property of an edge is a tuple
(eid, f), where eid is the edge id and f is its cost function. If E is an edge
triplet, then E.src is the source vertex and E.dst is the destination vertex. Each
landmark is specified through its id.

output: A GraphX Graph GSP , in which the property of a vertex is a mapping between
the id of reachable landmarks and a tuple containing the distance to that
landmark and a sequence of edge ids representing the edges that are part of the
path to the specific landmark. We alias the map type as the vertex info map.

1 begin
2 GSP ← ∅
3 for vertex V ∈ G do
4 M ← ∅
5 if vertex id vid ← V .prop ∈ L then M(vid)← (0,∅)
6 Add V to GSP with property V .prop ←M

7 Add all edges of G to GSP
8 return Pregel(graph ← GSP , initialMsg ← ∅, activeDirection ←

EdgeDirection.Either)(vprog ← VertexProgram, sendMsg ← SendMessage,
mergeMsg ← MergeMaps)

9 Function VertexProgram(vertex id vid, vertex info map P , received info map M):
10 return MergeMaps (P,M)

11 Function SendMessage(edge triplet E):
12 Create M ′, a vertex info map, as if E’s source vertex would follow E to reach the

landmarks: m← IncrementMap (E.prop._1, E.prop._2, E.dst.prop), M ′ ←
MergeMaps (m, E.src.prop)

13 if M ′ 6= E.src.prop then queue M ′ to be sent to E.src on the next iteration

14 Function IncrementMap(edge id eid0 , edge cost function f , vertex info map M):
15 for vertex id vid ∈M mapped to tuple (d, [eid1 , eid2 , ...]) do
16 remap M(vid)← (d+ f(), [eid0 , eid1 , eid2 , ...])

17 return M

18 Function MergeMaps(two vertex info maps M1,M2):
19 M ← ∅, the result of map merging
20 for each unique key vid in M1 and M2 do
21 Mx ← either one of M1 or M2 that maps vid to the smallest distance
22 M(vid)←Mx(vid)

23 return M
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create the GraphX edges, we only need the ids of the two endpoints - this information is already
stored in lr. As edge property, we will use the edge identifier, such that we can access it to build
the path’s edge sequence. Therefore, we create an RDD from the edge table with the operation
Πid,src_id,dst_id(lr) and, for each RDD row, we create one GraphX Edge8. The vertex and edge
RDDs are then used to create a Graph, which we denote with G. G is one of the two input
arguments of our shortest path algorithm. The other argument is the set of landmark vertices,
which we denote with L. We will use a sequence of vertex identifiers to represent L - we can
find these identifiers in the id column of the ldst DataFrame.

We have thus converted our internal data representation into G and L, the format accepted
by the GraphX framework, so we can now find shortest paths in G. We present the pseudo-code
used for this step in Algorithm 5. G and L are the input of the algorithm, however the edges
in G also accept a cost function in their property. With the conversion we described above,
this cost function is implicitly the constant 1, but more complex functions can be created for
weighted paths that, for example, take as argument another edge attribute.

The goal of the algorithm is to create GSP , a Graph that contains all the vertices of G, but
with their property changed. We alias the new property type vertex info map and it represents a
mapping between reachable landmark identifiers and a tuple (d, [eid1 , eid2 , ...]), where d represents
the cost of the path and [eid1 , eid2 , ...] is the path’s sequence of edge identifiers.

We initialize GSP on lines 3-7, by adding to it all the vertices of G with a modified property
and preserving the edges as they are. If a vertex is a landmark, then its property is a fresh info
map in which the landmark identifier is mapped to the distance 0 and an empty edge sequence.
Otherwise, the property of the vertex is an empty info map. We use the Graph’s mapVertices
function to achieve this, which transforms each vertex attribute in the graph using the map
function. The idea behind GSP ’s initialization is to start the path finding from the landmarks
themselves and sequentially add edges to the path by moving "backwards", towards the source
vertex. At the first iteration of the algorithm, the landmark vertices will "know" the distance
to themselves is 0 and the other vertices in the graph will have no information about shortest
paths.

On line 8, using Scala syntactic sugar, we indirectly call the apply function of GraphX’s
Pregel operator9, which takes as input a number of arguments, described in the following one
by one. The parameter graph is the graph on which the computation will run - in our case, this
is the previously initialized GSP . initialMsg represents a message that will be delivered to all
vertices in the input graph in the first iteration of the computation - we use an empty vertex
info map for this.

The sendMsg and the activeDirection parameters determine which vertices receive messages
during an iteration. The activeDirection is set to the value Either10, which means that the
function passed to the sendMsg parameter will be called on both endpoints of an edge if either
of the endpoints has received a message at the previous iteration. We supply our custom imple-
mentation to the sendMsg function, which follows the template required by the Pregel operator.
The argument to this function is the EdgeTriplet that has activated at the previous iteration
because one or both of its endpoints have received a message. The sendMsg function is called
on a vertex, so the EdgeTriplet argument allows the vertex to have a wider local view - it can
access its own property, as well as its incident edge’s and the property of its neighboring vertex.

The vertex probes whether by following the edge to its neighbor it can obtain different paths
to the landmarks from the ones it already knows. For this, the vertex will first create a possible
new info map for itself, by incrementing the info map of its neighbor. This means that for each

8https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.Edge
9https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.Pregel$

10https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.
EdgeDirection$

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.Edge
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.Pregel$
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.EdgeDirection$
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.graphx.EdgeDirection$
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key-value pair in its neighbor’s info map, where the key is a landmark identifier and the value is
the tuple of distance and edge sequence to that landmark, the key is remapped to the previous
distance plus the cost of traversing the linking edge and the edge identifier is prepended to the
edge sequence - prepended because the path is essentially built from landmark to path source.

The vertex then tries to merge together its own info map with the one it has just incremented.
By merging the two maps, the vertex attempts to update the information it already has about
paths with shorter routes obtained by following the edge to its neighbor. The map merging is
done by preserving for each unique key in both maps (so for each landmark identifier) the value
from either map that had the smallest distance, which means that only the shortest path and
its edge sequence will be retained in the merge result.

If the map merging produces an info map different from the one the vertex had - this is
the case when either shorter paths have been found or a path through a previously unreachable
landmark - the vertex queues the new info map to be sent to itself at the next iteration, and
because we have set the activeDirection to Either, both endpoints of the edge will by activated
and run sendMsg.

To the vprog parameter we pass the function that will receive the messages from the previous
iteration - in our case, a message can be received by a vertex if that same vertex has sent itself
a message with fresh information at the previous iteration. For this we supply a function that
simply calls the same routine that merges info maps, such that the vertex can update its property
with fresh paths.

As an example, suppose there is an edge (a)-[e]->(b), where the vertex (b) has discovered a
new shorter path at the current iteration. (b) will send itself a message, so at the next iteration
both (a) and (b) will run the sendMsg function, which will result in vertex (a) discovering its
own shorter path going through (b) to all the landmarks (b) can reach.

Finally, for the mergeMsg we supply the same info map merging function, which is called to
combine multiple incoming messages into a single info map.

The algorithm will end at the iteration in which no vertex can update its info map in the
sendMsg routine. In this case it will simply not queue any more messages to be sent at the
next iteration. The Pregel computation converges when there are no remaining messages in the
system. There is also a maxIterations parameter that can be passed to Pregel, which determines
the maximum number of iterations for which the computation should be run, but we leave it to
its default value as the maximum integer.

The GSP graph now contains the needed path information, but we still have to convert it
back into our internal representation. We need to create a single DataFrame that contains the
path data, as well as the data of the incident vertices. Each vertex in GSP has a vertex info
map property, in which landmark identifiers are mapped to the distance and edge sequence of
the shortest path to that landmark. We create a DataFrame from the vertex RDD in GSP
and, to unroll the vertex info map into individual rows we use Spark’s explode11 function. As a
final step, this DataFrame is joined with the DataFrames of the source and destination vertices,
exactly as we did when reading edge or stored path data.

In Figure 7.2 we show step-by-step how the Pregel-like computation runs on an arbitrary
graph and a set of landmark vertices. At the end of the computation the info maps that are the
properties of vertices in GSP are transformed into a DataFrame which follows the data layout
of paths expected by the target module during the evaluation of the algebraic tree.

11https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#
explode-org.apache.spark.sql.Column-)

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#explode-org.apache.spark.sql.Column-)
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#explode-org.apache.spark.sql.Column-)
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Figure 7.2: Example run of Algorithm 5, in which we look for shortest paths between all the
vertices of graph G and the set of landmark vertices L = {2, 4}. Four iterations of the Pregel-like
routine are needed to finish the algorithm. At each iteration, the vertices receive messages from
the previous iteration, update their info map property and emit messages to themselves (if it is
the case). A vertex is activated in an iteration if it was the recipient of a message at the previous
iteration. After shortest paths have been discovered, the vertex info maps in GSP are converted
into the representation used by the G-CORE interpreter for paths.

7.2.3 Expressions and canonical relational operators

We translate expression sub-trees recursively into their SQL equivalent. The translation is
triggered by the evaluation of algebraic nodes that have an expression as child. For example,
the children of a Select operator are a relation and an expression, so when producing the textual
SQL representation of that node, the expression is expanded and its text is filled as the argument
of WHERE.

In general, expressions have the same syntax in SQL as in G-CORE, with a few exceptions for
which we provide the templates in Table 7.4. For a G-CORE EXISTS node the graph pattern in
the sub-clause has already been rewritten into a relational sub-tree of its own and subsequently
into a SQL statement. The sub-clause becomes the SQL EXISTS operator, as discussed in
Section 6.2. If the source operator of the outer selection - aliased S - and the graph pattern in
EXISTS - aliased T - share variables, then we add a condition to the SQL EXISTS that the tuples
in S and T have the same identifier. SparkSQL will rewrite the EXISTS into a semi-join.

Another exception to the rule is the group-concat G-CORE expression, which concatenates
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expressions
property reference x.k ‘x$k‘
EXISTS ϕ EXISTS (SELECT * FROM ϕ T [WHERE {S.‘x$id‘ =

T.‘x$id‘, ∀x ∈ HS ∩ HT }], where S is an alias for source ta-
ble of the outer select statement, T is the alias for the table
ϕ is evaluated into, HS and HT are the headers of S and T,
respectively

power ξLˆξR pow(ξL, ξR)
group-concat([DISTINCT ] e) concat_ws(’,’, collect_list([DISTINCT ] e))

Table 7.4: SQL templates for expressions that need a particular translation. The entire ex-
pression sub-tree is translated to SQL recursively, using for each node a template. In general,
the SQL equivalent of expressions is the same as the G-CORE syntax, with the few exceptions
listing above.

a list of strings using comma as the separator. For this we use Spark’s concat_ws12 and col-
lect_list13 functions.

Table 7.5 provides the SQL templates we used for the canonical relational operators that
appear in the algebraic tree. Similar to expressions, their translation is intuitive and the only
challenge is to identify correctly the attributes shared between operands, for joins, or missing
from either operand, for unions.

7.2.4 Creating new graph entities in the CONSTRUCT sub-tree

We have shown in Algorithm 3 how the conditional construct operators can be rewritten into
vertex and edge construct rules. A construct rule contains the construct variable, a tree of
relational operators over the binding table - denoted construct relation - and property and
label SET and REMOVE assignments for that construct variable. In Section 6.4 we identified
three types of vertex construct patterns that are treated differently when creating the construct
table for the edges: (1) matched vertices, which are already present in the construct table
obtained after solving case 2, and which need grouping by identity to create their own construct
rule, (2) unmatched vertices with no explicit GROUP-ing, which we create by simply adding a
column with fresh bindings to the filtered binding table and (3) unmatched vertices with explicit
GROUP-ing, for which we group the binding table, add a column with fresh bindings and join the
result back to the construct table that already contains the vertices from case 1.

Section 6.4 also described the overall flow of creating the new graph entities, in which we
can clearly identify two distinct but non-disjoint operations which we need to solve to create the
entities. On the one hand, we need to evaluate and materialize the construct relation for each
vertex and edge into a DataFrame, because we will use it to add or remove properties and labels
to create the final graph entity. On the other hand, we need to create the construct table that
contains all the new vertices, such that we have a base table for creating the edges, which need
grouping by endpoint and edge identity - and this must be done for each conditional construct
in the construct clause.

In Figure 7.3 we show an example of how the construct flow is evaluated in the target module
for a conditional construct clause. The construction starts from the binding table filtered by the

12https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#concat_
ws-java.lang.String-org.apache.spark.sql.Column...-

13https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#collect_
list-java.lang.String-

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#concat_ws-java.lang.String-org.apache.spark.sql.Column...-
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#concat_ws-java.lang.String-org.apache.spark.sql.Column...-
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#collect_list-java.lang.String-
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#collect_list-java.lang.String-
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relational operators
r1 ./ r2 SELECT * FROM (r1) INNER JOIN (r2) USING ({a,∀a ∈ H1 ∩H2})
r1 ./ r2 SELECT * FROM (r1) LEFT OUTER JOIN (r2) USING ({a,∀a ∈

H1 ∩H2})
r1 × r2 SELECT * FROM (r1) CROSS JOIN (r2)
Πa(r), when a /∈ H SELECT {‘x$k‘, ∀x ∈ H and k ∈ θ(lx)}, ROW_NUMBER() OVER

(ORDER BY ‘a$cid‘) AS ‘a$id‘ FROM (SELECT *, MONOTONI-
CALLY_INCREASING_ID() AS ‘a$cid‘ FROM (r))

Πa(r), when a ∈ H SELECT {‘a$k‘, ∀k ∈ θ(la)} FROM (r)
σξ(r) SELECT * FROM (r) WHERE ξ

Γk1,k2,...;f1(a1),f2(a2),...(r) SELECT f1(‘a1‘), f2(‘a2‘), ..., {b,∀b ∈ H \ {k1, k2, ..., a1, a2, ...}} FROM
(r) GROUP BY ‘k1‘, ‘k2‘, ...

r1 ∪ r2 SELECT {f(a), ∀a ∈ H1 ∪ H2} FROM (r1) UNION ALL SELECT
{f(a),∀a ∈ H1 ∪H2} FROM (r2), where f(a) = ‘a‘, if a is an attribute
in the relation we are selecting from and f(a) = null AS ‘a‘, otherwise

Table 7.5: SQL templates for the canonical relational operators. We denote relations with
r, r1, r2, their headers with H,H1, H2 and with lx the label of variable x.
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CONSTRUCT (x :XLabel)-[e0]->(y GROUP a.prop :YLabel {prop := val})<-[e1]-(a)-[e]->(b)
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Figure 7.3: Example of construct flow modeled with Algorithm 3 evaluated by the target module
for the query CONSTRUCT (x :XLabel)-[e0]->(y GROUP a.prop :YLabel prop := val)<-[e1]-(a)
-[e]->(b) MATCH (a)-[e]->(b). The four steps are: (1) create construct rules for vertices, (2)
assemble ΩV , the construct table with vertices, (3) create construct rules for edges from ΩV and
(4) build graph entities from their construct rules.
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WHERE sub-clause of the conditional construct. Individual DataFrames are created for each vertex
in the conditional construct. These DataFrames will be used in a subsequent step to create the
graph entities. The construct table for edges is created in the second step - we start from the
DataFrame with the new, unmerged ungrouped vertices and join it with the DataFrames of the
new, unmatched grouped vertices. The edge construct relations are then evaluated on the result
and it is not necessary to materialize their DataFrames at this step. Finally, to each individual
DataFrame, we add and remove properties and labels as instructed by their specific SET and
REMOVE assignments.

A final step before creating the graph, which is not shown in the figure, is to rename the
columns of DataFrames. We mentioned before that we use a special naming convention for
the attributes, by appending the variable name followed by a dollar to the property name. We
remove this prefix from the column names before wrapping the data into a PPG instance.

7.2.5 Complexity analysis

We estimate the runtime complexity of the entire query evaluation to be polynomial in terms of
data size. The MATCH clause and the individual construct rules are solved by evaluating algebraic
trees of relational operators. The operators we use are selection, projection, cross-, inner-, left-
outer-, semi-join, union and group by, which have a tractable implementation in SparkSQL.
Clearly the evaluation effort depends heavily on the physical implementation of these operators
that is chosen at runtime by the Catalyst optimizer, but also on the algebraic tree produced by
our rewrite phases and translated to SQL in the target module. In Section 8.1 we identify a
possible optimization opportunity for the algebraic plan generated for the MATCH block, that is
based on catalog knowledge, i.e. information available to the rewrite phases of the interpreter
and that may not be detected by the Catalyst optimizer.

The complexity of the (weighted) shortest paths algorithm presented in this chapter is difficult
to estimate due to the convergence condition, however we observe that its implementation is
closest to the Floyd-Warshall algorithm, that can find weighted shortest paths in the graph
between all pairs of vertices (although our variant is restricted to finding weighted shortest
paths to a subset of the vertices, denoted landmarks). The Floyd-Warshall algorithm needs
O(|V |3) steps to find these paths, where |V | is the number of vertices in the graph. Therefore,
it can become quite an intensive computation for large sets of data - which is indeed the case
for the very common use-case of social networks. We discuss improvement opportunities for the
proposed algorithm in Section 8.3.

Other aspects that should be taken into consideration when analyzing the query complexity
are the communication overhead incurred by the computation model in Spark and GraphX, as
well as common benchmark metrics, such as memory and CPU utilization. It remains as future
work to evaluate the performance of the interpreter based on a comprehensive benchmark set
for graph databases, such as the Social Network Benchmark [16].



Chapter 8

Can the interpreter be improved?

In this chapter we discuss a number of steps that could be taken in order to improve the design
and implementation we proposed in the previous chapters for the G-CORE interpreter. We
briefly sketch ideas that could be used to add more features to the interpreter or to optimize
our solutions for features we have already implemented. We also note that these ideas are by
no means exhaustive and, as for any piece of software, improvement opportunities can always
be found in the existing code.

8.1 Rewrite joins of unions and prune sub-tree

Conditional match operators within the MATCH block are rewritten into nested relational operators
by way of Algorithm 2. The operators we used were unions, inner-joins and cross-joins: we saw
that we union the match tuples that share the entire binding set, then inner-join the operators
that share at least one variable, but not the entire binding set, and finally cross-join the remaining
non-correlated operators. The result was a left-deep algebraic plan, in which the leaves are the
match tuples from the original conditional match. Each of these tuples contains a single pattern
of either a vertex, edge or path, which is viewed as a conceptual scan over the data in the graph
database - and, therefore, as a table.

A potential problem with this algorithm is that we may end up using the join operator with
one or both of the arguments being a union over several tables and use as join key data in
columns that, based on catalog knowledge, could never pass the join condition. As an example,
suppose we are trying to match the pattern in MATCH (c1:Character)-[e1]->(c2), (c2)-[e2]->(
c3) on the got_graph in Figure 2.1. The entire block could be satisfied by several combinations
of labels, as shown in Figure 8.1, in which we also added a simplified UML diagram of the vertex
and edge data schema in the queried graph.

Figure 8.1 also presents the algebraic plan we currently generate, in which we union the
tables of each pattern and join the results. Alternatively, we could first join the tables of the two
patterns, in which the correlated variable is labeled the same. In our case, the common variable
between the two patterns is (c2), the vertex that is the destination of the first edge pattern and
the source of the second edge pattern. The results of the union could then be joined.

As a generic example, suppose we are solving two patterns that are correlated through one
variable. We believe it is worth investigating whether rewriting joins of unions to unions of joins
could lower the computation time. All the property keys of the correlated variable are used as
join key, each label has its own set of property keys and we use one table per label in the graph
storage. As we join on the correlated variable, when this variable is labeled differently in the two
patterns, we can know for sure that there cannot possibly be any tuple in either pattern that
would pass the join condition. Instead, if the correlated variable is labeled the same on both
sides of the join, it is possible to find matching tuples.
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Character HouseHAS_MENTION_WITH ATTACKEDHAS_ALLEGIANCE_TO

MATCH (c1:Character)-[e1]->(c2), (c2)-[e2]->(c3)

(c1:Character) (e1:HAS_MENTION_WITH) (c2:Character)

(c1:Character) (e1:HAS_MENTION_WITH) (c2:Character)

(c1:Character) (e1:HAS_ALLEGIANCE_TO) (c2:House)

(c2:Character) (e2:HAS_MENTION_WITH) (c3:Character)

(c2:Character) (e2:HAS_ALLEGIANCE_TO) (c3:House)

(e1:HAS_ALLEGIANCE_TO) (c2:House)(c2:House)

(c1) (e1) (c2) (c1) (e1) (c2)

union

(c2) (e2) (c3) (c2) (e2) (c3)

union (c2) (e2) (c3)

union

join

(c1) (e1) (c2) (c2) (e2) (c3)

join

(c1) (e1) (c2) (c2) (e2) (c3)

join

union

(c1) (e1) (c2)

join

(c2) (e2) (c3)

union

generated query plan

alternative query plan

Figure 8.1: The various ways in which the block MATCH (c1:Character)-[e1]->(c2), (c2)-[e2
]->(c3) could be annotated with labels by the label inference algorithm, the algebraic plan we
currently generate and an alternative algebraic plan for the same query.

As a simple implementation of this rewrite phase, we could first generate the plan we are
already doing and then use rewrite logic to reshape it, if it proves worth changing the evaluation
flow. Whenever a pattern of join of two union sub-trees is encountered in the algebraic tree, the
rewrite phase could generate all combinations of joins between all the leaves under the left and
right arguments of the join. We could then prune those joins in which the correlated variable
would be labeled differently on the two sides.

An estimation of the time complexity of the two flavors of the algebraic plan depends heavily
on the physical plan that is chosen at runtime by the underlying system - SparkSQL, in our case.
Suppose both the first and the second pattern can be labeled in k ways. Also, let’s assume that
each of the k tables of a pattern has n elements. We are interested in estimating the evaluation
complexity of the two algebraic plan flavors in terms of data size. We will use j(n) to denote
the complexity of the physical join implementation and u(n) to denote the complexity of the
physical union implementation. j and u are placeholders for their respective big-O notations. In
the first case, in which we join the union of the two patterns, we would need k ∗ u(n) + j(k ∗ n)
time to evaluate the algebraic plan, where k ∗u(n) is the time needed to union the tables of both
patterns and j(k ∗ n) is the time needed to join the two unions.

When instead using union over smaller joins, we run into another factor that contributes to
the runtime complexity, namely the number of joins that remain after the pruning. For example,
the correlated variable could be labeled in k different ways in the first pattern and k different
ways in the second pattern, having a one-to-one match between the two sides. In this case,
we would only generate k joins. However, we could also have the case in which the correlated
variable in labeled k times the same way in both patterns. Then we would generate k2 joins,
because none of them would get pruned. Let f(k) be the number of joins that remain in the
algebraic tree after pruning - it could be O(k) or O(k2). Then the runtime complexity of the
rewritten algebraic plan would be f(k) ∗ j(n) + f(k) ∗u(n), where f(k) ∗ j(n) is the time needed
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to evaluate the f(k) joins and f(k) ∗ u(n) the time needed to evaluate the union of the f(k)
results of the join operations.

We can see that there are several factors that contribute to the evaluation runtime of the
MATCH block - the complexity of the join and union implementations that are used in the physical
plan, as well as the number of joins we would be generating after this rewrite phase. The two
approaches should be compared on a comprehensive benchmark set that closely follows real-
world workloads, in order to identify whether it would make sense in practice to use more, but
smaller joins, instead of a single, bigger operation.

8.2 Rewrite the PATH clause with sub-queries

Weighted shortest paths in a G-CORE query can be specified with the help of PATH patterns.
While a syntactically valid query must have one CONSTRUCT and one MATCH clause, any number of
optional PATH blocks can be used to define a complex structure for the atoms of a matched path
and/or to specify a weight function for each atom. The structure of the PATH clause, presented
in Listing 8.1, specifies a graph pattern to be used for matching the path atoms (or segments)
within the graph, with the possibility to also filter bindings by the WHERE condition. The entire
pattern is aliased with a path macro name. The COST sub-clause is also optional and can be used
to provide a cost function for the matched atoms. The design of G-CORE [20] mentions that
the first and last nodes in the graph pattern must be the start and end nodes of a path segment.� �

1 PATH <path_macro > = <graph_pattern > WHERE <condition > COST <cost_def >� �
Listing 8.1: Structure of the PATH clause in G-CORE.

After the path structure has been defined and aliased, we can use its macro name in sub-
sequent PATH clauses to create more complex path patterns, or in the MATCH clause, in which
case the semantics are to use the graph patterns of the path segments with their associated cost
function to search for weighted shortest paths in the graph, that follow the predefined structure
of the path atoms.

The implementation of the interpreter, as presented in this thesis, did not cover PATH struc-
tures. In Listing 8.2 we outline an idea on how sub-queries could be used to rewrite a PATH
clause before matching its expression. Given a PATH clause, which has a start and stop vertex
for its segment pattern, we propose to rewrite the clause to a sub-query in which we match the
path pattern as is, along with its WHERE condition. For each binding we then add a new edge in
the graph between the start and stop nodes, with a certain label (for example, it could be the
macro name). The cost of the segment can be filled in as a property to this new edge. In the
outer query we can then use MATCH to look for shortest paths in the graph that only contain the
newly added edges.� �

1 PATH macro_name = (start)- ... ->(stop) WHERE cond COST cost_def
2 CONSTRUCT ...
3 MATCH (a) -/<~macro_name *>/->(b) ON g
4

5 CONSTRUCT ...
6 MATCH (a) -/<:MACRO_LABEL *>/->(b) ON (
7 CONSTRUCT g, (start) -[: MACRO_LABEL {cost := cost_def }]->(stop)
8 MATCH (start)- ... ->(stop) WHERE cond ON g
9 )� �

Listing 8.2: Rewrite rules for PATH clauses. Top: a G-CORE query using a PATH clause. Down:
the query is rewritten such that we first match the path pattern on the graph and add a new
edge between the start and stop node of the pattern, in a sub-query. The outer query then tries
to find shortest paths that traverse the newly added edges.
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A simple example of the rewrite rule is shown in Figure 8.2. The edges in the graph are
labeled with the color they are drawn - GREEN and ORANGE, respectively. The PATH clause
defines a pattern that traverses one GREEN edge followed by one ORANGE edge. We add a
new BLUE edge in the graph between the start and stop node of each of the segments that
satisfy the path pattern and then simply query for shortest paths over BLUE edges.

PATH green_orange = (start)->[:GREEN]->(b)->[:ORANGE]->(stop)

CONSTRUCT ...

MATCH (x)-/<~green_orange*>/->(y) ON g

CONSTRUCT ...

MATCH (x)-/<:BLUE*>/->(y) ON (

CONSTRUCT (start)-[:BLUE]->(stop)

MATCH (start)->[:GREEN]->(b)->[:ORANGE]->(stop) ON g

)

Figure 8.2: Example of a G-CORE query using a PATH clause. Each edge is labeled with the color
it is drawn. Top: the PATH clause is used to define a path segment containing vertices linked by
one GREEN edge followed by one ORANGE edge. Down: the query is rewritten such that we
first match the path pattern and for each binding we add a BLUE edge between the start and
end node of the pattern in a sub-query. The outer query then tries to match the shortest paths
over BLUE edges.

If such a rewriting mechanism is used, then a few changes would need to be brought to the
current query solving mechanism. First, the default cost of matched patterns is the number of
hops in the path. When PATHs with a COST function are rewritten to an edge with the result of
the function filled in as an edge property, the interpreter should propagate this information to
the path algorithm. For example, this could be accomplished by providing an extra constructor
parameter to the leaf node that represents virtual paths, in which we could encode the name of
the cost property. Another solution could be to use a specific name for the cost property and to
pass a boolean to the leaf, which tells whether that property should be used or not, or simply
use it, if it is present in the schema of the new edge label DataFrame. The second change we
would need is to find a mechanism to remove the edges we would add for each path segment,
before returning the result of the outer query. A possible solution would be to use a specific
label or label prefix, which instructs the interpreter to not add the DataFrames that contain the
new edges to the resulting graph.

8.3 Discussion on shortest paths algorithms

Section 7.2.2 presented a rather naive algorithm for computing shortest path between all the
vertices of a graph and a subset of them, called the landmark vertices. For this purpose we used
a GraphX algorithm that uses a Pregel-like computation to determine the cost and the edge
sequence of shortest paths. We can identify a number of improvements that can be brought to
this particular algorithm, but also to the entire solution we suggested for shortest paths.

The first problem we pinpoint is that our solution uses a one-size-fits-all approach and does
not consider the actual expanse of the problem. An ideal solution should first create the bindings
for the vertices that participate in the algorithm by applying all the filters specified for the
vertices and edges of the path pattern. This ensures that we run the computation on the smallest
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possible input that satisfies the constraints of the query. The next step would be to choose a
variant of the shortest paths algorithm using the problem size as heuristic. A good start would
be to differentiate between the single-source, single-pair and all-pairs flavors of the task. Rutgers
presents and compares in his Master’s thesis [32] a number of algorithms for weighted shortest
paths running on the Lighthouse graph engine, which leverages the Apache Giraph framework [1]
to run graph queries in a distributed fashion. Both Giraph and GraphX use the vertex-centric
computational model of Pregel [28] to express graph algorithms as a series of iterations, which
makes his thesis an interesting read for the implementation of path algorithms in the G-CORE
interpreter.

The second observation we make is that the size of the vertex attribute in the proposed
GraphX solution should also become a parameter of the problem. The output of the computation
should be not only the cost of the path, but also the identifiers of the edges along the path, in
the order they occur in the path. Our solution was to build for each vertex the vertex info
map, a mapping between landmark identifier and the list of edge identifiers in the path. The
problem is that these info maps can grow arbitrarily in size, thus affecting the memory footprint,
communication and computation overhead of the algorithm. This is also an issue identified by
Rutgers in [32], for which he proposes a number of optimizations in his thesis. We believe the
impact of his ideas on the query evaluation time in the G-CORE interpreter could be analyzed
and, if proven useful, adopted.



Chapter 9

Can G-CORE be improved?

In this chapter we evaluate G-CORE from the perspective of a user and then assess the semantics
of the language, using insights we gained by implementing an interpretation pipeline for G-CORE
queries. While developing the G-CORE interpreter we extensively used the formal semantics
presented in the initial version of the paper, available in the arXiv repository [21]. Another useful
tool for developing the interpreter was the guided tour of G-CORE provided in its design [20],
which highlights and explains the main features of the language through examples. We make
the commentary that while the semantics in [21] are useful for formal proofs and the more
relaxed introductory examples in both versions of the paper [21, 20] are a gentle introduction
to the syntax, a more appropriate tool for G-CORE users would be to synthesize the language
features in a colloquial, but structured and comprehensive definition as the ones PGQL [14] and
openCypher [5] offer.

Our general impression of G-CORE is that its multitude of features have been very well
thought through and the result is a comprehensive language set that can be used in practice for
path property graph databases. During our work we have not encountered queries that we could
not express with G-CORE, though we must remark that our experience with the language is
limited and only an extensive use in practice could surface incomplete or missing features.

9.1 A user’s perspective

While working on the G-CORE interpreter and on this thesis we wrote a number of G-CORE
queries with the purpose of unit-testing the code, hand-testing the interpreter or giving the
examples in this thesis. As users of the new language we pinpoint and discuss a number of
features we found ambiguous or that we believe could be changed to improve the user experience
with the language.

9.1.1 MATCH before CONSTRUCT

The first issue we note as users of the G-CORE language is the order in which the two G-CORE
clause MATCH and CONSTRUCT appear in a query. While writing examples, we noticed that we
would always start writing the query from the MATCH clause, then followed by the CONSTRUCT
statement. This tendency to first think of the patterns we want to match in the graph and then
to use them to build the result is also reflected in the evaluation semantics, as the construct
patterns are evaluated in the presence of the binding table created by MATCH.

Our opinion is that the order of the three blocks in a graph query should be PATH, followed
by MATCH, followed by CONSTRUCT. Another option could be to allow both variations, CONSTRUCT
followed by MATCH, as it is now, or the one we propose, MATCH followed by CONSTRUCT, such that
users could choose the one that makes more sense to them. It can be argued that by introducing
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this change G-CORE will lose from its declarative nature, as the order of the clauses in the
query would "tell" the interpreter "how to evaluate" the query, and not "what to evaluate".
However, as the query does not return tabular data, CONSTRUCT is not a simple SQL SELECT
statement - it has more complex semantics and at times necessitates reasoning about the data
in the binding table. Thus, exactly as the query evaluation flow, as users we first designed the
MATCH statement of our queries and only then used a "mental view" of the binding table to add
the CONSTRUCT patterns.

9.1.2 Not always desirable to return graphs

While it can be handy to use a full G-CORE query that matches graph patterns and builds a
graph from the result, we observe that building a new graph is costly in terms of evaluation time,
because of the aggregations and joins on the binding table that are used in the process. This
issue is also addressed in the G-CORE paper [20], in which a SQL extension for the language
is proposed, such that tabular projections could be used on the results of the MATCH clause, or
tabular data could be the input of either MATCH or CONSTRUCT. For nested queries we clearly need
a mechanism to pass graphs from the inner to the outer queries, or an equivalent representation
of the graph data supported by the language. Another situation in which graph construction/ag-
gregation is useful is, for example, path discovery - as this is an expensive operation, it can be
done once and then have the new paths stored back to the graph, such that subsequent queries
could simply search for the previous results. However, there are cases when we might not be
interested in running the entire evaluation pipeline that creates graphs - examples would be
computing graph metrics or mining graph data. In these situations, support for tabular data is
appropriate.

9.1.3 ON can be ambiguous

During our work on the interpreter implementation we also noticed that the MATCH ... ON ...
syntax can be ambiguous, due to the existence of the default graph feature in G-CORE. For
example, our first impression as a user was that in the query MATCH (a)->(b)->(c), (a)->(d)
ON g the two chained patterns (a)->(b)->(c) and (a)->(d) would both be matched on the graph
g. However, this is not the case. As per G-CORE’s open-source grammar [7] and, implicitly
as per the algebra we designed in Chapter 6, the two patterns become a match tuple each, in
which the first pattern is matched on the default graph (as its ON sub-clause is not specified),
while the second is matched on graph g. A semantic conflict arises when g has not been defined
as the default graph in the system, making the query ambiguous. This is clearly a problem
that can be flagged in the interpreter as an exception, or a "graph inference" mechanism could
be implemented to annotate patterns using the default graph with the correct named graph, if
a correlated pattern uses one. However, this makes the language less transparent to the user.
Using the entire pattern before the ON token (therefore also the comma-separated sub-patterns)
to create a match tuple could also be a solution, but this approach has its own downsides, as
it removes the default graph feature and requires the user to always specify on which graph to
match.

9.2 Assessing G-CORE’s formal definition

In this section we report a number of ambiguities we discovered in the the language definition
and semantics - they are exclusively related to the CONSTRUCT clause. We remark that the
implementation of the evaluation pipeline was straightforward for the evaluation of the MATCH
clause, while the CONSTRUCT block proved to be more complicated because of the need to solve
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the construct rules and the operations on the binding table in the right order, such that we cover
all use-cases and preserve the semantics of the language.

9.2.1 Is WHEN a pre- or post-aggregation condition?

The first question we ask is whether the WHEN sub-clause is a condition that should be applied on
the binding table before or after its aggregation. The CONSTRUCT clause uses implicit grouping on
the binding table for the variables that have been matched and, additionally, explicit aggregations
can be used with the help of the GROUP statement. G-CORE’s design presents examples of queries
that use WHEN both for filtering before aggregation and for filtering after aggregation. We present
the two examples in Listings 9.1 and 9.2.� �

1 CONSTRUCT social_graph , (x GROUP e :Company {name :=e}) <-[y:worksAt]-(n)
2 WHEN exists(e)
3 MATCH (n:Person {employer = e})� �

Listing 9.1: Listing lines 20-23 from [20]� �
1 CONSTRUCT (n) -[e:wagnerFriend {score := COUNT (*)}]->(m)
2 WHEN e.score > 0
3 MATCH (n:Person) -/@p:toWagner /->(), (m:Person) ON social_graph2
4 WHERE m = nodes(p)[2]� �

Listing 9.2: Listing lines 68-72 from [20]

In Listing 9.1 the query matches nodes labeled Person in the graph and unrolls the multi-
valued property "employer" into the binding e. In CONSTRUCT a new node x is created WHEN the
unrolled property e is non-null. Clearly, this is a pre-aggregation filtering. In Listing 9.2, in the
construct pattern of the new edges e, we add to each edge the new aggregated property "score",
and create an edge WHEN this score is greater than zero. This filtering is therefore applied on the
grouped binding table.

The formal semantics in [21] mention that the evaluation of a WHEN expression can use both
variables from the binding table, as well as the new variables in construct patterns. The ex-
pression is evaluated in the presence of the binding table joined with the new bindings of the
construct pattern. This means that the evaluation order would be: group the binding table as
is and in the same time create the aggregated properties, join back to the binding table to add
the new properties and variables to it, filter out the bindings - both old and new - that do not
satisfy the WHEN condition. Notice that this would mean that in Listing 9.1 we would also group
by the null key. We observe that having both pre- and post-aggregation conditions in the same
expression tree increases the size of the data that is aggregated and joined or the complexity of
the interpreter. We believe it would be more feasible and easier to implement G-CORE if the
two types of conditions would be separated as in SQL’s WHERE and HAVING and we would
evaluate the two in different parts of the interpretation pipeline.

9.2.2 Ambiguous conditions in WHEN

A second ambiguity we found with WHEN were conditions applied on chained construct patterns
as the one in Listing 9.3� �

1 CONSTRUCT (a) -[e1]->(b)-[e2]->(c) -[e3]->(d)
2 WHEN SUM(x.prop) >= 42
3 MATCH (b)-[e2]->(c), (x)� �

Listing 9.3: Ambiguous condition in the WHEN clause.
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Let’s assume Table 9.1 is the binding table to which MATCH evaluates. For simplicity, we
identify b, e2 and c by their ids and x by the value of x.prop.

b e2 c x
10 20 30 40
10 20 30 2

Table 9.1: We assume the MATCH clause in Listing 9.3 evaluates to this binding table.

The construction of the entire graph pattern starts with building the vertices. The vertex
variables a and d are not bound by the MATCH block, therefore they will receive consecutive
identifiers, padded as new columns to the binding table. The result is the one in Table 9.2,
in which we use the ids of a and d as the vertex identity. Already we can ask, does the WHEN
condition play any role when building the two new vertices? There is no aggregation involved
in this process, however the condition is on an aggregated property.

a b e2 c d x
50 10 20 30 60 40
51 10 20 30 61 2

Table 9.2: The new variables a and d receive two distinct fresh bindings.

The next step in solving the chained construct pattern is to create the edges. Each new
edge requires an aggregation of the binding table, therefore, which should the WHEN condition be
applied on? For e2 we use b, c, e2 as the aggregation key. In this case, the sum of x’s property
is 40 + 2 = 42, which satisfies the condition. However, for e1 and e3 we group by a, b and c,
d, respectively. Each of the groupings creates two buckets, for which the WHEN condition is not
satisfied. The question is, should we build any vertex or edge at all? Should we only build e2
and its two endpoints?

9.2.3 Does CONSTRUCT impose an order for variable construction?

In Chapter 2 we provided examples of G-CORE queries to highlight and explain its main features.
Listing 2.3 made us ask: is there an implicit order for evaluating the list of conditional constructs
in the CONSTRUCT clause? For a quick reference, we provide the part of the query we are interested
in, in Listing 9.4.� �

1 CONSTRUCT
2 (b GROUP a.battle_name :Battle {name := a.battle_name }),
3 (h) -[:WAS_IN {role := "attacker"}]->(b) WHEN (h) -[a]->(),
4 (h) -[:WAS_IN {role := "defender"}]->(b) WHEN (h) <-[a]-()
5 MATCH (h:House) -[a:ATTACKED ]-()� �

Listing 9.4: Is there an implicit order in the construct clause?

In this example, the interpreter would need to first build node b with its explicit GROUP
declaration and only after this operation proceed with creating the edges in the subsequent con-
ditional constructs. When building the edges, we would need to use the binding table to which
the new bs would have been added in the previous step, which creates new semantics for eval-
uating conditional construct clauses correlated to other conditional constructs - the correlated
clause is not evaluated on the binding table, but instead on the binding table joined with the
bindings created for construct variables that are built in the correlated clauses. However, how
can we determine which conditional construct to evaluate first? In our case, we conveniently
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place (b GROUP ...) as the first conditional construct in the construct clause, which syntacti-
cally makes more sense, but this may not always be the case. Moreover, what happens when
correlated conditional constructs use conflicting WHEN conditions?

9.2.4 What are the semantics of graph patterns in WHEN?

In the previous Listing 9.4 we also used graph patterns in the WHEN condition. What are evaluation
semantics in this case? Do they follow the same rules as for the existential sub-queries that
replace graph patterns in WHERE? If this is the case, then a G-CORE interpreter would need an
additional step in which it annotates each pattern in the WHEN condition with the default graph
or a named graph determined by correlated patterns in the MATCH clause.
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Conclusions

G-CORE [20] is a new graph query language for path property graph databases. It has been
designed by members of the academia and industry with the purpose of creating an archetype
graph query language and to this end the most useful and desirable features of existing languages
have been captured into the syntax and semantics of G-CORE. Moreover, new features have
been embedded into the language: queries always return graphs, which makes it G-CORE a
composable language, and paths have become first-class citizens in the graph, by being part of
the data model.

Graph queries in G-CORE must use the two main clauses MATCH and CONSTRUCT. The MATCH
block is used for graph pattern matching and is evaluated into a maximal set of bindings for all
the variables in the clause, that satisfy all the graph patterns in the block. The resulting binding
set is then used by CONSTRUCT to create a new graph, based on the construct patterns provided
in the query. As paths are part of the data model, they can be stored and later queried. The
G-CORE syntax and semantics support path queries in the MATCH clause, where we can search
for top-N shortest paths, all paths or determine whether two nodes are reachable through a path.
Weighted shortest paths are also supported by way of the PATH clause, in which complex graph
patterns can be used to define the structure of the path segments and/or a cost function can be
defined for each segment.

In this thesis we implemented an interpreter that is able to evaluate G-CORE queries, by
performing pattern matching on the graph database and creating new graphs from the matched
data. We followed the language definition and formal semantics of the language presented in the
first version of G-CORE’s design [21] and in the published paper [20]. Our research questions
were presented in Section 1.1 and our main goal was to assess G-CORE’s design through the
implementation of an interpreter and to verify whether we can find a suitable data representation
and tractable algorithms to solve G-CORE queries. We wrote the interpreter in Scala and decided
from the beginning to use a relational model for the physical data, as well as for representing
the binding table. Coupled with the translation of G-CORE queries into SQL statements, this
allowed us to leverage the functionality of an existing relational database system. We chose
to use Spark DataFrames for the graph data and SparkSQL as the execution engine of our
interpreter. These design decisions have been presented in Chapter 4.

In order to solve G-CORE queries, we needed to pass the query through several analysis and
rewrite phases, detailed in Chapters 5, 6 and 7. We represented the query internally with the
help of a graph algebra tailored for the G-CORE queries. We defined the MATCH and CONSTRUCT
algebra in Chapter 6. In subsequent steps, we transformed the graph algebra into a relational
algebra that uses the standard operators selection, projection, cross-, inner-, left-outer- and semi-
join, union and aggregation. We determined the runtime complexity of the rewrite efforts to be
polynomial in terms of query size and number of labels in our graph database, with perhaps a
more considerable effort put into the so-called "label inference" algorithm.
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We discussed the process of translating the relational algebra into SQL statements in Chap-
ter 7. We determined the runtime complexity to be polynomial in terms of data size, because
the evaluation of the relational operators we used is tractable. To search for paths in the graph,
we adapted an existing GraphX algorithm that finds paths between all the vertices in the graph
and a sub-set of nodes, denoted landmarks. The algorithm we propose only covers a particular
use-case of path finding and has been implemented as a proof-of-concept - we showed that path
patterns can be used in the MATCH clause and that there are available tools and algorithms that
can be adapted to our data and computation model. The runtime complexity, though polyno-
mial, can become considerable for large sets of data. Improvements for this algorithm, as well
as for the implementation of other features have been discussed in Chapter 8.

We conclude that we did manage to find suitable algebraic primitives to solve G-CORE
queries in polynomial time and that G-CORE is a rich language, with which we managed to
write a multitude of queries, that we used to evaluate G-CORE’s expressiveness. We did en-
countered a number of ambiguities in the semantics of the CONSTRUCT clause, which we discussed
in Chapter 9. Overall we believe G-CORE is a suitable graph query languages for path property
graph databases and, with some improvements, it can indeed be a point of reference for future
graph query languages or for a language standard.
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