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Abstract

Typical data analysis pipelines involve the use of multiple libraries, many with their
own internal data representation, hence requiring intermediate result materializa-
tion and internal conversions upon execution. Weld and Julia are two approaches
using intermediate representations (IR) that aim to improve these pipelines along
with using LLVM for backend optimizations. In this work, the benefits brought by
full-pipeline cross-library optimizations is evaluated and compared through imple-
mentations of a representative data analysis pipeline. Both Weld and Julia show
speedups of up to 50% compared to standard implementations however still fall
short to the ideal performance.
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Chapter 1

Introduction

Typical (big) data processing and analysis pipelines involve the use of multiple
libraries, each with their own internal data representation, and hence require several
internal conversions upon execution. Such an example can be seen in Python when
data scientists read and process data with Pandas but train a machine learning
model in Tensorflow, thus requiring a conversion between Pandas dataframes1 and
Tensorflow tensors2. The reasons behind using specific libraries may be ease of
use, different features, or even familiarity, hence the well known trade-off between
efficiency and productivity.

Figure 1.1: Example data analysis pipeline in the context of Data Mining [1].

A Data Analysis Pipeline involves doing a specific set of operations on different input
data with the same structure. For example, input data might be temperature and
precipitation measurements which are continuously generated over time and stored
in a given format. One may wish to find correlations between these variables. Since
the processing steps are usually the same but only the data changes, one would
write a pipeline for analysis. The process of extracting knowledge from data has
been named Data Mining [2] or Data Wrangling [3]. As exemplified in Figure 1.1,
extracting knowledge typically requires multiple processing steps before relevant
patterns may be observed. When dealing with unknown data, the first step one

1https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
2https://www.tensorflow.org/api_docs/python/tf/Tensor
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CHAPTER 1. INTRODUCTION

would take is to look at the head of it. This would reveal the type of the data,
if values are missing, and metadata such as column names. The metadata is also
important to parsers which could optimize file reading, for example by reading in
4-byte chunks when knowing that a file stores data only as 32-bit integers.

Often data is spread out in multiple files, therefore it needs to be joined into one
piece. This operation is expensive and an important topic in databases [4] where
certain features of the data may be exploited to choose the appropriate algorithm.
For example, sorted data allows one to use a merge join, or disproportionate table
sizes indicate that a hash join would be more efficient. Data might also be more
meaningful when grouped by a specific value and aggregated, for example finding
the average temperature in a month to use as a predictor for future months. To
even reach this step, one might need to convert values from one form to another.
This might be a simple operation, such as multiplying by X, or more complicated
requiring the use of a User Defined Function (UDF).

(a) AST of a computation [5]. (b) DAG of a query [6].

Figure 1.2: Examples of intermediate representations.

Intermediate Representations (IR) can improve data analysis pipelines through bet-
ter expressiveness and optimizations. Examples of IRs include the Abstract Syntax
Tree (AST) used in programming languages compilers to parse source code, anno-
tate with properties, and eliminate unnecessary parts when creating the machine
code while potentially applying optimizations for fast execution, as seen in Figure
1.2a. Another example consists of the queries in databases which are represented
through Directed Acyclic Graphs (DAG). These allow optimizers to re-order nodes
for better execution, as shown in Figure 1.2b. Source code itself can be seen as an
intermediate representation of the programmer’s intended computation and machine
code. By representing computations in an IR, one could optimize them and avoid
intermediate result materialization.

Improving multi-library data analysis pipelines is possible through an intermediate
representation which can be optimized with LLVM [7]. Zaharia et al. [8] propose a
framework - Weld - which can be used to extend existing libraries such that during
compilation, an intermediate representation can be optimized with both database-
and compiler-inspired optimizations. This is achieved by using a lazily-evaluated
API which allows the construction of a computation graph in Weld IR. Upon eval-
uation, this graph is optimized. Through the lazy API, Weld is able to limit in-
termediate results materialization and thus only output the required results. The
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CHAPTER 1. INTRODUCTION

Weld IR is then converted to LLVM IR allowing LLVM to apply further compiler
optimizations. This framework hence assumes that any library may represent its
methods through the Weld IR. Pipelines are thus optimized across multiple libraries
and efficient code runnable on multicores and GPU’s is generated. One must be able
to map the data structures in a library to the data structures available in Weld. This
is easily supported in C/C++, however, for other languages such as Python, one
must implement encoders and decoders that are able to translate from one format
to the other in an efficient manner.

Lazy Evaluation is, as the name implies, evaluating a computation not immediately
but only when required. It is a concept which is linked to functional programming
languages due to their similar computational model. For example, multiplying every
value in an array by a scalar number can be done by iterating over its elements in a
for loop and multiplying. The same computation is described in a functional fashion
using the map operator, as seen in Listing 1. Functional programming presents an
elegant syntax for describing computations in a data-centric way. For the above
example, one can notice the operation is essentially a 1-to-1 mapping over the data.
However, there are also operations such as aggregations which combine all array
elements into fewer results, such as for finding the max value. These are coined as
reduce steps in functional programming.

1 val array = Array(1, 2, 3, 4)

2

3 val res = new Array[Int](4)

4 for (i <- 0 until array.length) {

5 res(i) = res(i) * 2

6 }

7

8 val res = array.map(x => x * 2)

Listing 1: Example of a for loop versus its corresponding map operator in Scala.

The functional representation of computations provides an effective area for paral-
lelizing work over multiple computers and optimizing the computations. An array
can be easily split into multiple chunks and distributed on multiple computers to
effectuate a mapping operation in parallel. However, for reduce operations, there
is extra work that needs to be done to combine the data while maintaining data
integrity and also speed. Frameworks such as MapReduce [9] and Spark [10] take
advantage of these concepts and provide an environment where one can code in-
creasingly complex computations which are lazily recorded and then parallelized to
any number of computers.

When desiring multiple computations on the same input data, there are also op-
portunities to optimize. For multiple map operations, one could merge them in a
single loop instead of iterating multiple times over the data, as seen in Figure 2.
However, these optimizations might only be possible in the background of the com-
putations, i.e. users cannot directly code them. Thus, frameworks should be able
to automatically apply them.

Another approach involving LLVM and that benefits entire data analysis pipelines
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CHAPTER 1. INTRODUCTION

1 val res = array.map(x => x * 2).map(x => x + 1)

2

3 val res = array.map(x => x * 2 + 1)

Listing 2: Example in Scala of how two map operators could be combined into one.

is using the new programming language Julia [11]. Julia combines the ease of use
of a dynamically typed programming language with the performance of a statically
typed one. This is achieved through a rich type system supporting an expressive
programming model and efficient type inference. At compilation, the type is im-
mutable, hence, e.g., checking the type of a function parameter every time the
function is called, can be avoided. Julia compilation, as shown in Figure 1.3, starts
by converting the syntax to a type inference suitable IR which is then Just-In-Time
(JIT) compiled through LLVM, hence benefiting from LLVM’s optimizations. The
language’s primary abstraction mechanism is generic functions which is practical
for both mathematical and object-oriented programming styles. Julia further allows
directly calling C and Fortran functions. Since entire Julia programs are optimized
through LLVM, data analysis pipelines written in Julia would also be improved.

Figure 1.3: Julia JIT compilation process [12].

There is research focused on optimizing the compilation itself, though typically
providing domain-specific solutions. Darkroom [13] is designed for hardware syn-
thesis by providing an IR for line-buffered image processing pipelines which is more
efficient than storing intermediate results in DRAM. Erbium [14] provides a con-
currency model IR similar to OpenMP, enabling the compilation of data-flow tasks
into streaming processes. Work is also done in better parallelizing programs through
annotations for converting high-level code to efficient low-level parallel code through
OpenMP/MPI [15, 16, 17].

Data formats and their design are often overlooked. Data may be stored in text
or binary form, with the latter being typically more compact. An efficient storage
model might allow compression and certain optimizations when parsing. This is
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CHAPTER 1. INTRODUCTION

typically achieved by files starting with a header describing the contents, such as
in the NetCDF [18] and Parquet [19] column-store formats. Among other benefits,
such formats allow parsing specific subsets of the data. Column-stores provide fur-
ther advantages, as seen in the context of databases [20]. It is easier to combine
operations, such as maps and filters. Cache performance is also improved as the
cache lines are not polluted with irrelevant nearby data.

Given so many different programming languages and frameworks, one is faced with
the decision of choosing the most appropriate one. The performance along with
memory and CPU usage then become deciding factors. The overheads, scalability,
and bottlenecks are different depending on the framework. Libraries might also of-
fer more functionality out-of-the-box than others, thus leading users to choose time
over performance. A problem when comparing, though, is that new software is often
presented with micro-benchmarks; a more general view of the performance over a
wider array of operations is lacking. When choosing a library to implement an intri-
cate data analysis pipeline, micro-benchmarks become less relevant because many
operations need to be efficient, not just a few. It does not matter, for example, if
map operations are incredibly fast when a join takes very long or worse, it is not
supported. Therefore, testing such libraries on a full data analysis pipeline is ex-
pected to provide an important insight into performance, usability, and the benefits
brought by their optimizations, IRs, co-compilation, and multi-library capabilities.
The research questions in this work are thus:

1. How do approaches such as Weld and Julia compare against other data analysis
pipeline implementations, such as Python and R?

2. What are the bottlenecks in current data analysis pipelines and how do the
proposed approaches improve them?

Outline

The following chapter details the input data used in this work along with an ex-
emplary data analysis pipeline to compare different implementations. Chapter 3
describes related work in this area. Two extensions to Weld are proposed and
tested in Chapter 4 along with a description of Weld internals. Chapter 5 presents
the experimental setup and the results of comparing the different pipeline implemen-
tations. Lastly, Chapter 6 discusses the research questions and points out possible
future work areas.
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Chapter 2

Exemplary Data Analysis

The input data used in this work is stored in the NetCDF file format and is described
in the following section. Next, an exemplary data analysis pipeline is presented. This
pipeline is designed to be comprehensive and to put stress on the implementations.
Opportunities to optimize the pipeline are also identified. Lastly, the tools used to
measure performance are briefly described.

2.1 Input Data

The input data is the E-OBS gridded weather dataset1 of the Koninklijk Nederlands
Meteorologisch Instituut (KNMI) containing data on a regular grid with a resolu-
tion of 0.25 degrees. It covers the area 25N-75N x 40W-75E with measurements
recorded every day between 1950 and 2017. There are thus 3 dimensions: longitude,
latitude, and time. There are 5 variables stored in the NetCDF classical 3.0 format
(allowing up to 4GB per file), each in their separate file: daily mean temperature
TG, daily minimum temperature TN, daily maximum temperature TX, daily pre-
cipitation sum RR, and daily averaged sea level pressure PP. Each variable has a
pair variable recording the daily standard error, for a total of 10 variables. There
are 46GB of columnar binary data with over 1 billion lines which is the ideal dataset
to investigate performance, subsetting, and optimizations. Note that converting the
data to CSV would result in a 6 times increase in size, therefore the full dataset
would be approximately 280GB as CSV.

NetCDF

NetCDF[18] or Network Common Data Form is designed to hold array-oriented sci-
entific data in a self-describing and machine independent binary format that allows
efficient subsetting. Originally based on NASA’s Common Data Format, it has di-
verged from version 4.0 basing itself on HDF5 [21], a format allowing hierarchical
data. With version 4.0, files can go over 4GB in size due to 64-bit memory. Since it
is a binary format, data is stored in a compact manner taking little storage space.

1http://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
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CHAPTER 2. EXEMPLARY DATA ANALYSIS

Furthermore, parsing NetCDF is more efficient by exploiting type and dimensions
information which would otherwise not be possible in other formats.

NetCDF is self-describing by including a header which details the names, types,
sizes, dimensions, scale factors, missing value representations, and other metadata.
Essentially a column-store, NetCDF stores arrays one after the other. N-dimensional
data can furthermore be efficiently encoded by only storing the distinct values which,
through a cartesian product, would form a unique key identifying each data point.
Scale factors allow floating point data with few decimals to be stored as lower bit
length integers. One could reach the original data by multiplying the stored data
with the scale factor. Thus, one saves space. For example, the float value 12.43
can be encoded as 1243 16-bit integer with a scale factor of 0.01. With data points
separated by a given character such as commas, missing values can be simply rep-
resented with nothing but replaced upon parsing with the FillValue defined in the
header.

Efficient subsetting is possible given the header data for types, sizes, and dimensions.
Since after the header there is only raw data, a parser can skip entire arrays (or
columns in a table) through offsets given the length and the size in bytes of given
types. Similarly, a parser can select slices of the arrays (or rows in a table) by
computing offsets from dimensions information. Take, for example, a dataset with 3
dimensions for coordinates plus time; knowing the lengths of these dimensions, one
can directly filter and read data for specific coordinates or any combination of the
dimensions.

Figure 2.1: Example text CDL file for a NetCDF file [22].
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CHAPTER 2. EXEMPLARY DATA ANALYSIS

NetCDF files can be freely converted to Common Data Form Language (CDL) files
and back allowing easy interaction with this data format. Figure 2.1 shows a human-
readable text representation of a netCDF file as CDL. One can define the dimensions
which through a cartesian product uniquely identify the variables data points. Note
how dates are encoded as numbers of type integer but through the ’days since’
metadata can be converted to meaningful dates. Global attributes for the file can
also be stored along with convention versions to aid the parsing of various slightly
different formatted files.

Pre-processing

Data available in a table-like format is more useful therefore we would like to bring
all the data in a single data structure. Furthermore, we are interested in the perfor-
mance over different input sizes to identify the breaking and/or bottlenecks of each
implementation. Therefore, there are 2 pre-processing steps done on the above data.
These allow testing various input sizes while simplifying the data analysis pipeline.

File Combining Bringing all variables in a single table requires joining them,
however measuring the performance of parsing 10 files and doing 9 joins is excessive.
Therefore, there is a single join with variables grouped into 2 files, as seen in Table
2.1. Since the size of these files would exceed the previous limit of 4GB, they are
converted to the 4.0 classical NetCDF format which allows larger sizes and is based
on the HDF5 format.

Filename Variables
data1 tg, tg stderr, tn, tn stderr, tx, tx stderr
data2 pp, pp stderr, rr, rr stderr

Table 2.1: Input files and variables for the data analysis pipeline.

Subsets They are chosen on a scale factor of 2 from the total size with the same
starting date. The actual filter used when creating the subset files is done by select-
ing between 2 dates, as seen in Table 2.2. Converting from number of days to date
intervals is done through an online tool2. The sizes in the table are in GB.

Name Start date End date Size (%) No. days Size NetCDF Size CSV
data 100 1950-01-01 2017-12-31 100 24837 46.328 277.829
data 50 1950-01-01 1983-12-31 50 12418 23.163 138.908
data 25 1950-01-01 1966-12-31 25 6209 11.582 69.457
data 12 1950-01-01 1958-07-01 12.5 3104 5.790 34.722
data 6 1950-01-01 1954-04-01 6.25 1552 2.895 17.361
data 3 1950-01-01 1952-02-15 3.125 776 1.447 8.677
data 1 1950-01-01 1951-01-23 1.5625 388 0.724 4.342
data 0 1950-01-01 1950-07-13 0.78125 194 0.362 2.171

Table 2.2: Subsets of the input data used in benchmarking.

2https://www.timeanddate.com/date/duration.html
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CHAPTER 2. EXEMPLARY DATA ANALYSIS

2.2 Pipeline

The pipeline is centered on creating the features necessary for a weather forecast ma-
chine learning model. There are many models in literature [23] that show promising
results in weather predictions, however the model itself and its training are excluded
from the pipeline here. The data analysis pipeline in this research focuses more on
the data mining aspect, i.e. parsing the data, first views of it, and data wrangling
steps taken towards training a model. The steps are shown in Figure 2.2 and the
individual steps are detailed next.

Figure 2.2: The data analysis pipeline.

read df The first step involves parsing the data and converting it into a table-like
data structure. The low-level parser used within all the implementations in this
research is maintained by UCAR3, however each high-level implementation would
have different settings en-/disabled by default. To ensure the same results the
following steps are taken: 1) missing values are replaced by the values described in
the FillValue attribute, 2) raw data is scaled appropriately given the scale factor

3https://www.unidata.ucar.edu/downloads/netcdf/index.jsp
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CHAPTER 2. EXEMPLARY DATA ANALYSIS

attribute, 3) data is read/converted to 1-dimensional arrays for use later in the
pipeline, and 4) type is preserved, unless multiplied by a scale factor upon which
the type will be float, as converted by default by the parsers.

The dimensions of the dataset are stored separately, as 3 arrays. Upon a cartesian
product, the resulting pairings uniquely identify each data point. This operation is
necessary for all the following steps, however could be done in multiple ways. In
NumPy terms, broadcasted views over these dimensions would be enough. However,
whether the materialization in memory of this cartesian product is necessary and/or
useful is debatable.

join The datasets have been pre-combined into only 2 files such that a single join
could be measured (as opposed to 9 joins for the 10 columns). Upon manual in-
spection and metadata checking, both files have the same sorted index (after the
cartesian product), and could hence be simply appended next to each-other for best
performance, as the rows match 1-to-1. However, this fact is assumed to be unknown
when the pipeline is written and hence is up to the join implementation to figure it
out, if possible. It is required to keep only the rows in both datasets, therefore an
inner join is specified.

head The first evaluation step. Viewing the first 10 rows of the data is a very
common operation, however can be more difficult with a lazy API. A good imple-
mentation does not read everything and then select the head of the data but start
by just reading the first 10 rows. This is particularly problematic when the index
of these rows actually relies on the result of the cartesian product. Note that this
step is aided by placing it at the start of the pipeline, before any other filter/map
operations are done.

subset It is common to decide, perhaps after viewing the head of the data, that
only a subset of it is required. Often this would be a filter step, however this input
dataset has certain features: the order and the length of the dimensions are known
from the header. This means that when requiring only the data for some given
dimensions, in this case the longitude which is the first dimension, one can compute
the number of the required rows as seen in Listing 3. The slice selects the data with
longitude between -10.125 and 17.125. This roughly translates to western Europe
and amounts to 23% of the total rows. If only the required data could be read, it
would bring performance benefits. This is also possible given the NetCDF format
accepts subsetting. This is done at this point and not explicitly when parsing to
emphasize any possible optimizations done by each implementation.

1 start = longitude.index_of(-10.125) * length(latitude) * number_days

2 stop = (longitude.index_of(17.125) + 1) * length(latitude) * number_days

Listing 3: Formula to compute the slice on the dataset given dimensions.

filter The data contains missing values which will not be used, therefore filter out
rows with missing values. Note that to keep this step fairly simple, it was observed
that filtering out the missing values from only three columns would remove all rows
with missing values, therefore this is the exact chosen filter.
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drop col It is assumed that some columns from the original dataset are not neces-
sary after-all, therefore filter them out. Again, the pipeline could be optimized to
not read the corresponding data at all except the subset necessary for the head at
the previous evaluation step. The pipeline drops 2 out of a total of 10 columns (13
including the dimensions).

udf1 Mapping is the perfect 1-to-1 operation that can be parallelized, therefore it
is also a step in this pipeline. To add an extra layer of difficulty, it is written as a
UDF which, in a well optimizing pipeline, would not be treated as a black box but
’understood’ along with the other operations for optimizations such as loop fusion.
This udf computes the absolute difference between two of the columns and stores
the result in a new column.

agg As the second evaluation step, compute the minimum, maximum, mean, and
standard deviation of each column. These statistics are again very common, infor-
mative, and put a distinctive load on the pipeline. These aggregations could also
take a varying amount of passes over the data, depending on the implementation.
For example, minimum and maximum could easily be computed in the same loop.
Furthermore, the implementations should also handle very large numbers, particu-
larly in computing the mean.

udf2 As a prerequisite to the following groupby step, this UDF will go in a finer
detail by creating a new column representing a year + month format. This is
the kind of UDF that is difficult to not treat as a black box given the operation
on strings, despite being a 1-to-1 map in reality. The UDF essentially converts the
’yyyy-mm-dd’ date format to ’yyyy-mm’. The result is then stored in a new column.

groupby With the purpose of computing a statistic per month, the groupBy oper-
ation will use the previously created year-month feature along with the coordinates
to create groups. For each group, the mean of each column will be computed. At
this point, this would be the final evaluate in the pipeline. However, to check the
correctness of the implementations and to create a small result, the mean aggrega-
tions are summed per column to create a small dataframe. This last sum operation
is included in the pipeline.

The 3 evaluate steps described above are forced by printing to csv files. The costs
of formatting to csv are low since there is little data to print, i.e. up to 10 rows,
therefore they are negligible to the timings. The pipeline described here is hence
different to other benchmarks in that 1) there are multiple evaluation points, 2)
we are interested in the overall performance, not micro-benchmarking, and 3) as
the pipeline progresses, the evaluation steps rely on the previous steps. Running
separate queries for each evaluation starting from raw data, as one could do naively
with SQL, would prove to be inefficient due to the need to recompute several of the
previous and expensive steps on each query.

Possible Optimizations

The above pipeline presents several locations where optimizations could be applied.
First, the pipeline features both a subset and column selection/drop, therefore the
data filtered out could just not be parsed in the first place. This might not be
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possible for all data formats, however it is possible with NetCDF. Second, the join
operator could deduce that the columns on which the join is done form, in fact, a
unique primary key which is also already sorted in both input dataframes. There-
fore, the columns could just be appended next to each other. This is a feature often
implemented within databases [24] which indeed require to gather this sort of statis-
tics while parsing the data. However, with a lazy API, this shall be possible outside
of databases as well. The dimensions of the data, which are the join columns, could
also not be explicitly materialized through the cartesian product.

A third possible optimization is by merging filters, maps, and UDFs which is possible
only through a lazy API. All are 1-to-1 operations and therefore could also be easily
parallelized. With eager evaluation, each operation would be executed immediately
making it impossible to optimize. Particularly with UDFs, this can be observed only
if they are not treated as black box operations. A fourth optimization is computing
the aggregation in as few data passes as possible. For example, the min and max can
be computed in the same loop while also computing the sum required for the mean.
Optimizations are also possible through vectorization while doing these passes over
the data.

The groupby operator could also be optimized on a single thread when knowing that
the columns on which the operation is done are already sorted; one could iterate and
add members to a group until the value in the last column changes without actually
comparing all the values for every row. Coupled with the mean aggregation next,
this can be done in one less pass over the data by computing the sum and count
while grouping the entries. Other compiler optimizations, such as loop unrolling and
dead code elimination, could also improve the pipeline overall. Effective compilers
choose code representations for optimum performance.

Experimental Data Gathering

To test the performance of pipeline implementations, both total and profiling mea-
surements are required. Each implementation is executed 5 times to obtain an
average execution time with the caches being cleaned in-between each run. To-
tal measurements are done using Linux’s /usr/bin/time command, as opposed to
Bash’s time command. This allows one to track not only memory and CPU usage
but also disk I/O. The pipelines are profiled using collectl4 which is similar to the
Linux ps aux or top command however can provide a wider arrange of details.

Collectl is set to profile the specific pid of the pipeline. Since the pipeline pid is
obtained after the pipeline is started, profiling measurements might miss the first
second of execution, which is deemed acceptable. Memory, CPU, and I/O usage
are recorded every second. Lastly, the main steps in the pipeline are delimited by
timestamped markers which are saved in a separate file. These markers along with
the timestamped profiling data shall provide insight into which steps take longer to
execute in each implementation.

4http://collectl.sourceforge.net/
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Chapter 3

Related Work

The optimizations that can be done on data analysis pipelines are typically inspired
from either the database or the compiler world. Common to both is the use of
an Intermediate Representation (IR) which poses certain challenges in terms of
flexibility and completeness during its design. K. Palacz et al. describe in [25]
the software design patterns used in creating the OvmIR, detailing the trade-offs
between an easy-to-use IR and its extensibility. IR’s typically form a Directed
Acyclic Graph (DAG) [10, 26] which is the skeleton used by database optimizations
such as predicate pushdown. The Abstract Syntax Tree (AST) used by compilers
is also an IR which is used to perform rule-based optimizations. LLVM [7] is a
compiler framework which generalizes the three-phase compiler design by proposing
a first-class language (IR) with well-defined semantics as the middle-phase. This
means that, if a language can be reduced to this IR representation, then it can be
used to generate machine code for various hardware architectures without developing
its own compiler. Furthermore, LLVM is known to aggressively optimize across all
compilation stages.

Database-inspired optimizations became increasingly relevant over time as develop-
ers find it more productive to work with relational interfaces than pure lower-level
programming. This can be seen, for example, with the development of SparkSQL
over Spark, and Pig or Hive over MapReduce. There are well studied optimiza-
tion techniques for relational databases which can therefore be now applied to data
analysis pipelines. Optimizations, such as predicate pushdown and join reordering
[4], are implemented in such systems, for example by SparkSQL through Catalyst
[10]. However, Catalyst optimizations apply only within SparkSQL, therefore pos-
sible optimizations across a pipeline involving multiple such frameworks are lost. A
solution is through Algebricks [27] which proposes the use of a common IR that,
if implemented by each relevant framework, would be able to optimize across them
and generate data-parallel programs for clusters without losing user-facing API. This
framework is a data model-agnostic query compiler built on HyRacks, a push-based
dataflow-parallel runtime similar to Hadoop. The implementor of a high-level query
language then has access to every step of the compilation to add custom rules, types,
or optimization passes.

Query optimizations, however, have been ported to non-relational contexts. Tu-
pleware [28] is a new framework which uses such optimizations across UDF-centric
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workflows. The writers observed that UDFs are often treated as blackboxes and
that libraries do not optimize for complex analytics or different hardware. Through
Tupleware, one can encode computations into a workflow graph with the TSet ab-
straction similar to Spark’s RDD and the UDFs in LLVM IR. From there, the system
applies both high-level query optimizations, such as predicate pushdown, and low-
level optimizations. It analyzes the UDFs for characteristics, such as CPU cycles
and vectorization, and inlines the functions in the parallel code generated from the
workflow graph. Musketeer [29] is designed to decouple backends from data analy-
sis pipelines such that queries are optimized through its IR and, depending on the
result, Musketeer can (automatically) choose the most appropriate backend. For
example, instead of running Hive on Hadoop, one is able to run it on Spark if the
system observes that it provides better performance. Lara [30] is an embedded
language in Scala which enables authoring scalable pipelines while combining the
needs of linear algebra and relational algebra from typical machine learning tasks
and ETL, respectively, through its own optimizing IR. Database optimizations have
also been brought to R [26], where they are used within the Renjin compiler on an
IR to improve the performance of any R script.

Compiler optimizations, such as loop fusion and loop fission, are typically seen in
code generation contexts where rules are applied on an IR. There is much research
focused on parallelizing code at the low level, i.e. the compiler itself, but also
higher up in the pipeline. Tapir [31] aims to optimize compilers for parallel tasks
by embedding fork-join parallelism in the IR of the compiler by representing logical
fork-join parallelism asymmetrically in the program’s CFG. The authors show that
by converting the compiler IR to Tapir IR, one is able to apply optimizations such as
tail-recursion elimination and common-subexpression elimination to LLVM through
the use of only 3 new operators: sync, detach, reattach. These make the LLVM IR
seem serial such that LLVM can optimize. Darkroom [13] optimizes line-buffered
image processing pipelines by converting C code to an IR and optimizing it with the
goal of minimizing intermediate data storage. The output of Darkroom can then be
used to synthesize hardware descriptions for multiple architectures, such as ASIC
or FPGA. Pegasus [32] goes a level lower by translating C programs into hardware
circuits through an IR for the CASH compiler which is optimized. Erbium [14]
presents a concurrency model to convert dataflow tasks into streaming processes
through an IR on multicore systems. This model seems to improve over OpenMP,
however OpenMP itself has potential for improvement, as shown by INSPIRE [33].
Here C code, optionally using frameworks such as OpenMP/MPI, is parsed with
LLVM’s frontend (Clang) and then converted to an IR which is then optimized
through compile-time analyses.

As shown in [34], in order to reap the benefits of parallelization one might need
hundreds of cores with existing systems to be any faster than a single threaded im-
plementation. There is research in improving parallelism in high-level programming
languages through user-friendly annotations. ParallelAccelerator, proposed in [16],
aims to intercept Julia’s AST just before LLVM compilation and enhance it with
new nodes aimed for parallelization which can then be optimized and used to gen-
erate efficient MPI/C++ code. This is achieved merely by adding an annotation to
relevant functions. However, extra care must be given when writing functions for
them to be eligible for parallelization. This approach is extended and automated
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in [15] through a dataflow algorithm exploiting domain knowledge and high-level
mathematical semantics without using approximations such as cost models. This
approach proves to be the middle ground between Spark and MPI for performance
and productivity providing a speedup of up to 2000 on a supercomputer when com-
pared to Spark. Pydron [17] provides annotations to parallelize sequential Python
code to be run on multicore, cluster, or cloud infrastructures. This approach simi-
larly requires special care when writing functions, however provides a more complete
backend that can distribute the work.

Spark SQL could benefit from implementing certain operations in C and interfac-
ing them with Spark’s Java runtime, as shown in Flare [35]. Taking this one step
further, Flare presents a new runtime which drops the Spark assumption of Google-
level scaled-out cluster and the requirement for fault tolerance. This provides per-
formance similar to HyPer [36], a hybrid OLTP & OLAP main memory database.
Flare can then be taken another step further to combine multiple workflows, includ-
ing relational and iterative algorithms expressed as UDFs. This is done by using
the Delite compiler framework embedded into Scala, possible through Scala’s reflec-
tion and metaprogramming features. The optimized logical query plan returned by
Spark’s Catalyst is thus mapped to OptiQL which can then be used with the Delite
framework for parallel, distributed, and/or GPU work.
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Chapter 4

Weld Extensions

Weld presents a framework that covers all themes in this work: multi-library, IR,
co-compilation, and optimizations. Thus, it is investigated in detail to understand
its benefits and drawbacks. This chapter starts by an in-depth description of Weld’s
design, components, and its integration with Python. Next, a Welded version of
Pandas is presented that is later used to compare Weld with the other implementa-
tions. This new library is built on top of two extensions to Weld which are presented
next: 1) intermediate results caching, and 2) lazy file parsing. These extensions are
expected to benefit Weld execution and are tested and evaluated in the last section.

4.1 Weld

Core to Weld is its intermediate representation of the computation graph. Weld’s
IR is a statically typed, referentially transparent language with built-in parallel
constructs. Essentially a large string, the computation graph is built by sequentially
adding chunks for each desired computation. This graph as a whole is called a Weld
function and consists of a list of named arguments and an expression for the result.
Each expression in Weld is a pure function of its inputs and there are no side-effects.
This means Weld features a stateless design. Figure 4.1 shows how the computation
graph is built by encoding a map and then a filter operation in Weld IR, followed
by an aggregation. The input is defined in a header between vertical bars (|). Note
that the input is named and represents a vector of 32-bit integer values.

There are two basic data types implemented: values and builders. The values can
be scalars, vectors, dictionaries, or structs of various types. Weld uses builders
to construct results in parallel from values that are merged into them. From the
previous Figure 4.1 example, the map and filter operations merge computed values
into appender builders to construct new result vectors. The aggregation uses a
different builder called a merger which features the commutative binary operator
+ to compute the sum of all the values. The result would hence be a scalar. Weld
also futures higher-level syntactic ”sugar” for common functional operators. For
example, the previous map operation could be reduced to just ’let res m = map(x,
|e| e * 2)’. These functional operators are then replaced with their actual for loop
representation upon compilation.
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Figure 4.1: Example of sequentially encoding operations from functional pseudo-
code (left) into Weld IR (right).

Figure 4.2: The Weld-optimized IR for the computation in Figure 4.1.

When desiring to evaluate to a result, one needs to first compile a Weld module upon
which Weld takes the IR and applies several optimizations, including loop fusion,
vectorization, and inlining. When creating the module, one is able to select which
optimizations to apply through configuration keys. The result of these optimization
passes is then an optimized IR. Figure 4.2 shows the IR of the previous operations
after the optimization passes. Note that all for loops are now fused into one and
that all data types now have an inferred type. Weld then takes the optimized IR and
maps it to LLVM IR, allowing LLVM to apply further compiler optimizations, such
as aggressive dead code elimination and loop unrolling. In order to get a result, one
passes to Weld references to the input data and runs the module. Weld allocates
memory for each evaluated result and the implementer has to free this memory when
no longer required.

Weld’s design allows the use of any programming environment as long as the required
computations can be reduced to its IR. However, there is an extra restriction: the
data structures must also be convertible to/from the source language and Weld’s
C++ implementation. The conversion feasibility then relies on how easy C++ can
be integrated with the chosen programming language. Weld provides a generalized
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Figure 4.3: The Weld execution pipeline from IR and input data to result.

abstraction to this conversion process through encoders and decoders. The input
data from a library must first be encoded to a format Weld can understand before
execution. After execution, the result must be decoded in a format the library can
understand and use further. Figure 4.3 shows an overview of all the steps taken
during Weld execution. Note that this decoupling of the inputs from the module
creation allows one to compile once and execute multiple times, as long as the data
is of the same type.

Weld with Python

Python is a general purpose programming language emphasizing code readability.
Due to this user-friendly focus, it has become highly popular1 amongst users. This
lead to the development of many libraries, including ones for data analysis. Pandas
[37] is such a library which arose from the need of having a table-like structure in
finance and statistics. It is built on top of NumPy [38] which is a Python/C package
centered around a C implementation of an N-dimensional array, the ndarray. Weld
could be combined with Pandas to provide both usability and higher performance.
To do so, one needs to provide a mapping to/from the NumPy ndarray and the
Weld vector. Their underlying structures are shown as C/C++ structs in Listing 4.

Note that both store the length of the array and a pointer to the start of the
data. This means converting from one to the other should be just a matter of
copying pointers. However, issues arise when one desires the use of an array with
more than 1 dimension. In Weld, this would be a vector of vectors or internally
a struct of structs. NumPy represents this array with the same single struct and
going from one dimension to the other is encoded within the dimensions and strides
fields. All the data is stored in a long contiguous block which can be traversed
with different offsets for each dimension. This is not the case in Weld. Encoding a
multi-dimensional NumPy into Weld is still possible by copying/creating pointers,
however when decoding a Weld struct of structs, data needs to be copied into a

1As seen in annual surveys on StackOverflow: https://insights.stackoverflow.com/survey/2018/
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1 template<typename T>

2 struct vec {

3 T *ptr;

4 i64 size;

5 };

1 typedef struct PyArrayObject {

2 PyObject_HEAD

3 char *data;

4 int nd;

5 npy_intp *dimensions;

6 npy_intp *strides;

7 PyObject *base;

8 PyArray_Descr *descr;

9 int flags;

10 PyObject *weakreflist;

11 } PyArrayObject;

Listing 4: C/C++ structs of the Weld vector (left) and the NumPy ndarray (right).

single contiguous block of data for NumPy to use. This highlights that despite a
generalized interface, integrating Weld into existing libraries and data structures
might not be so effective.

Welded Pandas

Weld authors provide an example implementation of a small subset of Pandas in a li-
brary titled Grizzly. En-/decoders for ndarrays of most types are available through
this library. Furthermore, a separate package Pyweld provides an interface from
Python to Weld through a WeldObject class. A WeldObject records an IR chunk
and provides an evaluate method to en-/decode data, construct a Weld module,
and execute. This is done by WeldObjects storing their data inputs in a context
dictionary and their dependencies on other WeldObjects in a dependencies dictio-
nary. This provides a clean way of building the whole computation graph at the
evaluation step by traversing the context to create the header and the dependencies
to combine all Weld IR code pieces into one. Furthermore, this ensures that the
inputs and the contexts themselves are re-used when creating more WeldObjects.
One can therefore use WeldObjects as the abstraction for lazy computation objects
throughout Python libraries.

Grizzly cannot be used due to two conflicting design choices for this work. First,
Grizzly’s data structures start from existing Pandas data structures. This means
that Grizzly is the starting point to Weld; no other computations can be Welded
before Grizzly. Furthermore, this means that all data must be already in memory
when using Grizzly. Second, while providing a decent subset of Pandas’ operators,
they are not sufficient for the implementation of the intended pipeline. Extending
Grizzly is thus out of the question. Therefore, to compare Weld against other
implementations, this work brings a new Welded Pandas library, Pandas weld. It
re-uses the en-/decoders provided by Grizzly, though with a few additions of our own
for missing types, including the 16-bit integer and boolean arrays of 2 dimensions.
WeldObjects are similarly used to track computations in the background.

Pandas weld is designed to behave like an exact copy of Pandas with a larger variety
of supported operators than Grizzly. The DataFrame, i.e. the abstraction for a
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table, can be created from raw data or WeldObjects, hence it can be connected to
other Weld computations graphs originating outside the library. The Series, i.e. the
abstraction for a column/array, along with both single and multi-dimensional index
classes are similarly implemented. Slicing, mapping, filtering, aggregations, joins,
and groupby’s are all supported and used to implement the Weld pipeline in this
work. Continuing the previous example, the Weld IR computation graph is encoded
through Pandas weld as shown in Listing 5. Note that the only difference with
Pandas is the import statement. Internally, the sum method evaluates the Weld IR
chunks recorded so far and returns the result.

1 import pandas_weld as pdw

2 import numpy as np

3

4 x = pdw.Series(np.array([1, 2, 3, 4, 5], dtype=np.int32))

5 x = x * 2

6 x = x[x > 4]

7 x.sum()

Listing 5: Creating the Weld IR for the previous example in Figure 4.1 through
Pandas weld.

There are, though, still slight differences to Pandas. Pandas internally uses highly
abstracted data structures, such as the NDFrame for n-dimensional tables. These
have been omitted from the Pandas weld implementation due to the increased com-
plexity of mimicking the behavior. Another difference can be seen through UDFs.
Pandas weld provides two Weld-tailored methods for UDFs: first method accepts
Weld IR directly and second integrates with Weld’s cudf operator which dynamically
links a compiled C++ UDF to the Weld runtime. These methods are of course not
available in Pandas however have been used in the implementation of the pipeline
for udf1 and udf2, respectively. Lastly, to showcase Weld’s multi-library design, the
cartesian product has been implemented in a separate self-sufficient package.

4.2 Caching Intermediate Results

Weld provides a great way to encode computations in its IR, thus eliminating inter-
mediate result materialization. Within a single evaluation, Weld can apply effective
optimizations to speed up computation efficiency. However, Weld cannot optimize
across multiple evaluation points as part of its stateless design. Adding state could
prove beneficial for the implementation of the pipeline from this work. An example
is the inner join. Two tables could be joined by obtaining two arrays, one for each
table, and encoding the row indices that should be kept from the input tables in
the resulting joined table. These arrays would be required at any operation encoded
after the join for each evaluation step. Since there is currently no direct mapping
between a Weld dictionary and a Python dict, one is left to encoding each column
as a separate WeldObject which means that upon evaluation, each column relies on
the join result. Therefore, the Weld IR representing the join has to be added to the
Weld IR of each column, as illustrated in Figure 4.4. Since each column has to be
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evaluated separately, this would trigger the join operation to be executed once for
each column.

Figure 4.4: Encoding the join into a table where each column is a separate WeldOb-
ject.

It would be good to be able to store intermediate results when deemed useful, such
as in the example above. This can be achieved by implementing a cache operator
in Weld. Continuing the join example from Figure 4.4 with intermediate result
caching, step 2 would instead be directed to a single separate result. This result
would then be evaluated a single time and used as dependency to compute step
3. As proof of concept and due to easier implementation, intermediate results are
implemented within the LazyResult Python framework described next. This only
brings an extra checking point in the evaluation steps that would fetch already
computed results from a cache instead of re-computing the whole chain of operations.
Since intermediate results are implemented at a level below Pandas weld, they can
be used with any libraries.

4.3 Lazy File Parsing

Due to its lazy API and multi-library support, Weld presents the perfect testing
ground for the concept of lazy file parsing. The idea is centered around tabular data
where only fragments of it are actually needed during data analysis, however this
fact is unknown to the user in the early stages. In other words, the responsibility
shall be handed over to the library itself which shall deduce that only specific chunks
of data are required from files during execution. This is, of course, only possible with
a lazy API which tracks all processing steps up to evaluation points. An example
subset can be seen in Figure 4.5. It is unnecessary to parse all the data when only
the subset surrounded in red is required.

Disk I/O is known to be orders of magnitude slower than memory and cache, as
shown in Figure 4.6, therefore reducing it shall provide significant speedups and lower
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Figure 4.5: Example of subset that may be required out of an entire table.

memory usage in data processing. Furthermore, there shall be minimal hindrances
to usability as a lazy file parser shall behave the same as an eager implementation.

Figure 4.6: Storage hierarchy showing the difference in access speeds and sizes [39].

Framework

The core concept we introduce is the use of placeholders in place of actual data
when initially reading a file. Thus, we develop a framework that provides and keeps
track of a mapping between placeholders and methods to obtain the actual data.
The framework must be the single bridge between multiple libraries and multiple
parsers, as illustrated in Figure 4.7. Parsers must be able to return subsets of the
data and this must be communicated from a library, through the framework, and
to the relevant parser when an operation requests such a subset. Parsers would
initially read the header and possibly some rows of data from a file to deduce as
much as possible about it without reading the entire thing. Particularly, details such
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as variable names, types, and other metadata. These are necessary to the parser
but also highly relevant to the user.

Figure 4.7: The framework must accommodate both multiple data input formats
and multiple libraries.

Lazy file parsers, however, cannot work unless they are integrated somehow into
the Weld evaluation steps and are also accessible to libraries built using Weld. To
this end, the framework proposed here is built on top of the WeldObject, tracks
lazy files/data, and substitutes the placeholders with actual raw data on compu-
tation evaluation. Furthermore, it exposes certain methods which, when used by
libraries, shall indicate to the framework and hence to the parsers themselves that
only fragments of the data are required. Lastly, a ’shortcut’ method is available
which bypasses the lazy parsing for cases such as eagerly requiring the head of the
data. This framework, titled LazyResult, is implemented as a Python class and
shown as pseudocode in Listing 6.

1 class LazyResult:

2 def generate_data_id():

3 "generate placeholder for raw data"

4 def register_lazy_data():

5 "record the existence of some lazily parsed data"

6 def retrieve_data():

7 "fetch from cache or eagerly read"

8 def evaluate():

9 "uses retrieve_data to replace placeholders"

10 def update_columns(columns):

11 "signal the parser that these columns shall not be read"

12 def update_rows(slice):

13 "signal the parser that only this slice of data shall be read"

14 def head(n):

15 "bypass cache and eagerly read n rows"

Listing 6: Essential methods from the LazyResult class which intercepts evaluations,
as pseudo-Python code.

A single interface is however not enough when considering the inability of parsing
only file chunks for certain data formats. With tabular CSV data for example, it
is highly difficult to implement an efficient single-column parsing method. It would
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instead perhaps be more efficient to read everything and then select a column while
caching the file in memory for subsequent column requests. Therefore, we propose
two interfaces: 1) LazyFile, which behaves as a file opening handler which shall
provide access to the file itself, and 2) LazyData, which encodes a chunk of lazily
parsed data, typically a column. In conjunction, these interfaces are general enough
to handle most lazy parsing cases effectively and are shown in Listing 7. The design
of LazyFile further allows one to not use it when not relevant. Note that improving
the performance of existing file parsers is beyond the scope of this research; the work
is focused on extending existing parsers to lazily read data.

1 class LazyFile(object):

2 def read_metadata():

3 "parse the header/metadata of a file"

4 def read_file():

5 "read the file; usually a handler to retrieve columns from"

6

7 class LazyData(object):

8 def lazy_skip_columns(columns):

9 "lazily record that these columns shall not be read"

10 def lazy_slice_rows(slice):

11 "lazily record that only this slice of data shall be read"

12 def eager_read():

13 "parse and return the raw data as lazily recorded so far"

14 def eager_head():

15 "return the head of the raw data ignoring slice and skip"

Listing 7: Interfaces to implement when writing lazy file parsers.

Each evaluation step triggers the replacement of the placeholders with raw data from
file, even if it is the same input data. To avoid reading it multiple times, a simple
cache is implemented to keep the data in memory for subsequent reads. Given the
speed of reading from file versus memory, the execution speed shall be improved,
however at the cost of using more memory. In the worst case scenario, all the file
data will be brought into memory which poses challenges when there is not enough
memory available in the machine. To aid in this scenario, a flag could be used to
disable caching all-together or perhaps only specific inputs. A lazy NetCDF parser
is implemented with this framework to test its performance and demonstrate the
framework usage.

4.4 Results & Evaluation

To identify whether the proposed optimizations are worthwhile, we prepare small
separate experiments comparing the benefits brought by intermediate results caching
and lazy parsing. These experiments entail running the Pandas weld implementation
of the data analysis pipeline with different configurations. Due to memory limits,
the intermediate results caching experiment is done on a smaller dataset, namely
data 3, while lazy parsing is done on the larger data 12.

27



CHAPTER 4. WELD EXTENSIONS

The framework works with both lazy and eager file parsers, therefore testing non-
lazy file parsing is done by using parsers which do not use the framework, i.e.
placeholders, but return the raw data eagerly. Caching can be disabled by setting
an environment variable which acts as a flag within LazyResult which handles all
evaluations. Caching of intermediate results can similarly be done with a flag for
both the framework and the libraries implementing the cartesian product and the
join. The libraries hence contain two implementations for each of these operators
depending on whether intermediate result caching is possible or not.

Intermediate Results Caching

Figure 4.8 shows the mean total execution time split into the total time spent in
each phase of execution as output-ed by WeldObject. The time spent in Weld
compilation, en-/decoding data, and during Weld module run is subtracted from
the total real time with the remainder being labeled as other. This remaining time
is mostly time spent in Python and calling the parser libraries. One can notice
that the total time is significantly reduced when caching the intermediate results,
i.e. the cartesian product and the join indexes, by approximately 63%. The time
spent in Weld computation is reduced because Weld is not required to recompute
the intermediate results in the subsequent evaluation steps. The time spent en-
/decoding is slightly higher, though, because decoding ndarray’s of 2 dimensions,
i.e. the intermediate results, requires data copying.

Figure 4.8: Mean execution time of Weld pipeline (left) along with memory profiling
over a single execution (right) with and without intermediate results caching over
data 3.

The memory usage over time of a given run, as shown in Figure 4.8 on the right,
points out the drastic reduction in memory usage (and execution time) along with
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markers indicating when each step of execution has finished. The reduction is over
60% and one can notice the continuous rise in memory usage as intermediate results
are re-computed. The higher memory usage of decoding the intermediate results can
be seen as the slightly steeper line between done head and done agg in the ir-cache
graph.

As expected, reading the data takes the same time regardless of intermediate results
caching and the markers occur earlier than the no-ir-cache version. However, head
takes longer when caching which could be explained by the Weld computation graph
being sliced into two and compile twice instead of a single time to obtain the final
result. Furthermore, the intermediate result, even if evaluated, is not cached during
head execution which is something that could be improved in future work.

Since caching intermediate results presents great benefits in both time and memory
usage, it is enabled by default in the experiments next. It would also not be possible
to evaluate higher datasets than data 3 without it due to memory limits.

Lazy File Parsing

Lazy file parsing done comes in two flavors: first, parsing data from file whenever
necessary, and second, caching the data in memory once parsed. These are denoted
as Lazy and Lazy w/ Cache in the following graphs. Figure 4.9 shows the mean
total execution time over data 12. The graph indicates an approximate 7% speedup
of lazy parsing over eager parsing, and a slightly higher speedup of approximately
10% when also caching the parsed data. Recall that the pipeline requests for 2
columns out of 10 (16 including dimensions) to be skipped, along with selecting
approximately 23% of the rows. This amounts to selecting only 20% of the total
data. Given so much less data, one would expect a larger speedup.

Figure 4.9: Mean execution time of Weld pipeline over data 12.

29



CHAPTER 4. WELD EXTENSIONS

The biggest reduction in time is seen in the ’other’ section of the graph which
includes time spent in Python and I/O. The reduction is from 56.6s to 22.13s which
indicates a drop of 60.9%. This is indeed close to the expected reduction in time
spent in I/O, i.e. 80%. Time spent during Weld module run is of course also reduced
due to less data to process.

Figure 4.10: Memory usage over time of an arbitrary execution data 12.

Memory usage over time of a single execution is shown in Figure 4.10. The markers
show that getting past the data reading point is faster since no data is initially read
from file. Without caching the read data, one can notice that both the aggregation
and the groupby take longer time because the same data is parsed multiple times
from file. Unfortunately, not caching the data still presents a similar memory usage.
This could be explained by a skew in the graph, i.e. the input data is only a small
fraction of this memory usage. Given data 12 is approximately 34.7GB as CSV, the
estimated memory usage of the input data is less than 7GB.

The results of eager and lazy parsing are summarized in Figure 4.11, where Lazy
includes caching. There are benefits in all dimensions of time, maximum memory,
and I/O, however only I/O seems significant. It drops to almost the expected 20%,
however not exactly. The NetCDF parser sometimes reads slightly more data than
the requested subset. This happens, for example, when the slice boundaries are not
exact multiples of the dimensions of the data. For data 0, the parser reads 0.8%
more data for each data column. The reduction in I/O does not seem to cause a
big reduction in time execution. This may be because the hardware used in the
experiment provides good read speed. However, when using older hardware, the
differences are expected to be more significant.
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Figure 4.11: Mean time, memory, and I/O for execution over data 12.

Figure 4.12: Mean time, memory, and I/O for small experiment.

The reduction in memory usage and time does not seem significant, though this
might be due to the entire pipeline measurements overshadowing the actual benefits
brought by lazy parsing. Therefore, a final small experiment is devised as follows:
data1.nc of data 12 is parsed (3.47GB as NetCDF), 2 out of its 6 data columns (9
including dimensions) are dropped, and 24% of the rows are selected. The requested
data would thus be approximately 16% of the total file size. To trigger evaluation, all
data columns are summed. The results can be seen in Figure 4.12. The differences
are now more noticeable with total execution time improving by over 50%. Max
memory usage and I/O both improve by over 75%. The percentages of 16 and 75
do not add, indeed, to 100. The difference is attributed to the other overheads of
execution, such as object wrappers around data.

Discussion

The caching introduced here to Weld is, indeed, quite similar to the Spark cache op-
erator [40] or the recycler introduced into MonetDB [41]. Caching poses the threat
of higher memory usage, possibly over the maximum allowed. Spark handles this
by making the cache operator behave only as an indication that a result might be
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used again. If there’s enough memory, the result is maintained otherwise the cached
object would be recomputed. This is possible because the computation graph is
maintained. The recycler in MonetDB functions in a similar way by maintaining a
recycle pool which is periodically cleaned based on the least expected utility esti-
mation. The Weld caching introduced here does not go as much in depth as it does
not use any policy to evict cache entries when necessary.

Caching intermediate results poses the drawback of breaking/cutting the Weld com-
putation graph whenever the cache operator is used. This means that Weld will no
longer be able to perform optimizations across the entire graph but only within
the smaller chunks. As was shown in this chapter through the cartesian product
and the join, caching intermediate results brings benefits by reducing the amount
of re-computation upon evaluation.

There are a few drawbacks to the proposed lazy parsing framework and its current
implementation. It is unclear if this approach scales well with multiple libraries. Us-
ing non-NumPy data also requires extending the methods in the framework. This
could be improved by generalizing a step further and providing extension points
which could be implemented by the libraries using these different data representa-
tions. Lastly, the current implementation tracks the file inputs which means that
when one subsets an input, the subset applies everywhere this input is used. Hence,
different subsets of the same input are currently not possible. Adding this function-
ality requires tracking which objects use which subset. This is difficult given the
current chaining of WeldObjects through dependencies. For example, given object
A as a dependency to objects B and C. B requires a subset of A while C requires
the full data. If B stores that only a subset is to be read from file, C will not receive
the entire data. Possible solutions include duplicating A, as shown in Figure 4.13,
or storing the slice and columns-to-skip in each object.

Figure 4.13: When two objects have the same dependency but require different
subsets of the data, the dependency could be duplicated.

Related approaches to efficient file usage are found in literature. Noga et al. [42]
formalize the domain of tree-based XML processing and introduce a lazy XML
parser. The parser is required to first analyze the XML file to infer the structure
and to build an internal representation suitable for partial parsing. The user is then
able to select only subsets of the data which are cached into memory. The need to
first analyze the XML file to determine its structure is similar to the requirement
shown in the LazyFile interface above through the method read metadata. By using
the framework, parsers essentially build a similar internal representation of the files
from file metadata.
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The NoDB paradigm in database-systems [43] makes raw data files as first class
citizens. Queries are then possible without first loading all the data; the database-
system retrieves from files just the subset of data required to execute queries on-
the-fly. Once read, data is also temporarily kept in a cache. The authors implement
a NoDB version of PostgreSQL and observe competitive performance against other
DBMS. Parsing is optimized to the data required by a specific query. This is indeed
similar to the LazyData interface above which tracks which subset of the data is
required. The framework introduced in this work, though, is tailored to exploratory
analysis, as shown through the LazyFile.read metadata and LazyData.eager head.
It also abstracts a level further by allowing multiple frameworks/libraries to use
it simultaneously. However, the current implementation presents the drawbacks
described previously which make it less flexible than expected by the NoDB model.
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Experimental Setup

The main comparison shall be done by implementing the previously introduced
data analysis pipeline in 6 different languages / frameworks: Python, Weld, Julia,
R, Java, and Spark. Since the pipeline targets all operations as a whole, it will
provide a better overall insight into the performance brought by these frameworks,
at least in their current developmental stage.

The experiment has as independent variables the subsets mentioned before and the
pipelines as factors. For each pair, the dependent variables are the measurements
of execution time, memory, and CPU, both total and during execution through
profiling. Several other markers are adopted, where relevant and possible, to delimit
pipeline execution progression along with details such as disk I/O. Furthermore, note
that the implementer could also be considered a factor for a typical data analyst in
these experiments; such a user cannot be expected to know all the inner workings but
only perhaps basic optimizations across the respective implementations. Therefore,
unless the public-facing API allows configurations for, e.g. which join algorithm to
use, no further optimizations have been done.

This chapter consists of the comparison experiments done in this work and is divided
as follows: Section 5.1 details specific implementation details for each language.
Each framework has its own data representation and features available by default
and thus might require different levels of configuration. The results of the pipeline
comparison are shown and evaluated in Section 5.2 with further profiling and analysis
in Section 5.3.

5.1 Implementation Specifics

The data analysis pipeline cannot be implemented everywhere exactly as described
mostly due to API differences. Particularly, the parsers provide different behavior
depending on the high-level wrapper and some operations are not supported by de-
fault by the respective API, therefore need to be implemented. The implementations
are meant to work on a single core of the CPU and use as much memory as required,
with the exception of Weld and Spark which feature 2 variants each, non-parallel
and parallel. The parallel versions are configured to use all the machine cores, i.e.
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32. All implementations, apart from Spark, feature a column-store. Technical de-
tails such as software versions are available in the Appendix. Following are details
regarding the chosen languages and the specific implementations used in this work.

Python It features a dynamic type system and automatic memory management
and can easily interface and call native C libraries. This means libraries can also be
heavily optimized and hence be highly efficient. Furthermore, one may use Cython
[44] which is a superset of the language designed to give C-like performance while
writing mostly Python. Cython is often to speed up Pandas even more.

The Python implementation uses Pandas’ DataFrame which is built on-top of NumPy.
This allows Pandas to take advantage of certain NumPy features that lessen the
load on the memory bus. Examples include: views to subset, filter, or transpose
underlying data without copying, vectorization to speed up array computations,
and broadcasting to efficiently expand data without creating intermediate arrays.
The core functionality of NumPy is written in C and also relies on the BLAS [45]
specification for efficient linear algebra computations.

Creating Pandas DataFrames from NetCDF files poses certain challenges. The go-to
method would be to use the Xarray1 library which can parse and convert the files
to Pandas DataFrames. However, Xarray performs several extra steps which cannot
be avoided: checking conventions, reading into its own memory format, and most
importantly, changing the order of the dimensions. This is internally an efficient
NumPy transpose which is however an extra unnecessary step which is hard to
replicate in the other implementations. Therefore, a method using the ’raw’ Python
wrapper over the NetCDF parser has been implemented to convert straight into a
Pandas DataFrame while maintaining dimensions order.

Weld The implementation of the pipeline in Weld has been detailed in the previous
chapter through the use of Pandas weld. However, it is worth mentioning that a
valid Weld module could also be instead written from scratch by hard-coding a very
large (and thus optimized) Weld IR for the pipeline. This, though, provides a much
higher difficulty to implement and to test. Furthermore, it is not true to Weld’s
design for multi-library support.

Julia Julia’s DataFrame implementation does not offer an API similar to Pandas
that can compute the aggregations, therefore it needs to be implemented. The Julia
NetCDF parser package is a low-level wrapper over the C API which also requires
some extra work, e.g. the cartesian product, to reach the format required by the
pipeline. Lastly, it was observed that some methods from Julia require more care
when using. First, the Julia repeat method which was initially used to compute the
cartesian product turned out to be very slow. By implementing it manually with for
loops, the execution was improved by over a factor of 2. Second, by default, slicing
Julia arrays returns copies of the sliced area instead of a mask over the initial data.
This is unlike NumPy or other libraries. To overcome this, one must use the view
method.

R The first stable version of R was released in 2000 as an implementation of the S
language for statistical computing and graphics [46]. One is able to use its REPL
with semantics closer to functional programming languages such as Lisp. R features

1http://xarray.pydata.org/en/stable/
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the data.frame abstraction out of the box which together with the dplyr 2 provides
all the tools necessary to implement the data analysis pipeline.

Java The best case scenario optimized pipeline has been implemented in Java which
was chosen due to the friendlier yet still efficient programming environment, as op-
posed to C. Java is strongly typed and verbose, therefore significantly more code is
required to implement the pipeline and also justifies the lack of an existing viable
DataFrame implementation. Therefore, the Java implementation involved writing
a small DataFrame structure with only the operations required to run the pipeline.
There are no shortcuts in the operators themselves, however support for more op-
erators or types than required has been foregone. The aggregations, though, have
been coded as efficiently as possible while the join is restricted to a merge join.

Java features a functional Stream3 API which could be used to parallelize work, how-
ever does not provide an API for floats but only for doubles. Hence, using Streams
would requires casting most of the data to double. Given that the implementation
performed well anyway, Streams were not used, but are a potential avenue for future
work.

Spark Apache Spark [40] is a unified analytics engine for large-scale data processing
and is arguably the step forward from MapReduce with hundred-fold speedups. It
is arguably the odd one out of the implementations due to its different design goals,
particularly parallelization. The core abstraction is the Resilient Distributed Dataset
(RDD) which are partitioned across an arbitrary amount of cluster nodes. RDDs
then keep track of all computations such that when a fault occurs, the results can
be recomputed at minimum cost. This fault tolerance, however, adds a fairly large
overhead to computations and inter-node communications. This makes Spark a
questionable choice when running computations on less than big-data or on newer
machines which can contain hundreds of GB in memory.

Spark’s operations are of two kinds: 1) transformations, which are lazy operations
executed in parallel, and 2) actions which trigger result computations. This dis-
tinction allows a clear separation between cheap and expensive operations on data,
with actions typically requiring data communication between nodes, i.e. shuffling,
which furthermore involves a degree of synchronization overhead.

The RDD has more recently been wrapped in a table-like data structure, the DataFrame,
along with an extensible database-like optimizer titled Catalyst [10]. The DataFrame
extends the functionality of RDDs with relational processing operations which are
then optimized through Catalyst. The API is also more expressive as one is able to
easily select columns by name and do operations. Catalyst applies relational opti-
mizations at both the logical and the physical plan by carefully modifying the tree
IR of queries while maintaining the fault tolerance and lazy API of RDDs. Further-
more, through project Tungsten, Spark benefits from better memory management
and cache-aware computation.

Spark features here a less than ideal pipeline implementation in Scala as its row-store
design makes it difficult to read columns from files and to create a single DataFrame.
The columns have to be read separately and parallelized to RDDs while merging into

2https://dplyr.tidyverse.org/
3https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
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final large RDDs which can finally be converted to DataFrames. It is desirable to
operate on DataFrames due to Catalyst which shall optimize the evaluation steps as
much as possible. An alternative would be to load all the data in the driver’s memory
as Scala data structures and then convert to RDDs and DataFrames. However, this
is an inherently flawed approach as the data size used in a Spark application is
expected to not fit in the memory of a single machine. It was, though, attempted,
but proved to be slower. The pipeline implementation shall be general enough that
it would work as-is when using an actual cluster, hence showcasing the big data
handling capabilities that the other implementations cannot achieve.

It is expected to run Spark jobs through the spark-submit script which handles
script distribution and other preparation steps. One can set the master to a cluster
scheduler, such as Apache YARN4, or even to a pseudo-cluster master which is the
local machine. This second option is arguably only for testing purposes however is
expected to provide an effective way to run Spark scripts without an actual cluster
setup.

Parallelization brings a lot of overhead particularly when Spark is forced to run in
less-than-ideal conditions, namely as a standalone local cluster on a single CPU, as
required in this work. Submitting the job requires careful tuning work to make
sure the overhead is limited while extracting the highest performance possible.
Some steps taken towards this goal include making sure both the RDDs and the
DataFrames are partitioned in the same way which aids with the actions which re-
quire shuffling, including the join and groupBy. Careful use of caching also ensures
that important intermediate results are not dropped and can be immediately used
in the following steps. The configuration parameters are available in the Appendix.

5.2 Results

The pipeline comparison results are presented in this section, first by analyzing the
time outputs for total time taken to execute the pipelines, and then by looking at
memory and CPU usage over time profiled through collectl. Lastly, an investigation
into scalability is made by comparing the performance over the different input sizes.

Execution Time

Figures 5.1 and 5.2 show the total execution time of the pipelines over input datasets
data 0 to data 25, averaged over 5 runs. One can immediately notice a pattern:
Java is the fastest and Spark is the slowest. Java, as the ideal implementation, is
expected to be the fastest while Spark is expected to be slow due to the overheads
described in the previous section. However, the difference between Spark and the
other implementations exponentially increases with higher datasets such that Spark
has been omitted from data 3 upwards. This behavior shall be evaluated in Section
5.3.

4https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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Figure 5.1: Barplots for mean total execution time of the pipelines over the different
inputs.

Figure 5.2: Barplots for mean total execution time of the pipelines over the different
inputs.

Note that from data 3 (1.45/8.67 GB raw/csv), Weld takes the second spot indicat-
ing that it does identify and apply optimizations to the pipeline. Some examples are
available in the Appendix. The parallel version is also always faster but by a small
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margin; with small datasets, the cost of spawning and synchronizing threads seems
to outweigh the benefits brought by parallelization. Julia starts by being the slowest
but overtaking Python from data 3 and also R from data 6, after which it stagnates.
This means that the optimizations brought by LLVM outweigh the compilation time
only with higher datasets.

Figure 5.3: Mean memory usage scatterplots of the pipelines over the different
inputs.

One might notice that the Weld pipeline is missing from the data 25 plot which
is due to it requiring more memory to compute the groupby result than available.
Only the Python and Java pipelines succeed on data 50 and none on data 100 which
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is perhaps expected given their sizes as CSV (approx. 139 and 278 GB, respectively)
which are a fair estimate of the amount of memory required to just load the data.
The other implementations require more memory than available.

Memory Usage

Figure 5.3 shows the mean memory usage over time for inputs data 0 to data 25,
averaged over 5 runs and with shaded area to represent the standard deviation
between the runs. The negative gradient lines after the groupby are leftovers as
collectl continues to profile until the pipeline process has exited; this might take
longer than 1 second due to, e.g. garbage collection. Weld consistently ends up
using up to 30% more memory compared to the other implementations. One reason
is that all the parsed data is kept in memory along with intermediate results while
the other implementations drop the unnecessary results, typically through garbage
collection.

R consistently requires approximately 15% more than Python/Julia/Java, hence
being in the middle between these and the Weld implementations. The lazy parsing
feature of Weld can be observed in the plots as the memory usage is horizontal up
to a certain point where evaluation is triggered and data is parsed. Intermediate
results are also being materialized from that point onward. Interestingly, Julia also
has the same period of constant memory usage which could be explained by it using
the same NetCDF parser internally.

The efficiency of NumPy and Pandas implementations can be observed as the
python-libraries pipeline consistently uses the least maximum memory. This can
be explained by the NumPy features detailed in a previous section which are seam-
lessly integrated with Pandas. After parsing, the Python pipeline seems to not
increase in memory usage. Spark has been omitted from the graph as it could not
be run on datasets higher than data 3, as previously mentioned. Its memory usage
was twice of Weld’s.

CPU Usage

CPU usage is collected during profiling as a percentage of all the 32 cores, therefore
multiplying the recorded number with 32 returns a percentage measure of a ’single’
core. Single threaded programs are expected to execute at close to 100%, therefore
all except the parallel pipeline implementations. Figure 5.4 shows these plots over
each input size averaged over 5 runs for data 0 to data 6. Spark, however, is omit-
ted due to the significantly larger execution times and memory usage which would
greatly skew the graphs. The shaded area represents the standard error of the mean
which better emphasizes the differences between the CPU usage. All pipelines seem
to have a peak over 100% at the beginning of the execution which can be explained
by the interfacing with the low-level NetCDF parser. This, however, is a systematic
error as all the parsers in these implementations are built on top of it.
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Figure 5.4: Mean CPU usage scatterplots of the pipelines over different inputs.

Note that Java seems to always use more than 100% of the CPU. This can be
explained by Java spawning a JVM process ’in parallel’ (through the fork+exec
pattern) but which is still tracked together with the actual pipeline execution by
collectl. JVM handles most importantly the garbage collection and translation of
Java bytecode to machine code, processes that can happen in parallel. Weld-par
can clearly be seen parallelizing the work up to all the 32 cores, hence also having
a large variation in CPU usage over time.

Scalability

To understand how well the implementations scale over the input sizes, the mean
execution time over 5 runs for each pipeline from data 0 to the maximum input
size that succeeded is plotted in Figure 5.5. The input sizes follow a power curve
and thus, to have a measure over scalability, the curve has been plotted along the
barplots. The curve assumes that each consecutive input takes twice as long as the
previous one, a phenomenon which can be seen in Java’s graph. This means that
for Java, the execution time is linear to the input size; however, this is not the
case in the other implementations. Both Python and R start to take up to twice
as much time than expected from data 12 upwards. On the other hand, Julia and
Weld both scale very well as the datasets take significantly less time to execute than
hypothesized. What they have in common is LLVM which seems to speed up the
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computations through features such as vectorization. Weld furthermore contains its
own optimizations over its IR which speed up the overall total execution time.

Figure 5.5: Barplots for mean total execution time over different inputs for each
pipeline.

The same plot has been made for the maximum memory used (as reported by time)
with a curve over the CSV input sizes. These sizes are a forgiving estimate of the
amount of memory that would be required to store the data. Similar to the previous
plot, the curve assumes that each consecutive input uses twice as much memory
than the previous one. The barplots shown in Figure 5.6 reveal in a decreasing
order the scalability of each pipeline implementation. Python showcases the ideal
memory usage as it uses almost exactly as much memory as expected. This is
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due to the implementation over NumPy which limits memory usage, as described
before, however comes at the cost of less scalability in terms of execution time. The
Java measurement might be misleading due to a peak in memory usage, as shown
in the memory profiling graphs before, which in fact drops after the aggregations
are completed. Julia and Weld do not scale well in terms of memory usage which
contrasts with the high scalability in terms of execution time. R fails to scape well
in terms of memory usage; together with less scalability in terms of execution time
but better execution times on small datasets indicates R is the best option for small
datasets.

Figure 5.6: Barplots for maximum memory usage over different inputs for each
pipeline.
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5.3 Discussion

Implementing the pipeline was easiest and fastest with Python and R, and also Weld
given it mimicking the Python version. The performance was good, however lacking
with larger datasets where they fail to scale well. The optimal implementation
in Java succeeds in outperforming all other implementations significantly. This
came at the cost of manually handling types and implementing all operations. The
trade-off between productivity and performance is again evident when comparing
these implementations. Weld and Julia, in contrast, shine when handling larger
input data by scaling well, however at the cost of more memory usage. They are
both not mature enough to handle everything well and particularly Weld could be
improved, as hinted throughout this work. Despite these drawbacks, Weld is the
most promising given the best performance after Java and the possibility of user-
friendly syntax. It is usable through multiple libraries and programming languages,
and also by supports parallelization.

All implementations seem to suffer by being CPU-bound because the CPU usage is
always close to maximum throughout pipeline executions. This indicates that the
biggest benefit next could be brought by efficient parallelization, something which
Weld and Julia were built to support. None, however, can scale out as much as
Spark while maintaining a user friendly API; the poor behavior when ran on local
is investigated in the next section. Best memory usage could be observed in Python
with Pandas/NumPy due to the now mature and optimized library. R proves to be
the best option on small datasets with good execution time; with larger datasets, a
different language/library should be used.

Problems of Spark on local

Spark is unexpectedly extremely slow when run on local, i.e. a single machine,
due to what seems to be inter-thread communication. As seen in the stacktraces
flamegraph in Figure 5.7, approximately 60% of the time is spent in epollWait which
is required when piping data between threads or processes. This happens because
despite Spark running on a single machine and in the same JVM, it still behaves
almost as if on a cluster of machines: there are still separate threads (processes in a
cluster) for the driver, the executors, the master, and the scheduler which must all
communicate with each other. Coupled with the overhead of partitions and RDD
lineage, this proves to be very slow. While this performance could be part of a
design choice to allow testing a full Spark application locally, one would still expect
relatively good performance. Nevertheless, Spark is clearly not the best option when
all data can fit on one machine.

Weld

Besides the two extensions presented in the previous chapter, there are certain other
details that could improve Weld. The en-/decoding framework is fairly restricted in
its current state and could use more Python-Weld mappings provided by default.
Currently, for decoding a Weld result, it is only possible to en-/decode a vector
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Figure 5.7: Spark flamegraph over single executor pipeline execution on data 0.

to/from NumPy arrays; it is not possible to obtain a Python dictionary. Having a
direct mapping between a Python dict and the Weld dictionary could prove quite
useful. The dictionary implementation in Weld also does not allow for common
operations in its IR, such as extracting the keys or the values from it. A dictionary
cannot be evaluated into something more usable unless the tovec operator is used
which converts it into a vector of structs. Integration with NumPy could also prove
beneficial as it is a mature framework with its own optimizations. Weld could hence
natively support NumPy features such as broadcasting without the need to encode
them in Weld IR.
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Conclusion

Implementations in lower-level languages, such as Java in this work, are very difficult
to overcome, however come at the cost of more implementation hours. Furthermore,
the entire process from programming to machine code and execution typically relies
on optimizations specific to the language-family, such as the GCC compiler for C.
Attempts to generalize and create common frameworks featuring optimizations are
very attractive to the programmer however add costs in interpretation and conver-
sion. This is seen in both Weld, where Weld IR needs to be compiled and converted
to LLVM IR, and Julia, where source code is JIT compiled for LLVM to find possible
optimizations. The benefits are not visible when there is little data; as shown in this
work, there need to be over a few GB of data for them to become faster than other
implementations. The optimizations brought by them and LLVM end up scaling
very well, despite up to twice the costs in memory, by being up to 2.5 times faster
than Python. Nevertheless, both Weld and Julia and still in their infancy with less
predictable behavior and many changes in the API.

For the time being, established libraries such as Pandas/NumPy (Python) and dplyr
(R) prove to be more reliable with good performance especially for relatively smaller
datasets, such as under 10GB. These datasets can easily fit into the memory of a
single machine with no need for parallelization to obtain reasonable speed. However,
it all depends on the scale of the data. When Python or R libraries start to slow
down, it is time to switch to more optimized, scalable, and perhaps parallelizable li-
braries. When data cannot fit on a single machine, one has to switch to a distributed
framework such as Spark. While MPI would prove to be more efficient, it comes at
the cost of many more programming hours; Spark provides a clear and user-friendly
syntax, though it was designed and relies on a large-scale cluster. When running
on a single machine, despite having plenty of computing power available, it cannot
be as efficient as expected due to the assumption of large-scale hardware and the
requirement of fault tolerance that went into its design.

Weld was shown to have plenty of potential by closing in to the ideal implementation.
However, there are still many possible improvements that can be done, such as
intermediate result caching and more flexibility in its IR. Lazy parsing can bring
great benefits in workflows involving subsetting of the input data while also speeding
up the initial exploration of the data. The proposed framework generalizes such that
multiple libraries and parsers can be used while still maintaining good performance.
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There are several ways to extend this work. First, while the data analysis pipeline
introduced here contains a good variety of operations, more iterative algorithms shall
be added for a more comprehensive overview of library performance. Normalization
of the input data or a machine learning model, such as a neural network, are great
candidates for addition. Second, parallelization was overlooked with only Weld
and Spark having a parallel version. Java could also be parallelized through its
Stream API and Julia provides a parallelization framework through annotations.
Furthermore, there are frameworks proposed in literature, such as HPAT, Pydron,
and Dask, which aim to parallelize Python and/or Pandas. Lastly, there is work
in running Spark more efficiently, such as through the Flare runtime. These, along
with other frameworks, could also be compared on the data analysis pipeline.
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Appendix

Repository

https://github.com/radujica/data-analysis-pipelines

Hardware Used

Machine with 32-cored Intel Xeon E5-2650 CPU, 256GB RAM, and HDD for storage.

Software Used

Pipeline Software Version
python-libraries Python 3.6.5
python-libraries pandas 0.22.0
python-libraries netCDF4 1.3.1
weld LLVM 6.0.0
weld Python 2.7.14
weld pyweld *
weld grizzly *
java java 1.8.0 171
R R 3.4.4
R readr 1.1.1
R ncdf4 1.16
R dplyr 0.7.6
R tidyr 0.8.1
julia Julia 0.6.3
julia NetCDF 0.6.0
julia DataFrames 0.11.6
julia CSV 0.2.5
spark Scala 2.11.8
spark Spark 2.3.0
spark netcdf 4.3.22
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* Using old-working-state branch with latest Weld developers input from April 12
and minor adjustments by myself: https://github.com/radujica/weld/commits/old-
working-state

Spark Configuration

Single: master=local, spark.sql.shuffle.partitions=4, spark.executor.heartbeatInterval=115,
driver-memory=200g, RDD partitions=4

Parallel: master=local[32], spark.sql.shuffle.partitions=64, spark.executor.heartbeatInterval=115,
driver-memory=200g, RDD partitions=64

Weld IR

Further examples of complete Weld functions (combined IR chunks) and their opti-
mized IR from the Pandas weld implementation of the pipeline.

Join

1 # Note that _inp17 and _inp9 are the cartesian products intermediate results

2 # for the indexes of each of the two dataframes

3 |_inp0: vec[f32], _inp1: vec[f32], _inp10: vec[f32], _inp11: vec[f32],

4 _inp12: vec[vec[i8]], _inp17: vec[vec[i64]], _inp2: vec[vec[i8]],

5 _inp9: vec[vec[i64]]| let obj100 = (_inp0);

6 let obj101 = (_inp1);

7 let obj102 = (_inp2);

8 let obj116 = (lookup(_inp9, 0L));

9 let obj117 = (lookup(_inp9, 1L));

10 let obj118 = (lookup(_inp9, 2L));

11 let obj119 = (_inp10);

12 let obj120 = (_inp11);

13 let obj121 = (_inp12);

14 let obj133 = (lookup(_inp17, 0L));

15 let obj134 = (lookup(_inp17, 1L));

16 let obj135 = (lookup(_inp17, 2L));

17 let obj136 = (

18 result(

19 for(

20 obj116,

21 appender,

22 |b, i, n|

23 merge(b, lookup(obj100, n))

24 )

25 ));

26 let obj137 = (

27 result(

28 for(

29 obj117,

30 appender,

31 |b, i, n|

32 merge(b, lookup(obj101, n))

33 )

34 ));

35 let obj138 = (

36 result(

37 for(

38 obj118,

39 appender,

40 |b, i, n|

41 merge(b, lookup(obj102, n))

42 )

43 ));

44 let obj139 = (

45 result(

46 for(

47 obj133,

48 appender,

49 |b, i, n|

50 merge(b, lookup(obj119, n))

51 )

52 ));
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53 let obj140 = (

54 result(

55 for(

56 obj134,

57 appender,

58 |b, i, n|

59 merge(b, lookup(obj120, n))

60 )

61 ));

62 let obj141 = (

63 result(

64 for(

65 obj135,

66 appender,

67 |b, i, n|

68 merge(b, lookup(obj121, n))

69 )

70 ));

71
72 let len1 = len(obj136);

73 let len2 = len(obj139);

74 # bool arrays shall be padded until maxLen so that result can be cached as np.ndarray of ndim=2

75 let maxlen = if(len1 > len2, len1, len2);

76 let indexes1 = {obj136, obj137, obj138};

77 let indexes2 = {obj139, obj140, obj141};

78 let res = if(len1 > 0L && len2 > 0L,

79 iterate({0L, 0L, appender[bool], appender[bool]},

80 |p|

81 let val1 = {lookup(indexes1.$0, p.$0), lookup(indexes1.$1, p.$0), lookup(indexes1.$2, p.$0)};

82 let val2 = {lookup(indexes2.$0, p.$1), lookup(indexes2.$1, p.$1), lookup(indexes2.$2, p.$1)};

83
84 let iter_output =

85 if(val1.$0 == val2.$0,

86 if(val1.$1 == val2.$1,

87 if(val1.$2 == val2.$2,

88 {p.$0 + 1L, p.$1 + 1L, merge(p.$2, true), merge(p.$3, true)},

89 if(val1.$2 < val2.$2,

90 {p.$0 + 1L, p.$1, merge(p.$2, false), p.$3},

91 {p.$0, p.$1 + 1L, p.$2, merge(p.$3, false)}

92 )

93 ),

94 if(val1.$1 < val2.$1,

95 {p.$0 + 1L, p.$1, merge(p.$2, false), p.$3},

96 {p.$0, p.$1 + 1L, p.$2, merge(p.$3, false)}

97 )

98 ),

99 if(val1.$0 < val2.$0,

100 {p.$0 + 1L, p.$1, merge(p.$2, false), p.$3},

101 {p.$0, p.$1 + 1L, p.$2, merge(p.$3, false)}

102 )

103 );

104 {

105 iter_output,

106 iter_output.$0 < len1 &&

107 iter_output.$1 < len2

108 }

109 ),

110 {0L, 0L, appender[bool], appender[bool]}

111 );

112 # iterate over remaining un-checked elements in both arrays and append False until maxLen

113 let res = if(res.$0 < maxlen, iterate(res,

114 |p|

115 {

116 {p.$0 + 1L, p.$1, merge(p.$2, false), p.$3},

117 p.$0 + 1L < maxlen

118 }

119 ), res);

120 let res = if(res.$1 < maxlen, iterate(res,

121 |p|

122 {

123 {p.$0, p.$1 + 1L, p.$2, merge(p.$3, false)},

124 p.$1 + 1L < maxlen

125 }

126 ), res);

127 let b = appender[vec[bool]];

128 let c = merge(b, result(res.$2));

129 result(merge(c, result(res.$3)))

1 |_inp0:vec[f32],_inp1:vec[f32],_inp10:vec[f32],_inp11:vec[f32],

2 _inp12:vec[vec[i8]],_inp17:vec[vec[i64]],_inp2:vec[vec[i8]],_inp9:vec[vec[i64]]|

3 (let obj100:vec[f32]=(_inp0:vec[f32]);

4 (let obj101:vec[f32]=(_inp1:vec[f32]);

5 (let obj102:vec[vec[i8]]=(_inp2:vec[vec[i8]]);

6 (let obj119:vec[f32]=(_inp10:vec[f32]);

7 (let obj120:vec[f32]=(_inp11:vec[f32]);

8 (let obj121:vec[vec[i8]]=(_inp12:vec[vec[i8]]);

9 (let obj136:vec[f32]=(result(

10 for(

11 lookup(_inp9:vec[vec[i64]],0L),

12 appender[f32],

13 |b:appender[f32],i:i64,n:i64|

14 merge(b:appender[f32],lookup(obj100:vec[f32],n:i64))

15 )

16 ));(let obj139:vec[f32]=(result(

17 for(

18 lookup(_inp17:vec[vec[i64]],0L),

19 appender[f32],
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20 |b__3:appender[f32],i__3:i64,n__3:i64|

21 merge(b__3:appender[f32],lookup(obj119:vec[f32],n__3:i64))

22 )

23 ));(let len1:i64=(len(obj136:vec[f32]));(let len2:i64=(len(obj139:vec[f32]));

24 (let maxlen:i64=(if(

25 (len1:i64>len2:i64),

26 len1:i64,

27 len2:i64

28 ));(let indexes1:{vec[f32],vec[f32],vec[vec[i8]]}=({obj136:vec[f32],result(

29 for(

30 lookup(_inp9:vec[vec[i64]],1L),

31 appender[f32],

32 |b__4:appender[f32],i__4:i64,n__4:i64|

33 merge(b__4:appender[f32],lookup(obj101:vec[f32],n__4:i64))

34 )

35 ),result(

36 for(

37 lookup(_inp9:vec[vec[i64]],2L),

38 appender[vec[i8]],

39 |b__5:appender[vec[i8]],i__5:i64,n__5:i64|

40 merge(b__5:appender[vec[i8]],lookup(obj102:vec[vec[i8]],n__5:i64))

41 )

42 )});(let indexes2:{vec[f32],vec[f32],vec[vec[i8]]}=({obj139:vec[f32],result(

43 for(

44 lookup(_inp17:vec[vec[i64]],1L),

45 appender[f32],

46 |b__6:appender[f32],i__6:i64,n__6:i64|

47 merge(b__6:appender[f32],lookup(obj120:vec[f32],n__6:i64))

48 )

49 ),result(

50 for(

51 lookup(_inp17:vec[vec[i64]],2L),

52 appender[vec[i8]],

53 |b__7:appender[vec[i8]],i__7:i64,n__7:i64|

54 merge(b__7:appender[vec[i8]],lookup(obj121:vec[vec[i8]],n__7:i64))

55 )

56 )});(let res:{i64,i64,appender[bool],appender[bool]}=(if(

57 if(

58 (len1:i64>0L),

59 (len2:i64>0L),

60 false

61 ),

62 iterate(

63 {0L,0L,appender[bool],appender[bool]},

64 |p:{i64,i64,appender[bool],appender[bool]}|

65 (let val1:{f32,f32,vec[i8]}=({lookup(indexes1.$0,p.$0),lookup(indexes1.$1,p.$0),lookup(indexes1.$2,p.$0)});

66 (let val2:{f32,f32,vec[i8]}=({lookup(indexes2.$0,p.$1),lookup(indexes2.$1,p.$1),lookup(indexes2.$2,p.$1)});

67 (let iter_output:{i64,i64,appender[bool],appender[bool]}=(if(

68 (val1.$0==val2.$0),

69 if(

70 (val1.$1==val2.$1),

71 if(

72 (val1.$2==val2.$2),

73 {(p.$0+1L),(p.$1+1L),merge(p.$2,true),merge(p.$3,true)},

74 if(

75 (val1.$2<val2.$2),

76 {(p.$0+1L),p.$1,merge(p.$2,false),p.$3},

77 {p.$0,(p.$1+1L),p.$2,merge(p.$3,false)}

78 )

79 ),

80 if(

81 (val1.$1<val2.$1),

82 {(p.$0+1L),p.$1,merge(p.$2,false),p.$3},

83 {p.$0,(p.$1+1L),p.$2,merge(p.$3,false)}

84 )

85 ),

86 if(

87 (val1.$0<val2.$0),

88 {(p.$0+1L),p.$1,merge(p.$2,false),p.$3},

89 {p.$0,(p.$1+1L),p.$2,merge(p.$3,false)}

90 )

91 ));{iter_output:{i64,i64,appender[bool],appender[bool]},if(

92 (iter_output.$0<len1:i64),

93 (iter_output.$1<len2:i64),

94 false

95 )})))

96 ),

97 {0L,0L,appender[bool],appender[bool]}

98 ));(let res__1:{i64,i64,appender[bool],appender[bool]}=(if(

99 (res.$0<maxlen:i64),

100 iterate(

101 res:{i64,i64,appender[bool],appender[bool]},

102 |p__1:{i64,i64,appender[bool],appender[bool]}|

103 {{(p__1.$0+1L),p__1.$1,merge(p__1.$2,false),p__1.$3},((p__1.$0+1L)<maxlen:i64)}

104 ),

105 res:{i64,i64,appender[bool],appender[bool]}

106 ));(let res__2:{i64,i64,appender[bool],appender[bool]}=(if(

107 (res__1.$1<maxlen:i64),

108 iterate(

109 res__1:{i64,i64,appender[bool],appender[bool]},

110 |p__2:{i64,i64,appender[bool],appender[bool]}|

111 {{p__2.$0,(p__2.$1+1L),p__2.$2,merge(p__2.$3,false)},((p__2.$1+1L)<maxlen:i64)}

112 ),

113 res__1:{i64,i64,appender[bool],appender[bool]}

114 ));result(

115 merge(merge(appender[vec[bool]],result(

116 res__2.$2

117 )),result(

118 res__2.$3
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119 ))

120 )))))))))))))))))

Aggregation

1 # _inp18 is the join intermediate result

2 |_inp0: vec[f32], _inp18: vec[vec[bool]], _inp3: vec[f32],

3 _inp5: vec[f32], _inp7: vec[f32], _inp9: vec[vec[i64]]|

4 let obj100 = (_inp0);

5 let obj103 = (_inp3);

6 let obj105 = (_inp5);

7 let obj107 = (_inp7);

8 let obj116 = (lookup(_inp9, 0L));

9 let obj136 = (

10 result(

11 for(

12 obj116,

13 appender,

14 |b, i, n|

15 merge(b, lookup(obj100, n))

16 )

17 ));

18 let obj143 = (slice(lookup(_inp18, 0L), 0L, len(obj136)));

19 let obj155 = (

20 result(

21 for(

22 zip(obj107, obj143),

23 appender,

24 |b, i, e|

25 if (e.$1,

26 merge(b, e.$0),

27 b)

28 )

29 ));

30 let obj159 = (

31 result(

32 for(

33 zip(obj105, obj143),

34 appender,

35 |b, i, e|

36 if (e.$1,

37 merge(b, e.$0),

38 b)

39 )

40 ));

41 let obj171 = (

42 result(

43 for(

44 zip(obj103, obj143),

45 appender,

46 |b, i, e|

47 if (e.$1,

48 merge(b, e.$0),

49 b)

50 )

51 ));

52 let obj294 = (

53 map(

54 obj171,

55 |a: f32|

56 a != f32(-99.99)

57 ));

58 let obj295 = (

59 map(

60 obj159,

61 |a: f32|

62 a != f32(-999.9)

63 ));

64 let obj296 = (

65 result(

66 for(zip(obj294, obj295),

67 appender,

68 |b, i, n|

69 merge(b, n.$0 && n.$1)

70 )

71 ));

72 let obj297 = (

73 map(

74 obj155,

75 |a: f32|

76 a != f32(-999.9)

77 ));

78 let obj298 = (

79 result(

80 for(zip(obj296, obj297),

81 appender,

82 |b, i, n|

83 merge(b, n.$0 && n.$1)

84 )

85 ));

86 let obj307 = (

87 result(
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88 for(

89 zip(obj171, obj298),

90 appender,

91 |b, i, e|

92 if (e.$1,

93 merge(b, e.$0),

94 b)

95 )

96 ));

97
98
99 let agg_min = f64(

100 result(

101 for(

102 obj307,

103 merger[f32, min],

104 |b, i, e|

105 merge(b, e)

106 )

107 )

108 );

109 let agg_max = f64(

110 result(

111 for(

112 obj307,

113 merger[f32, max],

114 |b, i, e|

115 merge(b, e)

116 )

117 )

118 );

119 let agg_mean = f64(

120 result(

121 for(

122 obj307,

123 merger[f32, +],

124 |b, i, n|

125 merge(b, n)

126 )

127 )

128 ) / f64(len(obj307));

129 let agg_std = sqrt(

130 result(

131 for(

132 obj307,

133 merger[f64, +],

134 |b, i, n|

135 merge(b, pow(f64(n) - agg_mean, 2.0))

136 )

137 ) / f64(len(obj307) - 1L)

138 );

139 let agg_result = appender[f64];

140 let agg_result = merge(agg_result, agg_min);

141 let agg_result = merge(agg_result, agg_max);

142 let agg_result = merge(agg_result, agg_mean);

143 let agg_result = merge(agg_result, agg_std);

144
145 result(agg_result)

1 |_inp0:vec[f32],_inp18:vec[vec[bool]],_inp3:vec[f32],

2 _inp5:vec[f32],_inp7:vec[f32],_inp9:vec[vec[i64]]|

3 (let obj100:vec[f32]=(_inp0:vec[f32]);

4 (let obj143:vec[bool]=(slice(lookup(_inp18:vec[vec[bool]],0L),0L,len(result(

5 for(

6 lookup(_inp9:vec[vec[i64]],0L),

7 appender[f32],

8 |b:appender[f32],i:i64,n:i64|

9 merge(b:appender[f32],lookup(obj100:vec[f32],n:i64))

10 )

11 ))));(let obj307:vec[f32]=(result(

12 for(

13 zip(

14 result(

15 for(

16 zip(

17 _inp3:vec[f32],

18 obj143:vec[bool]

19 ),

20 appender[f32],

21 |b__3:appender[f32],i__3:i64,e__2:{f32,bool}|

22 if(

23 e__2.$1,

24 merge(b__3:appender[f32],e__2.$0),

25 b__3:appender[f32]

26 )

27 )

28 ),

29 result(

30 for(

31 zip(

32 _inp5:vec[f32],

33 obj143:vec[bool]

34 ),

35 appender[bool],

36 |b__7:appender[bool],i__7:i64,e__3:{f32,bool}|

37 if(

38 e__3.$1,
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39 merge(b__7:appender[bool],(e__3.$0!=(f32((-999.9))))),

40 b__7:appender[bool]

41 )

42 )

43 ),

44 result(

45 for(

46 zip(

47 _inp7:vec[f32],

48 obj143:vec[bool]

49 ),

50 appender[bool],

51 |b__10:appender[bool],i__10:i64,e__4:{f32,bool}|

52 if(

53 e__4.$1,

54 merge(b__10:appender[bool],(e__4.$0!=(f32((-999.9))))),

55 b__10:appender[bool]

56 )

57 )

58 )

59 ),

60 appender[f32],

61 |b__12:appender[f32],i__12:i64,data__2:{f32,bool,bool}|

62 (let tmp__9:f32=(data__2.$0);

63 (let data__3:{f32,bool,bool,bool}=({tmp__9:f32,(tmp__9:f32!=(f32((-99.99)))),data__2.$1,data__2.$2});

64 (let tmp__16:{bool,bool}=({data__3.$1,data__3.$2});

65 (let data__4:{f32,bool,bool}=({data__3.$0,if(

66 tmp__16.$0,

67 tmp__16.$1,

68 false

69 ),data__3.$3});(let tmp__20:{bool,bool}=({data__4.$1,data__4.$2});

70 (let e__5:{f32,bool}=({data__4.$0,if(

71 tmp__20.$0,

72 tmp__20.$1,

73 false

74 )});if(

75 e__5.$1,

76 merge(b__12:appender[f32],e__5.$0),

77 b__12:appender[f32]

78 )))))))

79 )

80 ));(let agg_mean:f64=(((f64(result(

81 (let a:vec[f32]=(obj307:vec[f32]);for(

82 fringeiter(a:vec[f32]),

83 for(

84 simditer(a:vec[f32]),

85 merger[f32,+],

86 |b__13:merger[f32,+],i__13:i64,n__3:simd[f32]|

87 merge(b__13:merger[f32,+],n__3:simd[f32])

88 ),

89 |b__14:merger[f32,+],i__14:i64,n__4:f32|

90 merge(b__14:merger[f32,+],n__4:f32)

91 ))

92 )))/(f64(len(obj307:vec[f32])))));result(

93 merge(merge(merge(merge(appender[f64],(f64(result(

94 (let a__1:vec[f32]=(obj307:vec[f32]);for(

95 fringeiter(a__1:vec[f32]),

96 for(

97 simditer(a__1:vec[f32]),

98 merger[f32,min],

99 |b__15:merger[f32,min],i__15:i64,e__6:simd[f32]|

100 merge(b__15:merger[f32,min],e__6:simd[f32])

101 ),

102 |b__16:merger[f32,min],i__16:i64,e__7:f32|

103 merge(b__16:merger[f32,min],e__7:f32)

104 ))

105 )))),(f64(result(

106 (let a__2:vec[f32]=(obj307:vec[f32]);for(

107 fringeiter(a__2:vec[f32]),

108 for(

109 simditer(a__2:vec[f32]),

110 merger[f32,max],

111 |b__17:merger[f32,max],i__17:i64,e__8:simd[f32]|

112 merge(b__17:merger[f32,max],e__8:simd[f32])

113 ),

114 |b__18:merger[f32,max],i__18:i64,e__9:f32|

115 merge(b__18:merger[f32,max],e__9:f32)

116 ))

117 )))),agg_mean:f64),(sqrt((result(

118 for(

119 obj307:vec[f32],

120 merger[f64,+],

121 |b__19:merger[f64,+],i__19:i64,n__5:f32|

122 merge(b__19:merger[f64,+],pow(((f64(n__5:f32))-agg_mean:f64),2.0))

123 )

124 )/(f64((len(obj307:vec[f32])-1L)))))))

125 )))))

Full averaged time measurements

* voluntary context switch
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real user sys mem max(K) maj faults min page faults vol switch* input output pipeline data
40.882 27.394 8.356 2323648.8 316.6 3348482.6 2312.2 833739.2 32.0 python-lib data 0
56.39 42.066 10.192 9116796.8 442.0 4028160.6 2399.4 466907.2 48.0 weld-single data 0
54.136 70.03 273.35 9404417.6 442.2 3210153.0 2922065.4 466635.2 48.0 weld-par data 0
1324.604 4249.342 124.674 23536354.4 208.0 42557664.6 617803.6 939180.8 4114451.2 spark-single data 0
369.348 3647.296 136.192 35308324.8 208.2 41344222.8 429977.4 939062.4 5248096.0 spark-par data 0
32.756 22.232 4.38 6206599.2 177.0 2339818.6 956.8 782878.4 35.2 R data 0
10.182 19.584 2.728 3707797.6 13.0 996605.0 11526.6 730297.6 124.8 java data 0
66.002 55.868 5.29 3484957.6 380.2 2134168.8 1055.6 876296.0 32.0 julia data 0
81.142 60.708 13.804 4565404.0 316.6 6786974.8 2585.8 1541156.8 32.0 python-lib data 1
74.736 52.942 16.805 18110324.8 442.4 8040864.4 2491.0 749006.4 48.0 weld-single data 1
69.362 107.464 552.944 18636389.6 442.2 6803260.4 5970668.8 748315.2 48.0 weld-par data 1
59.682 43.566 8.414 12340069.6 181.0 4611043.0 1264.0 1492648.0 40.0 R data 1
19.188 78.22 7.066 6680946.4 13.8 2535449.6 16023.8 1437305.6 96.0 java data 1
88.72 73.438 8.126 6736064.8 379.2 3952093.2 1304.0 1581798.4 32.0 julia data 1
175.072 139.396 24.618 9035976.0 317.0 14663282.0 3130.2 2954179.2 32.0 python-lib data 3
114.223 76.532 30.336 36092417.6 442.2 16352925.8 2757.4 1313014.4 48.0 weld-single data 3
108.602 190.516 1276.434 36697211.2 442.8 18483611.8 13626705.4 1312366.4 48.0 weld-par data 3
124.22 95.514 16.416 24607161.6 178.8 9071817.0 1811.2 2905651.2 40.0 R data 3
35.252 150.654 14.224 13257040.8 13.6 5332736.4 23259.0 2850220.8 124.8 java data 3
138.098 112.534 14.352 13238147.2 379.0 7720058.6 1828.6 2994465.6 32.0 julia data 3
380.192 310.894 48.3 18009652.8 316.4 31803549.6 4261.4 5782099.2 32.0 python-lib data 6
194.528 124.482 59.334 72204584.0 442.0 34698520.6 3194.0 2437700.8 48.0 weld-single data 6
189.274 357.278 2685.828 72956360.0 441.2 44710359.0 27711147.8 2437558.4 48.0 weld-par data 6
282.268 223.536 36.506 49140826.4 178.2 19011492.8 2877.2 5726195.2 40.0 R data 6
72.492 315.54 34.982 20053210.4 13.4 11257939.0 39156.6 5677744.0 200.0 java data 6
240.794 192.638 28.29 26242741.6 379.2 18585139.4 2975.2 5823576.0 32.0 julia data 6
858.758 714.616 102.358 35956838.4 316.8 76181537.6 6463.2 11436292.8 32.0 python-lib data 12
366.474 228.044 120.246 144293156.0 441.2 72305538.8 4048.8 4689144.0 48.0 weld-single data 12
363.6 731.914 5930.686 145427569.6 441.4 96142212.0 62188483.0 4689812.8 48.0 weld-par data 12
641.26 527.64 71.966 98208552.8 177.8 36618535.0 5118.6 11384472.0 40.0 R data 12
148.420 724.854 42.57 44406498.4 13.2 22423074.0 68125.4 11331003.2 280.0 java data 12
468.538 368.868 62.032 52251774.4 378.6 47135254.6 5198.0 11477622.4 33.6 julia data 12
1631.362 1329.778 222.402 71863173.6 317.4 173704747.4 10901.2 22748574.4 32.0 python-lib data 25
2133.428 1771.862 282.49 196374418.4 179.0 117636545.2 9556.2 22697177.6 48.0 R data 25
284.322 1194.948 89.318 89090696.8 109.6 46201228.6 118495.8 22672232.0 452.8 java data 25
976.18 746.928 155.88 104286566.4 378.8 135576575.2 9585.8 22788422.4 32.0 julia data 25
4098.794 3391.166 545.09 143663156.8 331.6 440954859.8 19778.2 45372936.0 32.0 python-lib data 50
660.544 3823.974 232.912 173073301.6 114.8 105139119.0 284944.4 45294361.6 851.2 java data 50

Literature Study
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Res.
Ques-
tion

Improving multi-library data analysis pipelines through abstract repre-
sentation and co-compilation

Key. improve, multi-library, data analysis/processing, pipeline, ab-
stract/intermediate representation, co-compilation

Criterion Rationale
Inclusion Criteria
1 A study that directly proposes soft-

ware architectures, architectural
styles or strategies that are gen-
erally applicable to multiple li-
braries*.

Since typical data analysis pipelines
use multiple libraries (e.g. pipeline
using pandas, scikit-learn, and ten-
sorflow), we need articles proposing
software solutions that are gener-
ally applicable to multiple libraries.

2 A study that addresses computa-
tion space and/or time as a quality
attribute.

We measure improvements through
space and/or time, therefore a
study must show that there are im-
provements in any of these areas.

3 A study that is developed by either
academics or practitioners.

Both academic and industrial solu-
tions are relevant to this study.

4 A study that proposes a solu-
tion using abstract representations
and/or co-compilation.

We are interested in papers
proposing a solution involving
abstract representations and/or
co-compilation.

5 A study that is written in English. For feasibility reasons, papers writ-
ten in other languages than English
are excluded.

Exclusion Criteria
1 A study that does not propose soft-

ware solutions applicable to multi-
ple libraries*.

We want to investigate typical
data analysis pipelines which in-
volve multiple libraries, therefore
papers only capable of improving a
single library are excluded.

2 A study that does not show what
improvements are possible.

A study must show realistic tests
and improvements against other ex-
isting solutions.

3 A study which does not show im-
provements through abstract repre-
sentation and/or co-compilation.

We are interested in studies involv-
ing abstract representations and/or
co-compilation, therefore papers
proposing only other types of im-
provements are rejected.

*library = used in a broader sense, including e.g. python packages like
pandas and tensorflow, but also e.g. multiple programming languages like
Java and Python or through the usage of UDF’s; in other words, if the
relationship is many-to-one.
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Read
Title not read
Abstract includes skimming through paper
Full-text some paragraphs may be skipped

Selected
Relevant Used for which papers are relevant

to the thesis though might not al-
ways fulfil all criteria; more like rel-
evant work.

Very relevant Used for great papers as compari-
son to the thesis’ approach.

# Sel. Title Author Year Inclusion Exclusion Read
Rel. VRel. 1 2 3 4 5 1 2 3 T. A. F.

1 yes yes Weld: Rethinking the Interface Between Data-
Intensive Libraries

Matei Zaharia et al. 2017 x x x x x x

2 no no Julia: A Fresh Approach to Numerical Comput-
ing

Jeff Bezanson et al 2017 x x x x x x x

3 yes yes Julia: A Fast Dynamic Language for Technical
Computing

Jeff Bezanson et al 2012 x x x x x x

4 no no NoSQL Database: New Era of Databases for Big
Data Analytics - Classification, Characteristics
and Comparison

A B M Moniruzza-
man and S A Hossain

2013 x x x x x x

5 yes no Spark SQL: Relational Data Processing in Spark Matei Zaharia et al. 2015 x x x x x x
6 no no Spark: Cluster Computing with Working Sets Matei Zaharia et al. 2010 x x x x x x
7 no no Query Optimization in Database Systems M Jarke and J Koch 1984 x x x x x x
8 no no Exploring the Performance of Spark for a Scien-

tific Use Case
S Sehrish et al. 2016 x x x x

9 no no Dremel: Interactive Analysis of Web-Scale
Datasets

S Melnik et al. 2010 x x x x x

10 no no An Overview of the HDF5 Technology Suite and
its applications

M Folk et al. 2011 x x x x x x x

11 yes no High-level GPU programming in Julia Tim Besard et al 2016 x x x x x x
12 yes no Parallelizing Julia with a Non-invasive DSL Todd A Anderson et

al.
2017 x x x x x x

13 no no Engineering a Customizable Intermediate Repre-
sentation

K Palacz et al. 2003 x x x x x

14 no no A Common Compiler Framework for Big Data
Languages: Motivation, Opportunities, and Ben-
efits

Vinayak R. Borkar
and Michael J. Carey

2013 x x x x x x

15 yes no Algebricks: a data model-agnostic compiler back-
end for Big Data languages

V Borkar et al. 2015 x x x x x x

16 yes no LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation

Chris Lattner and
Vikram Adve

2004 x x x x x x

17 yes no INSPIRE: The Insieme Parallel Intermediate
Representation

H Jordan et al. 2013 x x x x x x
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# Sel. Title Author Year Inclusion Exclusion Read
Rel. VRel. 1 2 3 4 5 1 2 3 T. A. F.

18 yes no Darkroom: Compiling High-Level Image Pro-
cessing Code into Hardware Pipelines

James Hegarty et al. 2014 x x x x x x

19 no no Database Query Optimization Using Compila-
tion Techniques

M D R Abadi 2013 x x x x x x

20 no no DLVM: A modern compiler infrastructure for
deep learning systems with adjoint code gener-
ation in a domain-specific IR

R Wei et al. 2017 x x x x x x

21 no no Data Structures for Statistical Computing in
Python

Wes McKinney 2010 x x x x x

22 no no TensorFlow: A System for Large-Scale Machine
Learning

Google Brain 2016 x x x x x

23 no no Basic Linear Algebra Subprograms for Fortran
Usage

Chris L Lawson et al. 1979 x x x x x

24 no no Efficiently Compiling Efficient Query Plans for
Modern Hardware

T Neumann 2011 x x x x x x

25 no no Monad Comprehensions: A Versatile Represen-
tation for Queries

Torsten Grust 2004 x x x x x

26 yes yes An Architecture for Compiling UDF-centric
Workflows

A Crotty et al. 2015 x x x x x x

27 no no LINQ: Reconciling Object, Relations and XML
in the .NET Framework

E Meijer et al. 2006 x

28 no no Dandelion: A Compiler and Runtime for Hetero-
geneous Systems

CJ Rossbach et al. 2013 x x x x x x

29 yes no Pydron: Semi-Automatic Parallelization for
Multi-Core and the Cloud

SC Muller et al. 2014 x x x x x x

30 no no OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems

John E Stone et al 2010 x x x x x x x

31 no no An introduction to spir-v. John Kessenick 2015 x x x x x
32 no no FlumeJava: easy, efficient data-parallel pipelines C Chambers et al. 2010 x x x x x x
33 yes no Musketeer: All for One, One for All in Data Pro-

cessing Systems
I Gog et al. 2015 x x x x x x

34 yes yes Implicit Parallelism Through Deep Language
Embedding

A Alexandrov et al. 2015 x x x x x x

35 no no HyPer: A Hybrid OLTP&OLAP Main Mem-
ory Database System Based on Virtual Memory
Snapshots

A Kemper and T
Neumann

2012 x x x x x x

36 yes no Flare: Native Compilation for Heterogeneous
Workloads in Apache Spark

M Essertel et al. 2017 x x x x x x

37 yes no Database-Inspired Optimizations for Statistical
Analysis

H Mühleisen 2018 x x x x x x

38 no no A Compiler Intermediate Representation for Re-
configurable Fabrics

Zhi Guo and Walid
Najjar

2006 x x x x x x

39 no no META-pipe–Pipeline Annotation, Analysis and
Visualization of MarineMetagenomic Sequence
Data

EM Robertson 2016 x x x x x x

40 yes no Domain-Specific Language for Data Analytics
Pipelines

C Misale 2017 x x x x x x

41 no no Tapir: Embedding Fork-Join Parallelism Into
LLVM Intermediate Representation

TB Schardl 2017 x x x x x x

42 no no A Language for the Compact Representation of
Multiple Program Versions

S Donadio 2005 x x x x x

43 yes no Radish: Compiling Efficient Query Plans for Dis-
tributed Shared Memory

B Myers 2014 x x x x x

44 yes yes HPAT: High Performance Analytics with Script-
ing Ease-of-Use

E Totoni 2017 x x x x x x

45 yes no Erbium: A Deterministic, Concurrent Interme-
diateRepresentation to Map Data-Flow Tasks to
Scalable,Persistent Streaming Processes

C Miranda 2010 x x x x x

46 yes no Pegasus: An Efficient Intermediate Representa-
tion

M Budiu 2002 x x x x x

47 yes no Bridging the Gap: Towards Optimization Across
Linear and Relational Algebra

A Kunft 2016 x x x x x

48 no no Naiad: A Timely Dataflow System G Murray et al. 2013 x x x x x x
49 no no AJIRA: a Lightweight Distributed Middleware

for MapReduce and Stream Processing
J Urbani et al. 2014 x x x x x x

50 no no The Dataflow Model: A Practical Approach
to BalancingCorrectness, Latency, and Cost
in Massive-Scale,Unbounded, Out-of-Order Data
Processing

T Akidau et al. 2015 x x x x x x

51 no no NoDB: Efficient Query Execution on Raw Data
Files

I Alagiannis et al. 2008 x x x x x

52 no no An architecture for recycling intermediates in a
column-store

M Ivanova et al. 2010 x x x x x

53 no no Scalability! But at what COST? F McSherry et al. 2015 x x x x x x x58
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