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Abstract

Users of Apache Spark™ regularly encounter the problem of suboptimal execution of SQL

queries. A query optimizer, such as Spark’s Catalyst optimizer, can often resolve potential
problems in queries defined by the user, but these optimizations are bound by logical correctness.
A such, a subomtimal query can often result in performance problems. For this reason, Spark
provides the user with a user interface called Spark UI, that allows them to analyse problems
with the runtime performance of their queries. However, in Spark version 2.0, a new data-centric
execution model, based on ideas introduced in the HyPer SQL engine, was implemented. In
this execution model, Spark employs Java code generation to compile operator pipelines in a
SQL query plan into a single for-loop, resulting in highly efficient pipelines. A downside of this
approach is that it obfuscates operator boundaries, and as a consequence, runtime observability
within these pipelines is drastically reduced. Consequently, the Spark Ul cannot give detailed
information on the behavior of the individual operators of such a pipeline.

In order to create a tool that allows the user to analyse the runtime characteristics of the oper-
ators in their SQL queries, we explore different approaches for profiling compiled query pipelines
in the JVM, with the aim of finding a profiling approach that can provide fine-grained and ac-
curate information on individual operators in a compiled SQL query pipelines. Furthermore, a
proposal is made for the definition and evaluation of the accuracy of such a profiler.

In this thesis, we introduce an approach of collecting fine-grained profiles of generated-code
pipelines of SQL queries in Apache Spark, which allows users to break down the execution cost
of these pipelines by individual operators. We achieve this by profiling at the level of native
instructions, and using the JVM Tool Interface to aggregate these results at the level of lines of
generated Java code. Furthermore, we show that this approach can be used to profile SQL query
pipelines at a higher accuracy than existing JVM profiling approaches, without requiring func-
tional changes to the generated source code, and finally we show that this approach can collect
highly accurate profiles at an overhead of less than 10% for most queries, and can potentially
obtain profiles at even lower overheads.



Chapter 1

Introduction

In this chapter, we will discuss the motivation of the research, and discuss the problem statement
and research questions for this thesis.

1.1 Motivation

Apache Spark™ [33] is a data analytics framework, developed to efficiently perform large-scale
distributed computations, providing a less restrictive execution model compared to preceding
frameworks, such as MapReduce [5]. As such, high performance is expected of the platform,
and in order to achieve this, its SQL engine, Spark SQL, uses a highly efficient data-centric code
generation approach for the execution of relational queries on big data, which was first introduced
in HyPer [I7]. A consequence of this approach is that the generated code is difficult to observe,
and the different operators in the pipeline cannot easily be distinguished. Thus, although the
Spark UI provides the user with detailed information on query execution, it does not currently
provide a profiler that can report the execution time spent in these operators. As a result, it is
difficult for a user to rewrite suboptimal SQL queries for better performance. In this thesis, we
seek to create a novel approach of profiling generated code pipelines in SQL execution plans, that
helps a user find the problematic operators in pipelines that were compiled to JVM bytecode.

Most SQL engines use the Volcano model [7] for the execution of queries. In this model,
each operator acts as an iterator, and for each tuple requested, every operator in the query
plan must be traversed via their iterator interfaces in order to obtain the next tuple from the
data source. In order to assist users with diagnosing the cause of performance problems, many
of these execution engines, such as those found in Oracle Database, MySQL, and PostgreSQL,
provide the user with profiling tools that can identify the running cost of operators in a query
plan. However, a problematic aspect of the Volcano model is that every operator incurs a
necessary overhead introduced by the operator boundaries, requiring materialization of the data
as tuples for every boundary. Spark uses the code generation approach to mitigate this, by
fusing non-blocking, pipelining operators together, and using just-in-time (JIT) compilation to
combine these pipelines into a single for-loop, thereby eliminating the materialization at operator
boundaries in the pipeline, and allowing for rigorous compiler optimizations. Figure [I.I] shows
an overview of this approach, and the challenges it poses for profiling. As of yet, none of the
implementations of this approach provide a solution for profiling the component operators of
such a fused pipeline.

Another challenge in building an accurate profiler for query plans is the definition and evalu-
ation of accuracy. Therefore, in this thesis we seek to find such a definition for accuracy, as well
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Figure 1.1: An overview of the profiling problem. The SQL input is passed through a number
of optimization and compilation steps, making the collection of profiles a challenge.

as a framework for the evaluation of the accuracy of query plan profilers. In previous research,
different metrics of accuracy for time-based profiling have been used, including correlation be-
tween successive runs [30], overlap with different profilers and the ability to correctly attribute
the cost of artificial workloads [16].

Many profiling approaches for call graph edge profiling have a notion of a perfect profile, where
all edges encountered in the execution of the program are accounted for [26]. However, within the
scope of time-based profiling, there is always an uncertainty present in the profile caused by the
execution environment, which includes effects of compiler optimizations, biases introduced by the
CPU architecture, and I/O latency. Furthermore, the HotSpot JVM introduces various challenges
in profiling, caused by the various non-deterministic stages of interpretation, optimization, and
it’s own JIT compilation of the program. These uncertainties make it impossible to obtain an
exact runtime cost profile, and therefore, the result will always be an estimate. Moreover, besides
the biases inherent to the runtime environment, every profiling method should be assumed to
influence the running application. This observer effect can be caused by overhead introduced by
sampling, interference with the JVM’s profiler that drives optimization decisions, instrumentation
that introduces bytecode fences or memory fences that influence JIT compilation and execution
of machine code, as well as other factors that can be difficult, if not impossible, to correct.

In this thesis, we aim to find the most suitable approach for creating a profiling tool that
can accurately profile partial query plans that are found as generated code pipelines in the
executed query plan. In order to provide a frame of reference to help understand the requirements
and performance of the profiler, we present a canonical Spark SQL query consisting of the
operators Scan, Filter, Join and Aggregate (SFJA), which encompasses the operators that are
most frequently found in SQL workloads, and which can co-exist in a single pipeline. The profiler
will be designed to be able to profile this query. Different profiling methods will be explored,
and in order to evaluate the accuracy of these profilers, artifically constructed SFJA queries will
be used as an oracle for the correct runtime profile of a query. Finally, different methods will be
explored for the use of Spark’s task planning capabilities in order to sample and profile tasks, to
obtain a method of confining the overhead, while still obtaining accurate profiles.



1.2 Problem statement

1.2.1 Research goals

The goal of this project is to find and evaluate a method of providing Spark users with a profiler
that helps them to better understand what affects the performance of generated code pipelines in
an optimized and compiled query plan, and how they might be able to optimize their queries for
performance. Ideally, it should be able to be run in a production environment, such that a user
can retrieve profiles of queries which have run in the past and have proven to be problematic.
This section presents a number of criteria that such a tool should satisfy.

Firstly, the profiler should at the minimum be capable of aggregating data on the level
of operators. This criterion derives from the goal of providing profiling information that is
understandable to a user. Since a basic level of understanding of relational algebra is necessary
for the effective use of Spark and Spark SQL, it is reasonable to assume that users of the platform
have an understanding of the operators in relational algebra, such as the join, aggregation,
project, and filter operations. However, most users cannot be assumed to have knowledge of the
underlying implementation, and as such, these operators present the lowest level of understanding
that can be expected of a user.

Secondly, the aggregations that are obtained by doing so must be trustworthy for the user.
Therefore, the profiles generated by the method must be repeatable and accurate. Determining
accuracy of a JVM profiler in the general case is difficult. Due to the observer effect, granularity
limits, and CPU microarchitecture, it is difficult to determine where most of the time is spent
in the execution of a program. In order to evaluate the accuracy of the Spark SQL profiler, an
experimental setup is required where the profiler can be run in a controlled environment, such
that a ground truth can be established.

1.2.2 Research questions

In this section, we present three research questions that are to be answered in this thesis. The
first research question focuses on identifying existing or novel approaches of profiling within
the JVM and Spark SQL. The second research question discusses the criteria for validity of
these approaches, as well as the evaluation. The third and final question discusses opportunities
presented by the integration of these approaches into Apache Spark.

RQ1. What approaches for obtaining performance profiles can be used for profiling
the execution of generated code of an SFJA query pipeline?

The first step in obtaining a profile of SFJA queries is to obtain a profile of the physical execution,
that is, a profile of the performance costs of the execution of bytecode that is generated from the
SFJA query by Catalyst, within the JVM. In order to answer this question, two aspects have to
be explored.

RQ1.1. What profiling methods exist for profiling Java programs?

The generated subroutines of an SFJA query are executed entirely within the JVM. Therefore,
different existing approaches of generating profiles in the JVM profiling must be investigated, so
an analysis can be done on the applicability of these profilers to the Spark SQL use case.

RQ1.2. What is the minimum granularity of the profiles provided by the identified
approaches?

Finally, in order to be able to aggregate the results obtained by these profilers, the results must
be fine-grained enough to allow for the attribution of the profiling costs to operators. This



granularity is determined by a number of different variables, such as biases due to the runtime
environment, inhibitive overhead, and limitations of the debugging APIs.

RQ2. How can the accuracy of a profiler be defined within the scope of the srijaA
queries?

In order to understand how well these profilers fulfill the criterion of high accuracy, a definition
of accuracy of a JVM profiler must be found. The complex optimizations that are performed by
the HotSpot architecture make it difficult to identify what the semantics are of the performance
of a program. During the interpretation stage, the profile of a JVM application may look entirely
different from the profile after optimization and JIT compilation. Furthermore, if a satisfactory
definition of performance is found, it might still prove to be difficult to define accuracy in the
general case of JVM programs. In previous literature, different metrics of accuracy have been
used, such as overlap with other profilers, the correct identification of hot spots in the code, and
the extent to which it can identify known workloads, however, these are problematic in the scope
of the SFJA queries.

RQ2.1. How can an oracle be created that can establish an accurate baseline profile
of controllable, synthetic SFJA queries?

As a consequence of the aforementioned difficulties with profiling in the JVM, establishing a
ground truth for an accurate profiler is difficult, if not impossible to construct in the general
case. However, the scope of this profiler is limited to generated code pipelines, hence a feasible
approach might be to create an experimental setup where the performance cost of the individual
operators in an SFJA query can be controlled, such that it can be used to evaluate the accuracy
of the profiling methods that were identified in RQI] in order to evaluate the accuracy of the
method within the given scope.

RQ3. What is the impact of the integration of the identified approaches in Apache
Spark?

It is desirable for the profiler to be easily integrated into the Apache Spark runtime environment.
This brings with it a number of challenges, including limiting the overhead of the profiler in the
execution environment, and the maintainability of the code base.



Chapter 2

Background

In this chapter, we discuss the background and related work. First we discuss the execution of
SQL queries on distributed datasets in Apache Spark, and the problem this poses for profiling.
Furthermore, we discuss existing work and industry tools of profiling methods, and how these
might help us to build an accurate query pipeline profiler.

2.1 Spark SQL Execution Model

Spark SQL [3] is the SQL engine that is built into Spark, with the intention of providing a
framework for the optimization and execution of highly efficient queries on relational datasets.
This framework consists of a data structure for relational data, namely the DataFrame data
structure, as well as the Catalyst query optimizer, which optimizes and compiles queries on
these DataFrames. In this section, we will discuss how queries on dataframes are executed
within Spark SQL.

2.1.1 Overview

DataFrames in Spark are inspired by the DataFrames provided by numerical computation frame-
works such as R and Pandas [24, 15]. Analogous to the data frame data structure in Pandas,
Spark uses a DataFrame interface as an abstraction over datasets that provides a column-oriented
interface and schema describing the data in the dataset. Within Spark, this interface provides
relational algebra operators, which allows a user of the framework to perform relational queries
on distributed datasets.

An overview of the execution model that encompasses the operation and optimization of a
SQL query in Apache Spark is presented in fig. In order to compile SQL code and relational
operations into executable Spark jobs, Spark relies on the Catalyst optimizer. The optimizer
initially parses and resolves the SQL query using schemas from a catalog describing the relations
known to Spark, to form a logical plan consisting of relational algebra operations operating on
resolved. Initially, this logical plan is optimized and compiled according to the iterator-based
Volcano model [7].

In the volcano model, each operator acts as an iterator that implements a next method that
provides the next tuple in the operator’s result set. During execution of a query within the
Volcano model, the next iterator is called repeatedly on the root operator of the plan, until all
results have been returned. If the operator has child operators, each next call will recurse down
into the tree, calling the next method on each child operator to produce the next tuple. This is
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Figure 2.1: A high level overview of query execution in Spark SQL. The Catalyst optimizer
compiles a SQL query into a query plan, and into separate pipelines using code generation.

called a pull-based approach, since data is pulled upwards through the tree from the leave nodes
that typically represent data-access operators such as file scans.

Code generation A disadvantage of the volcano approach, as outlined above, is that in order
to execute this query plan, the operator tree must be traversed for every tuple, incurring an
overhead for every operator boundary each time the next method is called. In order to overcome
this problem, Spark employs generated code pipelines to achieve Just-In-Time compilation.

Contributors to the overhead of the Volcano model have been identified as the manipulation
of tuples that is required for each call because the operator is expected to produce tuples, as well
as the overhead and lack of locality caused by the virtual nezt call [36], which requires indirection
to be invoked. In order to overcome these problems, the HyPer SQL engine [I7] introduced a
data-centric code generation approach. This approach compiles the Volcano-model iterators into
inlined generated code, producing a single for-loop that iterates over tuples.

To determine which operators in a query plan constitute a pipeline, this approach differ-
entiates between pipelining operators which allow a tuple to be pushed directly to the parent
operator, or pipeline-breaking operators such as read and write operators, aggregation or sorting
operators. The latter require intermediate storage in memory, in which case materialization of
the data as tuples for efficient access and data locality is necessary. As a result, these operators
form the begin or the end of a pipeline.

In the original approach of HyPer, which was built using LLVM as compiler, this pipeline
dematerializes the values in a tuple by loading the values from the tuple, and into registers in
the LLVM virtual machine. In contrast to the Volcano model, this model is push-based, meaning
that the tuples that are produced at the leaf nodes are pushed upwards through the tree one
at a time, until the leaf nodes run out of tuples. This is achieved by inlining the code that is
generated for each parent operator in the pipeline, and reusing the previously dematerialized
values. Materialization of the separate values from the registers back into tuples is deferred to
the top-most operator in the pipeline. As a result, each value in the output tuple only has been
loaded and stored in a tuple once for a single pipeline. Furthermore, next-calls between the
operators in the tuples are eliminated, allowing for a drastic reduction of overhead compared to
the Volcano model.

Within the HyPer model, operators generate code fragments that either produce or consume
arow. The consume fragment consumes one row as input from its child operator in the operator
tree, and directly pushes the results upwards to the parent operator, without intermediate storage
or materialization. Pipelining operators exclusively implement consume operations. For example,
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Figure 2.2: The physical plan for query Q15 in the TPC-H benchmark, illustrating the common
occurrence of the operators project, broadcast hash join, filter, hash aggregate and scan in the
compiled pipelines of an optimized SQL query.
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Listing 2.1: A consume function generated for a broadcast hash join, a pipelining operator.

BroadcastHashJoin :: consume (row) {
int join key = row.getInt (0);
Row broadcast row = broadcastRelation.getRowForKey (join key)
if (broadcast row != null) {
// parent call is inlined, whenever possible
parent .consume (row, broadcast row);
}

}

a filter operator consumes a row from the child operator, checks it against the selected predicate,
and pushes it upwards to the parent operator. Another example is the broadcast hash join
operator, which searches its join key in a hash map to find the matching row, and pushes both
the input row and the joined row into the parent operator.

Pipeline-breaking operators, such as scans or aggregations, do not fit this consume model
and do not push a consumed row directly upwards. These operators implement the produce
operation, which pushes new rows into the pipeline. If an operator requires it, both consumes
and produce fragments can be implemented, for example in aggregations, where the entire pipeline
is consumed before the partial aggregation results can be pushed to the output buffer.

To illustrate code generation, fig. shows the query plan that is generated for query Q15
in the TPC-H benchmark [27], and listing [2.2 shows a simplified example of what the generated
code for pipeline 3 of this query might look like. The pipeline consists of the operators scan —
filter — project — aggregate, with global aggregation in Spark, where both produce and consume
fragments are implemented by different operators. This is a simplified representation, the full
generated class is over 600 lines long, and includes additional null-checking and aggregation logic,
as well as the implementation of the scan iterator. A more complete example of generated code
that was captured from an actual Spark SQL query can be found in appendix [B]

The amount of code that is generated makes profiling a challenging problem. A single for-loop
can span hundreds of lines of Java code, and this makes it difficult for a non-expert to identify the
problem in a query. This is illustrated by fig. showing the number of lines of code generated
for a selection of queries in the TPC-H benchmark.

Within Apache Spark, the generated code execution approach is implemented as a buffered
iterator. In the example in listing 2:2] the iterator is accessed via the nezt call, which tries to
read from the output buffer, and if the buffer is empty, the buffer is filled in batches, by calling
the processNext method in the iterator. This iterator loads a batch of tuples from the underlying
iterator, which is implemented as the scan operation that provides the produce operation that
iterates over the input relation, and subsequently passes these upwards through the operator tree,
invoking the operators filter, project, and hash aggregate, where the calculated price is summed
together.

In contrast to HyPer, the code generated by the operators is Java source code. As with the
HyPer engine, to evaluate an operator, its input values must be loaded into a CPU register.
In order to do so within Spark’s code generation architecture the values are loaded into Java
variables, and the register allocation is performed by the JVM. Spark will then try to split the
operators into separate methods whenever possible, however, these methods can only be built if
all necessary data is dematerialized into Java variables.
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Listing 2.2: Simplified representation of a generated code pipeline for the SQL query
SELECT sum(l_extendedprice) FROM lineitem WHERE 1_shipdate > date ’1996-01-01

class GeneratedIterator extends BufferedRowlterator {
double agg accumulator_0;
I[terator <Row> scan_iterator;
RowWriter rowWriter;

@Override
public void init (Iterator [] inputs) {
this.agg accumulator 0 = 0;

this.scan iterator = (Iterator <Row>) inputs[0];
this.rowWriter = new RowWriter(1, 0);

}

@Override

protected void processNext () {
// BEGIN PRODUCE HashAggregate
this.agg doAggregate();
// output the result
/// BEGIN CONSUME WholeStageCodegen
this.rowWriter.reset ();
this.rowWriter. write (0, this.agg accumulator 0);
// append row to internal buffer
this.append (rowWriter . getRow () );
// END CONSUME WholeStageCodegen
// END PRODUCE HashAggregate

}

private void agg doAggregate() {
// initialize aggregation buffer
// BEGIN PRODUCE Scan
for (Row row : this.scan iterator) {
// BEGIN CONSUME Filter
do { // short circuiting do block
int value 1 shipdate = row.getlnt (2);
if (!(value_ 1 shipdate > 9496)) {
continue; // short circuit the do block

}
// BEGIN CONSUME Project
// BEGIN CONSUME HashAggregate
double value_1_ extendedprice = row.getDouble (3);
double value 1 discount = row.getDouble(3);
double value 3 = 1 extendedprice * (1.0D — value 1 discount);
this.agg accumulator 0 4= value 3;
// END CONSUME HashAggregate
// END CONSUME Project
// END CONSUME Filter
} while (false);

// END PRODUCE Scan,

12
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Figure 2.3: Lines of generated code for a selection of queries from the TPC-H benchmark

2.1.2 Query Execution

Spark is a framework for distributed execution. In order to achieve this, a Spark cluster consists
of a driver node, which provides an interface to the user, and handles job execution on the cluster.
The execution of the job is performed by executor nodes.

In order to distribute the a job over the executors, as well as to mitigate failures in job
execution, Spark uses the Resilient Distributed Dataset (RDD) abstraction over data sets, which
is similar to MapReduce [5]. This section describes the scheduling of SQL jobs operating on
RDDs within Spark.

An RDD is a dataset consisting of a distributed set of partitions, that support two types
of operations, namely transformations and actions [33]. A transformation is an operation that
yields a new RDD with the transformed data, and an action is an operation that returns data
from the RDD to the application. A transformation is executed lazily, meaning that only once
an action is called on an RDD, the transformations leading to that RDD are executed. As such,
each RDD keeps track of a DAG consisting of RDDs as nodes, and transformations as edges,
that are required to obtain that RDD. This graph is called its lineage graph. If a part of the job
fails, and partitions of an RDD are lost, these lost partitions can be recovered from its source
RDDs by traversing the lineage graph.

A transformation on an RDD can be narrow, such that only data from one partition is
used, or it can be wide, meaning that data from multiple partitions is required to perform the
transformation. In the latter case, a shuffle occurs, in which data is exchanged between different
operators. An example of a narrow transformation is a simple map, whereas a reduce operation
is an example of a wide operator.

The way SQL execution ties into this, is through the implementation of DataFrames as
an abstraction over RDDs, and each execution plan of a SQL query is executed as a DAG of
RDDs and transformations. Within this execution model, the generated Java code of a query
pipeline acts as a narrow transformation on the RDD, mapping one RDD partition to another,
whereas pipeline-breaking operators, such as sorts or an aggregations, typically result in a wide
transformation.

13



This implementation of distributed computing has consequences for the execution of Spark
SQL queries. The generated code pipelines allow for efficient narrow transformations on parti-
tions, whereas wide transformations are required for many pipeline-breaking operators such as
sort, large join operations, or aggregations.

In order to execute a job that is invoked by the action on a Spark cluster, Spark will split
the execution up into separate tasks of that are applied to the separate partitions in the RDD.
The tasks are then scheduled on different nodes in the cluster using a DAG scheduling algorithm
such that each task is scheduled only if the required partitions are available. Furthermore, the
scheduler is capable of speculative execution of tasks. Within cloud platforms, virtual instances
of Spark worker nodes in a cluster are often observed to be heterogeneous [34], which can neg-
atively impact performance. In order to mitigate performance issues due to this heterogeneity,
speculative execution is used in order to replicate the same task across different virtual machines
in order to find a machine where this slow-down does not occur. This mechanism is interest-
ing from a profiling point of view, since profiling is also expected to incur an overhead. Task
duplication might provide a means of confining this overhead.

2.1.3 Java Virtual Machine

Apache Spark is designed to run in the HotSpot Java Virtual Machine (JVM). As such, it is
important to take into account the consequences of execution within the JVM on the application
and the profiling. This subsection discusses some relevant aspects of the HotSpot JVM.

Within the HotSpot JVM, a method can be executed in two ways, namely interpreted, and
Just-In-Time (JIT) compiled. The JVM achieves this through a strategy called tiered compilation
[21]. This compilation consists of one level of interpretation and four levels of compilation. The
four compilation levels each use one of the two different profile-guided optimizing compilers C1
and C2, which compile the bytecode of a method into low-level machine code for the target
architecture and operating system. Each compiler has a separate queue, to which methods that
are to be compiled are submitted. Each compiler will take compilation tasks from their respective
queues and perform these tasks continuously throughout the execution of a Java program. C1
applies relatively simple optimizations, and compiles faster, whereas C2 applies more advanced
optimizations, at the cost of slower compilation times. The following levels of compilation are
available [28]:

Level 0 Interpreter, with full profiling.

Level 1 C1 compiler, fully optimized, without profiling. Used for trivial meth-
ods.

Level 2 C1 compiler with invocation and loop back-edge counters. Fast execu-

tion, and fast compile times.

Level 3 C1 compiler with full profiling. The generated machine code executes
slower than level 2, but collects more detailed data, including data on
branches taken, the types of the object receiving the method call, and
array accesses.

Level 4 C2 compilation with full profile-guided optimization. Faster than
level 2, but compilation is slow.

Initially, bytecode will be run in interpreted mode at level 0. In this mode, each bytecode
instruction is interpreted and executed separately, and the JVM is guaranteed to be in a consistent

14



state before and after each instruction. During execution, HotSpot collects runtime information
about the executed code, and if a method is observed to be called often, it will submit the
method to the C1 compilation queue. Initially, all methods are compiled by the C1 compiler,
using the level 3 strategy, collecting a runtime profile. Once sufficient profiling information is
collected, the profile and method are submitted to the C2 compiler in level 4, which applies
optimizations based on this profile, to obtain a highly optimized method. For each compilation
step, the compiled code is placed in a region of memory called the code cache. When a compiled
method is no longer used, it can be removed from the cache. If the C2 compilation queue is too
long, level 2 compilation is used as an intermediate step before compiling to level 3, to avoid
spending a long time executing the slower code generated by level 3, while waiting for level 4
compilation to complete.

The JIT compilation is optimistic, meaning that the compiler makes assumptions to unroll
loops and branches based on the collected profile. If these assumptions do not hold true and an
uncompiled path is followed, an uncommon path trap is triggered, causing the JVM to fall back
to interpretation at level 0, to follow the alternative code path [22].

With respect to profiling, this compilation process poses multiple challenges. Performance of
the resulting code can differ drastically between different invocations of the JVM JIT-compiler,
and code interpretation might take up a significant amount of time as well. In order to formulate
a definition of accuracy of a profiler, these aspects should be taken into account. Furthermore,
another complication introduced by the JIT compiler is caused by recompilation of methods, that
makes it difficult to understand the relation between executed machine code and the methods
that produced them. In particular, this can cause problems for profilers which rely on low-level
call stack sampling and make the assumption that this compiled code is static. Furthermore,
this poses a problem for long running programs that may load and unload methods on the fly,
such as Apache Spark, since profiling information collected on a region of machine code may be
collected on a method that has since been overwritten by a different compiled method.

2.2 Profiling Methods

In this section, we describe various methods of profiling that are used in industry or were in-
troduced in previous literature. We classify them in two categories: sampling profilers, which
stop a thread to take samples of the current execution state of that thread, in order to obtain
a profile, and instrumenting profilers, which modify the running code to include performance
statistics reporting code at runtime.

2.2.1 Performance Monitoring Units

To provide the tools necessary for introspection into the performance of a running machine,
modern CPUs are equipped with Performance Monitoring Units (PMUs), which provide access
to various performance monitoring counters [3I|[I] that provide insight into the performance
aspects of a running program. Events that are recorded by the CPU include, but are not limited
to, clock cycles, retired instructions, and the number of cache misses for various cache levels.
These counters can be read during the runtime of a process, and moreover, these counters can
be programmatically configured to interrupt the process once a programmed overflow value has
been reached.

Some features of these PMUs offer low level hardware access to the programmer, thus, secure
access to these counters has to be regulated via the operating system. Windows, MacOS and
Linux provide the APIs dtrace, perf events and Windows counters, respectively, that allow the
user access to these counters.

15



PMU events branch-instructions, branch-misses, bus-cycles, cache-misses,
cache-references, cpu-cycles, instructions, ref-cycles

Software events alignment-faults, bpf-output, context-switches, cpu-clock,
cpu-migrations, emulation-faults, major-faults, minor-faults,
page-faults, task-clock

Table 2.1: Software events and generic hardware events available to perf. The names shown are
generic names, as defined by the Linux kernel, of hardware-specific PMU events.

Many popular profiling tools, such as those based on the perf events interface, perf [14] and
OProfile [13], as well as other profilers such as Intel VTune [I0], provide user interfaces to these
performance counters, allowing the user to profile an application and to provide insight into
various aspects of the performance of a specific running program, or of the system as a whole.
Table 2.1 shows an overview of PMU events that the Linux kernel exposes by default for perf.

Since Spark is a platform for distributed computing, it is often run in cloud environments,
and clusters are often run on virtual machines in a multi-tenant environment. Allowing virtual
machines to access the PMU leaves other virtual machines vulnerable to side channel attacks
[35]. To prevent this, on many cloud computing platforms such as Amazon AWS and Microsoft
Azure, the hypervisor forbids access to the PMU, and only on single-tenant instances, such as the
dedicated hosts provided by Amazon AWS, the hypervisor may allow usage of hardware PMUs
[A.

In order to still be able to provide performance counters when hardware PMUs are unavail-
able, the perf events interface provides a limited set of software-based event counters, shown in
table [2.1] that provide event counts generated by the Linux kernel.

2.2.2 Instrumenting profilers

A common method of obtaining profiles from applications at runtime is instrumentation, the
modification of running code, in order to inject specific instructions that allow for or perform
the collection of profile information.

Instrumentation is performed in the HotSpot JVM itself, as part of its tiered compilation [21].
In compilation levels 2 and 3, the JVM compiles back-edge, branch, and invocation counters in
the compiled code, which allows the JVM to apply optimizing strategies based on usage, and
perform optimistic optimizations based on the collected branches. This does not make use of
hardware performance counters, however, and only the edge counters are taken into consideration
for the optimization.

NanoLog [32] is another approach for instrumentation is a high-performance computing ori-
ented logging tool that is designed to provide logging at high resolution in native applications,
capturing the current time in CPU execution at nanosecond resolution. It does so by leverag-
ing compile-time optimization through the use of C+-+ macros, and writing compressed files to
minimize I/O overhead. Furthermore, it uses thread-local allocation buffers to queue messages
for writing. It achieves a throughput up to 80 million messages per second, which is an order of
magnitude faster than comparable tools such as Logd4J and the Java and C++ standard library
standard output implementations.

Instrumentation in the JVM The Java-specification includes an optional interface to per-
form instrumentation and introspection on running JVM applications, called the JVM Tool
Interface (JvMTI). The JVMTI provides various event handlers, including the handler named
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ClassFileLoadHook |20], that allows an agent to read the bytecode of the class and modify or
substitute it before its contents are loaded by the JVM. This is commonly used for the instru-
mentation of methods in the class, for example to inject performance probes.

An approach to profiling applications in the JVM using the JVMTI is dynamic instrumentation
of bytecode, as used in the JP2 profiler [26]. Through dynamic instrumentation of bytecode, and
inserting performance counters in the running code, JP2 can provide full coverage over a region
of interest. Although the instrumented code has a significant overhead, the instrumentation
is done dynamically at runtime, and as a result, the overhead can be limited by disabling the
instrumentation at intervals. However, this is expected to affect runtime behavior, due to the
JVM JIT compiler being forced to recompile the method after the instrumented bytecode is
modified.

A logging approach such as this is a feasible profiling solutions for smaller applications, or for
monitoring at a greater granularity. With a big data platform such as Spark, however, generating
many log messages per row would result in an output dataset that is many times greater than
the number of input rows, producing an infeasible amount of data.

As an alternative to tuple-at-a-time approaches like the Volcano model and code generation,
other database engines use column-at-a-time execution approaches [4] 12} [36]. These operate by
performing operations one at a time on a column-by-column basis. This has the advantage that
the execution of an operator is a standalone subroutine that does not call other operators. As
a result, profiling of this approach is trivial, and the time spent inside an operator can simply
be measured by reading a performance counter before, and after execution of the operator, at
minimal cost. As such, the instrumentation approaches described above would be highly accurate
and feasible.

2.2.3 Sampling profilers

Industry sampling profilers operate by interrupting the execution of a process at regular intervals,
and capturing information of the current call stack of that process.

If CPU usage is to be measured, the sampling interval is taken as a period of CPU clock cycles.
However, some profilers, such as those built on the perf event [14] or DTrace 2] interfaces, also
allow for other PMCs to be used, so sampling might be used to find performance bottlenecks
caused by branch misses or other hardware events.

An analysis by Mytkowicz et al. [16] shows that profiling at fixed intervals can result in
biased results, which is caused by aliasing between the sampling period and periodicity in the
executed code. To prevent this from affecting the result, they recommend the sampling period
to be randomized between samples. In practice this can be challenging, because many APIs such
as DTrace and perf event do not natively provide such functionality.

In a comparison between different approaches by Nisbet et al. [I8], another useful tool for
sampling native stack frames was found to be the extended Berkeley Packet Filter (eBPF) based
tool bee. This also allows for profiling of Java applications with the use of perf-map-agent. eBPF
allows for programmable tracing and sampling at the kernel level, and allows profiling tools to
trace or sample advanced performance events from within the kernel. However, this requires a
recent Linux kernel, 4.4 or later, and is unavailable in many cloud environments. Like perf, it
does require perf-map-agent to run.

A different approach of sampling performance monitoring tools is introduced by the tool
Shim [32]. In this approach, observer threads are used to autonomously collect CPU performance
counters on a target thread at a very low overhead, and at a fine resolution, allowing for sampling
periods as small as 15 CPU cycles. In this approach, an observer thread is used to capture these
performance counters, thereby delegating the I/O required for profiling to a thread separate
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of the executing thread. This approach is targeted at a lower level of performance monitoring
than what is needed for SQL profiling, and has the goal of finding the exact cause of low-level
performance events such as cache or branch misses. However, the idea of using a listener thread
to obtain profiles for the running thread is applicable to the SQL pipeline use case.

Sampling in the JVM Within the JVM, various approaches for sampling exist. Many JVM
implementations provide the JVM Tool Interface (JvMTI) [19]. This API exposes various func-
tions that allow for introspection into JVM execution. Many commercial profilers, such as
YourKit and zprof use this API to obtain call graph profiles [16], where the GetAllStackTraces
method is used to obtain a call stack of of every Java thread currently running in the JVM.

This method, however, suffers from safe-point bias. Within the HotSpot JVM, JIT compiled
methods may bring the thread temporarily to an inconsistent JVM state, thus the behavior of
operations on the thread’s state are undefined, and may yield invalid results, or even cause fatal
errors. In order to perform garbage collection, the thread must be brought to a consistent state.
Therefore, a JVM thread can be requested to yield execution at the first point where the thread
can be guaranteed to be in a consistent state, a so-called safe point. These safe points only occur
between interpreted bytecode instructions, during the execution of native methods, loop back
edges, and on entry and exit of JIT compiled, non-inlined methods. Since the JVM performs
aggressive inlining, small, hot methods are almost guaranteed to be inlined, and thus they are
underestimated in the resulting profile. In an analysis comparing various implementations of
this approach, these implementations are shown to often underestimate the hottest methods,
and attribute performance costs to methods that are not part of the call stack where the CPU
time is actually spent [16].

A profiling method that avoids this bias samples native stack traces from the JVM JIT
compiled code, which can be done safely without bringing the thread to a safe point. The native
stack frames can then be resolved to JVM stack frames using the JVMTI interface. A popular
tool that uses this approach is perf-map-agent [25], which uses Linux’ perf tool as a profiler for
native stack traces, providing a very low overhead and high precision. A disadvantage of this
method is that interpreted JVM frames do not produce native stack frames, and therefore cannot
be profiled by these tools.

Other profiling tools, such as honest-profiler [29] use the HotSpot JVM-specific API handle
AsyncGetCallTrace [21], which is able to retrieve a call trace from a thread, without having to
wait for the thread to enter a safe point. It does this by allowing the retrieval of the call trace
to fail if the state of the thread does not allow a call stack to be retrieved, and as such, not all
samples are successful. Furthermore, this profile does not obtain call stack samples for native
methods.

The tool async-profiler [23] uses an approach that combines the above two approaches of
honest-profiler and perf-map-agent, allowing it to obtain an accurate profile of JVM-specific
methods as well as native methods, without requiring the use of a a JIT address mapping. Fur-
thermore, async-profiler uses thread-local buffers for data locality and to avoid synchronization,
allowing the profiler to collect samples at a low overhead and without interfering with other
threads, yet yielding very accurate profiles at the granularity of Java methods. Furthermore, it
includes a powerful visualization tool called flame graphs, which were originally developed by
Brendan Gregg [8]. Since async-profiler does still rely on the AsyncGetCallTrace method to
obtain stack traces, not all samples are guaranteed to produce a complete call stack.

A similar profiling approach is provided by a commercial tool in Oracle JDK 8, called Java
Flight Recorder. This tool uses a different approach of capturing call stacks, by suspending
the thread and providing call stack information of the suspended thread. However, this is not
available for the open source OpenJDK 8 implementation that Spark is built for and that is used
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by most users of the platform.

2.3 Conclusion

The code generation approach as outlined in section [2.1] is what sparks the question of how
to provide accurate profiles for these pipelines. In order to provide a detailed profile for such
fine-grained code, a profiling method is necessary that can provide profiles with high granularity.

The profiling methods that we identified in previous research and in industry tools are not
sufficient to provide such high granularity profiles for JIT-compiled Java applications. Existing
tools provide either results with a coarse granularity that is not sufficient for highly detailed
profiling, or they are capable of providing high-granularity results, but do not provide the nec-
essary information to aggregate these results at a detailed enough level. Past research does,
however, provide approaches that allow us to collect fine-grained profiles for native execution,
and although we haven’t been able to find a ready-made tool that uses this approach, nor an
evaluation of the accuracy of this approach, the JVMTI provides us with the JVM introspection
necessary to be able to aggregate these native profiles at a granularity as fine as individual JVM
bytecode instructions or individual lines of Java code.
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Chapter 3

Design considerations

In this chapter, we will discuss the different approaches that we explored, and the design decisions
that were made for these approaches.

3.1 Canonical query

In order to better understand the requirements of a profiling approach for Spark SQL query
pipelines, a canonical query was designed that can stand as a representative model for other
queries, with the goal of providing a succinct, but representative analysis of the performance of
the profiler. The purpose is to operate within the scope of a compiled pipeline, and as such, it is
desirable that the work of the canonical query is dominated by the work done in a single pipeline.
Furthermore, the query should encompass relational operators that typically occur in a single
generated code pipeline, and the generated code must follow patterns that are commonly found
in executed code. Furthermore, the pipeline must be representative of the memory footprint of
a typical query, and must span sufficient CPU registers to obtain representative results.

The Catalyst optimizer is a rule based engine, and as a result of commonly applied rules,
compiled query plans for different queries are often found to be following the same patterns.
Ignoring the project operator, which — with an exception for rare cases where the project applies
a non-deterministic function — is optimized away by code generation, one such pattern that is
regularly found in queries on relational data is the pattern Scan—Filter—Join—Aggregate. This
pattern was chosen to be the dominating pattern of the canonical query, since it encompasses
the most common operators. Thus, we define the the canonical SFJA query as the SQL query
shown in listing

This query is semantically meaningless, however, it was chosen to fulfill the conditions for
Spark to optimize it into a SFJA pipeline. The GROUP BY clause was chosen to include keys from
both sides of the join, in order to prevent the aggregation from being pushed down into a subtree
of the join operator.

The full query plan for the SFJA query is shown in Figure [3.1] It performs as scan over a
relation A, applies a filter with a given predicate, which is usually pushed down from above the
join, and joins it with a relation B, before applying a partial aggregation within the partition.
This pattern is often compiled into a single generated code pipeline.

In order for this pattern to occur as a single pipeline, the relation B must be small, such
that Catalyst can apply the broadcast hash-join strategy, broadcasting the entire relation B over
the partitions in A. This way, the join operation can be performed locally, on the partitions
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Listing 3.1: The definition of the SFJA query

SELECT
(1 _suppkey * 100) + s nationkey,
AVG(1 extendedprice),
SUM(1 quantity),
AVG(1 extendedprice),
AVG(1 discount)
FROM lineitem
JOIN (
SELECT x FROM supplier
ORDER BY s_acctbal DESC
LIMIT 10000
) ON 1 _suppkey = s_suppkey
WHERE 1_commitdate > $MIN_COMMIT DATE
GROUP BY (1 suppkey * 100) + s_nationkey

‘Aggregate [As, Bj, f(Ar, Bi)] ‘ |Generated Code Pipeline |

Filter [p(A)] ‘ L HashAggregate [ A;, Bj, frinai (A, Bi)] !

|
1
L

L{ Inner Join [A, = By ] ‘

Relation A

Relation B ‘

BroadcastExchange

L‘ Generated Code Pipeline |

FileScan [B] |

|
L ..

Figure 3.1: The logical plan for the canonical Scan—Filter—Join—Aggregate query, and its corre-
sponding physical plan after optimization, with the generated code pipelines and their component
operators highlighted. The subtree highlighted in green shows how the SFJA query manifests itself
as a single generated stage.
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of A, without exchanges within the pipeline of A, and without materialization of rows in A.
This is a common operation that typically occurs when joining tables of different cardinalities.
Since queries commonly compile into a query plan with this pattern, the pattern is seen often in
executed queries, and a profiler should be capable of accurately profiling this pattern. Therefore,
this pattern is chosen as our canonical pattern.

The filter and join operators do contain some intrinsic selectivity. As a result, the filter
operator is the costliest operator in the baseline, followed by the join, and finally the aggregation.

3.2 Profiling methods

In chapter 1, we have explored a number of approaches that might be used to obtain fine-grained
profiles in the Java Virtual Machine. In previous literature, as well as in industry, numerous
profiling approaches have been introduced, however, none of these approaches are expected to
be sufficiently applicable for distributed compiled query plans.

Within the use case of SFJA queries, these approaches lack the granularity or means of ag-
gregation that are needed to apply them to these query plans. Therefore, in this section we
explore four new approaches that extend on the ones identified, and identify what changes to
Apache Spark or the respective profiling approaches are necessary to profile these pipelines. The
approaches that we will discuss are the following;:

Timing and tracing By collecting timing data at fixed points in the code, in-
instrumentation (TTI) formation can be gathered about the timing of specific
areas of interest.

Instrumentation-aided This approach introduces instrumentation to keep a global
sampling (IAS) variable in memory that lets a profiler collect the current
operator that is being executed.

Method-level stack sampling Existing profilers are capable of sampling at the level of

(MLSS) Java methods. By splitting the operators, which are nor-
mally inlined in the generated code, into separate meth-
ods, these existing profilers might be used to collect fine-
grained profiles.

Line-level stack sampling Using the JVvMTI and a native profiler such as perf, a fine-

(LLSS) grained profile can be collected that can be aggregated at
the level of lines of code. By mapping this back to the
source code of a generated pipeline,

3.21 TTI

A common approach of profiling code at runtime is the collection of tracing and timing instru-
mentation (TTI) at fixed points in the code. One way this can be achieved is by instrumentation
of the running code at runtime [26] 1], in order to execute code that logs events at certain
points in the execution. Within the JVM, a typical method of achieving this is by modifying
the bytecode directly when a Java class is loaded by the virtual machine, but other approaches
might include modifying the generated machine code, or direct manipulation of the source code.
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Listing 3.2: The main aggregation loop of the pipeline shown in listing instrumented with
System.nanoTime collection.

private void agg doAggregate() {
long scan_startTime = System.nanoTime();
for (Row row : this.scan_iterator) {
long filter startTime = System.nanoTime();
do {
int value o orderdate = row.getInt (2);
if (!(value o orderdate > 10227)) {
continue; // short circuit the do block
}

long project startTime = System.nanoTime();

long agg startTime = System.nanoTime ();

double value o totalprice = row.getDouble(3);

this.agg accumulator_0 += value_o_totalprice;

agg totalTime += agg startTime — System.nanoTime ();

project totalTime += project startTime — System.nanoTime ();
} while(false);
filter totalTime += filter startTime — System.nanoTime();

}

scan_totalTime += System.nanoTime ();

}

The advantage of this approach is that it’s not only suitable for profiling method call graphs,
but if required, it can also generate structured profiles when structure of the executed machine
code does not provide a one-to-one match to the structure of the source that generated this
code. In operator pipelines, this is the case, since multiple operators in the generated code are
often inlined into a single method. Instrumentation allows for the definition of regions of interest
within the generated code pipeline.

As a naive instrumentation approach, the generated code could be instrumented such that
for each row that passes through the stage, events are registered each time an operator is doing
some work. By taking the System.nanoTime timestamp on the entry and exit of the region
of code generated for that operator, and summing this throughout the execution of the code,
a profile can be built. Within the JVM, the collected timestamps can then be aggregated to
provide a wall-clock profile for each operator. If the proper corrections for the overhead of these
calls are applied, and the resolution of the system clock is precise enough, this might be able to
yield accurate profiles. However, since the CPU might execute parts of this call during time at
which it is otherwise stalled, the actual cost of this system call might not be uniform across the
workload, and biases might be introduced. Furthermore, this approach is likely to have a high
overhead, and moreover, it might inhibit code optimizations, which further increase the overhead
and reduce the accuracy of the profile.

To analyse what might be expected of such a solution, a small benchmark was run, as shown
in listing [3.3] aggregating System.nanoTime calls in a simple loop. This benchmark shows that
the System.nanoTime() method carries an overhead of approximately 15 nanoseconds on an
x86 Linux systerrﬂ and has a granularity of approximately 15 nanoseconds. This is an order
of magnitude greater than cost of applying a simple selection operation on a row, which might
take less than a nanosecond to complete. Another problem introduced by this method is the
need to swap additional data into registers for each operation, introducing additional overhead.
Therefore this approach is not expected to result in accurate profiles, and it is expected to

!Linux 5.0.0-29-generic, Ubuntu 18.04, OpenJDK 1.8.0 222. CPU: Intel Core i7 4790X (Haswell)
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Listing 3.3: A benchmark of System.nanoTime() on a linux system

class Benchmark {
public static void main(String|[] args){
long N = Long.parseLong(args[0]);

long sum = 0;
long prev = System.nanoTime ();
for(long i = 0; i < N; i++){
long t = System.nanoTime ();
sum += t — prev;
prev = t;
}
System.out.println (String.format ("%f_ns.", sum / (double)N);

$ time java Benchmark 1000000000
15.179947586 ns

java Benchmark 1000000000

15,20s user

0,02s system

100% cpu

15,221 total

introduce a large overhead.

Listing [3.2] shows how this tracing method manifests itself in a generated pipeline. In order
to run this, many variables must be declared that aggregate the times spent in the operator,
occupying registers, and complicating register allocation for the JVM.

3.2.2 IAS

Another approach that was explored, is instrumentation-aided sampling (IAS). This approach
keeps a variable in memory that indicates the current location in the operator tree, throughout
the execution of the pipeline. In order to do so, some instrumentation is necessary in order to
keep that variable in memory, and to keep it updated on every transition between operators. By
using sampling, a profile can then be built using the observed values of the collected method.

A challenge with this approach is that this variable must be available asynchronously, through-
out the execution of the Java code, and, because of the fine granularity of the code, it must be
kept synchronized in memory, which requires memory barriers. The instrumentation of this
approach is illustrated in listing [3:4] Here, a DirectByteBuffer is used to provide a region of
memory that is not managed by the JvM’s garbage collector, and is guaranteed to stay in one
place in memory. The synchronized blocks are used to provide the appropriate load barriers.
Furthermore, the variable is expected to be a direct match to the corresponding bytecode instruc-
tion, and if we can find an approach to match the instruction pointer to the current bytecode
instruction, keeping this variable in memory is redundant.

3.2.3 MLSS

The first stack sampling approach that was explored is method-level stack sampling (MLSS). This
is a relatively simple approach of profiling, that is used in various industry tools, either using
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Listing 3.4: The main aggregation loop of the pipeline shown in listing instrumented with
the TAS profiler instructions.

final ByteBuffer byteBuffer;

private void agg doAggregate() {
synchronized (byteBuffer) { byteBuffer.putlnt(0) };

for (Row row : this.scan_ iterator) {
synchronized (byteBuffer) { byteBuffer.putlnt (1) };
do {
int value o orderdate = row.getInt (2);

if (!(value o orderdate > 10227)) {
continue; // short circuit the do block
}

synchronized (byteBuffer) { byteBuffer.putlnt(2) }
synchronized (byteBuffer) { byteBuffer.putInt(3) }
double value o totalprice = row.getDouble(3);
this.agg accumulator 0 += value o totalprice;
synchronized (byteBuffer) { byteBuffer.putlnt(2) };
synchronized (byteBuffer) { byteBuffer.putInt (1) };

} while(false);

synchronized (byteBuffer) { byteBuffer.putInt(0) };

}

scan_totalTime += System.nanoTime ();

)
)

}

the JVMTI interface [0], the AsyncGetCallTrace method [23] 29], a profiler can be created that
collects accurate call stack profiles. However, since code generation produces large methods with
inlined operators, these call stacks alone are not informative with regards to the performance
of the separate operators in the pipeline. In order to produce more informative results, we can
leverage a mechanism that Spark uses to split operators into methods, and thereby improve the
usability of these stacks.

In order to prevent excessively straining the C1 and C2 compilers, the HotSpot JVM enforces
a limit of 8 kilobytes of bytecode on the compilation of methods. This entails that methods that
exceed this limit are never considered for optimization, compilation or inlining. In normal code
bases this is rarely a problem, however when code generation is used, such huge methods may
occasionally present themselves in generated code.

To prevent this optimization limit from hindering query execution, Catalyst tries to compile
the operator’s consume operation as a separate Java method, rather than inlining the entire
pipeline into a single method. Thereby it limits the size of the method, and allows the JVM to
compile it. However, because of architectural choices within Spark, this can only been done if
the condition is met that all input variables to the operator have been materialized before the
operator is invoked.

Java will be able to inline these methods with ease as long as no limits are exceeded, so the
overhead of these methods is expected to be limited. However, a larger overhead is expected to be
caused by a constraint of Spark’s implementation of these operator methods. In order to construct
a new method for a simple operator, Spark requires all input parameters to be dematerialized
and loaded into local variables. Under normal operation, Spark can avoid materializing many
columns due to short-circuiting operators such as filter or join. When early dematerialization is
applied, however, this short circuiting becomes less effective.

Listing [3.2] shows an example of the simple pipeline of listing 2.2] with split operators. By
forcing dematerialization of all input columns for the operator, each operator can be split into
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Listing 3.5: The main aggregation loop of the pipeline shown in listing with the operators
split into methods for MLSS. Notice that the o _totalprice column read is redundant when the
filter rejects the row.

private void agg doAggregate() {
scan__doProduce ();
}

private void scan doProduce() {
for (Row row : this.scan iterator) {
double value o totalprice = row.getDouble (0);
int value o orderdate = row.getInt (1);
filter _doConsume (value o_totalprice, value_ o_orderdate);
}
}

private void filter doConsume (double o totalprice, int o orderdate) {
do {
if (!(o_totalprice > 10227)) {
continue; // short circuit the do block

project doConsume (o _totalprice, o orderdate);

} while(false);

private void project doConsume(double o totalprice, int o orderdate) {
agg_doConsume (o _totalprice);
}

private void agg doConsume(double o totalprice) {
this.agg accumulator += o _totalprice;
¥

separate methods, allowing existing Java sampling profilers to obtain the operator hierarchy as a
stack trace. Note that these input columns, such as o_ orderdate in the example, are not always
dematerialized in the original pipeline.

Another disadvantage of this method is that the dematerialization required for the invocation
of the consume method of the parent operator is performed in the child operator’s produce code,
and therefore is misattributed, since this work is logically performed by its parent operator. As
a result, we expect an overestimation of the cost of the topmost produce-section in the call stack.

3.2.4 LLSS

An alternative sampling approach that we have explored is line-level stack sampling. We can
achieve this using native instruction-level sampling to obtain a fine-grained profile of the machine
code. By using events exposed via the JVvMTI, metadata on method loading and compilation can
be collected to obtain a mapping from native addresses of JIT-compiled methods to lines of
Java code. By sampling native stacks using Linux’ perf tool for Java, fine-grained profiles can
be obtained on the level of instruction addresses. The collected profile can then be aggregated
using the collected lines of code that generated the instructions, and subsequently at the level
of the corresponding SQL operator that produced it. This provides a means of aggregation of
instruction pointer samples on the operator level.

A drawback that this approach presents is that in order to gather call stacks using instruction
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addresses, a frame pointer needs to be available for each stack frame, that’s pointing towards
the previous stack frame, such that the profiling agent can walk through the call stack structure
by following the frame pointers. Walking through this stack is a necessity to obtain accurate
profiles, even with inlining enabled, because complex functions external to the generated code
might not be inlined, and these can be especially costly to execute, and therefore are expected
to have a large impact on the runtime profile. Only by allowing a profiler to walk through the
stack, these functions can be traced back to the operator that invoked it.

Conventionally on x86 64 platforms, the RSP general-purpose register is used for the purpose
of keeping the stack structure. However, by default, the HotSpot JVM performs optimizations
that allow this register to be used for general purpose tasks by compiling pointers relative to
the current frame. In order to allow a native sampling profiler to collect stack traces of JIT-
compiled Java stack frames, the JVM provides the option PreserveFramePointer, that instructs
the HotSpot compiler to preserve the frame pointer in the RSP register [2I]. This might incur a
small overhead that needs to be accounted for in the evaluation of the overhead of the profiler.

For both the LLSS and MLSS approaches, the overhead and accuracy are expected to be
dependent on the sampling rate, and for higher sampling rates, perf is shown to perform better
than async-profiler, however, the performance of perf is dependent on the operating system and
runtime environment. The expected overhead for both of these profilers is approximately 5% for
a sample rate in the order of 1 kHz [I8]. However, for big data applications 1 kHz might prove
to be too high. On a distributed system with many multi-core machines, the number of samples
collected can rapidly exceed practical boundaries at kHz sample rates.

3.3 Evaluation

In order to make a decision on which profiling approach is the most suitable, we want to know
the overhead that is introduced by the code instrumentation of these approaches. To evaluate
this, the instrumentation required for these approaches was implemented in Spark, and the SFJA
query was run on a TPC-H dataset with scale factor 10. The results of this are shown in fig.
The LLSS approach does not require instrumentation, and therefore was not included in this
evaluation.

The TTI approach, which uses the system clock to measure time spent in operators, might
be feasible for coarser grained applications, but in this case the clock resolution and its overhead
are an order of magnitude greater than the expected execution time of a small operator. As
such, we do not consider this to be a feasible approach. The IAS approach proved to be complex
to implement, and still introduces a relatively large overhead into the pipeline. The method
splitting instrumentation of the MLSS has an overhead similar to the instrumentation-aided
approach, however the implementation is straightforward using existing tools. Based on these
findings, the decision was made not to pursue the TTI and the IAS approaches further, and to
further evaluate the MLSS and LLSS approaches.

Finally, to compare the MLSS approach to the LLSS approach, both of these approaches
were prototyped against the SFJA query, and the profiling results were compared. Furthermore,
a profile of uninstrumented code was collected with using async-profiler, which is representative
of the current state of the art. In order to perform this comparison, the profilers were run on the
SFJA query executed against same TPC-H dataset, stored as a Parquet file, with scaling factor of
10. The interpretation of the results can be seen in fig. [3.3] From these results, the breakdown
of performance cost per operator in the SFJA query is as shown in table [3.1}

From the results of the uninstrumented code profile, we can draw some small conclusions
about the execution costs of the query. What can be observed is that the scan operator takes
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Uninstrumented MLSS LLSS
Scan 45.1% 58.3% (30.7% + 27.6%) | 31.30%
Filter 13.2% 51.22%
Join 54.9% 8.13% 7.52%
Agg. 5.08% 9.15%

Table 3.1: A breakdown of the costs per operator, as collected by each of the three profilers. In
parentheses, the unattributed costs for the MLSS query are shown.

up a large portion of time, and that the majority of the work is done on code that is expected
to be invoked by the filter, join or aggregate operators. However, it is difficult to obtain an
exact per-operator breakdown of the work without expert knowledge of the generated code. A
small portion of the code is attributed to the method doAggregate WithKeys, without any further
detail. This is labeled as unidentified overhead in the figure. Furthermore, some time is spent
in the dematerialization, that is, loading values from the input columns into registers, which is
not easily attributed to one operator. Within code generation, however, this is invoked by the
operator which first loads this attribute into a register, and ideally should be attributed to that
operator.

As expected, the MLSS approach shows a more detailed breakdown of the operators than the
sampling of uninstrumented code. A separate stack frame is shown for each of the operators, and
the runtime of these operators is calculated as the number of samples in these frames. However,
a large portion of the collected samples is attributed to the method scan_doProduce_0, without
any further breakdown of the costs. This unidentified overhead fraction makes up 27.6% of
the overall costs, making it significantly greater than that of the uninstrumented code. The
body of the loop that this overhead is attributed to performs the small tasks of deserialization,
and invoking the child operator. Since this is expected to be much less work than the actual
execution of the invoked partial pipeline, we do not believe that the attribution of this much
overhead to scan is credible. Furthermore, this breakdown shows the problem caused by eager
dematerialization required for this instrumentation approach, more than doubling the cost of
this dematerialization, which it then also adds to the observed cost of the scan operator.

For the LLSS approach, we observe that this approach can provide highly detailed profiles
of the generated query plans, and can attribute most of the work done to a specific operator
in the pipeline. Only small fractions of the code in distinct operators remain unexplained,
and can be realistically attributed to execution of inline code. Furthermore, it attributes the
dematerialization performed to invoke the filter operator to the consume-section of that operator,
whereas the MLSS approach evaluates dematerialization eagerly, attributing all of this work to
the bottom-most operator that implements a produce section, which in this case is the scan
operator.

We conclude from these observations that the MLSS and LLSS approaches provide feasible
methods of obtaining profiles for generated code pipelines in Spark SQL queries. MLSS, however,
shows a lack of detail in the results, its attribution of a large number of samples to the scan
operator lacks credibility, and furthermore, it requires functional modification of the generated
code in order to collect these stack traces. The LLSS approach suffers significantly less from
these problems, and therefore we believe these results to be more reliable. In chapter 5 we will
investigate the differences between these approaches further.
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Figure 3.2: The effect of the different instrumentation approaches on CPU time. This benchmark
was run on a single executor, against the canonical SFJA query, on a TPCH dataset with scale
factor 10.
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Chapter 4

LLSS system design

To investigate the accuracy and performance of the line-level stack sampling approach, the LL.SS
profiler was implemented in Spark. For the purposes of evaluation, the open source branch for
Spark version 2.4 is used. In this chapter, we will discuss the implementation choices that were
made.

4.1 Overview

The profiler operates as a stand-alone service on each executor, and the executor is responsible
for starting and stopping the profiler. Profiling data is collected locally, and is only collected on
the driver side on request by the user.

The system consists of two elements: the JvMTI, and the profiler. Figure shows how these
two elements interact with the executor. The profiler collects call stacks of the native execution of
JIT-compiled methods in the JVM. This profiler is implemented using a profiler manager which
runs in the JVM, which, for each thread that requests a profiling session to start, opens a new
perf event file descriptor, and forks the JVM process to start a child process that is responsible
for the profiling of that thread, passing it the file descriptor.

The agent is implemented using the JVMTI interface provided by the JVM, allowing it to
intercept events within the JVM that let us collect metadata of the JIT-compiled methods that
is necessary to identify the context of an instruction pointer.

4.2 Agent

To collect metadata on method compilation, the JvMTI is used [20]. This APT allows for the
collection of the events ClassPrepare, CompiledMethodLoad, and CompiledMethodUnload. The
JVM fires these events every time before a new class is loaded, a method is compiled, or a
compiled method is unloaded, respectively, which can be captured by registering an agent that
provides event handlers for these methods.

The JvMmTI-agent is the only writer for metadata. The data is written to a shared map
consisting of the loaded classes and compiled methods. To avoid locking in the JVM, which
would potentially slow down the execution, these shared maps are constructed as skip-lists in a
manner that is mostly lock-free, such that searching an element in the map is a safe operation
for the profiler, but reading the element is not atomic, and might result in a corrupted stack in
the sample. However, since the chances of this occurring are extremely small, and the results are
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that one sample out of many might be corrupted, this is an acceptable risk.

Table shows the data collected for the methods of classes on ClassPrepare, the com-
piled method address ranges for each CompiledMethodLoad event, and the inlined methods for
each instruction in the compiled method. These events are used to build an ordered set of
InlineRecords, which are defined as a stack of inlined method frames. These records are then
stored as a map, mapping instruction pointer, ordered by instruction pointer. The collected
metadata is stored in a region of virtual memory that is shared between the JVMTI agent and
the profiler, allowing the agent to produce metadata and the profiler to access the produced
metadata at runtime.

4.3 Profiler

In order to obtain profiles at a granularity fine enough to be able to aggregate these at an operator
level, existing profiling tools for the JVM are not sufficient. Therefore, we seek to extend the
work of existing profiling approaches, in order to allow profiling at a granularity small enough to
identify the overhead at the level of lines of code.

When a new Java thread requests a profiler to start, an independent profiler session is started
by the manager for that thread by forking from the JVM process, that samples, reads, and
writes results independently from all other threads. This has the advantage that results can be
written asynchronously, and no concurrency issues arise from interaction between these profilers.
Communication with the manager is performed through a UNIX-socket that acts as a message
queue, which allows for the initialization of the session, and for starting and stopping a profiling
run for the Java thread.

Stack sampling As a means of stack sampling, when starting the new session, the profiler
manager opens a new perf event file descriptor, using the Linux system call perf event open [14]
which samples performance events only for the thread requesting the session. The manager can
be passed a sample rate in Hz, which is passed to the perf event file handle. The configuration
options passed to the system call are the following:

type PERF _TYPE SOFTWARE

config PERF_ COUNT_SW_ TASK CLOCK
sample type PERF _SAMPLE CALLCHAIN
sample freq from configuration

freq 1

This sets the handle up to listen to software-generated task clock events, at a configured sampling
frequency, and providing call chains as its sample results. After the perf event file descriptor is
opened, a new ProfilerSession is opened, which is passed the file descriptor. The ProfilerS-
ession then opens the required memory mapped buffer that allows it to read the sampled call
chains.

Event handling In order to notify the profiler of newly collected samples, the perf event API
allows a signal handler to be attached to a UNIX signal that is fired each time the counter hits
its overflow value. This signal can be used to obtain the sampled stack from the allocated by the
perf event open action.

The JVM, however, uses UNIX signals internally to perform various tasks, and for most
signals, signal handlers are installed for the process that is to be profiled. Replacing these
handlers would interfere with the operation of the JVM. To prevent this, the choice was made to
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Class methods

Type Field Description

uint64 Method ID A unique identifier that remains the same as long as
the containing class remains loaded.

char]] Signature Provides a unique string that describes the class path,

pair<int,int>>]|

method, and signature of the method.

Line number table A relation mapping bytecode indices to line numbers
of the source code, collected during class compilation.

Compiled method range

Type Field Description

uint64 Method ID The Method ID of the class method.

void * Start address The start address of the compiled code, which together
with the end address define the address range of the
compiled method’s machine code.

void * End address The end address of the compiled code.

Inlined methods

Type Field Description

void * Instruction Pointer The instruction pointer of the generated code.

uint64[] Method IDs For each frame in the inline stack, provides a method
ID for the method that was inlined.

int32|] Bytecode Indices For each frame in the inline stack, provides a bytecode

index describing the bytecode in the method that gen-
erated the address.

Table 4.1: Data collected by the JVMTI agent of the profiler

34



listen to overflow signals from a separate, isolated process, and to collect samples asynchronously.
This has the added advantage that the execution of the JVM is not halted for the duration of the
event handler, and its state remains unaffected by the sampling events. Furthermore, much like
async-profiler, thread-specific buffers allow for the asynchronous collection of samples without
concurrency issues, and without the need for locking.

When a profiling session starts, the profiler starts a new thread that listens to events. When
it receives a signal, the listening thread performs the following actions:

1. From the memory mapped perf file, the stack chain is read, and the tail is advanced
2. For each instruction pointer in the call chain, look up the method ID

3. For each method ID that is found, look up the inline stack, method signatures, and line
numbers for the instruction pointer

4. Inject the stack, signature, and line numbers in the call chain

5. In a local hash map, find or create a new counter for the obtained call chain, and increment
it.

Integration As a proof of concept, the profiler was integrated into Apache Spark by adding
start- and end- event triggers into the task executor, which the profiler subscribes a listener to.
Figure [£:2]shows how the different parts of the profiler interact to start and stop the collection of
task profiles. This approach allows for easy integration of different profilers or other monitoring
tools, but this does require some changes to the executor’s task execution loop. It is desirable
to be able to keep the results of tasks from different stages apart, since these might be part of
different queries. However, at the same time, the output should be limited to prevent overhead
caused by heavy I/0O use. In order to do so, the profiler is passed metadata of the task, which
includes the stage ID. The profiler then only writes its results each time a task start event occurs,
and the stage ID of the previous task is different from the next task.

The results are written to a temporary directory, along with the class files that were generated,
which are made available for later reference. The format that is used is the same as that used
as the collected output format of async-profiler, consisting of a plain text document containing
lines of semicolon-separated methods in the call chain. Inlined methods are treated the same as
standalone methods. In addition to methods, however, if line number information is collected
for the method, the method is followed by a string <filename>.java@L<line no>.

The semicolon-separated list of methods is followed by a space, and finally by the number of
collected samples for that call chain as decimal number. This can later be used in post-processing,
to produce results aggregated on the operator level.

Code generation modifications The generated code modifications for this approach are
minimal, and do not affect executed statements in the Java code. Instead, the code is annotated
with block comments, delineating the generated code regions, describing whether the region is
part of a consume or produce operation, and a unique ID of the operator that generated the
block. Spark does not keep a unique ID for operators, however this is trivially added by adding
an automatically incrementing ID for each construction of an operator instance. To illustrate
this approach of declaring regions using comments, listing [£.1] shows the consume operation of
the broadcast operator seen in listing |2.1} annotated with region comments. Note that unlike
code splitting, this approach can attribute the dematerialization of the input values is entirely
to the correct operator.
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Listing 4.1: A comment-delimited operator.

/* BeginCodeRegion (CONSUME 7) */
// <child operator produces a Tow>
int join key = row.getInt (0);
Row broadcast row = broadcastRelation.getRowForKey (join key)
if (broadcast row != null) {
// <parent operator consumes both rows>

/* EndCodeRegion (CONSUME 7) */

This information can be parsed trivially using regular expressions to collect a stack of opera-
tors for each line of the source code. To be able to access this source code, two more modifications
have to be made. Firstly, by default within Spark, the Janino compiler compiles the code with-
out debugging metadata included. This debugging metadata is what the JVMTTI uses to obtain
information about the source file, as well as information on the lines of code that generated the
bytecode. Thus, the compiler must be configured to output this information as class metadata
such that the JVMTI can access it. Secondly, the generated code is kept as a string in the
memory of the executors, and is discarded after compilation. In order to access this source code,
we write the information to a temporary file, with a unique name that is passed to the class
metadata. This allows the profiler to access the source code after query execution.

This modification is not strictly necessary. The Java class file format allows for arbitrary
metadata to be specified, which would allow a mapping from bytecode to operators to be written
directly into the class file, which could then be intercepted using the ClassFileLoadHook event
in the JVMTI, without modifying the generated code. However, since the Spark code generator
does not collect information on the origin of lines of code, this would require a large overhaul
of the code generation. Because of the limited payoff and large impact of such an overhaul, the
decision was made to delimit operator regions with comment blocks instead. Another advantage
of this approach is that arbitrary code regions can be specified for each operator, for example a
scan operator can define a region for reading a batch of code.

Runtime statistics During the execution of the SQL query, events are produced by the driver
and the executors throughout the execution of the jobs that belong to this query. These events
include data on which stages are part of which SQL query, and which tasks belong to these
stages, as well as the execution plan of the query that was performed, including a mapping of
operator ID to operators. Furthermore, various statistics are collected for each task, including
the total CPU time spent working on the task. The data is collected for each SQL query, and
relayed to the driver, through a SQL event listener that implements the SparkListener interface
[ The collected data is stored for later use.

Aggregation The results produced by the profiler are partially aggregated on method ID and
code location. Further aggregation is performed offline, at the request of the user. To obtain the
profile of a specific SQL query execution, each executor is instructed to perform the following
operations:

Collection The executors collect profiles by stage ID. The collected runtime statis-
tics are used to identify the execution stages that were part of the the
SQL query.

Lhttps://spark.apache.org/docs/2.3.1/api/java/org/apache/spark /scheduler/SparkListener.htm
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Annotation After the stage’s profiles are collected, the temporarily stored gener-
ated code classes are used to obtain the code region annotations gener-
ated by the modified code generator. For each operator that matches
to a line number of a frame in the collected stacks, the matching re-
gion is inserted into the call stack, and recorded as a frame, such that
the final stack consists of a semicolon separated list of methods, code
locations, and operator data.

Aggregation All the profiles of the collected stages are collected from the executors
by the driver, and summed, aggregating on unique stacks.

Operator By matching the operator ID recorded in the code region names, the

resolution operator data is retrieved from the SQL event listener, and inserted

into the profile data.

Simplification As a final, optional step, the aggregated profile can be simplified by
taking all non-operator frames out of the stack, and re-aggregating to
obtain a profile consisting of just the operators in the pipeline. This
may be helpful for non-expert users who are not acquainted with the
Java code.

The final output follows the input requirements for the flamegraph.pl tool [8], consisting of a
semicolon separated list of elements representing the call stack, followed by a number of samples.
The output is formatted such that the bottom-most element in the stack is the stage ID, and
followed by a list of methods, file locations, and operators. If the final simplification step is
applied, only the operators are included in the stack.

The bottom chart in fig. [3.3] was constructed using this approach, and using flamegraph.pl to
render the final graph.
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Chapter 5

Evaluation

In section a number of criteria were identified that a profiler should fulfill. This chapter
discusses the detailed evaluation of the LLSS profiler, and compares the accuracy to that of the
MLSS profiler.

5.1 Experimental setup

The accuracy experiments are performed on a single executor on a Linux machine. For accuracy
measurement, this is assumed to be representative of distributed execution, because the profiling
of the tasks is performed on a per-task basis, and within Spark’s architecture, individual tasks
are run on a single machine regardless of the cluster setup. Since a local machine lends itself
well for these experiments, the following setup is used:

CPU Intel Haswell i7 4790k
#FExecutors 1
Operating System | Linux
Kernel Version 5.0.0
OS Distribution | Ubuntu 18.04
Spark version Apache Spark v2.4.5 (04b3e0e)

For the overhead experiments, a single machine setup is not representative. Due to the
handling of I/O in the system, granularity and scheduling play a large role in the performance.
Furthermore, in order to perform these experiments, large datasets are required. In order to run
these experiments, the system was ported to the Databricks Runtime (DBR) 5.5, which is a fork
of Apache Spark 2.4, and a cloud cluster was setup with the following properties:

Cloud provider Amazon AWS EC2
Instance type i3-xlarge
+#Executors 10
Operating System | Linux
Kernel Version 4.4.0
OS Distribution | Ubuntu 16.04
Spark version DBR v5.5 (Apache Spark v2.4.3)

39



5.2 Accuracy

In this section, we will discuss the evaluation of the accuracy of the LLSS and MLSS approaches.

5.2.1 Methodology

Performance profiling is subject to uncertainty that is inherent to the execution of a program in
the JVM. During the execution of a pipeline, the generated Java code may be subject to multiple
phases of optimization and compilation. Within the generated code pipeline, this entails that
optimization and reordering may take place across operator boundaries, and multiple operations
and different control flow structures may be fused together. This makes attribution of the
CPU-time spent in these regions challenging. Additionally, the CPU might perform out-of-order
execution, and the instruction pointer that is reported by a sampling profiler might not be
representative of the different instructions that are in the re-order buffer of the CPU.

Furthermore, since a Java program is JIT-compiled, and the JVM performs runtime profiling
and introspection to estimate the effect of optimizations on the running code. By interfering
with the running program, the JVM may be inhibited from building an accurate profile, which
might influence the performance of operators in the pipeline, and introduce inaccuracies into the
profile. Moreover, if the code is instrumented, this might also interfere with the JVMs ability
to optimize methods, by preventing reordering and in some cases even JIT-compilation of the
instrumented methods.

In order to provide a definition of accuracy that allows for the evaluation of a profiler for the
canonical query, we will use the canonical SFJA query plan, and introduce artificial overhead, such
that specific operators in the SFJA pipeline are stressed. By providing different parameterizations
of this query plan, such that differences in performance between these parameterizations can be
isolated to a single operator, it might be possible to create an oracle that provides a notion of
an accurate profile.

Care must be taken to choose queries and parameterizations such that only one operator
in the pipeline is affected. In particular, parameterizations that change size or layout of the
data introduce an unpredictable load on all operators, due to extra costs introduced in scans,
as well as in materialization of values. To achieve this, various strategies might be explored,
such as leveraging short circuiting in string matching in order to vary the required work without
changing string size, introducing user defined functions into the query, and changing the size of
the broadcast table in the join operation.

First, a baseline is established for the evaluation of the accuracy, by running the unmodified
canonical query. The setup used was the TPC-H dataset, with a scaling factor of 10, on which the
canonical query was run, using a single executor with 8 cores. Since the execution of pipelines
is independent per executor, it is reasonable to assume this is representative for distributed
execution. To establish the baseline, the query was run 5 times without modification, but with
the LLSS profiler enabled to ensure a uniform and fair comparison, and the mean baseline running
time T is taken. Furthermore, these profiles were sampled, and for each operator, the average
number of samples 5,, was collected, to obtain a baseline profile.

Then, to evaluate the accuracy, a number of queries are run with overhead injected at one
single operator the SFJA query, for all operators, except for the scan, since this operator only
takes the table as input and cannot easily be altered. This way four different experiments are
run with following added overhead:

Reference No overhead was introduced.

Altered filter Overhead was injected in the WHERE clause of the query, on the input
expression for the filter predicate.
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Altered join Overhead was injected in the join key expression, at the streaming side
of the broadcast hash join. The expression should include columns
from both tables, to prevent the evaluation from being pushed down
into the query plan subtrees of the separate tables.

Altered agg. Overhead was injected in the expression of the GROUP BY clause. Like
the join operator, the expression includes columns from both tables.

The way this overhead is introduced, is by wrapping these expressions in an identity function
that causes some significant computation to be performed, but which has no impact on the
eventual value of the expression.

This gives us three different queries with an artificial overhead introduced in the chosen
operator op, which is profiled to obtain a distribution s across the 4 operators, as well as time
spent outside the operators.

S = Sscan t Sfilter + Sjoin + Saggregate + Sother

Furthermore, the total CPU time T,, for the query is known to spark, which lets us obtain
the real time difference caused by the inserted overhead in op:

top=Top — T
This time can then be compared to the time observed by sampling the pipeline. To calculate
this observed time, the total CPU time T spent inside the pipeline is known to spark, allowing
Oop, an estimate of the time in an operator, to be calculated:

Sop — Sop
Oop = Top———5—

S

To obtain a metric for the accuracy of the profile for the operator, the relative error E is
calculated:

For each of the operators, the above experiment is run 5 times to obtain a sample of relative
errors. Of this, the mean absolute relative error can be taken to obtain a metric of accuracy
for the profiler. All samples recorded outside of the stage belonging to the SFJA pipeline are
discarded, and only the samples within the relevant stage were analysed. The CPU time is
calculated as the time spent within the SFJA pipeline stage.

5.2.2 Results

To gain an understanding of the accuracy of the profiler at different frequencies, the experiment
described above was run for the configurations of 2 Hz, 20 Hz, and 200 Hz. At higher frequen-
cies, the collected profiles become too large to handle effectively, so these frequencies were not
investigated.

An overview of each individual run and the distribution of collected samples over the operators
can be seen in fig. 5.1} As the sampling frequency increases, the repeatability of the sampling
method increases greatly. Furthermore, the overhead that could not be attributed to one of the
four operators is extremely low. Detailed results for each of the runs can be found in appendix
By taking the mean of |E| of these benchmarks, a metric for the accuracy of the profiler is
obtained, which is shown in fig.
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At 2 Hz, the total number of samples collected for the reference query is around an average
of 57, making for a distribution of samples that sometimes reaches 0 for some operators. This
makes for unreliable results, as is can be seen in the collected profiles, which sometimes point to
the incorrect bottleneck operator. At higher frequencies, the results become more reliable, and
at 200 Hz, the result is accurate within a 10% margin of error, even for the smaller aggregation
operator, and the correct bottleneck operator is consistently found.

To compare these results to the MLSS approach, the same experiments were run using the
MLSS profiler, the results of which can be seen in figures and as well as in appendix
[A] At a sampling rate of 200 Hz, the MLSS approach is shown to have an overall higher mean
absolute relative error for all three modified operators. In particular, the results for the altered
join stand out. Where the LLSS profiler slightly overestimates the introduced overhead in the
join operator, the MLSS consistently underestimates this overhead by 8%-13%, depending on
the sampling rate.

Furthermore, the MLSS approach attributes a much higher cost to the FileScan operator,
which might at least partly be explained by both the extraneous dematerialization of unused
fields, as well as the misattribution of samples that occur within the FileScan’s produce section,
as was shown in fig. In the reference configuration, this results in the MLSS approach
estimating the average cost of the scan operator to be 52.4% of the total pipeline time, as
opposed to 21.1% as measured by the LLSS approach. This corresponds to our findings in
chapter 3. This additional cost appears to be constant regardless of introduced overhead, and
therefore our accuracy metric is unaffected by this behavior. We do, however, consider this to
be a source of inaccuracy of the profiler.

We also observe that in the altered filter configuration, the MLSS profiler often fails to collect
any samples at all, or only collects a handful of samples, of the join operator. Comparing this to
the same workload in the reference run, where the average number of samples collected at 200
Hz is 223, we see that the MLSS profiler is in disagreement with itself depending on the exact
structure of the code that it is profiling.
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Figure 5.1: Distribution of samples in individual runs of the SFJA query using the LLSS profiler,
for the reference run and the 3 different operators, for the three different sampling frequencies.
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Notice the high cost attributed to FileScan compared to fig. @
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Figure 5.3: Mean absolute relative error for the different configurations and bottleneck operators
for the LLSS profiler. The error bars show a 95% confidence interval of the mean.

5.3 Overhead

Besides accuracy, we are also interested the overhead of the LLSS approach. In this section, we
discuss the evaluation of this overhead.

5.3.1 Methodology

Within generated code, register allocation becomes a challenge as the number of columns in-
creases. Since some approaches affect register allocation behavior of the JVM, a benchmark
representative of queries on large numbers of columns is desired. Therefore, a benchmark with a
suitable number of columns should be used to evaluate the impact of this approach. The TPC-H
benchmark [27] provides a set of queries that are suitable for this. As a representative cross
section of this set of queries, the following queries are used [12]:

Q1 Aggregation with 8 aggregation functions
Q3 Join

Q6 Global aggregation with selective filter
Q9 Large join

Q18 High-cardinality aggregation

For the overhead analysis, the wall clock time of query execution is measured, from the time
the query execution is started by the driver, to the time the driver receives the result.

5.3.2 Results

For each of the configurations of 2 Hz, 20 Hz and 200 Hz, on a TPC-H dataset with scaling factor
100, a benchmark was run using the six queries. 10 iterations of this benchmark were run. For
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the 200 Hz configuration, one outlier measuring 263.2 seconds for Q18 was removed from the
results, and 9 out of 10 samples were used in the evaluation. The results can be found in fig.

The results for Q1, Q3, Q8 and Q18 show an overhead of less than 10%, tending towards 5%.
Most of this overhead is constant, and unaffected by sampling frequency. In the performance
results for this set of queries, a leap is seen between the baseline and the LLSS profiler with the 2
Hz configuration, and an increase of the sampling rate does not cause this overhead to increase.
Furthermore, the results for Q6, which consists of much more fine-grained tasks, and shows a
much greater overhead. This is indicative of a significant overhead that is not caused by the
sampling itself, but by the interaction between the calling thread and the profiler. These interac-
tions, which were discussed in chapter 4, include method collection via the JVMTI, inter-process
communication via message passing, and I/O via shared memory maps. Although measures were
taken to mitigate the performance impact these interactions might introduce, better results might
be achieved by further optimization of the profiler. The PreserveStackPointer flag is shown to
have negligible effect on execution times.

5.4 Threats to validity

By introducing an artificial workload into the operators of the query pipelines, the code of
the pipeline method is altered, which will result in unintended changes in the execution of the
pipeline. Among other things, these are caused by register allocation, caching, optimizations,
and JIT-compilation in the JVM. This might affect operators other than the target operator,
and introduce some unobservable error in the oracle, and introduces an error in the accuracy
evaluation.

As mentioned in section [5.3] one outlier was removed from the set of benchmark results for
the overhead. Although the cause of this outlier has not been found, it has been observed that
very rarely, running the LLSS profiler causes Spark executors to freeze for a significant amount
of time, not accepting new tasks until the inactive threads are terminated by Spark. This might
point to a race condition in the task handling of the profiler. This may have affected the results
of the performance evaluation, however since this effect has a large impact, this would certainly
result in an obvious outlier, such as the one that was removed.

Another potential threat to the validity of the performance results stems from a known
performance regression in the JvMTI, affecting Oracle JDK 8 and OpenJDK 8 E This regression
leads to poor performance of the collection of metadata of loaded classes, which the LLSS profiler
uses to map native stacks to JVM stacks. By preloading these classes using a warm-up run,
this effect is largely mitigated. Generated classes, however, cannot be preloaded, and will be
loaded during the execution of the benchmark. Since this only concerns a handful of classes per
execution, this is unlikely to have a significant effect on the results.

Lhttps://bugs.openjdk.java.net /browse/JDK-8185348
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Chapter 6

Conclusion

In this thesis we discussed the different performance aspects that are relevant for a profiler for
fine-grained SQL query pipelines in Apache Spark, and we developed a profiler for obtaining SQL
profiles of query executions run in Apache Spark, which provides accurate results for compiled
query pipelines. In this chapter, we will discuss these findings, and the answers to the research
questions we have found.

The main contribution of this thesis, is that this is first work to achieve a feasible and accurate
approach of profiling compiled query pipelines in Apache Spark. Using our LLSS approach, we
can overcome the challenges posed by the multiple stages of optimization and compilation of the
Spark SQL execution model, and we can obtain profiles of queries that provide a breakdown of
the performance cost per operator. Using this approach, we can correctly and accurately point
out the problematic operators in a query plan that has been executed by Spark.

RQ1. What approaches for obtaining performance profiles can be used for profiling
the execution of generated code of an SFJA query?
We have identified various approaches in previous research that focus on collecting profiles
in Java applications, and investigated the finest granularity that these profilers can achieve.
Furthermore, we have introduced a novel approach of aggregating samples of native stack
traces on the level of operators in generated code pipelines.

Approaches To answer the first subquestion of RQ1, we have explored four approaches
of profiling query pipelines in Apache Spark. The first two approaches, which we named
TTI and IAS, are based on instrumentation of the generated code. That is, instructions
collecting data are introduced in regions of interest in the generated code, to collect timing
information and obtain a profile. TTI uses the Java method System.nanoTime to obtain
timing information, and the IAS approach keeps a variable in memory to keep the cur-
rently executing operator in memory. The latter approach was not pursued further due to
implementation difficulties with synchronization, added uncertainty due to caching, and
no clear benefits.

Two other approaches are based on stack sampling. The first, MLSS, uses the industry
tool async-profiler to obtain stack traces of Java code in the JVM at the granularity of
Java methods. In order to be able to aggregate these results at an operator level, the
generated code pipeline is split into separate methods, which incurs an overhead.

For the final approach, LLSS, we extended on the approach used in the implementation
of async-profiler to build a new profiler. This profiler uses native stack sampling using
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the Linux kernel API perf events, to obtain highly detailed profiles. These are then
aggregated at the level of operators, by collecting metadata on each compilation step
required to compile the query plan from the abstract tree, via Spark’s code generation,
Java compilation, and finally JVM JIT compilation, to native instructions. This approach
does not require modification of functional generated code, and only injects annotations
as block comments to denote regions of interest in the code for each generated operator.

Granularity The granularity of the approaches we have identified in previous literature
was shown to be too broad for profiling unmodified SFJA pipelines as these are currently
implemented in Spark. Many profilers are capable of profiling on the level of Java methods,
but do not offer the option to profile at a finer level. For the MLSS approach, we have
shown that profiles of the SFJA pipeline can be aggregated at an operator level by splitting
the pipeline into smaller method is a feasible way of obtaining these profiles, at the cost of
an increased overhead. The results of this approach, however, are not very detailed, and
suffer from an observer effect caused by the modified source code. Furthermore, within the
SFJA pipeline, there is an apparent over-representation of samples in the scan’s produce
section.

For the LLSS approach, we have shown that perf-event, in combination with detailed
information on JVM JIT compilation supplied by the JvMTI, provide a method of obtaining
fine-grained profiles at the level of lines of Java code, or even at the level of native machine
instructions. Using this approach, we built a profiler that produces profiles at a fine enough
granularity to be able to map these back to operators in the SFJA pipeline.

Furthermore, we have shown that the granularity of the TTI approach, due to the de-
pendency on the system clock provided by the operating system, has a lower bound of
approximately 30 ns on Linux. This is too large to obtain reliable profiles at the level of
SQL operators that might take less than a nanosecond to execute.

RQ2. How can the accuracy of a profiler be defined within the scope of the srijaA
query pipelines?
To obtain the accuracy of the profiler for the SFJA pipeline, we have created an oracle based
on an SFJA query. By introducing an artificial overhead into the distinct operators in the
generated pipeline, a ground truth can be established on the time spent executing this
artificial overhead in a certain operator in the pipeline. The profile collected by a profiler
can then be tested against this ground truth, to obtain the accuracy of the profiler.

Using this approach, we have evaluated the accuracy of the MLSS and LLSS profiling
approaches. We have found that the LLSS approach attributes the introduced overhead
to the correct operator with a mean absolute error below 10%, and tending to 5% at a
200Hz sampling rate. For the MLSS approach, the mean absolute error is slightly higher.

Furthermore, the MLSS approach consistently overestimates the scan operator in a gener-
ated code pipeline. We believe that this is due to the attribution of unidentified runtime
costs in the pipeline, as well as the costs of eager dematerialization of input tuples, to this
operator.

Based on these results, we believe that the LLSS approach is more accurate and more
reliable than the MLSS approach.

RQ3. What is the impact of the integration of the identified approaches in Apache
Spark?
In order to understand the impact of integration of the profiler into Apache Spark, we
have looked at two aspects, namely implementation, and overhead.
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The code changes to the Spark codebase itself are minimal. Only a few event handlers
need to be introduced to be able to communicate to the profiler when execution of a task
starts, and when it ends.

To evaluate the overhead of the LLSS approach has over query execution, we have run a
subset of the queries in the TPC-H benchmark with and without the LLSS profiler. We
have observed that the LLSS profiler introduces a constant overhead for the tasks that are
part of the query execution, which is mostly independent of sampling frequency. These are
possibly caused by the interprocess communication and I/O of the profiler. This amounts
to approximately 5%-10% of the execution cost for most queries, and with the exception of
queries consisting of very small tasks, such as Q6 in the TPC-H benchmark, this overhead
remains within 10% of the baseline cost.

In conclusion, we have shown that of the explored approaches the LLSS approach outperforms
the other approaches in terms of accuracy. At a sampling rate of 200Hz, the results are within
10% accurate. Although our implementation suffers from a relatively high overhead even at low
sample rates, we believe this overhead to be constant regardless of sampling rate, and to be at
least partly caused by the implementation choice of running the profiler in separate processes.
Through further optimization of I/O, and perhaps refactoring the profiler to not run from within
a separate process, we believe that this can be improved drastically, and the general approach
that we have introduced provides a blueprint for a profiler that allows for the collection of highly
accurate profiles, against a low cost, for compiled SQL queries in Apache Spark.

6.1 Future work

LLSS and MLSS overhead In this thesis, we have observed that the LLSS approach has a
constant overhead of approximately 5% for most TPC-H queries. However, we have not investi-
gated a way to break down this performance impact, and to find the root cause of this overhead,
even at the low sampling frequency of 2 Hz. A closer evaluation of this overhead might provide
insight into the performance issues that we have encountered.

Due to time constraints, we have focused most of the evaluation in this thesis on the LLSS
approach, which showed the most promising results. We have observed that for the SFJA query,
a 17.6% overhead is introduced by splitting operators into methods. Based on this result we
have decided not to pursue this method any further, and we did not collect information on the
overhead of the MLSS approach. Further investigation of performance impact of this approach
would provide more insight into the feasibility of this approach.

Task sampling As an extension to the discussed approaches, the spark environment could
be modified to allow for the possibility of sampling on the separate tasks in the job that is to
be profiled. One approach of sampling is sampling on regular tasks, running only a subset of
the tasks with the profiler enabled, and the rest without profiling or instrumentation. This is
expected to limit the overhead of the profiling, while also limiting the effect this has on the
accuracy of the collected data.

There are some pitfalls associated with this approach, that have to be taken into account.
Many queries are subject to skew or other biases in the separate tasks, which, if sampling not
done carefully, could result in bias in the resulting profile. Furthermore, care has to be taken to
avoid sampling the tasks in such a way that slots running non-profiled tasks are left idle while
waiting for the profiled tasks, which are likely to take longer than non-profiled tasks.

In order to avoid the latter issue, it might be interesting to explore the possibility of sam-
pling tasks by exploiting speculative task scheduling in Spark to duplicate selected tasks, and
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disconnecting them from the scheduling DAG. By doing so, it can be guaranteed that there are
no other tasks that depend on them, and profiling of these tasks might eliminate any additional
latency, as long as sufficient resources are available to perform these additional tasks in parallel.

Continuous monitoring The goal of this thesis was to investigate profiling approaches that
might give users insight into the performance of their SQL queries, by obtaining fine-grained
profiles of generated code pipelines. We have not investigated how such a profiling method can
be used to continuously profile user’s queries, and provide insight on past query executions. This
provides an opportunity for further research which would be highly relevant to industry use cases,
where there is a high demand for tools which provide insight into past issues through continuous
monitoring.
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Appendix B

Profile-annotated code pipeline
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Listing B.1: Plan subtree for the annotated code

[101] WholeStageCodegen
|— [97] HashAggregate(keys=|[], functions=[partial sum (l_extendedprice#204)])
|— [96] Project [l_extendedprice#204]
|— [95] Filter (isnotnull(l_shipdate#209) && (1 _shipdate#209 > 9496))
|— [94] FileScan parquet [l extendedprice#204,1 shipdate#209] lineitem

Listing B.2: A profile of a generated code stage of a simple query

Time % 1 public Object generate(Object || references) {

0.00% 2 return new GeneratedIteratorForCodegenStagel (references);

0.00% 3

0.00% 4

0.00% 5 /xwsc_codegenStageldsx/

0.00% 6 final class GeneratedIteratorForCodegenStagel extends BufferedRowlIterator {

0.00% 7 private Object|[] references;

0.00% 8 private scala.collection.Iterator |[] inputs;

0.00% 9 public java.nio.ByteBuffer stateBuffer;

0.00% 10 private long totalTime 97 0;

0.00% 11 private boolean agg initAgg O0;

0.00% 12 private boolean agg buflsNull 0;

0.00% 13 private double agg bufValue 0;

0.00% 14 private long agg totalTime_96_0;

0.00% 15 private long project totalTime 95 0;

0.00% 16 private long filter totalTime 94 0;

0.00% 17 private long scan_scanTime O0;

0.00% 18 private int scan_batchldx_0;

0.00% 19 private boolean agg agg isNull_2_ 0;

0.00% 20 private boolean agg agg isNull_4_ 0;

0.00% 21 private OnHeapColumnVector [] scan_ mutableStateArray 2 = new
< OnHeapColumnVector [2];

0.00% 22 private UnsafeRowWriter [] scan_mutableStateArray 3 = new UnsafeRowWriter
= [5];

0.00% 23 private ColumnarBatch[] scan_ mutableStateArray 1 = new ColumnarBatch[1];

0.00% 24 private scala.collection.Iterator [| scan_ mutableStateArray 0 = new scala.
< collection.Iterator [1];

0.00% 25

0.00% 26 public GeneratedIteratorForCodegenStagel (Object || references) {

0.00% 27 this.references = references;

0.00% 28 }

0.00% 29

0.00% 30 public void init (int index, scala.collection.Iterator[] inputs) {

0.00% 31 partitionIndex = index;

0.00% 32 stateBuffer = java.nio.ByteBuffer.allocateDirect (8);

0.00% 33 this.inputs = inputs;

0.00% 34 totalTime 97 0 = OL;

0.00% 35

0.00% 36 agg totalTime 96 0 = OL;

0.00% 37 project _totalTime_95_0 = OL;

0.00% 38 filter totalTime 94 0 = OL;

0.00% 39 scan_mutableStateArray 0[0] = inputs [0];

0.00% 40 scan_mutableStateArray 3[0] = new UnsafeRowWriter (2, 0);

0.00% 41 scan_mutableStateArray 3[1] = new UnsafeRowWriter (2, 0);

0.00% 42 scan_mutableStateArray 3[2] = new UnsafeRowWriter (1, 0);

0.00% 43 scan_mutableStateArray 3[3] = new UnsafeRowWriter (1, 0);

0.00% 44 scan_mutableStateArray 3[4] = new UnsafeRowWriter (1, 0);

0.00% 45

0.00% 46 }

0.00% 47

0.00% 48 private void agg doAggregateWithoutKey 0() throws java.io.IOException {

0.00% 49 // initialize aggregation buffer

0.00% 50 agg buflsNull 0 = true;

0.00% 51 agg bufValue 0 = —1.0;

0.00% 52

0.00% 53 /% CodeRegion (PRODUCE 96) x*/

0.00% 54 /* Project x/

0.00% 55 /* CodeRegion (PRODUCE 95) x/

0.00% 56 Jx Filter x/

0.00% 57 /* CodeRegion (PRODUCE 94) =/

0.00% 58 /* Scan parquet x/

0.00% 59 if (scan_mutableStateArray 1[0] == null) {

0.00% 60 scan_nextBatch 0();

0.00% 61

0.00% 62 while (scan_ mutableStateArray 1[0] != null) {

0.00% 63 int scan_numRows_ 0 = scan_mutableStateArray 1[0].numRows() ;

0.00% 64 int scan_localEnd_0 = scan_numRows_0 — scan_batchldx_0;

0.00% 65 for (int scan_localldx_ 0 = 0; scan_localldx 0 < scan_localEnd_0;

< scan_localldx_0++) {
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1.18% 66 int scan rowldx 0 = scan_ batchldx 0 + scan_ localldx O0;

0.00% 67 /* CodeRegion (CONSUME _95) %/

0.00% 68 Ux Filter %/

0.00% 69 do {

0.00% 70 boolean scan_isNull 1 = scan_mutableStateArray 2[1].isNullAt (
— scan_rowldx 0);

11.53% 71 int scan_value 1 = scan_isNull_1 ? —1 : (scan_mutableStateArray 2
< [1].getInt (scan_rowldx 0));

0.00% 72

0.00% 73 if (!(!scan_isNull 1)) continue;

0.00% 74

0.09% 75 boolean filter value 2 = false;

0.00% 76 filter _value 2 = scan_value_1 > 9496;

2.22% 77 if (!filter value 2) continue;

0.00% 78

2.13% 79 ((SQLMetric) references [2] /+* numOutputRows */).add(1);

0.00% 80

0.00% 81 /* CodeRegion (CONSUME 96) =/

0.00% 82 /% Project %/

0.00% 83 /% CodeRegion (CONSUME 97) =/

0.00% 84 /* HashAggregate x/

0.00% 85 boolean scan_isNull 0 = scan_ mutableStateArray 2[0].isNullAt(
— scan_rowldx 0);

1.56% 86 double scan_value 0 = scan_isNull_0 ? —1.0 :
— scan_mutableStateArray 2[0].getDouble(
— scan_rowldx_0));

0.00% 87

0.00% 88 agg doConsume_O(scan_value 0, scan_isNull_0);

0.00% 89

0.00% 90 /* /CodeRegion (CONSUME 97) */

0.00% 91 /% /CodeRegion (CONSUME 96) x/

0.84% 92 } while(false);

0.00% 93

0.00% 94 /% /CodeRegion (CONSUME 95) x/

0.00% 95 // shouldStop check is eliminated

0.00% 96

0.51% 97 scan_batchldx 0 = scan_numRows_0;

0.00% 98 scan _mutableStateArray 1[0] = null;

0.29% 99 scan_nextBatch 0();

0.00% 100 }

0.17% 101 ((SQLMetric) references[1] /* scanTime x/).add(scan_scanTime 0 / (1000 =
< 1000));

0.00% 102 scan_scanTime 0 = 0;

0.00% 103

0.00% 104 /% /CodeRegion (PRODUCE 94) x/

0.00% 105 /* /CodeRegion (PRODUCE 95) x/

0.00% 106 /% /CodeRegion (PRODUCE 96) x/

0.00% 107 }

0.00% 108

0.02% 109 private void scan_nextBatch_ 0() throws java.io.IOException {

0.00% 110 long getBatchStart = System.nanoTime /() ;

48.48% 111 if (scan_mutableStateArray 0[0].hasNext()) {

0.00% 112 scan_mutableStateArray 1[0] = (ColumnarBatch)scan mutableStateArray 0
— [0].next();

0.69% 113 ((SQLMetric) references [0] /+* numOutputRows x/).add(
< scan_mutableStateArray 1[0].numRows());

0.00% 114 scan_batchldx 0 = 0;

0.01% 115 scan _mutableStateArray 2[0] = (OnHeapColumnVector)
— scan_mutableStateArray 1[0].column(0);

0.00% 116 scan_mutableStateArray 2[1] = (OnHeapColumnVector)
— scan_mutableStateArray 1[0].column(1);

0.00% 117

0.00% 118 }

0.02% 119 scan_scanTime 0 += System.nanoTime() — getBatchStart;

0.00% 120 }

0.00% 121

0.00% 122 /* CodeRegion (CONSUME 97) =/

0.00% 123 /* HashAggregate x/

0.12% 124 private void agg doConsume_ 0(double agg expr_0_0, boolean
— agg_exprlsNull_0_0) throws java.io.IOException
= {

0.00% 125 // do aggregate

0.00% 126 // common sub—expressions

0.00% 127

0.00% 128 // evaluate aggregate function

0.00% 129 agg agg isNull_2 0 = true;

0.00% 130 double agg value_2 = —1.0;

0.00% 131 do {

0.00% 132 boolean agg_ isNull_3 = true;

0.00% 133 double agg value 3 = —1.0;

0.00% 134 agg agg isNull_4 0 = true;

0.10% 135 double agg value 4 = —1.0;

0.00% 136 do {

0.00% 137 if (lagg bufIsNull_0) {

0.40% 138 agg agg isNull 4 0 = false;
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0.00% 139 agg value 4 = agg bufValue 0;

0.00% 140 continue;

0.00% 141 }

0.00% 142

0.00% 143 boolean agg isNull 6 = false;

0.00% 144 double agg value 6 = —1.0;

0.00% 145 if (!false) {

0.00% 146 agg value 6 = (double) 0;

0.00% 147

0.00% 148 if (lagg isNull_6) {

0.00% 149 agg agg isNull 4 0 = false;

0.00% 150 agg_value_4 = agg_value_ 6;

0.00% 151 continue;

0.00% 152 }

0.00% 153

0.15% 154 } while (false);

0.00% 155

0.00% 156 if (lagg exprIsNull 0 _0) {

0.00% 157 agg isNull 3 = false; // resultCode could change nullability.

0.00% 158 agg value 3 = agg value 4 + agg expr 0 0;

0.00% 159

0.00% 160 }

0.04% 161 if (lagg isNull 3) {

0.00% 162 agg agg isNull 2 0 = false;

0.17% 163 agg value 2 = agg value 3;

0.00% 164 continue;

0.00% 165 }

0.00% 166

0.00% 167 if (lagg bufIsNull 0) {

0.00% 168 agg agg isNull 2 0 = false;

0.00% 169 agg value 2 = agg bufValue 0;

0.00% 170 continue;

0.00% 171 }

0.00% 172

0.06% 173 } while (false);

0.00% 174 // update aggregation buffer

0.00% 175 agg buflsNull _0 = agg agg isNull_2_ 0;

0.20% 176 agg bufValue 0 = agg value 2;

0.00% 177

0.00% 178 }

0.00% 179 /% /CodeRegion (CONSUME 97) x/

0.00% 180 protected void processNext () throws java.io.IOException {

0.00% 181 /* CodeRegion (PRODUCE 97) =/

0.00% 182 /% HashAggregate x/

0.00% 183 while (!agg_ initAgg 0) {

0.00% 184 agg initAgg 0 = true;

0.00% 185 long agg beforeAgg 0 = System.nanoTime() ;

0.00% 186 agg doAggregateWithoutKey 0();

0.00% 187 ((SQLMetric) references [4] /+ aggTime */).add((System.nanoTime() —
— agg_beforeAgg 0) / 1000000);

0.00% 188

0.00% 189 // output the result

0.00% 190

0.00% 191 ((SQLMetric) references [3] /+* numOutputRows */).add(1);

0.00% 192 /* CodeRegion (CONSUME 101) %/

0.00% 193 /x WholeStageCodegen x/

0.00% 194 scan_mutableStateArray 3 [4].reset ();

0.00% 195

0.00% 196 scan_mutableStateArray 3[4].zeroOutNullBytes () ;

0.00% 197

0.00% 198 if (agg buflsNull 0) {

0.00% 199 scan_mutableStateArray 3[4].setNullAt (0);

0.00% 200 } else {

0.00% 201 scan_mutableStateArray 3[4].write (0, agg_ bufValue 0);

0.00% 202

0.00% 203 append ((scan_mutableStateArray 3[4].getRow()));

0.00% 204

0.00% 205 /% /CodeRegion (CONSUME 101) x/

0.00% 206 }

0.00% 207

0.00% 208 /* /CodeRegion (PRODUCE 97) x/

0.00% 209

0.00% 210

0.00% 211 }
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