
Vrije Universiteit Amsterdam

Master Thesis

Fast, scalable worst-case optimal joins for graph-pattern matching
on in-memory graphs in Spark

Author: Per Fuchs (2614613)

1st supervisor: Prof.dr P.A. Peter Boncz (CWI)
daily supervisor: Prof.dr P.A. Peter Boncz
2nd reader: Dr. Bogdan Ghit (Databricks)

A thesis submitted in fulfillment of the requirements for
Parallel and Distributed Systems Master of Science degree in Computer Science

January 21, 2020

Abstract

Graph pattern matching is a challenge for data processing systems like Spark because the size
of the intermediary result required by finding the matches with standard binary join operators
grow over linear with regards to the inputs. Recently popularized worst-case optimal join
algorithms, WCOJs, seem a better match to tackle this challenge because they do not materialize
the aforementioned large intermediary results. We investigate two major open questions regarding
WCOJs in graph use cases. First, we develop a WCOJ specialized to graph-pattern matching,
where the joins are self-joins on an edge table and compare its performance with a generic WCOJ.
Second, we propose a novel method for distributed execution of such WCOJs. We show that
the previously proposed methods to distribute WCOJs that would fit Spark, do not scale well
to large graph patterns (five vertices and more). Based on this result, we propose to keep the
edge relationship cached in compressed form on all workers but distribute the computation using
a logical partitioning. Our approach trades off memory usage for better scalability. This is
reasonable as most graphs today fit in main memory [37]. In all, our work provides the first
scalable Spark implementation of a WCOJ, very suited for graph use.

2

Acknowledgements

First, I want to thank my supervisors Peter Boncz and Bogdan Ghit for their support in this
thesis. Both read multiple drafts, provided feedback and new ideas.

Special thanks to Peter for the long discussions in the beginning to find a topic that connects
so many of my favourite topics: distribution, algorithms from theory to practice and graphs.
Furthermore, for giving me the big chance to present my thesis at the LDBC workshop after
Sigmod in front of multiple interested companies and two authors of important related WCOJ
papers.

Bogdan always kept a positive attitude to the project and kept me motivated with friendly
comments and encouraging thoughts. Additionally, he asked many critical questions about angles
I didn’t give enough attention.

The Spark integration of this work has been inspired by the IndexedDataframes [51] work of Alex
Uta and the supervisors of this thesis. We used a similar design to extend the DataSet interface
with an additional method to trigger a worst-case optimal join computation.

Richard Gankema, a PhD student at CWI, offered valuable hints towards the optimization of the
Leapfrog Triejoin.

Bogdan Ghita and Matheus Nerone, my office companions, helped during the proposal writing
by being partners for discussions and later by teaching me to play table tennis.

Finally, I’d like to thank my friends and in particular, my parents who helped me to stay focused
on my thesis through a difficult private situation in the last months.

3

Contents

1 Introduction 6

1.1 Graph pattern matching . 6

1.2 Binary joins vs WCOJs: an intuitive example . 8

1.3 Graphs on Spark . 9

1.4 Research questions and contributions . 10

1.5 Thesis overview . 11

2 Background 13

2.1 Spark . 13

2.1.1 Resilient distributed datasets . 14

2.1.2 Spark architecture . 14

2.1.3 Catalyst . 15

2.1.4 Broadcast variables . 17

2.2 Worst-case optimal join algorithm . 18

2.2.1 Leapfrog Triejoin . 19

2.3 Distributed worst-case optimal join in Myria . 26

2.3.1 Shares . 26

2.4 Compressed sparse row representation . 30

2.5 Sizes of public real-world graph datasets . 31

3 Worst-case optimal join parallelization 32

3.1 Single variable partitioning . 33

3.2 Logical Shares . 33

3.2.1 RangeShares . 34

3.3 Comparision of static partitioning schemes . 35

3.4 Work-stealing . 36

3.4.1 Work-stealing in cluster mode . 38

4 GraphWCOJ 39

4.1 Combining LFTJ with CSR . 39

4.2 Exploiting low average outdegrees . 40

5 Optimizing a Leapfrog Triejoin in Scala 43

6 Spark integration 46

4

6.1 User interface . 46

6.2 Integration with Catalyst . 47

6.3 A sequential linear Leapfrog Triejoin . 47

6.4 GraphWCOJ . 48

7 Experiments 50

7.1 Algorithms . 51

7.2 Datasets . 51

7.3 Queries . 52

7.4 Linear search threshold . 52

7.5 Baseline: BroadcastHashjoin vs LFTJ . 54

7.6 LFTJ vs GraphWCOJ . 55

7.7 Scaling of GraphWCOJ . 57

7.8 Distributed work-stealing . 61

8 Related Work 64

8.1 WCOJ on Timely Data Flow . 64

8.1.1 The BigJoin algorithm . 65

8.1.2 Applicability to Spark and comparison to GraphWCOJ 66

8.1.3 Indices used by BigJoin and GraphWCOJ 66

8.1.4 Theoretical guarantees . 67

8.1.5 Conclusion . 67

8.2 Survey and experimental analysis of distributed subgraph matching 68

8.3 Fractal: a graph pattern mining system on Spark 69

9 Conclusions 71

9.1 Distributed work-stealing . 72

9.2 Finer-grained work-stealing . 73

References 76

A Additional experimental results 80

A.1 GraphWCOJ local mode scaling . 80

A.2 GraphWCOJ distributed scaling . 83

5

1 Introduction

Worst-case optimal join (WCOJ) algorithms, e.g. Leapfrog Triejoin, in the last few years turned
conventional thinking about join processing on its head because these multi-join algorithms have
provable lower complexity than classical binary joins, i.e. join algorithms that join just two tables
at-a-time. In the areas of data warehousing and OLAP, this finding does not have much impact,
though, since the join patterns most commonly encountered there are primary-foreign-key joins,
short (PK-FK joins), where the join shapes a tree or snowflake and contains no cycles. The
computational complexity of PK-FK joins is by definition linear in size of the inputs. In these
conventional cases, binary joins are worst-case optimal already, e.g. hash joins.

However, analytical graph queries often use FK-FK joins which can grow over linearly in the size
of their inputs, and often contain cycles. For these use-cases, binary joins often exhibit highly
suboptimal run-times because they generate a rapidly increasing set of intermediary results, e.g.
when navigating a social graph with an out-degree in the hundreds. Many of these intermediary
results are eliminated in later joins, e.g. a join that closes a cycle. Hence, an algorithm which
avoids generating these results in the first place is to perform much better and closer to the
optimal possible performance given by the output size. WCOJ avoid many of the intermediary
results and are guaranteed to reach the best possible run time in terms of the output size [12].

Because of the frequent presence of cyclic join-patterns in graph-pattern matching, we believe
that worst-case optimal join algorithms could be a useful addition to (analytical) graph database
systems. Therefore, we aim to integrate a scalable, WCOJ algorithm in Spark which is used by
some modern graph engines [46, 8, 21].

The rest of our introduction is structures as follows. Section 1.1 defines the term graph pattern
matching, its translation into datalog and relational queries and two examples of cyclic graph
pattern used in practice. We aim to give the reader an intuitive understanding of why WCOJs
are superior to binary joins for graph pattern matching in section 1.2. Section 1.3 motivates
our choice to use Spark as the base for our thesis. Next, we state our research questions and
contributions in section 1.4. Finally in section 1.5, we outline the main ideas behind the thesis
and their connections.

1.1 Graph pattern matching

Graph pattern matching is the problem of finding all instances of a specific subgraph in a graph.
The subgraph to find is described as a pattern or query. In this thesis, we use datalog queries to
define subgraph queries.

For example, eq. (1) shows the datalog query describing a triangle.

triangle(a, b, c) ← R(a, b), S(b, c), T(c, a) (1)

Here we join three atoms S, R and T with two attributes each (a, b), (b, c) and (a, c) respectively.
The task of enumerating all triangles within the three atoms can be also be described as finding
all possible bindings for the join variables a, b and c within them.

The translation from datalog queries to graph patterns is straightforward. An attribute or a
variable refers to a vertice in a graph and an atom to an edge. A depiction of the subgraph
pattern described by eq. (1) is shown in fig. 1.

In relational terms, a graph pattern matching query is an n-ary, conjunctive, self-equijoin on the
edge relationship of the graph. In this thesis, all join queries discussed belong to this subcategory
of possible join queries. Other join queries can be useful to describe more complex graph patterns,
e.g. disjunction for two edges of which only one needs to exist or negation to exclude instances

6

Figure 1: Depiction of the triangle subgraph query.

Figure 2: The dimaond query is used by Twitter. The vertices are users and the edges follower
relationships. In the example, they could recommend A to follow D because A follows B1 and B2
which both follow C.

that have too many connections. Some techniques used in this work can be extended to cover
these cases, we mention related literature but do not focus our efforts on these extensions.

Graph pattern matching is fundamental to analytical graph analysis workloads [47, 24, 14, 42].
We show two graph patterns which are used in practice below and explain the use-cases.

Figure 2 shows the diamond query which is used by Twitter to recommend their users new people
to follow. The idea is that if user a is following multiple accounts c1, . . . , ck who all follow a
person b then it is likely that b would be interesting to follow for a as well. In the figure, we
see the diamond query for k = 2. This is the diamond query as discussed in most papers in
academia [45, 18, 39], although, Twitter uses k = 3 in production [26].

Our second concrete use-case example is the n-cycle. As explained in [47], cycles can be used
to detect bank fraud. A typical bank-fraud often involves so-called fraud-rings. These are two
or more people who combine their legitimate contact information in new ways to craft multiple
false identities. For example, two people share real phone numbers and addresses to craft four
fake identities; all combinations possible with two pieces of information. They open accounts
under wrong names with real contact information, use these accounts normally to build trust
with the bank and build up bigger credit lines. At a certain date, they max out all credit lines
and disappear. The phone numbers are dropped and the actual people living at the addresses
deny ever knowing the identities that opened the accounts.

This scheme can be detected using graph pattern matching. Let us assume, we have a graph
database in which customer of the bank, their addresses and phone numbers are all vertices and
the relationship of an address or phone number belonging to a customer are edges. Then, the
case described above forms an 8-cycle of 4 persons (fake identities) connected by the shared use
of phone numbers and addresses. The imagined cycle is shown in fig. 3.

7

Figure 3: Schematics of a bank fraud ring. 2 fraudsters share their phone numbers and addresses
(labelled P and A) to create four fake customers (C vertices).

1.2 Binary joins vs WCOJs: an intuitive example

We introduce the triangle query and possible binary join plans. Then we point out the general
problem of binary join plans on this query and the idea of how WCOJs can improve the situation.
Next, we give a concrete example of a database instance to illustrate the aforementioned problem.
We conclude our motivation to use worst-case optimal joins by reporting multiple papers that
show that these joins are highly beneficial to graph pattern matching queries in practice.

The simplest example of a cyclical join query enumerates all triangles in a graph. It is shown
in eq. (1) and fig. 1.

Traditionally, this would be processed by using multiple binary joins:

R ./ S ./ T (2)

The join above can be solved in 3 different orders: (R ./ S) ./ T , (R ./ T) ./ S and R ./ (T ./ S).
Independent of the chosen order, database instances exist where the intermediary result size is
in O(N2) with N= |R| = |S | = |T |. However, it is provable that the output of this query is
guaranteed to be in O(n3/2) [12, 44] for any database instance. Hence, binary joins materialize
huge intermediary results after processing parts of the query, which are much bigger than the
final result.

The described problem is a fundamental issue with traditional binary join plans [12, 44]. We call
these plans also join-at-a-time approach because they process whole joins at the time.

Fortunately, worst-case optimal join algorithms can materialize cyclic joins with memory usage
linear to their output size by solving the join variable-at-a-time which avoids materializing big
intermediary results [53, 43].

In variable-at-a-time the algorithm finds a binding for the first variable a, then one for b and
finally one for c. After this, it emits the tuple as part of the output. Then it finds further bindings
via backtracking until they enumerated the whole join when all bindings for a have been explored.

A simple example graph database instance gives an idea of why a variable-at-a-time approach
is beneficial for cyclic queries. In fig. 4, we see an edge relationship. It is repeated three times
labelled with different attributes to ease the understanding of the following explanation; however,
in a system’s implementation, only one table exists and is used by all joins as input.

A binary join plan which joins R and S via b first produces 16 + 3 intermediary results; 4 times 4
results for b = 2 and one for 6, 11, 12 each. The next join reduces these 16 results to the three
triangle instances; all permutations of the set {6, 11, 12}.

A variable-at-a-time approach finds 4 bindings for a, namely 2, 6, 11, 12; the intersections of both
columns labelled a.

Intersecting both columns of b values we notice 2, 6, 11, 12 could be possible bindings for b. When

8

R

a b

1 2
2 7
2 8
2 9
2 10
3 2
4 2
5 2
6 11

11 12
12 6

S

b c

1 2
2 7
2 8
2 9
2 10
3 2
4 2
5 2
6 11

11 12
12 6

T

c a

1 2
2 7
2 8
2 9
2 10
3 2
4 2
5 2
6 11

11 12
12 6

Figure 4: Three aliases to an edge relationship which contains three triangles, the permutations of
{6, 11, 12}, and one skewed value.

we fix an a value these four possibilities are reduced to the b values which exist for this a value
in the leftmost table. So once we fixed a binding for a, we find one possible binding for b each;
except the binding a = 2 for which we cannot find a matching b value.

Finally, we find all three instances of the triangle by completing the three a, b bindings with the
matching c binding; only one exists for each a, b binding.

We can drastically reduce the workload by formulating the join as a problem of finding variable
bindings using information from all parts of the join, instead of, using only one constraint at the
time and building it join-by-join.

We do not claim that the example above illustrates the generality of why binary join plans are
provable worse than WCOJs. Clearly, the example does not show an intermediary result of N2

as N = 11 and the intermediary result has the size of 16. However, we note that even in such a
simple example all possible binary join orders produce an intermediary result of size 16. While
all possible variable orderings for a variable-at-a-time approach eliminate the skewed value (2)
after finding no binding for the second variable. A more general but less concrete example is
explained in [44].

In practice, these worst-case optimal join algorithms are highly beneficial for cyclic queries in
analytical graph workloads in an optimized, single machine system [53, 45]. [45] compares a
system using WCOJs against multiple general-purpose database systems using binary joins and
some graph pattern matching engines on 15 datasets and 7 queries and finds that worst-case
optimal joins can beat all other systems in the vast majority of queries and datasets, often by
the order of magnitudes or even being the only system to finish within 30 minutes.

Later worst-case optimal joins have been applied successfully to a distributed shared-nothing
settings [18, 7]; we describe these systems in more detail in section 2.3 and 8.1.

1.3 Graphs on Spark

Spark is an attractive target for big graph processing, due to its generality, widespread acceptance
in the industry, the ability to use cloud hardware and its fault tolerance by design. For example,
GraphFrames [21], GraphX [25] (a Pregel [38] implementation) or graph query languages as
G-CORE [8] and openCypher with ‘Cyper for Apache Spark’ or CAPS [46] all aim to ease

9

graph processing on Spark. The last two technologies translate their graph specific operations to
the relational interface of Spark (SparkSQL) to profit from Spark’s relational query optimizer
Catalyst [11]. Moreover, they allow the user to formulate graph pattern matching queries
naturally.

Hence, we believe that the WCOJs, with their efficiency for analytical graph queries, are a
valuable addition to Spark’s built-in join algorithms in general and these graph-on-spark systems
in particular. Ideally, they are integrated such that they can be naturally used in the ecosystem
of Catalyst. This would allow easier use in SQL like graph languages as G-CORE or Cypher for
graph pattern matching.

1.4 Research questions and contributions

We identify two challenging, novel directions for our research. First, all papers about WCOJ
focus on queries widely used in graph pattern matching, e.g. clique finding or path queries. As
explained above, graph pattern matching uses only self-joins on a single relationship with two
attributes namely the edge relationship of the graph. However, all systems use worst-case optimal
joins developed for general n-ary joins. This raises the question if and how WCOJs can be
specialized for graph pattern matching.

Second, while the communication costs for worst-case optimal joins in MapReduce like systems1

is well-understood [4, 3, 13, 31], their scalability has not been studied in depth. Given that
the only integration in a MapReduce like system exhibits a speedup of 8 on 64 nodes over two
workers (an efficiency of 0.125) [18], we find that designing a scalable, distributed WCOJ for a
MapReduce like system is an unsolved challenge.

It is time to investigate how these algorithms scale in the provable most widely used, general-
purpose big data processing engine: Spark. To the best of our knowledge, this is also the first
time a worst-case optimal join is integrated with an industrial-strength cluster computing model.
We detail our research questions below.

1. Can we gain performance in WCOJs by specializing them to graph pattern matching?
(a) How much performance can we gain by using compressed sparse row representations

as backing data structure to WCOJs?
(b) Can we find a more suitable algorithm to build intersections for graph-pattern matching

than the complex n-ary approach proposed originally?
2. How well do WCOJs scale in Spark when used for graph pattern matching?

(a) How well does a previously proposed, optimal partitioning scheme, named Shares,
scale? We explain Shares in detail in section 2.3.1.

(b) How to integrate scalable work-stealing into Spark to counter tuple replication and
skew?

Towards answering our research questions, we make the following contributions.

1. We integrate a sequential, general worst-case optimal join into Spark. This implementation
serves as a baseline for our WCOJ optimized to graph pattern matching.

2. We design and implement GraphWCOJ which is a worst-case optimal join specialized to
graph pattern matching. It is backed by a compressed sparse row representation of the
graph which reduces its memory footprint and speeds up execution by up to 11 times
over a normal LFTJ because it acts as an index. Furthermore, we exploit the typical low
out-degree of most graphs to by specializing the LFTJ for small intersections.

1 An excellent definition of the term MapReduce like systems is given in [4]

10

3. We analyse how many tuples Shares replicates for typical graph pattern matching queries.
From this analysis and the fact that Shares is an optimal partitioning scheme, we conclude
that replication is inevitable for complex graph-pattern matching queries. Therefore, we
cache the graph in the memory of all workers.

4. Based on a replicated edge relationship, we design logical Shares. This is an approach
where the graph is fully replicated but we use Shares partitioning to divide work between
executors. We measure a speedup of 13 on 64 workers for some queries and beat an existing
implementation of (physical) Shares which reaches a speedup of 8 for the same number of
machines. The results show that Shares is good in dealing with skew but requires too much
replicated work to scale well.

5. Therefore, we abandon static partitioning and design a WCOJ that applies work-stealing.
We show that work-stealing can scale linearly on some input queries and beats logical Shares
for all levels of parallelism

6. for 3-cliques and 5-cliques on three different datasets.
7. We run experiments on 5 datasets, 6 queries, for up to 382 workers using Spark’s build-in

hash join, a general Leapfrog Triejoin and our specialized GraphWCOJ.

1.5 Thesis overview

In this section, we outline the main ideas, motivation and decisions taken in this thesis. We
summarize the whole thesis as a graph in fig. 5. We see the background that motivates our
decision in the corners and our system in the centre. The edges show connections between
different ideas and components. We give an overview of the thesis in the next paragraphs.

As mentioned in section 1.3, Spark is a good platform for our work because many graph pattern
matching systems use it, like neo4j’s Cypher on Apache Spark (CAPS) and LDBC’s G-CORE [46,
8]. In particular, they build on top of Spark’s structured query execution offered by Catalyst.
Catalyst is designed to be easily extendable and allows to introduce new operators, such as a
worst-case optimal join, without modifying the core of Spark. This is even possible in a way such
that these new operators can be used with a native, unchanged installation of Spark. We describe
Catalyst query compilation process in section 2.1.3. Our integration is detailed in section 6.

Normally, Spark achieves parallelism and distributed algorithms by partitioning data over all
workers. When data from different tables needs to be joined, Spark repartitions the data such
that each worker can process parts of the join locally. However, shuffling is an expensive operation
in Spark, involving disk writes and reads, which should be avoided if possible. Moreover, we can
show that a communication-optimal partitioning scheme degenerates into a full broadcast for
bigger graph pattern queries; we explain this in detail in section 2.3.1.

Given this finding, we design our system to build on a replicated and cached edge relationship on
each worker. As a short study of us reveals, most large graph problems described in literature,
have edge structures that would fit in main-memory (see section 2.5); and our compressed storage
format further helps to keep memory usage under control. This has a few distinct advantages.

First, the broadcast can be done once at system startup. Then, we can reuse it for any graph
pattern matching query; all of them need to join over the edge relationship many times. Therefore,
we can answer many graph pattern matching queries without shuffling data. We explain the
integration of replicated edge relationships into Spark in section 6.4 and introduce the necessary
background in section 2.1.4.

Furthermore, such reuse helps to amortize the non-trivial setup costs for worst-case optimal joins;
they require their input data to be sorted.

Finally, a replicated data structure allows us to use dynamic work-sharing schemes as work-
stealing cheaply without relocating data. Normally, partitioning is done completely statically in
Spark. However, this is problematic given that many real-world graphs are highly skewed, e.g.

11

Figure 5: Main ideas and components of the thesis. Background and related work shown in the
corners. The center shows the main component of our parallized worst-case optimal join

12

power-law graphs such as many follower graphs (Facebook, Twitter) or web graphs. We find that
this skew can easily lead to bad load-balancing with the static partitioning of Spark. We explain
how to integrate work-stealing with Spark in section 3.4.

Using a fully replicated edge relationship and potentially work-stealing leads to the necessity
to build data-partitioning into the worst-case optimal join operators. This is because Spark
would normally have an operator work on all local data and archive parallelism via physically
partitioning the data over multiple workers. We call partitioning built into our operators logical
partitioning. The concept and its implementation are described in section 3.

We choose to use the Leapfrog Triejoin [53] as a basis for our system; this choice is motivated
in section 2.2. This join requires its input relationships to be presented in a sorted data structure
which is searchable for upper bounds in O(log N). Furthermore, it mainly uses intersections to
compute the join. The algorithm is explained in detail in section 2.2.1.

We specialize the Leapfrog Triejoin to graph pattern matching by introducing a compressed sparse
row representation (CSR, see section 2.4) as backing data structure for the input relationships.
CSR can compress the graph edge relationship by a compression factor of nearly 2. Additionally,
we show that it speeds up the WCOJ execution to be backed by a CSR because this representation
acts like an index.

Another graph specific optimization we apply to LFTJ is that we change the intersection building
algorithm for one that is specialized in small intersections. This is motivated by the fact that
real-world graphs have normally small average out degrees. Hence, the intersection of multiple
adjacency lists is predictably small. We discuss both specializations to the Leapfrog Triejoin
algorithm in section 4.

2 Background

In this section, we describe the different systems and former research necessary to a good
understanding of this thesis. First, we introduce Spark. Second, we discuss possible WCOJ join
algorithms and argue why we choose to use Leapfrog Triejoin as basis for our thesis. Third, we
describe distributed worst-case optimal join algorithm in a Spark-like system, called Myria. There
implementation uses a communication optimal, physical partitioning scheme named Shares. We
also analyse its scaling behaviour for graph-pattern matching. This analysis is a contribution of
this thesis, although it is presented in the background section. Fourth, we explain the compressed
sparse row data structure. Finally, we present a study of real-world graph sizes used in literature
assembled by us to show that most graphs used today fit into main-memory.

2.1 Spark

Spark probably is the most widely used and industry accepted cluster computing framework. It
improves over former computing frameworks, e.g. MapReduce [22], Hadoop [9] or Haloop [16], by
allowing to cache results in memory between multiple queries, using so-called resilient distributed
datasets [55]; often abbreviated to RDD. Furthermore, it offers SQL as an alternative high-level
query interface due to its extensible query optimizer framework, Catalyst.

This section introduces Spark and is organized in four subsections. Section 2.1.1 describes the
core data structure of Spark: the RDDs. In section 2.1.2, we explain the different components and
processes in a Spark cluster. The query optimizer of Spark, Catalyst, is explained in section 2.1.3.
It is the component we integrate our WCOJ with; therefore, it is the module of Spark that
is most relevant to this thesis. Finally, in section 2.1.4 we highlight important details about
Broadcast variables which are used to implement our parallel worst-case optimal join.

13

2.1.1 Resilient distributed datasets

RDDs form the core of Spark. However, for this thesis, it is not necessary to understand them in
great detail. In the next paragraph, we give a short introduction to the relevant aspects of RDDs.
For the interested reader, a more in-depth description is given in the original paper [55].

Resilient distributed datasets describe a distributed collection of data items of a single type. In
contrast, to other distributed share memory solutions, RDDs do not use fine-grained operations
to manipulate single data items but coarse-grained operations which are applied to all data items,
e.g. map to apply a function to each data item. These operations are called transformations.
An RDD is built starting from a persistent data source and multiple transformations to apply
to this data source. One can represent the transformations applied to the input data source
as a directed acyclic graph, the so-called lineage graph. This graph fully describes the dataset
without materializing it because the transformations are deterministic. Hence, the dataset can
be computed and recomputed on demand, e.g. when the user asks for the count of all items in
the set. Operations which require that the data in the RDD is computed are called actions.

RDDs are distributed by organizing their data items into partitions. The partitioning can be
chosen by the user or the Spark query optimizer such that it allows to run transformations on
all partitions in parallel. For example, one might choose a round-robin partitioning to generate
splits of equal size when reading data items from disk or one groups items by hashing a specific
key to support parallelizable aggregation on that key per partition. The process of repartitioning
an RDD is called a shuffle. It is an expensive operation because it typically involves writing and
reading the whole RDD to disk.

Describing datasets as RDDs comes with two main benefits. First, it is resilient because if the
dataset or some partitions of it get lost, it is possible to recompute them from persistent storage
using lineage graph information. Second, it allows Spark to compute RDDs in parallel.

Spark can parallelize the computation of RDD in two ways. First, by data-parallelism, since
different partitions of an RDD can be computed independently from each other. Second, by
task parallelism, because some parts of the DAG can be computed without dependence of the
others. Indeed, it is possible to compute all parts of an RDD in parallel which are not related in
a topological sort of the graph.

2.1.2 Spark architecture

Spark allows the user to run a program on a single machine or hundredsco of machines organized
in a cluster. In this section, we explain the architecture that allows this flexibility. Figure 6 shows
the schematics of a Spark cluster setup.

In Spark, each physical machine is called a worker. On each worker, Spark starts one or multiple
Spark processes in their own JVM instance; each of them is called executor. Nowadays, many
Spark deployments use a single executor per worker2. Each executor runs multiple threads (often
one per core on its worker) to execute multiple tasks in parallel. In total, a Spark cluster can run
workers × # executors per worker × # threads per executor tasks in parallel.

Spark uses two kinds of processes to execute an application: a driver program and multiple
executors. When started, the driver program acquires resources from the cluster manager for its
executor processes. These executors stay alive during the whole Spark application. Then, the
driver program continues executing the Spark application. When it encounters parallelizable
tasks, it schedules them on the available executors.

2This is the setup Databricks uses; Databricks is the leading maintainer of the Spark platform and offers professional
deployment to many customers.

14

Figure 6: Schematics of a Spark cluster with two workers, each of them with
one executor and two threads per executor. Source: Apache Spark Documentation,
https://spark.apache.org/docs/latest/cluster-overview.html

All tasks scheduled on the same executor share a cache for in-memory data structures like
Broadcast variables or persisted RDD partitions. This is important in the context of this thesis
because it means that we cache the input graph once per executor, which in many Spark
deployments is once per worker or physical machine. This would not be possible if different tasks
in the same JVM would not share the same cache.

Spark allows the user to choose a cluster manager to manage resources in the cluster. It comes
with good integration for Hadoop YARN [52], Apache Mesos [27] and Kubernetes [32], as well
as, a standalone mode where Spark provides its own cluster manager functionality. Finally, one
can run Spark on a single machine in local mode. In local mode, the driver program and a single
executor share a single JVM. The executor uses the cores assigned to Spark to run multiple
worker threads.

2.1.3 Catalyst

Catalyst [11] is Spark’s query optimizer. It can process queries given as a SQL string or described
using the DataFrame API. From a given query it constructs an executable physical plan. The
query compilation process is organized in multiple stages. Its inputs and stages are shown
in fig. 7. Below we explain these in order. We use the triangle given by the datalog rule
COUNT (triangle(A, B, C))← R(A, B), S(B, C), T (A, C), A < B < C as a running example.

The input of Catalyst is a query in the form of a DataFrame or SQL string. From this, the
optimizer builds a unresolved logical plan. This plan can include unresolved attributes, e.g.
attribute names which are not matched to a specific data source yet or which have no known
type. To resolve these attributes Catalyst uses a Catalog of possible bindings which describe the
available data sources. This phase is referred to as Analysis and results in a logical plan. The
logical plan represents what should be done for the query but not exactly how, e.g. it might
contain a Join operator but not a Sort-merge join.

We show the logical plan for the triangle query in fig. 8a. As we see, the query is represented as a

15

Figure 7: Input and stages of the Catalyst optimizer. Source: Databricks Blog,
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html

(a) Logical plan (b) Physical Plan

Figure 8: Logical and physical plan for the triangle count query as generated by Catalyst.

tree where the vertices are operators and the edge indicate dataflow from one operator to another.
The leaves of the tree are three aliases of the edge relationship. Two of these source relationships
are the input the join between R and S via B. The result of this join and the leaf relationship T
are input to the second join. The tuples produced by this join are filtered to fulfil A < B < C.
Finally, at the root of the tree, there is an aggregation to count all results and report the sum.

The logical optimization phase applies batches of rewriting rules until a fixpoint is reached. A
simple example of a logical optimization would be rewriting 2 + 2 into 4. In the running example
of the triangle query, this phase pushes the filters into the two joins. This optimization is called
Filter Pushdown. It is efficient because it applies filters earlier within the pipeline reducing the
number tuples to process by later operators.

From the optimized logical plan the optimizer generates one or multiple physical plans by applying
so called Strategies. They translate a logical operator in one or multiple physical operators.
Strategies are also allowed to return multiple physical plans for a single logical plan. In this case,
the optimizer selects the best one according to a cost model.

The physical plan for the triangle query is shown in fig. 8b. We see multiple examples of
translation of a logical operator, which describes what to do, to its physical pendant that also
describes how to do it: the TableScan becomes a CSVRead and the Joins are implemented as
BroadcastHashJoins.

16

Furthermore, we see the introduction of exchanges. BroadcastExchanges precede the Broad-
castHashJoins. They build a hashtable from their input operators and make them available
as a broadcast variable to all executors of the cluster; we explain broadcast variables in depth
in section 2.1.4. When an executor is tasked to execute the hash join operator, it acquires the
broadcasted hashtable and executes a local hash join of its assigned partitions.

Another exchange operator is introduced for the aggregation. It is broken up into a partial
aggregation directly after the last join, an exchange reorganizing all partial counts into a single
partition and a second aggregation over that partition to calculate the total count. The last is a
good example of Catalyst introducing a shuffle.

To summarize, the translation to a physical plan translates logical operators into concrete
implementations of these and adds exchanges to organize the data such that it can be processed
independently in partitions.

After generating and choosing a physical plan, Catalyst enters the code generation phase in which
it generates specific Java for some of the physical operators. This code is fused together in a
single loop, using a technique called data-centric query compilation [41]. This code executes
often orders of magnitudes faster than interpreted versions of the same operator [11] because it is
specialized towards this particular query, e.g. if a join operates only on integers, code generation
can prune all code paths dealing with strings. Indeed, the code generation phase is part of
another Spark project called Tungsten [54, 5]. In this thesis, we do not build any code generated
physical operators. Hence, we do not treat this topic in depth. It is enough to know that all
freshly generated Java code is wrapped into a single physical operator. Therefore, it integrates
seamlessly with interpreted operators.

Finally, Catalyst arrives at an optimized physical plan which implements the query. The execution
of this plan is called structured query execution [34]. It translates the plan into RDD operations
implemented by Spark’s core. Hence, the result of Catalysts query compilation is an RDD
representing the query. One should note that structured query execution does not materialize
the query: the result is an RDD which is a non-materialized representation of the operations
necessary to generate the result. In this thesis, we are not concerned with the internals of RDDs.
We do not need to introduce any new RDD operations or even touch Spark’s core functionality.
Thanks to the extensibility of Catalyst, we can integrate worst-case optimal joins by adding one
logical operator, multiple physical operators and a Strategy to translate between them.

2.1.4 Broadcast variables

Broadcast variables are readonly variables which are accessible by all tasks. They are initialized
once by the driver program and should not be changed after initialization. The process of
broadcasting them is handled by Spark. It is guaranteed that each broadcast variable is sent
only once to each executor and allows it to be spilt to disk if it is not possible to keep the whole
value in memory. Furthermore, ‘Spark attempts to distribute broadcast variables using efficient
broadcast algorithms to reduce communication costs’ [19]; currently Spark uses a BitTorrent-like
communication protocol3. Once sent, they are cached once per executor (see also section 2.1.2)
and shared by all tasks on this executor. They are cached in deserialized form in memory but
can be spilt to disk if they are too big. In this thesis, we use broadcast variables to cache the
edge relationship of the graph on all workers.

3See Spark sources: org.apache.spark.broadcast.TorrentBroadcast

17

2.2 Worst-case optimal join algorithm

The development of worst-case optimal joins started in 2008 with the discovery that the output
size of a relational query is bound by the fractional edge number of its underlying hypergraph [12].
In short, this bound proves that traditional, binary join plans perform asymptotically worse than
theoretically possible for the worst-case database instances, e.g. heavily skewed instances. For
example, the worst-case runtime of binary joins on the triangle query is in O(N2), while the AGM
bound shows the possibility to solve it in O(N3/2). The AGM bound has been treated widely in
literature [44, 6, 12]. A particular good explanation is given by Hung Ngo et al in [44]. We refer
the reader to these papers for further information. In the next paragraph, we discuss different
algorithms whose worst-case complexity matches the AGM bound which are called worst-case
optimal joins.

In 2012, Ngo, Porat, Re and Rudra published the first join algorithm matching the AGM bound,
called NPRR join [43]. In the same year, Veldhuizen proved that the algorithm Leapfrog Triejoin
used in LogicBlox, a database system developed by his company, is also worst-case optimal with
regards to the fractional edge number bound. We often abbreviate Leapfrog Triejoin to LFJT.
Both algorithms have been shown to be instances of a single algorithm, the Generic Join, in 2013
by Ngo et al. [44].

Three worst-case optimal join algorithms are known in the literature. We choose Leapfrog Triejoin
as the basis for our work. The argumentation for this decision is given below. First, we identify
the main criteria for this choice. Then, we use them to compare the different algorithms.

The most important argument for our decision is the degree to which the algorithm has been
shown to be of practical use. In particular, the number of systems it is used in and openly
available data on its performance. If an algorithm is used in academia as well as in industry, we
deem this as an advantage. This criterion carries a lot of weight because the first literature on
worst-case optimal joins has been rather theoretical but in our work, we take a more practical
and system-oriented perspective.

The practical character of our work also motivates the second dimension which we compare
the algorithms in, namely ease of implementation. If two of the three algorithms both have
well-proven performance, we would like to choose the algorithm that takes less time to implement
and is easier to adapt and experiment with. That is, to be able to spend more time on evaluation
and optimizations for the graph use-case, instead of, time spent on replicating existing work.

The Leapfrog Triejoin is used in two commercial database solutions: LogicBlox [10] and Rela-
tionalAI4. Its performance has been reported on in two publications [18, 45]. In particular, it
beats various general and graph specific databases for graph pattern matching, i.e. PostgresSQL,
MonetDB, neo4j, graphLab and Virtuoso [45]. The broadest study of its performance uses
15 different datasets and 7 queries [45]. We conclude that the performance of LFTJ is well
established by peer-reviewed publications as well as industrial usage.

The NPRR algorithm has been well analyzed from the theoretical point of view. However, we are
not able to find any openly available sources with performance measurements. This disqualifies
NPRR as the basis for our thesis.

The Generic Join is used in at least three academic graph processing engines, namely Graph-
Flow [28], EmptyHeaded [1] and a unnamed implementation in Timely Dataflow [7]. All three
show good performance. However, we are not aware of any commercial systems using GJ.

The comparision of Leapfrog Triejoin, NPRR and Generic Join by proven performance rules out
NPRR and puts LFTJ and GJ on a similar level. Next, we compare these two algorithm in
ease of implementation.

4https://www.relational.ai/

18

The description of the Leapfrog Triejoin implementation in its original paper [53] is excellent.
Furthermore, multiple open source implementation exists [49, 18]. In particular, Christian
Schroeder’s implementation for a course at Oxford is helpful because it is standalone and does
not require us to understand a whole system5.

Generic Join is described as a generalization of NPRR and Leapfrog Triejoin in its original
paper [44]. Although, well written and algorithmically clear, this explanation is much less
practical than the one given for LFTJ which is backed by an executable implementation.

To conclude, we choose Leapfrog Triejoin as the basis for our work based on its openly available
records of performance, use in academia as well as industrial systems and good description for
direct implementation. Furthermore, the Database research group of CWI (where this thesis was
performed) has an ongoing collaboration with the inventors of LFTJ which gives us access to
valuable expertise if necessary.

2.2.1 Leapfrog Triejoin

In this section, we describe the Leapfrog Triejoin algorithm. In the next paragraph, we give the
high-level idea behind the algorithm and some of its requirements. Then we discuss the kind
of queries that can be answered with it. The main part of the section discusses the conceptual
algorithm itself. We finish with a short discussion of two implementation problems, namely the
data structure to represent the input relationships and the problem of choosing a good variable
ordering.

The Leapfrog Triejoin is a variable-oriented join. Given an input query, it requires a variable
ordering. For example, in the triangle query triangles(a, b, c)← R(a, b), S(b, c), T (a, c), the vari-
able ordering could be a, b, c. Furthermore, the Leapfrog Triejoin requires its input relationships
to be sorted by lexicographic, ascending order over the given variable ordering, e.g. R needs to
be sorted by primarily by a and secondary by b given the variable ordering a, b, c. The algorithm
is variable-oriented because it fixes one possible binding for a, one for b given a and finally one
for c given a and b. This allows it to enumerate the result of the join query without intermediary
results. The process can be thought of as a backtracking, depth-first search for possible bindings.

The algorithms implemented in this thesis can process joins of the full conjunctive fragment
of first-order logic or conjunctive equijoin in relational algebra terms. Possible extentsions to
disjunctions, ranges (non-equi joins), negation, projection, functions and scalar operations on
join variables are explained in the original Leapfrog Triejoin paper [53]. However, they are not
relevant to the core of this work because many interesting graph patterns can be answered using
the full conjunctive fragment, e.g. cliques or cycles.

The Leapfrog Triejoin algorithm uses three components which are composed in a layered fashion.
The concrete composition used for the triangle query is shown in fig. 9. In this figure, we see
three layers, each of them made of one or more instances of a component. The components are
the TrieIterator, LeapfrogJoin and LeapfrogTriejoin. In the next paragraphs, we explain each
layer in order, starting with the lowest layer.

The lowest layer is made of one TrieIterator per input relationship. In our example, we have three
instances one for R, S and T each. The TrieIterator interface represents the input relationship as
a trie with all values for the first attribute on the first level, the values for the second attribute
on the second level and so on; an example for this is shown in fig. 10.

The trie contains one level per attribute of the relationship; in the case of the triangle query,
there are two levels: one for a and one for b. Each level is made of all possible values for its
attribute. All tuples of the relationship can be enumerated by a depth-first traversal of the trie.

5https://github.com/schroederdewitt/leapfrog-triejoin

19

Figure 9: The three layers of the Leapfrog Triejoin algorithm. The configuration for a triangle query
is shown: three TrieIterators one per input relationship, three LeapfrogJoins one per variable and one
LeapfrogTriejoin component are neccessary. The arrows indicate that a component uses another. The
LeapfrogTriejoin uses all other components but only the vertical part of the TrieIterators (dashed
arrows). The LeapfrogJoins uses the linear part of two TrieIterators each.

Figure 10: A 3-ary relationship as table (left) and trie (right), to position the iterator at the tuple
(1, 1, 5) one calls open twice, key returns now 5, after a call to next, key returns 6 and up would
lead to key returning 1.

20

Method required complexity

TrieIterator
int key() O(1)
bool atEnd() O(1)
void up() O(logN)
void open() O(logN)
void next() O(logN)
void seek(key) O(logN)

LeapfrogJoin
int key() O(1)
bool atEnd() O(1)
void init() O(logN)
void next() O(logN)
void seek(key) O(logN)

Table 1: The interfaces of TrieIterator and LeapfrogJoin with required complexity. N is the size of
relationship represented by the iterator.

The TrieIterator component offers six methods shown in table 1. The open and up methods
control the level the iterator is positioned at; open moves it one level down and up moves it one
level up. Additionally, open places the iterator at the first value for the next level and the up
method returns to the value of the upper level that was current when the deeper level was opened.
We call these two methods the vertical component of the TrieIterator interface.

The other four methods are called linear component. All of them operate on the current level of
the TrieIterator. The key function returns the current key (a single integer). The next method
moves the iterator to the next key on the same level. The seek(key) operation finds the least
upper bound for its parameter key. Finally, the atEnd method returns true when the iterator is
placed behind the last value of the current level.

The middle layer of the Leapfrog Triejoin is made of one LeapfrogJoin per variable in the join.
This join generates possible bindings for its variable by intersecting the possible values for all
input relationship containing the variable. Therefore, it operates on the linear component of
all TrieIterators of relationships with this variable. Figure 9 for the triangle query shows three
LeapfrogJoin instances (for a, b and c); each of them uses two TrieIterators.

The LeapfrogJoin interface has five methods shown in table 1, with their required asymptotical
performance. In the following paragraphs, we explain each of them. In short, the join offers
an iterator interface over the intersection of its input iterators. This intersection is found by
repeatedly seeking the value of the largest input iterator in the smallest input iterator. This
process resembles a frog taking a leap which gives the join its name. When all iterators point to
the same value leapfrogging stops and the value is emitted as part of the intersection.

The init operation sorts the input iterator by their current key and finds the first value of
the intersection. To find the first value it uses the private method leapfrogSearch which is the
work-horse of the whole join. The algorithm of this method is shown in algorithm 1. This method
loops the process of calling the seek method of its smallest input iterator with the key of the
largest input iterator until the smallest and the largest (and therefore all iterators) point to the
same value.

The leapfrogNext method moves the join to its next value. Internally, it uses the next function of
its smallest iterator and then leapfrogSearch.

21

Algorithm 1: leapfrogSearch()
Data:
iters sorted array of TrieIterators
p index of the smallest iterator
Result: Either atEnd is true or key is set to next key of intersection

1 maxKey ← iters[p % iters.length].key()
2 while iters[p].key() 6= maxKey do
3 iters[p].seek(maxKey)
4 if iters[p].atEnd() then
5 atEnd ← true
6 return
7 else
8 maxKey ← iters[p].key()
9 p ← (p + 1) % iters.length

10 key ← iters[p].key()

The operation leapFrogSeek(key) first uses the seek method of the smallest input iterator to
forward it to key; then it uses leapfrogSearch to either verify that this key is available in all
iterators (hence in the intersection) or to find the upper bound of this key.

Finally, the functions key and atEnd return the current key or if the intersection is complete
respectively.

The last layer of the whole algorithm is a single LeapfrogTriejoin instance. It interacts with both
lower layers to enumerate all possible bindings for the join. For this, it acquires one binding
for the first variable from the corresponding LeapfrogJoin. Then it moves the TrieIterators
containing this variable to the next level and finds a binding for the second variable using the next
LeapfrogJoin. This process continues until all variables are bound and a tuple representing this
binding is emitted by the join operator. Then it finds the next possible binding by backtracking.

Algorithm 2 shows the backtracking depth-first traversal. This traversal needs to stop each time
when a complete tuple has been found to support the iterator interface of the join. Therefore,
it is implemented as a state-machine which stops each time the deepest level is reached and
all variables are bound (loop condition in line 33). The next action of the state machine is
determined by the outcome of the current action. Hence, we can characterize the state machine
by describing each possible action and its possible outcomes. There are three possible actions:
next, down and up. We summarize the possible actions, conditions for the next action and if the
main loop of the state machine yields the next tuple in table 2 and describe each action below.

The next action moves the LeapfrogJoin at the current depth to the next possible binding for its
variable (line 4). If the LeapfrogJoin reached its end, we continue with the up action (line 6),
otherwise we set the binding and continue by another next action, if we are at the deepest level
or by moving to the next deeper level by the down action (line 8ff).

The down action moves to the next variable in the global variable ordering by opening all related
TrieIterators and initializing the corresponding LeapfrogJoin (line 15 call to trieJoinOpen). A
down can be followed by an up if the LeapfrogJoin is atEnd (line 17), by a next action if the trie
join is at its lowest level (line 21), or by another down action to reach the deepest level.

The up action can signal the completion of the join if all bindings for the first variable in the global
ordering have been explored, or in other words, the first LeapfrogJoin is atEnd (condition depth
== 0 ∧ action == UP line 25). Otherwise, all TrieIterators corresponding to the current variable
are moved upwards by calling triejoinUp (line 29) which also updates depth and bindings. Then,

22

Algorithm 2: LeapfrogTrieJoin state machine. trieJoinUp and trieJoinOpen move all TrieIt-
erators that involve the current variable a level up respectively down.
Data: depth the index of the variable to find a binding for, ranges from -1 to #variables - 1
bindings array holding the current variable bindings or −1 for no binding
MAX_DEPTH the number of variables - 1
action state of the state machine

1 repeat
2 switch action do
3 case NEXT do
4 leapfrogJoins[depth].leapfrogNext()
5 if leapfrogJoins[depth].atEnd() then
6 action ← UP
7 else
8 bindings(depth) ← leapfrogJoins[depth].key()
9 if depth == MAX_DEPTH then

10 action ← NEXT
11 else
12 action ← DOWN
13 case DOWN do
14 depth ← depth + 1
15 trieJoinOpen()
16 if leapfrogJoins[depth].atEnd() then
17 action ← UP
18 else
19 bindings(depth) ← leapfrogJoins[depth].key()
20 if depth = MAX_DEPTH then
21 action ← NEXT
22 else
23 action ← DOWN
24 case UP do
25 if depth = 0 then
26 atEnd ← true
27 else
28 depth ← depth - 1
29 trieJoinUp()
30 if leapfrogJoins[depth].atEnd() then
31 action ← UP
32 else
33 action ← NEXT
34 until ¬ (depth = MAX_DEPTH bindings[MAX_DEPTH] 6= -1) ∨ atEnd

23

Action Condition Next action Yields

NEXT
lf.atEnd UP no
¬lf.atEnd ∧ reachedMaxDepth NEXT yes
¬lf.atEnd ∧ ¬reachedMaxDepth DOWN no

DOWN
lf.atEnd UP no
¬lf.atEnd ∧ reachedMaxDepth NEXT yes
¬lf.atEnd ∧ ¬reachedMaxDepth DOWN no

UP
depth = 0, means highest lf.atEnd is true – (done) yes
lf.atEnd UP no
¬lf.atEnd NEXT no

Table 2: Summary of actions, conditions for the following action and if a complete tuple has been
found. reachedMaxDepth is true if we currently find bindings for the last variable in the global order.
lf abbreviates the LeapfrogJoin of the current variable. The columns Yields details if the main loop
of the state machine yields before computing the next action, this is the case, when all variables
have been bound.

this action is followed by another up or a next depending on atEnd of the current LeapfrogJoin
(lines 30).

TrieIterator implementation, backing data structure While we can implement the
LeapfrogJoin and LeapfrogTriejoin component of the Leapfrog Triejoin from the the algorithmic
description given above, we are missing some details for a concrete implementation of the
TrieIterator interface. Mainly, we need to decide for a data structure to back the TrieIterator.

We choose to use sorted arrays as described in [18]. One array is used per column of the input
relationship and binary search on these arrays allows us to implement the TrieIterator interface
with the required asymptotic complexities (see table 1).

Variable ordering Finding a good variable ordering for the LFTJ is an interesting research
problem in itself. We are aware of two existing approaches.

The first is to create and maintain representative samples for each input relationship and determine
the best order based on runs over these samples. This has been implemented in LogicBlox, the
first system to use Leapfrog Triejoins [10]. To the best of our knowledge, the exact method of
creating the representative samples has not been published.

The second approach is described in great detail by Mhedhbi and Salihoglu in [39]. Its has been
implemented in their research graph database Graphflow [28].

They define a novel cost-metric for WCOJs which estimates the costs incurred by constructing
the intersections of adjacency lists. The metric takes three factors into account. First, the size of
the adjacency lists.

Second, the number of intermediate matches. The concept of intermediate matches is best
understood by a simple example; we see the tailed-triangle query in fig. 11. Two very different
vertex ordering categories exist for this query. The ones that start on v4 and find all 2-paths of
the graph; and vertex orderings that start with v1, v2, v3 in any order which closes the triangle
first. Clearly, there are more 2-paths in any graph than triangles. Hence, the second category

24

Figure 11: The tailed triangle; an example for the cost of intermediate matches.

produces far less intermediate matches.

Finally, they implement an intersection cache in their system which takes advantage of the fact
that some queries can reuse already constructed intersections. So, the last factor taken into
account by their cost metrics is the usage of this intersection cache.

They use the described cost metric, a dynamic programming approach to enumerate possible
plans and a catalogue of sampled subgraph instances containing the sizes of adjacency lists to
intersect and produced intermediate results to estimate the costs for all variable orderings.

Moreover, they implement the ability to change the query ordering adaptively during query
execution based on the real adjacency list sizes and intermediate results. They show that adaptive
planning can improve the performance of many plans. Furthermore, it makes the query optimizer
more robust against choosing bad orderings.

The work of Mhedhbi et al. is the most comprehensive study on query vertex orderings for
WCOJs currently available; they introduce a cost metric, a query optimizer to use this metric
and prove that it is possible and beneficial to compute parts of the results using a different
variable order.

In our work, we do not implement an automatic process to choose the best variable order. The
order we choose is based on experiments with different orders and intuition of the author.

Integrating the approach of LogixBlox would be possible but require the implementer to find a
good sampling strategy because no details are openly available.

The approach of Mhedhbi and Salihoglu is much better documented but also more complex. It
consists of four contributions which build upon each other but could be useful on their own. The
cost metric described in their paper applies to our system as well and could be used.

They use this metric for cost estimation in connection with a non-trivial subgraph catalogue.
The main challenge in integrating this way of cost estimation with our system is to elegantly
integrate catalogue creation in Spark.

Their solution for adaptive variable orderings is helpful because it proves that this technique is
beneficial; they also publish performance measurements, so the impact can be evaluated. However,
their system employs a Generic Join while we use a Leapfrog Triejoin. The integration of adaptive
variable orderings into Leapfrog Triejoin is not trivial and it is likely that their implementation is
not directly applicable.

Finally, they introduce an intersection cache to make use of repeatedly used intersections. This
can be directly applied to our system, e.g. using the decorator pattern around LeapfrogJoins. We
note that they only cache the last, full n-way-intersection of multiple adjacency lists. It would be
interesting to research if the system would benefit from caching partial n-way intersections as
well because we noticed that for some queries, e.g. 5-clique, the intersection between the first two
lists can be reused more often than the full intersection. This opens the interesting question in
which order we should intersect the lists.

25

We conclude that two concepts to choose a good variable ordering exist which are both (partially)
applicable to our system. The LogixBlox approach is simpler and directly integratable but not
well documented. The solution used in GraphFlow is far more complex and developed for another
WCOJ. However, the paper describes it in great detail and parts of it could be integrated directly,
while others need some engineering effort or need to be redesigned completely.

2.3 Distributed worst-case optimal join in Myria

In 2014, a Leapfrog Triejoin variant, dubbed Tributary Join, was used as a distributed join
algorithm on a shared-nothing architecture called Myria [18]. They use Tributary Join as a local,
serial worst-case optimal join algorithm, combined with the Hypercube shuffle algorithm, also
called Shares, to partition the data between their machines [4]. The combination of a shuffle
algorithm with a WCOJ allows them to distribute an unchanged serial worst-case optimal join
version by running it only on a subset of the data on each worker.

This approach is directly applicable to Spark. We could implement a hypercube shuffle for Spark
and then choose any WCOJ to run on each partition. However, it is not obvious how well this
approach scales because Shares replicates many of its input tuples [18]. The experiments on
Myria indicate that the combination of Hypercube shuffles and Tributary Join does not scale
well. They report a speedup of 8 on 64 workers compared to the time it takes on 2 nodes, which,
although unlikely to be optimal, is not investigated in great detail.

Therefore, we decided to analyse the expected scaling behaviour of Shares for graph pattern
matching. Our main concern is that the number of duplicated tuples in the system increases
with the query size (number of vertices) and with the number of workers added to the system.
We provide a theoretical analysis of the number of duplicated tuples for different query sizes
and available workers in a later section of this thesis (2.3.1). As a result of this investigation,
we decided to not physically partition our data but to duplicate it to all workers and seek for
alternative strategy to parallelize a worst-case optimal join.

To conclude, the implementation in Myria and in particular the Shares algorithm is the starting
point of this thesis. We see it as our baseline for a distributed WCOJ implementation. In the
coming section, we explain Shares in detail.

We note that an implementation of a distributed worst-case optimal join on Timely Dataflow
exists. However, it is not applicable to Spark. Therefore, we treat it in the related work section
(8.1) of this thesis.

2.3.1 Shares

Shares partitions the input relationships for a multi-way join over worker nodes, such that, all
tuples, which could be joined, end up on the same worker in a single shuffle round. Hence, it
allows running any multi-way join algorithm locally after one shuffle round. The output of the
join is the union of all local results.

The idea is to organize all workers in a logical hypercube, such that each worker can be addressed
by its hypercube coordinate. Then it is straightforward to find a mapping from the attribute
values of a tuple to these coordinates so that joinable tuples arrive at the same worker after one
shuffle.

We first explain how to organize the workers in a hypercube and then how to map tuples to these
workers. Next, we treat the problem of choosing a good hypercube configuration. Followed, by a
summary about the optimality of Shares. Finally, we provide an analysis of the scaling of Shares
for graph pattern matching.

26

Figure 12: Left: Three aliases of an edge relationship with one triangle. The participating tuples are
marked in red, green and blue. Their hypercube coordinates are shown below. Right: Example of a
Shares hypercube configuration for the triangle query for 12 workers with three attributes/dimensions
of the sizes 3, 2, 2. The tuples marked in red, green and blue end up on the workers with red, green
and blue rhombs respectively.

A hypercube is characterized by the number of dimensions and the size of each dimension.
Figure 12 shows a hypercube with three dimensions labelled a, b and c. They have the size
of 3, 2 and 2 for a, b and c respectively. It is a possible configuration for the triangle query
triangle(a, b, c)← R(a, b), S(b, c), T (a, c) with 12 workers.

Given an input query, Shares builds a hypercube with one dimension per variable in the input.
It then chooses the size of each dimension, such that the product is smaller than the number
of workers. We call v the numbers of variables in the query and p0, . . . , pv the sizes of each
dimension. This allows us to address each worker with a coordinate of the form (0..p0, . . . , 0..pv).
If the product of all dimension sizes is smaller than the number of workers, additional workers
are not used. The process of finding the best sizes for the dimensions depends on the input query
and the input relationships. We discuss it in a later paragraph of this section.

With this topology in mind, it is straightforward to find a partitioning for all tuples from all
relationships such that tuples that could join are sent to the same worker. We choose a hash
function for each join variable a which maps its values in the range of [0..pa]. Then each worker
determines where to send the tuples it holds by hashing its values. This results in a coordinate
in the hypercube which is fixed for all join variables, which occur in the tuple, and unbounded
for join variables which do not occur in the tuple. Then the tuple is sent to all workers with a
matching coordinate.

Figure 12 shows how tuples forming a triangle from three relationships are mapped to the workers.
The blue, green and red tuple in the relationships form a triangle. The green and the red tuple
are sent to 2 workers each and the blue tuple to three workers (marked with small rhombs). They
are sent to all workers along the axis where the coordinate is not determined by a value in the
tuple. We see that they all end up together on the worker with the coordinate (2, 0, 0). This is
where the triangle occurs in the output of the join.

27

Finding the best hypercube configuration The problem of finding the best hypercube
configuration is to choose the sizes of its dimensions such that (1) the product of all sizes is smaller
than the number of available workers and (2) such that the number of tuples to a single worker is
minimized. (2) is backed by the assumption that the number of tuples is a good indicator for
the amount of work; this assumption is made in all papers discussing the problem [18, 13, 4].
Therefore, we want to minimize the number of tuples on each single worker because the slowest
worker determines the run-time. Next, we discuss existing solutions and decide for one of them.

The original Shares paper proposes a non-convex solution which is hard to compute in practice [4].
Later, Beame et al. define a linear optimization problem which is solvable but leads to fractional
hypercube sizes [13]. Hence, it is not possible to use their solution directly. Rounding down
would be an obvious solution but as discussed in [18], it can lead to highly suboptimal solutions,
in particular with low numbers of workers. Hence, the paper further considers to use a higher
number of virtual workers and assign these to physical workers by a one-to-many mapping.
Anyhow, a higher number of workers lead to more replicated tuples. Therefore, this solution does
not scale well.

In the end, the paper that integrates Shares and the Tributary join in Myria suggests a practical
solution. They enumerate all integral hypercube configurations smaller or equal to the number of
available workers. For each configuration they estimate the number of assigned tuples, then they
choose the configuration with the lowest estimated workload.

They use the following equation to estimate the workload, where R are all relationships in the
query, var(r) gives the variables occuring in the relationship r, size(v) gives the hypercube size
of the dimension for variable v.

workload =
∑
r∈R

|r| × 1∏
v∈var(r) size(v) (3)

The term
∏

v∈var(r) size(v) gives the numbers of workers that span the hyper-plain over which a
relationship r is partitioned. For example, in fig. 12 the relationship (a, b) is partitioned over
the plain spanned by the dimensions a and b with 6 workers. Each tuple in this relationship has
a chance of 1

6 to be assigned to any of these workers. Hence, the workload caused by (a, b) is
|(a, b)| × 1

6 .

The paper evaluates this strategy to assign hypercube configurations and finds that it is efficient
and practical. We choose to use the same solution for our work.

Shares is worst-case communication-optimal Shares, as described above, is shown
to be worst-case optimal in its communication costs in MapReduce like systems for n-ary joins
using one shuffle round. First, Beame et al. prove that the Shares scheme is optimal on databases
without skew [13]. Later the same authors are able to give a proof that Shares is also an optimal
algorithm for skewed databases if one knows the heavy-hitter tuples and splits the join into a
skew free part and residual joins for the heavy hitters using different hypercube configurations
for each residual join [31].

The implication of these proofs is that it is not possible to find a partitioning scheme for one
shuffle round that replicates less data than Shares. This observation is central to our thesis
because it is one argument to replicate the graph on all workers instead of using a shuffle algorithm
to partition it.

In the rest of this thesis, Shares refers to the original algorithm [4] and not the skew resilient
variant SharesSkew [3, 13]. This is mainly because even in the presence of skew the original Shares
scheme offers good upper bounds, although it can not always match the lowest bound possible [3].
But also because the skew resilient variant requires to know which tuples are heavy-hitters (a
definition of skew introducing tuples). Finally, while first experiments with SharesSkew exist [3],

28

we are not aware of an extensive study verifying it is possible to integrate SharesSkew into a
complete system. Hence, we deem it out of scope for this thesis to attempt a full integration.

Some readers might ask if there are better multi-round algorithms which replicate fewer data.
Indeed, the authors of a Shares related paper raise the same question as future work [31]. They
are able to answer this question for specific join queries in [31, 3], e.g. chain-joins and cycle-joins.
Later, they present an algorithm which is multi-round optimal for all acyclic queries [2] and one
for all queries over binary relationships [29].

The papers about multi-round optimal partitioning schemes are rather theoretical. To the
best of our knowledge, only one paper provides practical experiments [3] but has no dedicated
implementation section. Also, they have not been shown optimal for general conjunctive join
queries but only for special cases. Two of the three papers [c]annot handle clique joins which are
an important class of joins in our thesis. Additionally, they add additional complexity to the
query optimizer, e.g. they require the input query to be represented as generalized hypertree
decomposition to calculate their intersection width [2] or to find many different hypercube
configurations [29, 3, 31] which is not trivial in practice and computation-intensive as discussed
in the last paragraph.

We leave it to future research to investigate the practical application of these algorithms to graph
pattern matching. The most interesting paper in this direction is [29]. It develops a multi-round
algorithm for n-ary joins on binary relationships like the edge relationship of a graph.

Analysis of Shares scalability Next, we analyse the scalability of Shares on growing
graph patterns. That is, self-joins over a single relationship which has two variables. In this
context, relationships of the join can be seen as the edges of the pattern and variables as vertices.

First, we fix the method to determine the best hypercube configuration (p1 . . . pk), given a query.
For this, we use the method described above and used in [18].

Given the hypercube configuration and a query, we can estimate the workload of each worker by
the formula 3. Let R be the set of all atoms in the join6, size1(r) and size2(r) be the size of
the first respectively second hypercube dimension for the two variables in atom r. Then, each
worker receives

∑
r∈R

|r|
size1(r)∗size2(r) tuples under the assumption of uniform data distribution

and good hash functions. Our argument is that the tuples of each atom r are divided onto
size1(r) ∗ size2(r) workers; the workers that form the hypercube plain of its two variables.

In the special case of graph pattern matching where all atoms of the query are pointing to the
same relationship, we can optimize the hypercube shuffle such that a tuple is only sent once to a
worker, although it might be assigned to it via multiple atoms.

If we apply this optimization, we can predict the probability with which each tuple is as-
signed to a worker using the Poisson binomial distribution. The Poisson binomial distribution
Pr(n, k, u0, . . . , un) allows us to calculate the likelihood that k out of n independent, binary and
differently distributed trials succeed, under the condition that the i the trial succeeds with a
probability of ui. We use n = |R|, k = 0 and ui = 1/(size1(ri) ∗ size2(ri)) to calculate the
probability that a tuple is not assigned to an arbitrary, fixed worker. This allows us to predict
the number of tuples assigned to each worker by |E| ∗ (1− Pr(|R|, 0, u0, . . . , u|R|) with E being
the edge relationship.

Table 3 shows the expected percentage of tuples from the edge relationship assigned to each
worker for graph patterns of different sizes calculated using Poisson binomial distribution and
optimal shares assignments according to the method used in [18]. As we can see in this table,

6An atom in a datalog join is the reference to a relationship, e.g. triangle(a, b, c) ← R(a, b), S(b, c), T (a, c) has
three atoms named R, S and T . In this section, we differentiate atoms and relationships because multiple atoms can
point the same underlying relationship which becomes of particular importance.

29

Pattern Edges workload [64]/[128]

Triangle 3 0.18 / 0.12
4-clique 6 0.59 / 0.44
5-clique 10 0.90 / 0.82
House 5 0.42 / 0.32
Diamond 8 0.76 / 0.67

Table 3: Workload on 64 and 128 workers in percentage of tuples of the edge table assigned to each
worker estimated by using Poison binominial distribution to estimate the workload and the method
from [18] to determine the optimal shares configuration.

the number of tuples assigned to each worker grows over linear in the size of the graph pattern.
Furthermore, doubling the number of workers is inefficient to counter this growth.

In particular, already a small clique queries of four vertices replicate over half of the tuples on
all 64 workers. 5-clique queries require nearly a full broadcast with each worker holding 82% or
90% of all tuples with 128 respectively 64 workers. The diamond query used in practice by the
Twitter recommendation engine has to replicate far more than half of the tuples to all workers.

This has two reasons. First, doubling the number of workers does not allow us to double the
dimensions of the hypercube because a hypercube always needs product of all dimension sizes to
be built. Second, the number of replicated tuples increases with a growing hypercube because each
tuple is replicated to more workers; namely

∏
r∈R/r size1(r) ∗ size2(r) workers. This is because

each tuple binds only two out of all variables. Hence, it is replicated over many dimensions.

In light of the numbers presented in table 3 and in line [7], we conclude that the communication
costs for Shares converge towards a full broadcast for bigger graph patterns and scaling becomes
increasingly inefficient. By this observation and the fact that hypercube shuffling is an optimal
scheme (see the last paragraph), we decide against using any partitioning scheme in our work
but replicate the edge relationship on all workers.

2.4 Compressed sparse row representation

Compressed sparse row representation (short CSR) is a well known, compact representation for
static graphs [17, 50]. To ease its explanation, we assume that the graph’s vertices are identified
by the numbers from 0 to |V | − 1. However, our implementation allows the use of arbitrary
vertice identifiers in N by storing the translation in an additional array of size |V|.

CSR uses two arrays to represent the edge relationship of the graph: one of size |E| which is a
projection of the edge relationship onto the dst attribute (called AdjacencyLists) and a second of
size |V + 1| which stores indices into the first array (called Indices). To find all destinations
directly reachable from a source src ∈ V, one accesses the second array at src for the correct
index into the first array for a list of destinations.

Figure 13 shows an example for a table and its CSR.

First, we note that vertices are not represented by their original ID but as numbers from 0 to |V|
which gives the offset into the Indices array where to find the offset into the AdjacencyLists array
for their neighbours, e.g. vertex 2 is represented by 1 which points to the offset 1 in the Indices
array which in turn points to the adjacency list of 2 in AdjacencyLists.

Additionally, we point out that the 3rd entry in the Indices array is the same as the second. This
is because vertex 3 has no outgoing edges. Hence, it has no adjacency list to point to. Therefore,

30

a b

1 2
2 3
2 4
2 5
2 6
4 2
5 2
5 6
6 5

Figure 13: Example of a table and its compressed sparse row representation. The Indices array gives
offsets into the AdjacencyLists array. The vertices are represented as the indexes into the indices
array, e.g. vertex id 2 is represented as 1.

it points to the same offset as the entry for 2.

The CSR format has two beneficial properties in the context of this thesis. First, it allows locating
all destinations for a source vertice by one array lookup; hence, in constant time. Second, the
representation is only, roughly, half as big than a simple columnar representation. A uncompressed
columnar representation needs 2 × |E| while CSR uses only |V | + 1 + |E|, note that for most
real-world graph |V| « |E| holds (see section 2.5).

2.5 Sizes of public real-world graph datasets

In this section, we present a short analysis of the sizes of real-world graph datasets. For this,
we collect data about all graphs from the SNAP and Laboratory of Web Algorithms dataset
collection [36, 15]. The graphs in the Snap dataset are a bit older; they have been collected
between 2000 and 2010. All Laboratory of Web Algorithms graphs have been collected between
2007 and 2018. Both dataset collections are heavily used and cited in academia [7, 45, 18, 23, 33].
Two of these papers are from 2019.

For our size calculation we assume that the graph is stored in compressed sparse row representation
(see section 2.4) using integers for the vertice ids. Then, we determine the storage size in bits by
the formulae 32× |V |+ 32× |E| with 32 the size of an integer in bits, V the set of all vertices in
the graph and E the set of all edges in the graph.

Figure 14 shows a histogram of sizes for all 157 graphs from the two datasets. 104 of these graphs
are smaller than 1 GB and only 8 graphs are bigger than 100 GB. The biggest graph is the
friendship graph of Facebook from the year 2017 with 552.2 GB.

We conclude that even the biggest graph can be fitted in the main memory of many cluster
machines today. The vast majority could be fitted in the main memory of a simple desktop
machine or laptop. This supports our argument to replicate graph data over all machines.

31

Figure 14: Sizes of all graphs from the SNAP and Laboratory of Web Algorithms dataset collection
in gigabytes. The histogram shows graphs up to 100 GB in buckets of 5 GB and in buckets of 50
GB after. In total, we see data collected about 157 graphs.

3 Worst-case optimal join parallelization

Based on the fact that Shares is an optimal partitioning scheme for n-ary joins in MapReduce
like systems [4] and our analysis that Shares converges to a full broadcast of the graph edges
(see section 2.3.1), we decided to forego physical partitioning of the graph. We cache the graph
in memory such that each Spark task can access the whole graph. Then, we experiment with
multiple logical partitioning schemes which ensure that each task processes only some parts of
the graph. This design has a big advantage over physical partitionings. Each worker holds the
full edge relationship, therefore, it can answer any possible query without needing to shuffle
data or materializing new data structures for the LeapfrogTriejoin, e.g. sorted arrays or CSR
representations. Arranging the data into suitable data structures and shuffling data is a one-off
action on system startup.

This design allows us to implement a new flavour of the Shares partitioning in which we filter the
vertices of the graph on-the-fly while processing it with our GraphWCOJ algorithm. We describe
this contribution in section 3.2.

We also consider partitioning the work based on a single variable. Here we use the values of the
bindings for this variable to determine if a worker processes a specific part of the join.

Furthermore, we consider a work-stealing based partitioning which does not replicate any work
and produces less skew than Shares. This comes at the price of implementing work-stealing on
Spark. The design of work-stealing in Spark is described in section 3.4.

In section 3.3, we compare logical Shares, range based, logical Shares and single variable parti-
tioning in terms of scalability and skew resilience.

32

3.1 Single variable partitioning

As first baseline, we implement partitioning along a single variable. We partition the values of
this variable into as many ranges as the desired level of parallelism. Each variable can take V
values where V is the number of vertices in the graph. So, if we have w workers and partition
along the first variable, the first worker processes the first V

w values for bindings of the first
variable and ignores the rest.

We implement this partitioning as a range based filter on the TrieIterators of the join. A range
filtered TrieIterator interface is trivially implemented by changing the open method to seek for
the upper bound of the first value in the range and rewrite the atEnd method to return true
once the key value is higher than the upper bound of the range.

We chose a range filter because it is easily pushed into the TrieIterator interface and cheap to
compute. As opposed to a hash-based filter which we found not suitable to be pushed into the
TrieIterator interface (see section 3.2) and more expensive to compute.

The single variable partitioning is interesting because it allows us to trade duplicated work against
skew resilience. A partitioning on the first variable to bind in the join is free of any duplicated
work. Partitionings based on any other variable run the same work on each worker up to the
depth of the variable to partition on but are duplication free after. These partitioning on later
variables tend to be more skew resilient because there are fewer variables still to bind, which
are often restricted by the bindings of earlier variables. In particular, partitioning on the second
variable is interesting because bindings for the first variable are cheap to compute: they are the
scan of the first level of a TrieIterator.

3.2 Logical Shares

We assume that the reader is familiar with section 2.3 where we describe the Shares and Myria
in more detail.

The idea of Shares can also be used for a logical partitioning scheme. Instead, of partitioning
the graph before computing the join, we determine if a tuple should be considered by the join
on-the-fly. We do so by assigning a coordinate of a hypercube to each worker. Then each worker
is responsible for the tuples which match its coordinate as in the original Shares.

Filtering tuples on-the-fly in the LFTJ comes with a challenge: in the LeapfrogTriejoin we do not
consider whole tuples but only single attributes of a tuple at the time, e.g. a LeapfrogJoin only
considers one attribute and cannot determine the whole tuple to which this attribute belongs.
Fortunately, a tuple matches only if all attributes match the coordinate of the worker. Hence, we
can filter out a tuple if any of its attributes do not match. For example, we can exclude a value
in a LeapfrogJoin without knowing the whole tuple.

Integrating Shares and LFTJ comes with two important design decisions. First, the LeapfrogTriejoin
operates on a complete copy of the edge relationship. Hence, we need to filter out the values that
do not match the coordinate of the worker. Second, we need to compute the optimal Hypercube
configuration. We describe our solutions below.

The first design decision is where to filter the values. The LeapfrogTriejoin consists out of multiple
components which are composed as layers upon each other. On top we have the LeapfrogTriejoin
which operates on one LeapfrogJoin per attribute. The LeapfrogJoins uses multiple TrieIterators.
Our first instinct is to push the filter as deep as possible into these layers.

We built a TrieIterator that never returns a value which hash does not match the coordinate.
This is implemented by changing the next and seek methods such that they linearly consider
further values until they find a matching value if the return value of the original function does

33

not match. However, the resulting LFTJ was so slow that we abandoned this idea immediately.
We hypothesize that this is the case because the original next and seek method is now followed
by a linear search for a matching value. Furthermore, many of these values are later dropped
in the intersection of the LeapfrogJoin which can also be seen as a filter over the values of the
TrieIterators. As we argue in section 4.2, the LeapfrogJoin is a rather selective filter which
excludes most of its input in the process of building the intersection. It does not make sense to
push a less selective filter below a more selective filter.

With this idea in mind, we built a logical Shares implementation that filters the return values
of the leapfrogNext method. This is implemented as a decorator pattern around the original
LeapfrogJoin. The use of the decorator pattern allows us to easily integrate Shares with the
LFTJ while keeping it decoupled enough to use other partitioning schemes.

The second design decision is how and where to compute the best hypercube configuration.
The how has been discussed extensively in former literature [4, 18, 13, 3]. We implement the
exhaustive search algorithm used in the Myria system [18].

In the interest of a simple solution, we compute the best configuration on the master before
starting the Spark tasks for the join. We note that the exhaustive algorithm could be optimized
easily and it would be worthwhile to introduce a cache for common configurations. Due to time
constraints, we leave this to future work and keep our focus on the scaling behaviour of Shares.

To conclude, we succeeded to integrate Shares with LeapfrogTriejoin and report our results in
section 7.7. We cannot improve on the main weakness of Shares which is that it duplicates a
lot of work. Indeed, our design filters tuples only after the LeapfrogJoin. Therefore, all tuples
are considered in the TrieIterator and their binary search of the first variable. This does not
influence scaling much because only the correct logical partition of values for the first variable
are used as bindings in the LeapfrogTriejoin. This means they are still filtered early enough
before most of the work happens. We improve over a physical Shares by using the same CSR
data structure for all TrieIterator. Therefore, we do not need to materialize a prefiltered data
structure for each TrieIterator and query which saves time and memory if the partitions become
large for bigger queries.

3.2.1 RangeShares

In the last section, we raised the point that our Shares implementation only filters out values after
the LeapfrogJoins. This is because a hash-bashed filter needs to consider single values one-by-one.
In this section, we explore the possibility to use range based filters which can be pushed into the
TrieIterators. However, we warn the reader that this is a negative result. It leads to high skew
which hinders good scaling of this idea.

We observe that the general idea behind Shares is to introduce a mapping per attribute from the
value space into the space of possible hypercube coordinates, e.g. so far all Shares variants use a
hash function per attribute to map the values onto the hypercube. We investigate the possibility
to use ranges as mapping functions, e.g. in a three-dimensional hypercube with three workers per
dimension, we could divide the value space into three ranges; a value matches a coordinate if
it is in the correct range. Contrary, to hash-based mappings which are checked value by value
until one matches, a range check is a single conditional after each seek and next function call.
Furthermore, this conditional is predictable for the processor because, for all but one call, the
value is in range and returned. So, contrary to hash-based filter we can push a range based filter
into the TrieIterators.

We implement this idea by dividing the vertice IDs per attribute into as many ranges as the size
of the corresponding hypercube dimension. For example, assume we have edge IDs from 0 to
899, three attributes and the hypercube dimension have the size 3, 2 and 2. Then, we choose the
ranges [0,300), [300,600) and [600,900) for the first attribute and the ranges [0,450) and [450,900)

34

for the other two attributes. The worker with the coordinate (0, 0, 0) is then assigned the ranges
[0,300), [0,450) and [0,450). It configures its TrieIterators accordingly such that they are limited
to these ranges.

We run the first experiments to evaluate this idea. We expect it to scale better than a hash-based
Shares because it saves intersection work in the LeapfrogJoins. However, we find that high skew
between the workers leads to much worse performance than a hash-based Shares. The explanation
is that if a worker is assigned the same range multiple times and this range turns out to take
long to compute, it takes much longer than all other workers. We show the scaling behaviour of
this scheme in the next section.

To mitigate this problem, we break down the vertice IDs into more ranges than there are workers
in the hypercube dimension corresponding to the attributes. Then, we assign multiple ranges to
each TrieIterator in such a way that the overlap on the first two attributes equals the overlap
of a hash-based implementation and assign the ranges of the later attributes randomly such
that all combinations are covered. However, experiments still show a high skew: some workers
find many more instances of the searched pattern in their ranges than others. For the triangle
query on LiveJournal, we find that the fastest worker outputs only 0.4 times the triangles than
the slowest worker. We conclude that the pattern instances are unevenly distributed over the
ranges of vertice IDs which leads to high skew in a range based solution. We show performance
measurements in the coming section and stopped our investigation in this direction.

3.3 Comparision of static partitioning schemes

In this section, we show how the static partitioning schemes implemented by us scale on the
3-clique query on the LiveJournal dataset. We partition the work according to logical Shares, on
the first and second variable and according to both range-based, logical Shares schemes. The first
range based logical Shares scheme uses a single range per TrieIterator, the second uses multiple
ranges with improved overlapping; both have been described in the last section. We call them
SharesRange and SharesRangeMulti.

The speedup with up to 48 workers is shown in fig. 15a. We measure the skew of a scheme as a
relationship between the time it takes to compute the smallest and biggest partition. Figure 15b
plots the skew for the different schemes, queries and levels of parallelism.

We see that logical Shares scales better than all other schemes. Partitioning on the second
variable is slightly worse, while the other two schemes are a further behind.

Our explanation is that logical Shares and second variable partitioning inflect the lowest skew.
There is a strong correlation between the skew shown in fig. 15b and speedup of fig. 15a.

Except for SharesRangeMulti, the amount of skew relates directly to the scaling behaviour.
SharesRangeMulti is more skew resilient than first variable partitioning and SharesRange but
does not scale better. That is because the first variable partitioning does not replicate any
work. Therefore, it’s scaling is better even with higher skew between the workers. The difference
between the two range based Shares partitioning in archived speedup is minimal. Most likely
this are caused by the fact that SharesRangeMulti is implemented as a decorator around the
TrieIterator interfaces while SharesRange is directly integrated into the TrieIterator interface.

Also, we see that SharesRangeMulti drastically reduces the skew compared to SharesRange which
confirms that our optimization fulfils the intended goal. However, the reduced skew does not
translate in better scalability for the range based Shares partitioning.

We conclude that various static partitioning schemes do not scale well. In the end, we find logical
Shares is the best static partitioning scheme because it is best in managing skew which even
beats work replication free schemes as partitionings on the first variable. We tried to improve

35

(a) Speedup (b) Skew

Figure 15: 3-clique on LiveJournal for logical Shares, range based shares and partitioning on the
first and second variable. Skew is measured as the relationship between the time it takes to compute
the biggest and the smallest partition.

hash-based logical Shares to push it deeper into the layers of the Leapfrog Triejoin algorithm but
find that range-based Shares cannot handle skew well enough to be a competitor for hash-based
Shares. Following these results, we look into dynamic parallelization schemes as work-stealing.

3.4 Work-stealing

Normally, Spark uses static, physical partitioning of the data. As we learned in the last section,
that can lead to a trade-off between the ability to handle skew and duplicated work. A standard
approach to handle skew and unbalanced workloads is work-stealing.

For this, the work is not statically partitioned before-hand but organized in many smaller tasks
which can be solved by all workers. Workers are either assigned an equal split of tasks and steal
tasks from other workers when they are out of work or all tasks are arranged in a queue accessible
for all workers, so that workers can poll tasks from it whenever they are out of work. In either
way, this results in a situation where no task is guaranteed to be solved by a single worker and
each worker only finishes when no free tasks are left in the system. Hence, the maximum amount
of skew is roughly the size of the smallest task. There is no duplicated work because different
tasks should not overlap and each task exists only once in the whole system.

We first describe a work-stealing version designed for the Spark’s local mode where all tasks are
computed on a single machine. Then we extend this design to the cluster mode of Spark.

Work-stealing requires two major design decisions from the developer. First, how to organize the
workload of a LeapfrogTriejoin into tasks. Second, how do workers get their tasks? We address
these questions in order by first describing our preferred solution and then their integration with
Spark. We conclude the section with an evaluation of the limitations of this integration.

For the local version, the Spark master and all executors are threads within the same JVM
process. This is important because it allows us to share data structures between multiple Spark
tasks as normal JVM objects. We discuss how the design can be extended Spark’s cluster-mode
in section 3.4.1.

36

The first design decision is the definition of a work-stealing task. It is not necessary to define the
tasks such that they have all the same size. However, it is important to choose the task size small
enough to avoid skew. Furthermore, the tasks should not overlap so that work is not duplicated.
We choose to define a task as the work necessary to find all possible tuples for a single binding
of the first join variable. This is non-overlapping. The task size can vary widely and is query
dependent. However, given the huge amount of tasks (as many as vertices in the graph), we
believe this to be small enough. We will evaluate this during our experiments.

The second design choice in work-stealing is how to hand tasks to workers. For simplicity, we
chose to use a shared, thread-safe queue that holds all tasks. The main drawback of this solution
is that the access to the queue has to be synchronized between all workers. If there are too many
workers contending for the critical section of polling a job from the queue, they can slow each
other down. However, the critical section is short because it includes only the call to the poll
method of the queue. Additionally, we decided to implement a batching scheme such that a single
poll can assign multiple tasks to a worker. This allows us to fine-tune how often a worker needs
to return to the queue for new tasks.

It turns out that the work-stealing scheme as described above is straightforward to integrate
into Spark. We chose a Scala object7 to hold a dictionary which associates an ID for each query
with a thread-safe queue instance. This queue can be accessed by each Spark thread. Due to the
association between query and queue, it is possible to run multiple queries in parallel without
interference.

The queue for a query is filled by the first Spark task that accesses it. This can be implemented
by a short synchronized code section at the beginning of all tasks. It checks if the queue is empty
and if so pushes one task per possible binding (all graph vertices) or batch of possible bindings.
The synchronized section is fast and only runs once when the tasks start. Hence, it comes at
negligible performance costs.

Once the queue is filled, we run our normal LeapfrogTriejoin with filtered Leapfrog join for the
first attribute. This filter is implemented as a decorator around the original Leapfrog join. The
leapfrogNext method of this decorator returns only values that are polled from the work-stealing
queue before.

Our integration of work-stealing in Spark comes with some limitations. We see it more as a
proof-of-concept that work-stealing is a good choice for the parallelization of worst-case optimal
joins in Spark than as a solid implementation of work-stealing in Spark. The latter is not possible
within the time-frame of this thesis. In the following, we discuss the constraints of our integration.

Work-stealing leads to an unforeseeable partitioning of the results: it is not possible to foresee
which bindings end up in a certain partition nor can we guarantee a specific partition size. If the
user relies on any specific partitioning, he needs to repartition the results after. Moreover, we
cannot guarantee to construct an equal partitioning over multiple runs of the same query. If the
user depends on a stable partitioning per query, he should cache the query after the worst-case
optimal join execution.

We do not integrate our work-stealing scheme into the Spark scheduler but we provide a best-effort
implementation because we use all resources assigned to us as soon as they are available to us.
We can handle all scheduler decisions. The first worker assigned fills the queue. The worker who
takes the last element from the queue sets a boolean that this query has been completed. Hence,
tasks that are started after the query has been computed, do not recompute the query.

We do not provide a fault-tolerant system. We see two possibilities to make our system fault-
tolerant. First, one can stop all tasks if a single task fails and restart the computation with
the last cached results before the worst-case optimal join. Second, one could extend the critical

7Methods and fields defined on a Scala object are the Scala equivalent to static methods and fields in Java. Most
importantly they are shared between all threads of the same JVM.

37

section of polling a queue value by the LeapfrogJoin by two more operations: we peek at the
value from the queue without removing it, log the value in a set of values per task and then poll
it and remove it from the queue. With these operations, it is guaranteed that the master can
reconstruct all values that a failed worker thread considered. So, after a task failure, the master
can add these values to the work queue again such that other tasks will redo the computations.

3.4.1 Work-stealing in cluster mode

In this section, we describe a simple, yet promising design to integrate work-stealing with Spark’s
cluster mode. We assume clusters in which one worker runs one executor. This is the case in
Databrick’s clusters.

The main problem with distributing work-stealing is that Spark’s executors cannot communicate
with each other. Therefore, we choose a communication free approach in which the tasks share
work only with other tasks on the same executor. The work is statically partitioned in between
multiple executors.

We cannot control how Spark schedules tasks on its executors. The tasks for the join algorithm
could be co-located on a single executor, balanced evenly between all of them or could be
distributed over multiple executors in any fashion between these two extremes8. We need to
use the slots assigned to our tasks as best as possible. To achieve this goal, we would like to
know how many tasks were scheduled on each worker. With this knowledge, we can split the
workload between executors such that each of them deals with w

e × te where w is the workload, e
the number of executors and te the number of tasks on executor e.

Spark’s scheduler offers the so-called Barrier Execution Mode. In this mode, it schedules all
tasks of a stage together; either all of them are scheduled at the same time or none are scheduled.
When tasks are scheduled in this mode they have access to the location of all other tasks for this
stage. Hence, we can determine how many tasks were scheduled on how many executors from
within each task. Furthermore, we can tell on which executor the current task runs.

We distribute our local work-stealing approach by requesting barrier scheduling for the worst-case
optimal join operator. Then, we can use the work-stealing design as described for the local mode
on each executor by partitioning the queue that holds all bindings for the first variable.

We experimented with two different partitioning schemes for the queue: round-robin and range-
based partitioning. However, both schemes lead to similar run-times and behaviours. We choose
the round-robin partitioning because it is generally more skew resilient.

We distribute work-stealing in Spark by partitioning the work queue over all executors with
respect to the number of tasks assigned on each of them. This approach has two drawbacks.

First, we use the barrier mode which requires Spark to find enough available resources to schedule
all tasks at the same time. This is not a huge issue in our experiments where we run one join at
the time. However, it could be difficult to find enough open spots in a busy production cluster.
In particular, if it runs workloads with many small tasks.

We note that using the barrier mode is necessary because to distribute the queue we need to
know how many executors are used and how many tasks are on each of them. We considered the
alternative design to distribute the first variable bindings over the tasks by assigning 1

t bindings
with t the number of tasks to each of them. Then tasks that are scheduled on the same worker
could detect each other dynamically via a shared data structure and share work. However, this
design is not recommendable because it cannot be determined when a single task should finish

8Spark’s standalone scheduler default behaviour is to schedule the tasks as evenly spread over all executors as
possible. Alternatively, the standalone mode offers the possibility to consolidate all tasks as much as possible on a
single worker. This can be controlled by the setting spark.deploy.spreadOut.

38

and return its resources as it cannot check if other tasks have not been scheduled yet. Therefore,
each task would terminate once it finishes its list and cannot find a currently co-located task.
This leads to a situation where we could end up with highly suboptimal work-stealing when
the tasks run one after another and do not share work at all. To summarize, this design makes
work-stealing highly dependent on Spark’s scheduler where no parallelism can be guaranteed.
Using the barrier mode, we can guarantee the level of parallelism by setting the number of tasks.

Second, this scheme does not manage skew between executors. If it turns out that the part of
the work-stealing queue assigned to an executor requires significantly more work than to the
other executors, then this executor will dominate the overall run-time of the whole algorithm.
We establish if this is a problem in practice in our experiments section 7.8.

4 GraphWCOJ

In this section, we describe how we specialize a Leapfrog Triejoin implementation to the graph-
pattern matching use-case. We use to different techniques. First, we change the backing data
structure for the TrieIterators. Second, we analyse the intersection workload and suggest a more
suitable algorithm to compute them in the LeapfrogJoin’s.

4.1 Combining LFTJ with CSR

For our graph pattern matching specialized Leapfrog Triejoin version we choose CSR (see
section 2.4) as backing data structure. This data structure is typically used for static graphs and
we show that it is a good match for LFTJ. In this section, we shortly describe the implementation
of a CSR based TrieIterator, point out the differences between this new version and a column-
based TrieIterator (as described in section 2.2.1) and conclude with an experiment demonstrating
the power of this optimization.

The implementation of a CSR based TrieIterator is straightforward except for one design change:
instead of using the vertex identifier from the graph directly, we use their indices in the CSR
representation. This change is rather minor because it can be contained at any level by using a
hash map for translation, e.g. in the TrieIterator itself, in the LeapfrogTriejoin or at the end of
the query by an additional mapping operation.

In the current system, the translation is performed by the LFTJ implementation to allow easy
integration into other projects. However, it is possible to work on the indices throughout the
whole system to safe the translation costs.

We now outline how to implement each of the TrieIterator methods, under the assumption that all
vertices have outgoing edges. Then, we drop this assumption and explain the necessary changes.
The creation of the CSR data structure itself is described in section 6.4.

We recall that a CSR uses two arrays to represent the graph edge relationship; the AdjacencyLists
array and Indices array. The first one stores all adjacency lists in one direction (outgoing or
incoming) as one concatenated array. The second stores indices into the first array, e.g. the value
of 5 at position 1 means that the adjacency list for the second vertice starts at the 5th position
in AdjacencyLists.

The vertical component of the TrieIterator consists out of the open and up methods. Both of
them control on which of the two CSR arrays the iterator operates. For the first level, it uses
the Indices array and on the second level the AdjacencyLists array.

The open method does nothing when the first level is opened. When the second level is opened,
it positions the iterator at the first element of the adjacency list. This position is given by the

39

index in Indices where the first level is positioned.

Both methods use only constant time. This differs from the open method of the array based
TrieIterator. This method needs to find the number of second-level elements when the second
level is opened; it does so by counting the number of occurrences of the first level key in the first
column. Additionally, both vertical component methods have more bookkeeping overhead for the
array-based implementation.

The linear component of the TrieIterator is made of the functions: key, atEnd, seek and next.

The key and atEnd method are both only returning values computed by next or seek. They do
not differ for the CSR based and array based TrieIterator.

The next method of the CSR based TrieIterator only changes at the first level. While the
array-based method needs to use the seek method to find the next higher value because it needs
to jump over all entries of the same value as the current key, the CSR based value can simply
increase the iterator position by one.

The seek(key) method exhibits the biggest possible performance improvement on the first level.
For the array-based version, we need to use a binary search to find the key. A CSR allows us to
jump to the correct position in constant time because the key parameter is the correct index into
the array.

To resolve the assumption of no empty outgoing adjacency lists, we adapt open, next and
seek to skip source positions without outgoing edges. This is easy to detect because then
Indices[x] = Indices[x + 1]. We can skip these cases by simple linear search until we find a valid
position. This solution is sufficient because there are only a few vertices with no outgoing edges
in real-world graphs. Therefore, this linear search does not majorly influence the run time.

The TrieIterator implementation based on CSR is much faster than the column based iterator;
mainly due to the fact that the seek method on the first level can be implemented in O(1), instead
of O(log n). This optimization has huge potential because these searches are the most costly
operations for a column-based TrieIterator [18]. Note that searches on the second level are fast,
due to the fact that most graphs have a low outdegree (see section 2.5).

Additionally to this advantage, CSR based TrieIterator do less bookkeeping because they support
only 2 levels and spent nearly no time on processing atEnd for the second level, while a column
based TrieIterator needs to calculate the number of outgoing edges for each source vertice in its
open method, to allow a fast atEnd method.

We conclude that CSR based TrieIterators are a promising match for LFTJ and graph pattern
matching. The improvements of this optimization can be seen in fig. 16. It demonstrates an up
to 2.6 speedup over a column-based LFTJ. We also see that the optimization has a stronger
impact on queries with more edges and vertices, e.g. 5-clique. For a more thorough evaluation
refer to the experiment section 7.

4.2 Exploiting low average outdegrees

It is well-known that most real-world graphs have a low average outdegree, mostly far below 200.
This leads to the hypothesis that the intersection of multiple adjacency lists is small, e.g. below
10 in many cases.

We can exploit this fact by materializing the intersections in the LeapfrogJoins directly in one
go; instead of, generating one value at-the-time in an iterator like fashion as described in the
original paper [53]. We believe this to be beneficial because it allows us to employ a simpler
intersection algorithm which builds the intersections touching each adjacency list only once,
instead of, multiple times with yielding like the original LeapfrogJoin (see algorithm 1).

40

Figure 16: Run time of LFTJ and GraphWCOJ backed by CSR for multiple queries on SNB-sf1.

We structure the remainder of this section as follows. First, we shortly reiterate the most important
facts about LeapfrogJoins for this chapter. Second, we analyze the intersection workload in terms
of input sizes and result size to confirm our hypothesis and gain valuable insights to choose the
best intersection algorithm. Third, we explain the algorithm we chose based on the analysis.
Fourth, we point out differences to the original Leapfrog Triejoin. Finally, we present a short
experiment showing the performance gains of this optimization.

LeapfrogJoins build the intersection between multiple adjacency lists. This is done in an iterator-
like fashion in their leapfrog_search method by repeatedly finding the upper-bound for the largest
value in the lowest iterator. This algorithm is asymptotically optimal for the problem of n-way
intersections. However, we believe that it is (1) to complex for small intersections and (2) should
generate all values at once instead of one-by-one to improve performance on real-world adjacency
lists.

To determine the best algorithms to build the n-way intersection in the LeapfrogJoins, we run
some experiments to characterize the workload. Towards this goal, we log the size of the full
intersection, the size of the smallest iterator participating and the size of the largest intersection
between the smallest iterator and any other iterator on 5-clique queries on SNB-sf-1. Figure 17
depicts these metrics as cumulative histograms. In the next paragraphs, we point out the most
important observations in each of these graphs.

Figure 17a shows the size distribution of the smallest iterator, as to be expected for a social
network graph, the outdegree is between 1 and 200. We do not see the long-tail distribution
typical for power-law graphs because we choose the smallest iterator out of 5 and even though
there are vertices with a much higher outdegree, the chance of encountering 5 of these in a single
intersection is small. We note that in 80% of all cases the smallest iterator has a size lower than
80 and above that the distribution slowly increases to 100%

Figure 17b illustrates the size distribution of intersecting the smallest iterator with any other
iterator, such that the intersection is maximal. We choose this specific metric to motivate one of
our design choices later on. As for the smallest iterator, some of these intersections are as big as
200 but most of them are much smaller. However, unlike for the smallest iterator metric, 80% of
the intersections contain less than 21 elements and the frequency increases to 100% in a steep
curve.

This last observation is even stronger for the size of the total intersection (fig. 17c): the size is
less than 5 in 80% of all intersections and increases similarly steep to 100%. The maximum is
lower than 200.

41

These observations confirm our hypothesis that the size of the intersections is small (below 5)
and do not show the same long-tail distribution as the whole social network graph. Hence, we
can materialize them without running the risk of building big intermediary results.

Furthermore, the experiment shows that optimizing by taking iterator sizes into account is
worthwhile but only for the smallest iterator because once we start with the smallest iterator the
further intersections are small (below 21) in the vast majority of all instances.

(a) Smallest iterator (b) Largest intersection including
smallest iterator

(c) Total intersection

Figure 17: Cumulative histograms of total intersection sizes, largest intersection with the smallest
iterator and any other, and size of the smallest iterator participating in 5-clique on SNB-sf-1.

In the coming paragraphs, we detail how to build the n-way intersection of multiple adjacency
list such that we gain performance by better use of data-locality than original the LeapfrogJoin.
We choose to use pairwise intersections over multi-way intersection algorithms for their simpler
memory access patterns; they touch only two lists at-a-time instead of all lists interchangeably.

From our analysis, we conclude that the final intersection size is strongly dependent on the
smallest iterator and that the intersection of the smallest iterator with any other iterator is close
to the final size. These insights translate into two design decisions.

First, we start with the smallest iterator9. However, we do not take the sizes of any other iterators
into account because the effort for sorting the iterators by size would not pay off.

Second, we use two different tactics to build the pairwise intersections. The first intersection
between two iterators is built in-tandem, where we seek the upper bound of the higher value in
the smaller iterator.

After this first intersection, the intermediary result is quite small. Therefore, we use the simpler
scheme of linearly iterating the intermediary and probing the iterator by binary search with
fall-back to linear search.

Finally, we point out a few exceptional cases and pitfalls for implementors:

− If all iterators of the LeapfrogJoin are on their first level, the intersection is near |V|. In
this case, we fall back to the original

− One should not include the first level iterators in the materialization because moving them
changes the state of their second level. Hence, they need to move once a value is returned
from the LeapfrogJoin and not before. LeapfrogJoin.

− We use an array to materialize the intersections because Scala collections are slow. Instead
of deleting elements, we replace them with a special value.

− Allocating a new array for every LeapfrogJoin initialization is costly. We estimate the size
9We take advantage of the fact that CSR allows us to determine the size of iterators cheaply (see section 2.4)

42

of the intersection by the size of the smallest iterator and reuse the array whenever possible.
We use a sentry element to mark the end of the array.

Figure 18 shows that the new algorithm performance slightly better than the original on fast-
running queries on the SNB-sf1 dataset. We believe that this has three possible reasons.

Figure 18: Runtimes of GraphWCOJ with and without LeapfrogJoin materialization enabled for
different queries on SNB-sf1.

First, due to better cache usage. Most of the searches in the adjacency lists are linear searches;
our binary search falls back to a linear search if the remaining list is small. Materializing the
intersections means repeating linear searches for increasing elements on the same two arrays until
they are fully processed. While the original algorithm repeats linear searches overall adjacency
lists, interrupted from filtering against first level iterators and does so only until one value is
found; it then has to return to the same lists for the next elements.

Second, the LeapfrogJoin generates a single value, then yields control to other parts of the
LeapfrogTriejoin algorithm and later touches the same adjacency lists again to generate the next
value. Our approach touches the adjacency lists exactly once per LeapfrogJoin initialization and
condenses the intersection into a much smaller array. This array is more likely to stay cached
while the other parts of the LeapfrogTriejoin do their work.

Third, by starting with the smallest adjacency list of the intersection we get less seek calls to
iterators over bigger adjacency lists. Furthermore, by using binary intersection we limit the
number of seek calls always to the size of ther intermediary result which tends to converge to the
final size quickly; as seen in fig. 17.

We show the results of more experiments in section 7.6.

5 Optimizing a Leapfrog Triejoin in Scala

A simple, idiomatic Scala implementation of the Tributary join is not able to beat Spark’s
BroadcastHashjoin on any other query than the triangle query. Hence, we report on how to
optimize the join. After, we are able to beat Spark’s BroadcastHashjoin on nearly all queries and
datasets. We report measured run-times for the unfiltered 5-clique on the Amazon0601 dataset
for different optimizations in table 4. In total, we improved the WCOJ running time from 316.5
seconds to 54.1 seconds.

43

Category Optimization Runtime

NA Baseline 316.5
Scala Custom insertion sort instead of Scala’s sort method 310.6
Scala Maps instead of linear lookup of LJ ’s and TI ’s in LFTJ 171.6
General Factor out computed values which are reused in TI 153.7
Binary Search Linear search after galloping and binary search 138.0
Scala Arrays instead of maps for LJ ’s and TI ’s in LFTJ 100.5
Scala while loop instead of foreach loop in LFTJ 85.7
Scala use of private[this] 84.3
Scala use of @inline annotation 82.4
Spark direct array access of input relationships 76.9
General strength reduction of modulo operations 68.9
Binary search linear search shortcut before galloping search and binary search 64.0
Binary search less branches in binary search 58.9
Binary search removing galloping search 56.4
LFTJ no sorting in LF init method 54.1

Table 4: Optimizations to the LFTJ algorithm in Scala and their runtimes on the unfiltered 5-clique
query on the Amazon0601 dataset. LFTJ, LF and TI refers to the LeapfrogTriejoin, LeapfrogJoin
and TrieIterator component of the Leapfrog Triejoin algorithm.

We discuss the optimization in categories: Leapfrog Triejoin specific, binary search specific, Spark
related, Scala related and general. We conclude the section with some changes we tried that do
not improve performance.

Binary search specific optimizations become a category on its own because the sorted search
is the most expensive operation in the Tributary join. According to profiler sessions, the join
spends more than 70% of its time in this method. This result is in line with the observation that
‘in the Tributary join algorithm, the most expensive step is the binary search’ from [18].

We applied one LFTJ specific optimization.

The LeapfrogJoin.init method is originally described to sort its TrieIterators so the method
leapfrogSearch knows the position of the largest and smallest iterator (see section 2.2.1). However,
the method can be improved by avoiding to sort the TrieIterators. We can start moving the
TrieIterator without sorting them and arrive at an ordered array in O(n) steps with n defined
as the size of the array. This approach improves over the original algorithm in two ways: (1) it
starts moving the TrieIterators to their next intersection immediately without sorting them first
and (2) orders the array in fewer steps than traditional sorting algorithms.

To implement this we find the maximum value for all iterators and store the index in p. Then we
move the TrieIterator at p + 1 to the least upper bound of the maximum value (by calling seek)
and store the result as the new maximum. We proceed with this process, wrapping p around
when it reaches iterators.length, until p equals the original maximum index. Now, we are either
in a state in which all TrieIterators point to the same value or we arrived at a state in which the
iterators are sorted by their key value. In the first state, the LeapfrogJoin is initialized; the array
is sorted and the first value of the intersection found. In the other possible state, the array of
TrieIterators is sorted and we can use the original leapfrogSearch (algorithm 1) to find the first
key in the intersection. can proceed as in the original LeapfrogJoin.init method.

Table 4 mentions two optimizations for the sorting in the LeapfrogJoin init method. The one
described above is the second one. For the first one, which is no completely replaced by the

44

second, we used a self-written insertion sort which is faster than Scala’s array sort. Scala’s array
sort is slow because it copies the array twice and casts the values to Java.Object such that it can
use Java’s sorting methods. An insertion sort is an asymptotical suboptimal algorithm but a
good option given that a LeapfrogJoin normally operates on less than 20 TrieIterators.

The binary search is the most expensive operation of the Leapfrog Triejoin. Hence, special
attention needs to be paid while implementing it. Our most important optimization is to change
to a linear search once we narrowed the search space to a certain threshold. We experiment with
different thresholds and show the results in section 7.4.

We directly perform a linear search if the search space is smaller than the threshold from the
beginning (see 12th optimization in table 4).

Another important optimization is to avoid unnecessary if-statements in the loop of the binary
search, e.g. the implementation on Wikipedia and many other example implementations use an
if-statement with three branches for smaller, bigger and equal but two branches for greater than
and less-or-equal suffice for a least upper bound search.

A similar optimization can be applied to a linear search on a sorted array: intuitively one would
use the while-loop condition array(i) > key ∧ i < end with key being the key to find the least
upper bound for, i the loop invariant and end the exclusive end of the search space. Anyhow,
it is faster to check for key > array(end - 1) once before the loop and return if this is the case
because the value cannot be found in the search space. This obviously circumvents the main loop
of the linear search; additionally, it simplifies the loop condition to array(i) > key.

The impact of this optimization is shown in the 13th row of table 4.

The Spark infrastructure uses the interface ColumnVector to represent columns of relationships.
The implementation OnHeapColumnVector is a simple wrapper around an array of the correct
type with support for null values and append operations. First, we used this data structure to
represent our columns but we could see a clear increase in performance by replacing it by an
implementation that exposes the array to allow the binary search to run on the array directly.
This is likely due to saving virtual function calls in the hottest part of our code. Table 4 shows
the results of this change in row 11.

We found many standard optimizations and Scala specific optimizations to be really useful. These
are the optimizations that brought the biggest performance improvements. However, they are
well-known, so we mention them only in tabular form 4. For Scala-specific optimizations one can
find good explanations at [20].

Apart from the aforementioned very useful optimizations, we investigated multiple other avenues
in hope for performance improvements which did not succeed, we list these approaches here to
save others the work of investigating:

− reimplement in Java
− use of a Galloping search before the binary search
− unrolling the while-loop in LeapfrogTriejoin state machine (see algorithm 2)
− predicating the action variable in LeapfrogTriejoin state machine

Finally, we believe that code generation for specific queries that combines the functionality of
LeapfrogTriejoin, LeapfrogJoin and TrieIterator into one query-specific function would lead to
noticeable performance improvements. The reason for this belief is that our implementation
takes about 3.46 seconds for a triangle query on the Twitter social circle dataset while a triangle
query-specific Julia implementation, of a colleague of ours, needs only half a second. The main
difference between our implementation and his are: the language used (Julia is a high-performance,
compiled language) and the fact that his implementation has no query interpretation overhead
but cannot handle any other query than the triangle query.

45

However, a code generated Leapfrog Triejoin is out of scope for this thesis, also, we are aware of
efforts by RelationalAi to write a paper about this specific topic.

6 Spark integration

6.1 User interface

val sparkSession = SparkSession.builder
.master("local[1]")
.appName("WCOJ-spark")
.getOrCreate()

// read a dataframe
val df = sparkSession.read

.option("inferSchema", "true")

.csv("/path/to/edge/relationship")

// df needs columns called ‘edge_id‘, ‘src‘ and ‘dst‘
// Use WCOJ to find a triangle pattern
val triangles = df.findPattern(

"""(a) - [] -> (b);
|(b) - [] -> (c);
|(a) - [] -> (c)""".stripMargin,

Seq("a", "b", "c")
)
triangles.limit(10).show()
// Shows a dataset with 3 columns: ‘a‘, ‘b‘, ‘c‘ being node ids

Listing 1: Example usage of a WCOJ to find triangles in graph.

As one can see in line 16 of listing 1, we support a clean and precise DSL to match patterns in
graphs. This DSL is inspired by Spark’s API for graphs named GraphFrames [21]. The user can
define a pattern by its edges, each edge is written as (a) - [] -> (b) where a is the source vertice
and b is the destination, multiple edges are separated by a semicolon. A connected pattern is
expressed by defining multiple edges with the same source or destination. One should be aware,
that a named source or destination is not guaranteed to be a distinct element in the graph, e.g.
(a) - [] -> (b); (b) - [] -> (c) could be a linear path of size two or a circle between a and b; in the
second case a and c are the same element. The reader might wonder, why we chose to stay with
the GraphFrame syntax for edges of - [] ->, although, we could have went with something simpler,
like ->. However, sticking to the more verbose syntax allows us to include labels restriction inside
of the squared brackets in future extensions, e.g. for the integration with neo4J’s CAPS system.

The second parameter to findPattern allows the user to specify the variable ordering used in
the WCOJ algorithm. Furthermore, the user interface takes multiple optional arguments, e.g.
to apply to common filters to the output of the result. The filters are distinctFilter, ensuring
that each vertice can occur only as binding for one variable, and smallerThanFilter to allow only
output bindings were the values decrease with regards to the specified variable ordering, e.g. the
binding [1, 2, 3] but not [2, 1, 3] for the triangle query above. We experienced that these queries
are typical for graph queries and that the performance greatly benefits from pushing them into

46

the join. Implementing the possibility to push general filters into the join would be a valuable
addition but we decided against it because it is a pure engineering task.

6.2 Integration with Catalyst

We integrated our WCOJ implementation into Spark such that it can be used as function on
Datasets. Therefore, we build all components necessary to execute a WCOJ in Spark’s structured
queries, provided by Catalyst (see section 2.1.3). We start out with a logical plan that consists of a
WCOJ operator. Then we introduce a new strategy to convert this logical operator into multiple
physical operators. One physical operator executes the join. In between, this operator and the
graph edge relationships, we execute another physical operator that materializes the graph edge
relationships into a data structure that can support a TrieIterator interface (see section 2.2.1).
This graph edge relationship can be cached so it needs to be computed only once on startup. The
integration itself is quite straightforward due to Catalysts extendability. We explain it in the
next sections. First, we highlight some limitations of our integration into Catalyst.

It is not in the scope of this work to integrate WCOJ’s into the SQL parser of Spark. Hence,
WCOJ can only be used by Spark’s Scala functional interface and not through Spark’s SQL
queries.

We do not integrate it into the query optimization components of Catalyst, e.g. we do not provide
rules or cost-based strategies to decide when to use a WCOJ or a binary join. It is up to the
user to decide when to use a WCOJ or a binary join. However, our integration allows the user
to intermix these freely. The reason for this decision is, that at time of writing no published
paper existed that systematically studies which queries benefit from WCOJs in general, nor,
does research exist that studies the combination of WCOJs and binary joins. Only a month
after we decided on our scope for Spark integration Salihoglu et al. published an arXiv paper [39]
that tackled these problems for the first time. The lack of peer-reviewed papers and the high
complexity of the arXiv paper confirm that deeper integration with Spark’s optimizer is out of
scope for this thesis.

6.3 A sequential linear Leapfrog Triejoin

For this section we assume that the reader is familiar with the background section about Catalyst
(see section 2.1.3) and LFTJ (see section 2.2.1) where we explain the components of Catalyst
planning phase and the requirements of a Leapfrog Triejoin. In the current section, we outline
how to satisfy the requirements of LFTJ within and help of Catalysts structured plans.

Our baseline implementation of the Leapfrog Triejoin is a sequential implemenation, i.e. it is not
distributed. Therefore, all representations of the edge relationship have only a single partition
which the join operates upon. In Spark this partitioning is called AllTuples. We enforce sequential
execution of the complete Spark plan in our experiments by setting the number of executors to 1.

In the first phases of the Catalyst query compilation process, the query plan is represented by
logical operators. Integration into this phase only requires us to build a logical operator to
represent the WCOJ join. The only thing that we need to describe for this logical operator are
the number of children. A LFTJ can have 2 or more children, one for each input relationship.

The logical and physical plan for the triangle query is shown in fig. 19.

The strategy to translate the logical plan into a physical plan has two tasks. First, simply
translating the n-ary logical plan into n-ary physical plan that executes the LFTJ with the
children as input. Second, introducing a physical operator per child which materializes the RDD
into a sorted, columnar array representation to support a TrieIterator interface.

47

(a) Logical plan (b) Physical plan

Figure 19: Catalyst plans for the triangle query using a Leapfrog Triejoin.

(a) Logical plan (b) Physical plan

Figure 20: Catalyst plans for the triangle query using GraphWCOJ.

The first physical operator is straightforward to implement. It simply executes a LFTJ over the
TrieIterators provided by the children. Given that each child has only one partition and there are
no parallel operations, the algorithm can be implemented exactly as described in section 2.2.1.

The second physical operator translates the linear interator interface offered by Spark for RDDs
into a TrieIterator interface. In particular, it needs to offer a seek operation in O(log N). To
support this interface the operator requires its children to be sorted; this requirement can be
fulfilled by Catalyst standard optimization rules. Then it takes the sorted linear iterator and
materializes it into a column-wise array structure. Given this data structure, the TrieIterator
can be implemented using binary search (as described in section 2.2.1).

6.4 GraphWCOJ

The integration of GraphWCOJ is quite similar to the one of LFTJ. Figure 20 shows the
logical and physical plan constructred by our integration. There are three main differences:
GraphWCOJ requires only two children for the input relationships, the children materialize the
input relationships in a CSR data structure (see section 2.4) and we support parallel execution of
the join (which requires a third child) and broadcasting of the CSR data structure. We address
these differences in order.

48

Our GraphWCOJ operators need only two materialized versions of the input relationship. This
is because in graph pattern matching the joins are self-joins on the edge relationship. This
relationship has two attributes. The LFTJ requires that its input relationships are sorted by an
lexicographic sorting over the variable ordering. To support all possible variable orderings, we
need the edge relationship sorted by src, dst and dst, src. Hence, we need to separate, materialized
versions of the edge relationship. However, we never need more materialized relationships because
all TrieIterators can share the same underlying datastructures.

GraphWCOJ uses a CSR representation of the edge relationship (see section 4). Hence, we need
to build two CSR representations. One with its Indices array build from the src attribute and
the AdjancencyLists array build from the dst attribute. The other, with Indices from dst and
AdjacencyLists from src. Next, we describe how to build these CSRs from two linear, sorted, row
wise iterators as provided by Spark for the two child relationships.

First, we note that it is necessary to build both compressed sparse row data structures in tandem.
This is because some vertices in the graph might have no outgoing or incoming edges. That
means some vertice ID’s do not occur in the src or dst attributes of any tuple. Therefore, the
Indices arrays of the two CSR structures would differ if they are built from either src and dst,
e.g. they could have different length. However, if this is the case, it is not possible to use both
CSRs together in a single join.

To allow building the CSRs in-tandem, we introduce an AlignedZippedIterator. The next method
of this iterator is shown in algorithm 3. It zips two iterators of two-tuple elements and aligns
them on the first component, e.g. edges with src as first component and dst as second component.
The zipped iterator emits triples where the first component is the aligned first element of both
underlying iterators and the other two elements are the second components of both iterators. If
the two iterators have different numbers of elements with the same first component, we advance
only one iterator and fill the missing component in the emitted triple with a placeholder until
the first component of both iterators aligns again.

Algorithm 3: next method of an AlignedZippedIterator.
1 if iter1.hasNext() ∧ iter2.hasNext() then
2 t1 ← iter1.peek()
3 t2 ← iter2.peek()
4 if t1[0] = t2[0] then
5 t1 ← iter1.next()
6 t2 ← iter2.next()
7 return (t1[0], t1[1], t2[1])
8 else if t1[0] < t2[0] then
9 t ← iter1.next()

10 return (t[0], t[1], -1)
11 else
12 t ← iter2.next()
13 return (t[0], -1, t[1])
14 else if iter1.hasNext() then
15 t ← iter1.next()
16 return (t[0], t[1], -1)
17 else
18 t ← iter2.next()
19 return (t[0], -1, t[1])

Given an AlignedZippedIterator over both input relationships, it is straightforward to build two

49

CSR data structures. We consume the whole AlignedZippedIterator, for each element we append
the 2nd and 3rd component to AdjacencyLists of the CSRs; while skipping placeholders. Whenever
the first element of the three tuple changes, we append the current size of the AdjaencyLists
buffers to the Idices arrays.

The final difference between the Spark integration for LFTJ and GraphWCOJ is that we build
GraphWCOJ such that it can be run in parallel.

As argued in former chapters, we broadcast the edge relationship to all workers. The broadcast is
supported by Spark’s broadcast variables (see section 2.1.4) and Catalysts support to broadcast
the execution of a physical operator.

Parallelism is introduced via the third child of our GraphWCOJ operators. It is an empty RDD
with as many partitions as the desired level of parallelism. We schedule tasks by using the
mapPartitions function of this empty RDD. For each partition, we run the WCOJ join backing
its TrieIterator with the broadcasted CSRs and partition the data logical by one of the schemes
described in section 3.

One of the main advantages of broadcasting the edge relationship to all workers is that we
can reuse the same broadcast for all queries over the same graph. To support this in Catalyst,
we introduce one additional physical operator which we call ReusedCSRBroadcast and a CSR
broadcast variable cache maintained on the Spark master node.

The CSR broadcast variable cache is a simple dictionary with RDD ID’s to broadcast variables of
CSR structures. When, our system builds a broadcasted CSR structure, it registers the broadcast
in the cache. Every time, we translate a logical WCOJ plan into a physical one, we check if the
CSR for edge relationship has been broadcasted already if so, our strategy reuses this broadcast.

7 Experiments

In this section, we demonstrate our experiments. First, we give the experiment setup with
used machines, algorithms, datasets and queries. Second, we vary the linear-search threshold
of the binary search used by our WCOJ algorithms to determine the best values. Then, we
provide a comparision of the run-time of a sequentially run Spark binary join with our reference
implementation of the LFTJ. As next experiment, we compare the LFTJ algorithm with our
graph pattern matching specialized GraphWCOJ. Followed, by an analysis of the scaling behaviour
of GraphWCOJ in Spark’s local mode on a single machine. Finally, we show the speedup our
distributed version reaches on four machines with up to 384 cores and compare the run-time with
Spark’s binary joins in a distributed setting.

We run our experiments on machines of the type diamond of the Scilens cluster of the CWI
Database Architecture research group. These machines feature 4 Intel Xeon E5-4657Lv2 processors
with 12 cores each and hyperthreading of 2 (48 cores / 96 threads) Each core has 32 KB of 1st
level cache, 32KB 2nd level cache. The 3rd level cache provides 30 MB shared between 12 cores.
The main memory consists of 1 TB of RAM DDR-3 memory.

The machines run a Fedora version 30 Linux system with the 5.0.17-300.fc30.x86_64 kernel. We
use Spark 2.4.0 with Scala 2.11.12 on Java OpenJDK 1.8. In the majority of our experiments, we
use Spark in its standard configuration with enabled code generation. We also tune the parameters
for driver and executor memory usage (spark.driver.memory and spark.executor.memory) to
fit all necessary data into main memory.

50

Name Variant Vertices Edges Source

SNB sf1 453.032 [35]
Amazon 0302 262,111 1,234,877 [36]

0601 403,394 3,387,388 [36]
Twitter sc-d 81,306 1,768,135 [36]
LiveJournal 4,847,571 68,993,773 [36]
Orkut 3,072,441 117,185,083 [36]

Table 5: A summary of all datasets mentioned in the thesis.

7.1 Algorithms

In our experiments, we use 4 different join algorithms. Two of them are worst-case optimal joins.
That is, our Leapfrog Triejoin implementation and a graph-pattern matching specialized Leapfrog
Triejoin developed in this thesis: GraphWCOJ. LFTJ is only run as a sequential algorithm as a
baseline against GraphWCOJ. We compare these two algorithms in section 7.6.

The other two algorithms are Spark’s binary joins: BroadcastHashjoin and SortmergeJoin. We
compare them against the sequential version of LFTJ and GraphWCOJ in section 7.5.

We adjust the spark.sql.autoBroadcastJoinThreshold parameter to control if Spark is using
a BroadcastHashjoin or a SortMergeJoin.

7.2 Datasets

We run our experiments on multiple datasets from two different use-cases: social networks and
product co-purchase. We explain our choice in the next paragraphs. Table 5 includes a list of all
graph datasets mentioned throughout the thesis.

The SNB benchmark [35] generates data emulating the posts, messages and friendships in a social
network. For our experiments, we only use the friendships relationship (person_knows_person.csv)
which is an undirected relationship. Only edges of the kind src < dst exist, we generate the
opposing edges before loading the dataset, such that the edge table becomes truly undirected.

The benchmark comes with an extensively parameterizable graph generation engine which allows
us to experiment with sizes as small as 1GB and up to 1TB for big experiments and different
levels of selectivity. The different sizes are called scale-factor or sf, e.g. SNB-sf1 refers to a Social
network benchmark dataset generated with default parameters and scale-factor 1.

The Amazon co-purchasing network contains edges between products that have been purchased
together and hence are closely related to each other [36]. This is a directed relationship from the
product purchased first to the product purchased second, both directions of an edge can exist if
the order in which products have been purchased varies.

The Snap dataset collection contains multiple Amazon co-purchase datasets, each of them
containing a single day of purchases. We choose the smallest and biggest dataset from the 2nd of
March and the 1st of June 2003 which we call them Amazon-0302 and Amazon-0601.

We pick co-purchase datasets for evaluation because former work often concentrated on social
networks and web crawl based graphs [18, 7] but [48] points out that the biggest graphs are
actually graphs like the aforementioned Amazon graph containing purchase information.

To allow comparisons with former work, we run a subset of our experiments on the Twitter social
circle network from [36]. This dataset includes the follower relationship of one thousand Twitter

51

Name Parameters Vertices Edges

triangle NA 3 3
n-clique # vertices n 1/2× n× (n− 1)
n-cycle # vertices n n
n-s-path # edges / selectivity n n− 1
Kite NA 4 5
House NA 5 9
Diamond NA 4 4
Filters
distinct
less-than

Table 6: Summary of patterns and filters used.

users; each of these follows 10 to 4.964 other users and relationships between these are included.

The LiveJournal and Orkut graph represent the friendship relationships of a medium-sized social
network.

7.3 Queries

In this section, we detail the graph patterns used throughout our experiments. Most of the
queries are cyclic because that is the primary use-case for WCOJ in former research [45, 18].
WCOJs also have been successfully applied to selective path queries in [45, 33].

We apply filters to most of our queries to make them more realistic, e.g. a clique query does
make more sense if it is combined with a smaller-than filter, which requires that the attributes
are bound such that a smaller than b, smaller than c. Otherwise, one gets the same clique in all
possible orders, which not only takes much more time but is also most likely not the result a user
would want.

We ensure that filters can be pushed down through or in the join by Spark as well as by the
WCOJ to compare both algorithms on an equal basis. A complete list of all queries and filters
used is shown in table 6. Figure 21 shows depiction of all graph patterns.

Patterns and filters are combined as follows. Cliques and the Kite query use smaller than filters
which require the bindings to increase in value according to the variable ordering. All other
queries are run with a filter such that each of their bindings must be distinct.

For a selective path query, we first select two sets of nodes with respect to the selectivity parameter.
Then we search for all paths of a certain length according to the edges parameter, e.g. 4-0.1-path
finds all paths between two randomly selected fixed sets of vertices of length 4. The sets of nodes
contain roughly 10% of all input nodes and are not guaranteed to be intersection free.

7.4 Linear search threshold

We run LFTJ and GraphWCOJ with different settings for the linear search threshold. As explained
in section 2.2.1, we use a binary search to implement the seek method of the TrieIterators; it is
also used for GraphWCOJ. It is well known, that a binary search can be optimized by ending it
with a linear search on small search spaces because linear memory access patterns are cheaper
than random accesses. The threshold gives the size of the search space from which to use a linear

52

(a) triangle (b) 4-clique (c) 5-clique (d) 4-cycle

(e) 5-cycle (f) Diamond (g) Kite

Figure 21: Queries used in our experiments.

search instead of a binary search, e.g. a threshold of 40 means that the algorithm switches to a
linear search once the search space is 40 numbers or less.

We note that LFTJ and GraphWCOJ could behave differently for the same threshold. This
is because Leapfrog Triejoin uses a binary search for both levels of its TrieIterators, while
GraphWCOJ only uses the binary search for the second levels; the first level is indexed in a CSR.

In this experiment, we vary the threshold between 1 and 1600 to determine the best value. These
values are chosen such that 1 does not trigger any linear search and that 1600 does not improve
the performance anymore (for LFTJ) and triggers no binary search for GraphWCOJ. We do so
for the 5-clique query on the SNB-1 and the Twitter dataset.

The results are shown in section 7.4. The optimum for LFTJ is around 200 while GraphWCOJ
shows the best performance at 1600 and 800 for SNB-1 respectively Twitter. This means that
GraphWCOJ performs best when there are nearly no binary searches. A threshold of 1600 triggers
no binary search in either of the datasets.

Also, we note that the effect the linear search threshold has on the performance is bigger for the
Leapfrog Triejoin. We explain the observations as follows: LFTJ does use searches on the first
and second level of the TrieIterators while GraphWCOJ uses it only on the second level. Hence,
the impact is bigger.

The optimal values are different because data of the levels are differently distributed. The first
level lists nearly all vertices while the second level is made of adjacency lists which are more
sparse. Hence, we assume that the linear searches on the first level are generally longer than the
one on the second level; note that the threshold only gives a maximum length for linear searches
but this is not necessarily a good indicator for the length of the performed search.

We tried to use different threshold values for the two levels in LFTJ. We choose the values 200
for the first level and 1600 for the second level because these are the optimal values according to
our experiments. However, we note that no huge performance gain can be measured. This is
most likely because the runtime is dominated by the searches on the first level. For simplicity, we
do not use two different thresholds for LFTJ in any further experiments.

53

(a) SNB-1 (b) Twitter

Figure 22: Runtime of WCOJs with different settings for the linear search thresholds.

From this experiment, we conclude that the optimal threshold for LFTJ is 200 and 800 for
GraphWCOJ. We choose 800 for GraphWCOJ because it is on the safe side: a binary search
performance degrades less than the one of a linear search. We set these values accordingly in all
further experiments.

7.5 Baseline: BroadcastHashjoin vs LFTJ

In this experiment, we compare the runtime of our sequential Leapfrog Triejoin implementation
with the runtime of Spark’s BroadcastHashjoin. Towards this goal we ran all queries from table 6
on our three of our datasets: Amazon-0302, Amazon-0601 and SNB-sf1.

Our experiment measures the time it takes to perform a count on the cached dataset using
BroadcastHashjoin and LFTJ. For BroadcastHashjoin, the time to run the whole query is
reported. For the LFTJ, we the time, it takes to run the join, excluding setup time. Setup time
includes sorting and materialization.

This section is focused on comparing the runtimes excluding the setup time, because the final
system is meant to cache the readily sorted and formatted as CSR’s and reuse it for multiple
queries. We anticipate that this is necessary to benefit from WCOJs in general.

We compare against Spark’s BroadcastHashjoin instead of SortMergeJoin because even when
all data is arranged in a single partition, for simple sequential processing, Spark schedules its
SortMergeJoin to use a shuffle. A shuffle writes and reads data to and from disk. Hence,
SortMergeJoin is much slower than a BroadcastHashjoin. We compared the algorithms on the
Amazon-0601 dataset for the triangle (8.1 seconds vs 58.9 seconds) and 5-clique pattern (32.9
seconds vs 850.9 seconds). We assume that Spark can optimize its broadcasts when local[1] is
used to start the Spark session because then Spark uses the driver as executor.

We point out that Spark’s code generation is a huge advantage for the BroadcastHashjoin
compared to our interpreted LFTJ. We ran Spark without code generation for comparision on
the Amazon-0302 dataset for the triangle query and 5-clique: with code generation Spark takes
3.1 and 4.2 seconds, and without 14 and 16 seconds.

We show our results in fig. 23. Next, we analyze the results.

54

We are able to beat Spark’s BroadcastHashjoin on all datasets and queries except 5-clique and
house on Amazon-0602 and path queries on SNB-1. Generally, we see that for n-clique patterns
the speedup over Spark decreases for bigger n. This is because many binary joins in a n-clique
are semi-joins which to do not increase but decrease the size of intermediary results, e.g. for
5-clique on Amazon-0302 only 3 out of 9 joins lead to a bigger intermediary result.

The cycle query results are highly interesting because we see an increasing speedup for higher n
on Amazon-0602 but a decreasing speedup on Amazon-0302.

The House and 5-clique pattern seem to be quite similiar - the House is a 5-clique with two
missing edges. However, as the count of their results indicates these two edges and the fact that
we use a less-than for the 5-clique and a distinct vertice filter (the bindings must be distinct but
not ordered as in a less-than filter) for the House query lead to dramatically different outcomes.
Hence, their different timing and speedup behaviour.

The Kite pattern produces consistently the second highest speedup after the 3-clique. Most likely
since a Kite is two triangles back-to-back.

The path query shows very different behaviour on the Amazon and the SNB datasets. This might
be due to the different selectivity; it is extremely high on the co-purchase datasets and rather
low on the social network benchmark. This difference in selectivity is not surprising given that
the SNB network fulfils the small-world property, while the Amazon dataset relates products
purchased together which naturally leads to multiple loosely connected components.

Finally, we observe that all three datasets lead to quite different results which are most likely
not comparable to each other without deeper research in the characteristics of the datasets
themselves.

In particular, it becomes clear that co-purchase datasets and social network datasets must have
very different characteristics. Although, SNB-sf1 is much smaller than Amazon-0601, queries on
it take a similar or even much more time, e.g. 5-clique takes 14.21 seconds on the bigger dataset
and 12.65 seconds smaller, even though, the result set is much smaller on SNB-sf1; 4-cycles takes
roughly 8 times longer on the small dataset and has a much bigger result set. In general, we see
a higher speedup on SNB-sf1.

7.6 LFTJ vs GraphWCOJ

In this experiment, we compare sequentials runs of the Leapfrog Triejoin and GraphWCOJ on
the Amazon, SNB-1 and Twitter datasets. We do not show the run-time of Path queries because
GraphWCOJ is not able to run them10.

We show the run-time of the queries on different datasets in fig. 24. We present the performance of
the Leapfrog Triejoin, GraphWCOJ and GraphWCOJ without the materialization optimization.

We first analyze the impact of using the CSR data structure as basis for the join.

Throughout all datasets, we see that GraphWCOJ is faster than a LFTJ for all queries. The
biggest speedups are reached for 5-cliques and the lowest speedup for 4-cycles. The maximum
speedup over all queries and datasets is 11.4 for a 5-clique query on Amazon-0601. The lowest
speedup is 1.2 on a 4-cycle query on SNB-sf-1.

It shows the biggest speedup for the clique queries which is increasing with the size of the clique.
The effect on the House and Kite query is generally lower. The Diamond and 4-cycle query do
not improve much when we use GraphWCOJ.

10Path queries require us to filter the input relationship before the join. This has not been implemented for
GraphWCOJ due to time constraints.

55

(a) Amazon0302

(b) Amazon0601

(c) SNB-sf-1

Figure 23: Runtime of a Leapfrog Triejoin and Spark’s BroadcastHashjoin

56

Query w\o materialization materialization ∆ [%]

3-clique 34.739.080 33.526.024 3.4
4-clique 118.451.741 99.402.372 16.1
5-clique 262.304.687 192.296.784 26.7
kite 346.636.041 272.840.747 21.2
house 5985.294.145 5.550.487.243 7.2
4-cycle 4.591.408.924 4.402.790.869 4.1
diamond 10.230.067.028 9.680.437.365 5.3

Table 7: Count of all TrieIterator seek calls for different queries on the SNB-1 dataset with and
without materialization and difference in percent.

This can be explained by the fact that CSR mostly improves by implementing searches on the
first level of the TrieIterators as a two array reads instead of a binary search for the column-based
implementation of the original Leapfrog Triejoin. The denser the query the more first level
TrieIterator accesses are used. Hence, clique, House and Kite query profit more than the sparse
cycle and Diamond query. For example, the 5-clique query uses the 10 TrieIterators with 10 first
levels to iterate while the 4-cylce and Diamond need only 4 TrieIterators.

We find that materialization does not improve the algorithm much. The strongest speedup can
be seen for dense queries, e.g. 5-clique. However, sparse queries, as the 4-cycle, take longer with
enabled materialization.

To explain these weak results, we used perf to monitor cache hits and misses while running
GraphWCOJ with and without materialization on the 5-clique query on the SNB dataset. On this
query and dataset materialization shows its strongest impact. We cannot measure any significant
difference in cache utilization between the two configurations.

The last reason why materialization can improve the performance is because it uses binary
intersections starting with the smallest intersection which leads to less seek calls. We measure
this effect by counting all seek calls for the different queries on the SNB-1 dataset and show
the results in table 7. We note a clear correlation between the percentage of saved calls to the
run-time difference with materialization: Kite, 4-clique and 5-clique profit from the optimization
and save more than 15% of all seek calls, while the other queries show no big difference or a
slow-down and save less than 10% of the seek calls. In the next paragraph, we explain these
results.

The effect on dense clique queries is highest because they employ intersections between up to
four adjacency lists while the 4-cycle intersects at-most two adjacency lists. Hence, using binary
intersection makes no difference for 4-cycles. We still save seek calls because we defer them for
the first-level TrieIterators until after building the intersection. This query gets slower with
materialization because of the overhead of copying values into a new buffer.

7.7 Scaling of GraphWCOJ

In this section, we aim to analyse and compare the scaling of GraphWCOJ using different
partitioning schemes. Towards this goal, we run GraphWCOJ on datasets of different size namely
Twitter, LiveJournal and Orkut. We compare two partitioning schemes: Shares and work-stealing.
These are the two most promising schemes identified in section 3. The experiment is performed
on 3-clique, 4-clique and 5-clique. 3-clique is the smallest of our queries. Therefore, it is most
difficult to scale. 4-clique and 5-clique take much longer than 3-clique. Hence, it shows how
query size influences the scaling. Also, it increases the job size for the work-stealing partitioning

57

(a) Amazon-0302 (b) Amazon-0601

(c) SNB-1 (d) Twitter

Figure 24: WCOJ run time of LFTJ and GraphWCOJ on different datasets and queries. Diamond,
House and cycle queries are not reported for Twitter because of their high run-time of over an hour.

scheme.

We first describe our expectations of the experiment outcome. We assume that scaling improves
with the dataset size. Hence, we should see the highest speedups for Orkut, then LiveJournal
and the lowest speedups for Twitter. Also, we expect the scaling to improve with the query size.
Both hypotheses are grounded in the fact that more work to distribute often leads to stronger
scaling. Additionally, we believe that work-stealing shows better scaling than Shares because it
does not duplicate work. Finally, we have no clear cut expectations for the scaling behaviour of
work-stealing. Theoretically, we could expect linear scaling for it because no work is duplicated,
synchronization overhead is minimal and work balance should be given by the scheme. However,
we measure on a quite complex hardware platform which complicates scaling behaviour.

First of all, we work on a machine with 4 sockets. This can influence scaling positively and
negatively. Positively because adding more sockets means to add significantly more L3 cache (30
MB shared per socket). If we do not use all cores on a socket, each used core can use a bigger
share of this cache. Negatively because each socket is in a different NUMA zone and the graph is
not guaranteed to be cached in all NUMA zones. Indeed, Spark shares the broadcasts for all
tasks on a single executor: there is only one copy in memory.

Additionally, we run on an Intel processor with hyperthreading. Hence, we can not expect linear
speedup above 48 workers because after multiple threads will share resources and cannot be
expected to reach the same performance as two cores.

To conclude, we expect sub-linear speedup for Shares and better but still sub-linear speedup for
work-stealing. Anyhow, super-linear scaling in MapReduce like systems is not unheard of and
could be possible on our machines.

We show the scaling behaviour of Shares and work-stealing on different datasets and for 3 queries
in fig. 25. The run-times and speedup in raw numbers are given as an appendix appendix A.1.

58

(a) Twitter dataset (b) LiveJournal dataset

(c) Orkut dataset (d) Twitter 3-clique join run-time only without overheads

Figure 25: Scaling behaviour of Shares and work-stealing on three different datasets and two different
queries. The batch size parameter for work-stealing is chosen for balance between lock contention
and worker skew: 50 for Twitter and 3-clique on LiveJournal, 1 for 5-clique on LiveJournal and 20
on the Orkut dataset.

59

We describe our observations per dataset; starting with Twitter. As expected, both partitioning
schemes scale better when we increase the query size. For 5-clique, work-stealing exhibits near-
linear scaling up to 48 workers, while clique-3 reaches the maximum speedup of 6.22 for 8 workers.
The highest speedup for 5-clique is 45 on 96 workers; clique-3 reaches its highest speedup with
13.2 on 64 workers. Shares lags behind in scaling for both queries and all levels of parallelism.
The best-observed speedup is 21.3 for 5-clique and 96 workers.

We note that the 3-clique query does not scale well because there is not enough work. Therefore,
the run-time is dominated by overheads, e.g. the time it takes until Spark starts the first job
and the time it takes to finalize the query by Spark. The overhead calculated by (queryEnd−
queryStart)− (lastTaskCompleted− firstTaskScheduled) is roughly 0.13 seconds for all levels
of parallelism and the whole query runs for 0.19 seconds on 48 cores. We depict the speedup
achieved when we measure only the time spent with the join in fig. 25d.

The experiment on LiveJournal confirms our hypothesis that bigger datasets lead to better
speedups; the highest observed speedup is 61.2 for work-stealing on 3-clique and 36.81 for Shares
on 5-clique each with 96 workers. Also, we can confirm that Shares scales better on 5-clique than
on 3-clique; with the exception of 32 workers. However, this is not the case for work-stealing.
work-stealing shows better speedups on clique-3 than on clique-5. Nevertheless, work-stealing
beats Shares on both queries and all levels of parallelism.

Additionally, we see three unexpected scaling behaviours for LiveJournal. First, super-linear
scaling for 3-clique and work-stealing. We hypnotize that this is the fact because if the 32
processes are distributed over all 4 sockets they share in total 120 MB of L3 cache while a single
process can use only 30 MB of L3 cache.

Second, the scaling of 4- and 5-clique is worse than for 3-clique. Our explanation is that 4- and
5-clique show skew even with work-stealing.

This is because work-stealing partitions work along the first variable binding. Hence, the size of a
single job in work-stealing is never smaller than the work of finding all bindings for a single first
binding. That means a single long-running job towards the end of the work-stealing queue can
result in a single task running longer than the others which delays the whole query.

We measure the time at which a task finishes. We define skew for work-stealing as the time
between the average worker finishes and the time of the last worker to finish. In table 8 and
table 9 we show the total skew and the percentage of skew in the whole query time for the
LiveJournal respectively the Orkut dataset.

We note that the residual skew correlates with the scaling behaviour; the higher the percentage
of skew in the whole query time the worse the query scales.

The total skew grows with the level of parallelism. We explain this as follows. Let us assume
there is at least one job which takes significantly longer than most of the jobs in the work-stealing
queue. This job is picked by a worker. When more executors are added which work on the
remaining jobs, the likelihood of this one big job adding significant skew raises because the other
jobs are finished faster.

This experiment shows that the job size is not fine-grained enough for bigger queries and a high
level of parallelism. We see that the skew can raise to nearly half of the total run-time for the
5-clique query on Orkut. We address this issue in section 9.2.

Fourth, Shares exhibits lower speedup of 12.1 for 64 workers which is lower than for 32 workers
(14.7) and 14.8 for 96 workers. This can be explained by the chosen Shares configuration. For 32
workers, the best configuration is given by the hypercube of the sizes 4, 4, 2. For 64 workers, we
get the hypercube with 4 workers on each axis. Hence, although we are doubling the number of
workers, we use the new workers only to partition work along the last axis, in the case of 3-clique
along the C attribute axis. Partitioning work along the last axis leads to a high amount of

60

Query 16 [s] / [%] 32 [s] / [%] 48 [s] / [%] 64 [s] / [%] 96 [s] / [%]

3-clique 0.1 / 1.04 0.1 / 2.31 0.1 / 2.86 0.1 / 4.74 0.1 / 5.74
4-clique 1.4 / 2.34 2.9 / 8.16 3.3 / 12.91 5.7 / 21.47 6.8 / 26.56
5-clique 0.0 / 0.00 0.0 / 0.00 3.8 / 0.48 18.4 / 2.55 23.8 / 3.66

Table 8: Total skew in seconds and percentage of skew in the total query time displayed for different
queries and levels of parallelism on the LiveJournal dataset.

Query 16 [s] / [%] 32 [s] / [%] 48 [s] / [%] 64 [s] / [%] 96 [s] / [%]

3-clique 0.0 / 0.00 0.0 / 0.01 0.0 / 0.01 0.0 / 0.03 0.0 / 0.03
4-clique 0.2 / 0.04 0.3 / 0.13 0.4 / 0.26 30.1 / 16.28 62.2 / 32.37
5-clique 1.7 / 0.04 2.3 / 0.10 341.3 / 17.95 684.0 / 32.33 1025.0 / 45.44

Table 9: Total skew in seconds and percentage of skew in the total query time displayed for different
queries and levels of parallelism on the Orkut dataset.

duplicated work on the first two axes. Additionally, with 64 workers at least 12 of these workers
are not exclusive cores but cores shared by two hyperthreads. In total, we get a lower speedup.
This changes slightly for 96 workers because the optimal hypercube configuration here is 6, 4,
4 which adds more workers along the first axis. However, the scaling only increases marginally
(14.7 to 14.8) from 32 workers which is quite disappointing given that the number of threads
increased by a threefold.

One could argue that we should use a different definition of best hypercube configuration. As we
see, it is not necessarily efficient to distribute the computation along the last axis.

The Orkut and LiveJournal datasets lead to highly similar scaling results: super-linear scaling
for work-stealing up to 48 workers, work-stealing scales significantly better than Shares. Shares
exhibits less speedup for 64 workers than for 32 and 64 workers.

7.8 Distributed work-stealing

We run the distributed version of work-stealing as described in section 3.4.1 on the LiveJournal
and Orkut dataset for the 3-clique and 5-clique query.

For this experiment, we use four diamond machines as described in the beginning of the section.
Each of this machine has 48 physical cores with hyper-threading. In total, the Spark cluster
has 192 physical cores and 384 virtual cores. We run the experiments on 16 to 384 of these
cores. Each machine runs one executor which uses 1

4 of the available cores. The tasks are evenly
distributed over all four machines for all levels of parallelism by the standard behaviour of Spark’s
standalone mode scheduler.

We also used Spark’s BroadcastHashjoin as well as SortMergeJoin implementations for the
3-clique query on LiveJournal. We present the total run-time of these joins and the time needed
by the distributed GraphWCOJ work-stealing algorithm in table 10.

We note that the best configuration for Spark 100 times slower than GraphWCOJ.

We show the speedup of the different queries on the LiveJournal and Orkut dataset in fig. 26.
The run-times and speedup in raw numbers are given as an appendix appendix A.2. We analyse
the results by query and dataset.

61

Parallelism Spark BHJ [s] Spark SMJ [s] GraphWCOJ [s]

192 428.53 423.98 4.3
384 467.19 531.68 3.5

Table 10: Total run-time of the 3-clique query for Spark’s BroadcastHashjoin (BHJ),
SortMergeJoin (SMJ) and GraphWCOJ on LiveJournal. Spark uses 3 times as many partitions
than cores as recommended by the Spark documentation: https://spark.apache .org/docs/latest/-
tuning.html.

(a) LiveJournal (b) Orkut

Figure 26: Speedup for 16 to 384 workers evenly distributed over 4 machines for 3-clique and 5-clique
on two datasets.

Query 16 [s] / [%] 32 48 64 96 128 192 384

3-clique batch 1 0.75 / 6.2 0.42 / 6.4 0.46 / 10.1 0.33 / 9.0 0.48 / 20.2 0.09 / 4.0 0.60 / 27.6 0.23 / 18.3
3-clique batch 40 7.75 / 64.3 4.03 / 62.4 2.07 / 45.8 2.37 / 64.2 1.52 / 64.4 1.19 / 55.3 0.48 / 22.2 0.50 / 39.0
5-clique 178.49 / 9.8 96.50 / 8.8 69.58 / 8.2 29.23 / 4.3 34.08 / 6.7 32.32 / 8.0 19.27 / 8.6 8.84 / 5.1

Table 11: Total skew and percentage of skew in the total run-time for queries on the LiveJournal
dataset. It is displayed for 3-clique run with a batch size of 1 and a batch size of 40 for the
work-stealing algorithm.

Query 16 [s] / [%] 32 48 64 96 128 192 384

3-clique batch 1 5.25 / 10.3 2.12 / 8.3 1.46 / 8.3 1.07 / 7.8 0.46 / 4.7 0.79 / 9.5 0.38 / 5.7 0.33 / 5.8
5-clique 5868.46 / 62.7 3150.39 / 62.2 2185.58 / 62.6 1602.55 / 62.1 1082.85 / 59.7 820.50 / 53.2 540.62 / 37.7 413.92 / 35.2

Table 12: Total skew and percentage of skew in the total run-time for queries on the Orkut dataset.

62

The 3-clique query scales very differently on both datasets. We show two plots for the 3-clique
query on LiveJournal with different parameters for the work-stealing batch size. One with the
batch size of 1 and one with a batch size of 40. We explain this choice later.

On the Orkut dataset, we see similar speedup as in the local version. It is super-linear in
the beginning up to 96 cores then the curve flattens out. Partly this is due to the use of
hyper-threading and partly due to skew.

Skew can be broken down into two components: intra executor skew and inter executor skew.

Intra executor skew is defined as the different end times of the tasks running and sharing work
on a single executor. There is no intra executor skew for the 3-clique query; all tasks on the same
executor finish work in a time-span of maximal 5 microseconds.

Inter executor skew is the difference between the duration of the longest-running executor and the
average run-time of all other executors. We show the absolute skew in seconds and the percentage
of skew in the total query run-time in table 12 for the Orkut dataset.

The total skew decreases with higher levels of parallelism. This is because the work is equally
distributed on 4 executors and with more tasks running per executor, the run-time difference
between executor falls when there is no intra executor skew.

Skew accords for 5% to 10% of the total query run-time with a decreasing trend for higher levels
of parallelism. Although, decreasing this contributes to a flattening of the speedup curve for 128
workers and more.

On the LiveJournal dataset for 3-clique, we see lower speedup. With a batch size of 1, it is
sub-linear until 48 cores and deteriorates after. Again, there is no intra executor skew.

During our study of inter executor skew, we noticed that the worker which takes longest can differ
widely for different repetitions of the experiment for the same configuration. This is unexpected
because in all of them the executors receive the same workload. We run the experiments with a
batch size of 1 for the work-stealing algorithm. Therefore, we suspect contention of the work-
stealing queue to be the reason speedup deterioration and repeat the experiment with a batch
size of 40.

The speedup for a batch size of 40 is weaker than using a batch size of 1 up to 48 nodes. With
more cores, it is stronger. This supports our hypothesis that lock contention is a problem for
higher levels of parallelism. The scaling is weaker for less than 64 nodes because the higher batch
size leads to more skew as we see in table 11.

This experiment shows that choosing the right batch size is not trivial for queries which have short
running work-stealing tasks. When we choose it too low for the level of parallelism, the work-
stealing queue becomes contended which leads to highly unpredictable performance. However,
using batching raises the skew in the query, which leads to lower performance on less than 48
cores and to suboptimal speedup with higher levels of parallelism due to skew.

We first discuss the 5-clique query on the LiveJournal. As expected we see stronger speedup
than for 3-clique as there is more work to share. The scaling is sub-linear due to intra and inter
executor skew. The intra executor skew is similar to the skew displayed for our local mode
experiment in table 8.

The total skew is shown in table 11. We see that the total and relative skew decrease with the
number of workers used which is to be expected as explained above. Nevertheless, it leads to
sub-optimal scaling behaviour and the total value of nearly 3 minutes can be quite high for a low
amount of workers. Reducing the intra executor skew is likely to reduce the inter executor skew;
we outline a solution for the intra skew in section 9.2.

The 5-clique query run on the Orkut dataset scales less well than the 3-clique query due to much

63

Dataset Query Version 16 32 48 64 96

LiveJournal
3-clique local 19.6 36.7 50.0 54.7 61.3

distributed 13.7 27.1 34.7 24.3 41.1

5-clique local 14.3 28.3 40.3 44.1 48.7
distributed 17.4 29.2 37.5 46.7 62.7

Orkut
3-clique local 18.8 36.9 54.0 58.0 69.6

distributed 19.2 38.5 55.5 71.8 98.6

5-clique local 14.3 28.1 35.2 31.6 29.8
distributed 7.1 13.2 19.1 25.9 36.8

Table 13: Speedup of local and distributed work-stealing version on different queries and datasets.
For 3-clique on LiveJournal with the distributed version, we report the speedup of batch size 1.

higher intra and inter executor skew. Again the intra executor skew is similar to the skew in the
local experiment (see table 9). The total skew is displayed in table 12.

We compare the speedup of the distributed work-stealing version against the speedup of the
local work-stealing version in table 13. The performance of the distributed version is strongly
dataset and query dependent. The 3-clique query on Orkut and 5-clique query on LiveJournal
scale better than in the local version; in particular, for high levels of parallelism. This is most
likely because no hyper-threading is used in the distributed version up to 192 tasks, while the
local version uses hyper-threading for more than 48 tasks.

The 5-clique query on Orkut shows roughly half the speedup up to 48 workers then the difference
in speedup decreases due to the use of virtual cores in the local version.

The distributed version lacks behind for the 3-clique query on LiveJournal independent of the
batch size chosen.

8 Related Work

We summarize three closely related papers and point out similarities and differences with our
work. The first paper describes another distribute WCOJ on Timely Dataflow. The second,
compares multiple worst-case optimal join algorithm parallelization approaches to determine the
best given a specific use-case. Third we describe a general graph pattern mining system build on
Spark which also employs work-stealing.

8.1 WCOJ on Timely Data Flow

Mc Sherry et al. published a distributed worst-case optimal join based on Timely Data Flow
in 2018 [7, 40]. In their paper they introduce three algorithms: BigJoin, Delta-BigJoin and
BigJoin-S. They implement only the first two algorithms.

BigJoin-S is only described not implemented but comes with stronger theoretical guarantees.
Namely, it is worst-case optimal in computation and communication with respect to the output
size of the query given by the AGM bound. BigJoin-S can guarantee work balance. Moreover, it
achieves optimality and work-balance while using low amounts of memory on all workers; the
memory usage per worker is in O(IN

w) with IN size of the input relationships and w the number
of workers.

64

The other two join algorithm are only worst-case optimal in computation and communication
costs but do not guarantee work-balance nor do they give the same low memory guarantees.
Although, in praxis, they achieve both on many real-world datasets.

Delta-BigJoin is an incremental algorithm which computes the new instances of the subgraph
given a batch of new edges. Hence, it operates in a different setting than our work. We assume
static graphs while they operate on graphs with the ability to find new instances caused by
insertions.

BigJoin is closest to our work. It has been implemented and is a worst-case optimal join for
static graphs.

In the following paragraphs, we describe BigJoin, analyse why it is not likely to be a good fit
for Spark, discuss and compare the index structures used in their work to represent the input
relationships and compare the guarantees are given by them and us.

8.1.1 The BigJoin algorithm

BigJoin encodes a Generic Join (see section 2.2) into multiple timely dataflow operators.

In short, Timely Dataflow operators are distributed over multiple workers and each of them
takes a stream of input data, operates on it and sends it to the next operator which can be
processed on a different worker. Examples for operators are map functions, filters count or min.
It is important to note that sending the output to an operator on a different worker is a fast,
streaming operation, as opposed to, Spark’s shuffles which are synchronous and slow because
they involve disk writes and reads.

For the BigJoin the authors require each worker to hold an index for each input relationship
which maps prefixes of the global variable order to the possible bindings for the next variable. In
use-case of graph pattern matching, this means that each worker holds an index into the forward
and backward adjacency lists.

Their algorithm runs in multiple rounds; one per variable in the join query. In each round, they
bind one variable. So each round takes the prefixes as input and fixes one more binding.

A single round starts with all prefixes from the former round distributed among all workers
arbitrarily. Then they find join relations that offers the smallest set of extensions for each prefix.
This is done in steps with one step per relationship. In each step, the prefix is sent to a worker
by the hash of the attributes bound in the relationship of that step. When the relationship offers
less possible values for the new binding then the current minimum, i.e. the size of its matching
adjacency the list is smaller, we remember it as the new minimum for the given prefix.

Next, they hash the values of the prefix which are defined in the relationship with the least
extensions and use these hashes to distribute the tuples over all workers. Then, each worker
produces all possible extensions for each prefix.

Finally, each round ends with filtering out all extensions that are not in the intersection of
extensions offered by each relationship. This again takes one filtering step per relationship in the
join.

This is a simple instance of the Generic Join implemented in data flow operators.

The algorithm described so far can build a high amount of possible extensions in each round.
This keeps it from keeping worst-case optimal guarantees for memory usage. The authors fix this
problem by batching the prefixes: they allow only a certain number of prefixes in the system at
all times. They defer building new prefixes until the current batch of prefixes has been completed.
This is natively supported by Timely Dataflow.

65

8.1.2 Applicability to Spark and comparison to GraphWCOJ

BigJoin is not suitable for Spark. This has multiple reasons.

Most importantly, it uses too many shuffle rounds. Each round and each step in a round requires
communication and therefore a shuffle. In total, the algorithm uses 2R× V rounds for a query
with R relations and V variables. As pointed out before this is no big problem in Timely Dataflow
because shuffles are fast and asynchronous. However, in Spark, this is not the case.

We would like to point out that binary join plans can solve the same queries in R − 1 shuffle
rounds and that our solution does not require any communication rounds.

Second, Spark does not support batching queries naturally as Timely Dataflow. Building support
for batching into Spark would be an engineering effort. Additionally, it would be hard to define a
good user interface over a batched query in Spark.

GraphWCOJ does not require batching because it only processes at most as many prefixes as
workers in the system in parallel. Therefore, we do not have the problem of memory pressure to
remember prefixes. This is because the LFTJ algorithm is a non-materialized representation
of the join. When the Leapfrog Triejoin is executed, it changes its state such that the state
always represents the non-materialized part of the join; the state is encoded in the positions of
the TrieIterators. In other words, the LFTJ performs a depth-first search of all possible bindings
while the BigJoin performs a batched breadth-first search.

8.1.3 Indices used by BigJoin and GraphWCOJ

The index structures used in their and our solutions are the same; one forward and one backward
index over the whole graph on each worker. It is possible to distribute the index of BigJoin such
that each worker holds only a part of the index. This is because each worker needs to hold only
the possible extensions for the prefixes that map to it for each relationship. We analyse this in
the next paragraph.

The prefixes are mapped to workers by the hash of the attributes already bound. For graph
pattern matching this is one or zero attributes; the edge relationship has two attributes and one
is a new, yet unbound variable in the prefix.

We can reach a distribution of the indices such that each worker holds I
w with I the size of the

indices. For that, we choose the same hash function for each variable such that always the same
values match to the same worker. However, this solution is likely to lead to high skew and work
imbalance because if a value is a heavy hitter the worker needs to process it for each binding over
and over.

It is better to use different hash functions per variable. In this case, we can estimate the percentage
of the whole index hold by each worker by the binomial distribution. This distribution models
the probability that out of N independent trials k succeed with the likelihood of p for a single
trial to succeed. We model the event of a key from the index being assigned to a worker as trial.
The likelihood is 1

w . We have as many trials as variables in the join: N = V . We are interested
in the case that the tuple is not assigned by any of the variables, so k = 0. Then we have the
likelihood that a tuple is not assigned given by B(V, 0, 1

w); so the fraction of the indices assigned
to each worker is 1− B(V, 0, 1

w).

We plot this function for different numbers of workers and variables in fig. 27. The split of the
indices held by each worker decreases drastically with the numbers of workers in the system.
Hence, this partitioning scheme scales relatively well.

66

Figure 27: Expected split of the indexes hold on each worker for different numbers of workers used
and variables in the query.

8.1.4 Theoretical guarantees

BigJoin guarantees computational and communication worst-case optimality. However, the
communication optimality does not take into account how the indices are generated on each
worker. If they are sent to each worker, this would be not worst-case optimal. The extensions of
BigJoin-S additionally give work-balance and low memory usage in O(IN

w).

GraphWCOJ guarantees computational worst-case optimality which it inherits from LFTJ.
Worst-case optimal communication is given by the fact that we do not communicate. This is if
we do not take the distribution of the indices into account which is in line with the analysis of
the discussed paper.

If we take the distribution of indices into account, our algorithm is not worst-case optimal.
During our setup, we broadcast the indices used. This is not optimal for a single query; Shares
would be optimal. However, it amortizes quickly over multiple queries, while Shares converges to
broadcasting for big queries.

We can not guarantee work-balance. However, we get close to it by using work-stealing. With
work-stealing, we are optimal within the size of a single task.

GraphWCOJ’s memory footprint does not depend on the size of the input nor of the output of
the join. Its memory usage is given by the size of the Java objects used which depend on the
query. However, this size should be neglectful small for all but embedded use-cases.

8.1.5 Conclusion

We conclude that our approach is the better fit for Spark because it requires less shuffling and no
batching. GraphWCOJ gives nearly the same theoretical guarantees as BigJoin. While they can
distribute their indices we cannot; we rely on the fact that each worker holds the complete index.

Finally, we would like to point out that [7] does not publish any number on the amount of
network traffic caused by their algorithm. Given that it sends many prefixes via the network this
could be a bottleneck in many deployments, i.e. in cheaper instances in the Amazon cloud. An
analysis of the network traffic would be beneficial for a better understanding of the advantages
and disadvantages of their approach.

67

8.2 Survey and experimental analysis of distributed subgraph match-
ing

On the 28th July 2019, L. Lai et al. published a survey with experiments for multiple distributed
graph pattern matching algoritms [33]11. Here, we focus on four of the strategies they tested:
BigJoin (see section 8.1), Shares, fully replicated graph and binary joins. All of their algorithms
are implemented in Timely Dataflow; so far they are not open-source. They ran the all algorithms
on 9 different queries over 8 datasets mostly on a cluster of 10 machines and 3 workers per
machine. Below we first summarize the most important design decisions for each algorithm, then
highlight their most interesting findings and finally compare their results with ours.

BigJoin is implemented as described above but uses a CSR data structure, triangle indexing and
a specific form of compression as optimization.

The Shares algorithm is configured as described in section 2.3.1 and uses DualSim as the local
algorithm. DualSim is a specialized subgraph matching algorithm. The authors show that it
beats the worst-case optimal join used in EmptyHeaded [1] which is a form of the Generic Join
(see section 2.2).

The survey also covers our strategy of fully replicating the graph on all machines. They choose
DualSim as a local algorithm and a round-robin partitioning on the second join variable.

Finally, they implement the binary joins with hash joins and use a sophisticated query optimizer
to devise the best join order.

The most important finding of this work is that fully replicating the graph on all machines is the
best option if the graph fits into memory even in Timely Dataflow with its deeply optimized and
asynchronous communication routines. They establish that fully replicating the graph is nearly
always the fastest strategy, has the lowest memory footprint12, no further communication costs
and scales better than all other strategies up to 60 workers.

In line with our argument against Shares, they find that this strategy is nearly always beaten by
most other strategies. They establish that it takes longer than the other strategies on nearly all
queries and datasets. Furthermore, it shows the weakest ability to scale.

They report that BigJoin or binary joins are the best option if fully replicating the graph is out
of the question. Binary joins can be used for star and clique joins if it is possible to index all
triangles in the graph and keep this index in memory. Otherwise, BigJoin is preferable in most
cases.

Finally, they study the communication costs of the binary joins, Shares and BigJoin. They find
that graph pattern matching is computation bound problem when 10 GB switches are used for
networking but communication costs dominate in 1 GB switched networks. They draw their
conclusions from experiments run with 10 GB network infrastructure.

Interestingly, Shares incurs fewer communication costs than BigJoin.

Their paper differs from our thesis in multiple ways.

We implement our system in Spark which has wide-spread usage in industry and a surrounding
eco-system of graph pattern matching systems (see section 1.3).

We give a comparison between a column store, binary search based Leapfrog Triejoin and our
CSR based GraphWCOJ. They do not report on the benefits of CSR in the context of WCOJ.

Their implementation of the fully replicated strategy differs from ours in two important factors.
11The survey was published on arXiv 5 months after we started our thesis in February.
12Shares replicates too much data, BigJoin needs to hold many prefixes in memory and binary joins incur intermediary

results.

68

First, they use a different local algorithm called Dual Sim [30].

Second, they use a different partitioning scheme. Their scheme replicates work of finding bindings
for the first and second variable in a query and does not actively counter skew. The skew-resilience
of their scheme is based on the fact that it partitions the work on the second binding. Hence, it
distributes skew of the first binding equally. However, as we see with our work-stealing approach
this does not guarantee skew freeness for bigger queries (see section 7.7).

Their scheme could be applied to our system. It is simpler than work-stealing but less resilient to
skew.

However, they come to the same conclusions, namely that fully replicating is the preferred strategy
when the graph fits into main memory and that Shares is not a good strategy for graph pattern
matching.

8.3 Fractal: a graph pattern mining system on Spark

Fractal is a general-purpose graph pattern mining system built on top of Spark published at
SIGMOD’19 [23]. We first describe the relevant aspects of their system. Then we compare it to
our approach.

Graph pattern mining includes the problem of graph pattern matching (as defined in section 1.1).
Additionally, it includes problems such as frequent subgraph mining or keyword-based subgraph
search.

To support all these problems in a single system, the authors describe their own programming
interface made off initialization operators, workflow operators and output operators. Each
workflow is described as a sequence of these operators. All workflows are based around extending
a subgraph starting from a single edge, vertex or a user-described pattern. This makes for three
initialization operators one to start from a vertex, edge or pattern each.

The workflow operators process the subgraphs induced by the initialization operators. They
can expand the subgraph, e.g. if the subgraph is vertex induced, one expand step adds all
neighbouring vertices to the subgraph.

Another workflow operator is to filter the subgraph instances. Then it is possible to aggregate
subgraphs by computing a key, a value and possibly a reduction. Finally, these workflow steps
can be looped to be repeated multiple times.

To execute the workflow the user can use one out of two output operators: subgraphs and
aggregation to list all matching subgraphs or aggregate all matching subgraphs respectively.

For example, the workflow vertexInduced().filter(sg => fullyconnected).subgraphs() enumer-
ates all cliques in a graph.

Fractal maps these workflows to Spark by splitting them into fractal steps on synchronization
points, e.g. an aggregation which results is required in the next step. Each step maps to a Spark
job which is scheduled by the Spark scheduler. Fractal schedules the fractal steps in the correct
order and waits for them to complete before starting the next one.

A typical problem of graph pattern mining is the high amount of memory needed to keep partial
matches; the state of the algorithm. Fractal counters this problem by enlisting subgraphs with a
depth-first strategy. Furthermore, it starts computing all subgraphs from scratch for each step,
instead of keeping them in memory in between the steps. They only keep the results of the
aggregations to be used by the next step.

Another problem in graph pattern mining is work-balance because some parts of the graph are
more work-intensive than others. Fractal tackles this problem with work-stealing. They use a

69

hierarchical work-stealing approach. First, each thread tries to steal work from another thread
within the same Spark executor. Only if this is not possible, they request work from another
machine.

The local work-stealing is implemented by sharing the same subgraph enumerators; an iterator-like
data structure that saves the state of the subgraph matching algorithm in a prefix match. The
subgraph enumerator offers a thread-safe method to generate the next prefix. Hence, a thread
can steal work simply by using the enumerator of another thread.

The second hierarchy of work-stealing is between multiple Spark workers. The authors support
that by using Akka to implement a simple message passing interface between all Spark workers.

Their experiments show near-linear scaling for the described work-stealing strategy up to 280
execution threads over 10 machines.

Fractal is similar to our system in some aspects. They also solve graph pattern matching on
Spark, inspired our approach to work-stealing and choose a depth-first subgraph enumeration
approach. We discuss these similarities below and outline the differences.

Like us, Fractal solves the problem of graph pattern matching. However, they offer the ability
to solve multiple other common subgraph related problems as well. The biggest difference is
that they directly support aggregation over subgraphs, which, for example, allows them to solve
frequent subgraph mining.

They build an independent system on top of Spark’s infrastructure which comes with their own
imperative query language. We integrate a single algorithm deeply into Spark’s query optimizer.
Therefore, our contribution can be easily integrated into other graph systems building on Spark,
e.g. G-Core [8] or CAPS [46]. These systems would offer a declarative interface to our worst-case
optimal joins.

The work-stealing approach of Fractal inspired our solution. We also use a shared object to steal
work within a single Spark executor. Anyhow, our approach is simpler and less fine-grained.
They allow stealing work at every level of the depth-first enumeration of all subgraphs. We only
share work on the first level. This makes their solution strictly more fine-grained and likely to
perform better on big queries. We discuss this issue in our future work section 9.2.

Fractal is built for Spark in cluster mode. Hence, they allow processes to steal work from different
workers. GraphWCOJ is currently limited to a single worker. However, their message-passing
based solution is directly applicable to our system if we extend to multiple workers. Again, we talk
about this in more depth in future work (9.1). In short, we could use the same message-passing
implementation but instead of stealing from a subgraph enumerator, the work would be taken
from the queue on each worker.

Both systems enlist the subgraphs in a depth-first like fashion. In both systems, this is highly
beneficial to memory usage; the problem of breadth-first algorithms has been discussed for BigJoin
before (section 8.1).

To conclude, Fractal is a complete system with its own query interface. This makes it more
powerful than our system but also less integrated into Spark. Hence, it forces the user to adapt
to their imperative language and hinders integration with declarative graph query languages. We
used a similar work-stealing algorithm in our work. Both systems recognize and demonstrate the
advantages of a depth-first approach.

70

9 Conclusions

First, we summarize the answers to our research questions outlined in section 1.4. Then, we
explain two areas of future work: finer-grained work-stealing and possibilities for inter executor
work-stealing in Spark.

The first research question is if we can gain performance by specializing LFTJ to graphs. We
explored two possibilities: to use CSR to store the graphs edge relationship and to find a more
suitable intersection algorithm.

Using CSR is a big advantage for dense queries where it leads up to 11 times better performance.
Sparse queries profit less but are often 2 times faster.

We partially succeeded in finding a better intersection algorithm to use in the LeapfrogJoins for
the graph-pattern use-case. We find that intersections tend to converge to their final size quickly
when using binary intersections. Therefore, multiple binary intersections driven by the small
intermediary result are often faster than the n-ary intersection proposed in the original Leapfrog
Triejoin paper [53]. Again, dense queries can profit while sparse queries show no difference or
become slower.

The slow-down in sparse queries is likely caused by our second attempted specialization, namely
materializing the intersections in hope for better use of the processor cache. We can not measure
any difference in cache use. Hence, this optimization is not worth-while.

To answer the first research question: yes, WCOJ should be specialized to the graph-pattern
use-case. Even straightforward optimizations like using a compact graph representation can lead
to 11 times better performance.

Our second research question concerns the scalability of WCOJ’s in Spark. We find that the
implementation in Myria of a provably optimal partitioning scheme, Shares, suitable for Spark
does not scale well. In section 2.3.1, we demonstrate that Shares scaling behaviour is inherently
bad for graph-pattern matching because it leads to a lot of duplicated work and its partitioning
deteriorates to a full broadcast; hence, it cannot save much communication or memory over
simply replicating the whole graph on each machine. In particular, if we run multiple queries.
We conclude that caching the complete edge relationship of the graph on each machine at system
start-up is the better design. This fits well with WCOJ joins because they need to sort and
materialize their input relationships which comes at non-trivial costs. When we cache the edge
relationship once and reuse it for all queries, we can amortize these costs.

On the base of a replicated graph, we study two logical, static partitioning schemes which we
directly integrate into the Leapfrog Triejoin. First, we implement range based partitioning on a
single variable which allows us to trade duplicated work against skew. Second, we build a range
based and a hashed based Shares partitioning into the LFTJ.

We find that hash-based Shares is the best logical, static partitioning scheme because it is most
skew resilient. Although, it replicates more work than partitioning on the first or second variable.

However, the replicated work leads to bad scaling of logical Shares: measured over 3 queries on
three different datasets, Shares strongest speedup is 25 for 96 workers. On most queries, it does
not reach a speedup of 20 or more using 48 cores.

Based on this result, we conclude that static partitioning schemes are not scalable when using
the LFTJ for graph-pattern matching. Therefore, we investigate the integration of work-stealing
in Spark.

First, we demonstrate high potential for work-stealing as a partitioning scheme in our experiments
on a single machine in Spark’s local mode in section 7.7. It achieves super-linear speedup for the
triangle query on two out of three datasets and near-linear speedup if we do not take sequential

71

overhead into account on the last dataset. Bigger queries scale less well but often twice as good
as Shares.

We identified residual skew as the main reason for the weaker scaling on 4-clique and 5-clique.
This is caused by our design decision to use one binding for the first variable as minimal stealable
job size. We describe an alternative algorithm to generalize work-stealing to all levels of variables
in section 9.2.

Then, we investigate the scaling of a simple, communication free, distributed work-stealing
integration into Spark. We find that the scaling of it is similar to the local mode version in 2 out
of 4 measured queries. A third query (5-clique on Orkut) scales roughly half as well as in the
local version.

The last of the 4 queries (3-clique on LiveJournal), lacks strongly behind the local version and
seems not to scale to higher levels of parallelism. This is partly caused by the contention of the
work-stealing queue which can be easily mitigated by using one queue per worker which leaves
queues uncontested until most tasks are finished; we provide a more detailed analysis of the
expected contention of this design in section 9.2.

However, we recognize that our distributed version works best on a cluster with a few big machines,
like the one we ran our experiments on. In this setup, the graph is broken down in a few big
pieces which are processed by many tasks that share work. If one uses a cluster that has many
small machines, the graph is partitioned in many small pieces which are worked upon by a few
tasks each. This setup is likely to lead to higher inter worker skew. We discuss possible solutions
in section 9.1.

We conclude that executor internal work-stealing is a good starting point to fully distribute
WCOJ optimal joins on Spark. It can reach similar speedups than the local version and beats
Spark’s built-in joins by two magnitudes. While being far from perfect it is the best scaling
distributed WCOJ on a Spark like system to the best of our knowledge.

The answers to our second set of research questions are: Shares scales better than less skew
resilient schemes but does not scale well in absolute terms. Therefore, dynamic work-sharing
approaches are needed to achieve good speedup in a Spark like system. We find that work-stealing
works well when used on a single machine but distribution to multiple machines is difficult because
it is not possible to communicate between executors in Spark. We discuss possible solutions
in section 9.1.

The software implemented for this thesis is open source and can be found on GitHub at
https://github.com/cwida/edge-frames.

9.1 Distributed work-stealing

Work-stealing between executors inherently needs communication. Spark does not offer any direct
means of communication between two executors to the developer.

Broacast variables and Accumables offer one-way communication from the driver to the executors
and vice versa. One could assume that these can be combined into a two-way message channel.
However, this is not the case. Broadcast variables can transfer information to the executors but
they do not offer the ability to check whether a message has arrived. The information they carry
is accessed via a lazy attribute of a variable from the outer scope of the task closure. Once, the
lazy attribute is evaluated by the task, it takes the current value at the driver and will not change
anymore even if it does so on the driver. Hence, the executor can only guess when to evaluate
the value and if it does so too early the variable cannot be reused. Additionally, the number of
broadcast variables needs to be known before the task is serialized because they are variables in
the outer scope of the closure to serialize. Therefore, the number of broadcast variables cannot

72

https://github.com/cwida/edge-frames

be infinite. If we take the two arguments together, it becomes clear that it is not possible to use
broadcast variables for dynamic communication.

There are two possibilities to enable executors to communicate in Spark.

First, one can use an external message-passing framework which can be set up during Spark’s
startup and connect all executors, e.g. Akka13. That is possible because often Spark executors are
connected in the same network and otherwise the driver can be used as a proxy. This approach is
taken by Fractal (see section 8.3) for the use-case of inter executor work-stealing. We inspected
the code and find that they use a straightforward Akka setup for a simple work-stealing approach
via message-passing. Their design is directly applicable to our setup.

Second, Spark uses remote procedure calls internally to schedule tasks on executors and to receive
heartbeats and accumables. The same functionality could be used to implement work-stealing.
In particular, the BarrierTasksContexts uses remote procedure calls to implement its barrier
method. This remote procedure end-point could be made accessible to the user with minimal
effort. However, the original design of the barrier mode explicitly names further communication
methods as a Non-goal14.

We conclude that both options to introduce communication between different executors are
suboptimal. The first adds an additional dependency. The second uses private and undocumented
Spark internals. We argue that the first approach is cleaner as it does not misuse parts of the
Spark system in a way they have not be designed for and leaves us in full control of the setup.

9.2 Finer-grained work-stealing

In our experiment section 7.7, we noted that work-stealing that operates only on the first level of
variable bindings can still lead to skew for bigger queries. Therefore, we describe a work-stealing
Leapfrog Triejoin algorithm that allows stealing work on all levels. We describe a possible design
in two steps. First, we explain under which circumstances to steal work. Then, we describe how
to steal work. In the following, we call the process that steals work thief and the other process
victim.

We let each task start with its own bindings for the first variable, e.g. by assigning a range
to each task based on its partition number. This can be implemented as a range filter in the
LeapfrogJoin of the first variable.

Once all of these initial bindings are processed, we start stealing work from other LeapfrogTriejoins.
It is beneficial to steal bindings of variables higher in the global order because this maximizes
the amount of work stolen. A task is encoded as a prefix of variable bindings, e.g. if we steal
work in a 5-clique query at the third level a prefix might be [4, 1, 5]. If the work-stealing request
successfully returns a binding, we set the state of all components of the thief to the values of the
prefix. Then we run the normal Leapfrog Triejoin algorithm to generate all complete bindings for
the stolen prefix. When all bindings have been produced, we steal work and repeat the process.
If a work-stealing request cannot find any work, the task finishes.

We propose to steal work by accessing the LeapfrogJoin instances of the victim to generate the
next binding for a variable at a given depth. The victim then should not generate results for this
binding. We face four challenges for the question of how work is stolen.

First, the Leapfrog Triejoin encodes its state in the TrieIterator components. This state should
13https://akka.io/
14 https://issues.apache.org/jira/browse/SPARK-24582?page=com.atlassian.jira.plugin.system.issuetabpanels%3Aall-

tabpanel
https://docs.google.com/document/d/1GvcYR6ZFto3dOnjfLjZMtTezX0W5VYN9w1l4-
tQXaZk/edit#heading=h.yqvxlbrdqkkb

73

not be changed when we steal work, except for the fact that a stolen prefix is not considered by
the victim.

Second, when we use the LeapfrogJoin to steal work it is not guaranteed that the underlying
TrieIterators are set to the correct level for this LeapfrogJoin.

Third, we plan to use shared LeapfrogJoin instances to implement work-stealing. Therefore, this
interface needs to become thread-safe.

Fourth, the LeapfrogJoin interfaces need to be accessible to the thieves. As in our current solution,
we implement communication via a shared data structure. This data structure allows access to
all LeapfrogJoin instances on the same worker. If a task needs to steal work, it selects one of
these LeapfrogJoin instances.

We describe the solution to these problems in order.

For the first problem of not changing the state of the TrieIterators, we suggest to add new
seek and next methods to the LeapfrogJoin and TrieIterator interface which do not change the
state but work exactly as the originals otherwise. Additionally, the stateless next method of the
LeapfrogJoin interface stores the last value it returns. This value can be used from the stateful
method to seek for the upper bound of it, such that values returned by the stateless version are
skipped in the stateful version. Then thieves can use the stateless versions and the owner of the
interfaces uses the stateful versions.

The second issue of ensuring that the LeapfrogJoin uses the TrieIterators with the correct level is
trivially solved by introducing one version per level of the stateless next and seek methods of the
TrieIterator interface and store which to use in the LeapfrogJoin.

Introducing a thread-safe LeapfrogJoin interface requires one lock per instance which needs to be
acquired before using any method and released after. It is not necessary to lock the underlying
TrieIterator interfaces as we argue in the next paragraphs.

We start our argument with the observation that we only need to consider cases where one thief
and one victim thread interfere with each other. This is because only one thief can be active at
any LeapfrogJoin at any time due to the the necessity to hold the lock for this LeapfrogJoin.

We observe that to use a specific LeapfrogJoin to steal work from, the victim needs to work on
bindings which are later in the variable ordering. Otherwise, the variables above are not bound
and it is not possible to steal a complete prefix. This is a precondition to be enforced on the
thieves side when it chooses a LeapfrogJoin to steal work from.

Then, we require the victim to hold the lock of the respective LeapfrogJoin instance when its
enters the trieJoinUp method. This guarantees that the victim LeapfrogTriejoin cannot break
the assumption above during the process of work-stealing.

With these assumptions in place, we are ensured that the victim does not call any TrieIterator
methods which interfere with the thief. There are two cases to consider. First, the TrieIterator
is independent of the work-stealing process because it is not part of the intersection of the
LeapfrogJoin which is used by the thief. Second, the TrieIterator is used at a deeper level than the
one which is used by the LeapfrogJoin to steal work of. In both cases, the use of the TrieIterator
does not interfere with the thief.

The changes outlined above allow to share the LeapfrogJoin instances of all tasks of an executor to
steal work at any level in the variable ordering. This should approach should lead to work-stealing
jobs which are fine-grained enough to be nearly skew free for queries of all sizes. We end the
section with a short discussion of lock contention.

The algorithm starts with totally uncontested locks until the first task finishes work in its range.
Then the number of threads which could contend for locks grows linearly with the progress of the

74

algorithm within finding all possible bindings because before a thread can start work-stealing it
finishes its range.

When threads start stealing work they can choose their victims such that they minimize lock
contention. Hence, locks are contested mostly between the thief and the victim. For this case, we
note that the thief chooses LeapfrogJoins as high in the variable ordering as possible which are
less often used by the victim which spends most of its time with bindings for lower variables.

Finally, the locking time of the locks is short most of the times because it only needs to find one
further binding. With materialized LeapfrogJoins the locked code section only reads one value
from an array, one or at most two seek calls on the first level of a TrieIterator15 and stores the
value returned.

15These calls need two array reads. Hence, they are actions in constant time.

75

References

[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. “Emptyheaded:
A Relational Engine for Graph Processing.” Transactions on Database Systems
(TODS) 42.4 (2017), Page 20.

[2] F. N. Afrati, M. R. Joglekar, C. M. Re, S. Salihoglu, and J. D. Ullman. “GYM:
A Multiround Distributed Join Algorithm.” 20th International Conference on
Database Theory (ICDT). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

[3] F. N. Afrati, N. Stasinopoulos, J. D. Ullman, and A. Vassilakopoulos. “SharesSkew:
An Algorithm to Handle Skew for Joins in MapReduce.” Information Systems 77
(2018), Pages 129–150.

[4] F. N. Afrati and J. D. Ullman. “Optimizing Multiway Joins in a Map-Reduce
Environment.” Transactions on Knowledge and Data Engineering (TKDE) 23.9
(2011), Pages 1282–1298.

[5] S. Agarwal, D. Liu, and R. Xin. Apache Spark as a Compiler: Joining a Billion
Rows per Second on a Laptop, Deep dive into the new Tungsten execution engine.
2016. url: https://databricks.com/blog/2016/05/23/apache-spark-as-a-
compiler-joining-a-billion-rows-per-second-on-a-laptop.html (visited
on 09/26/2019).

[6] A. Amler. “Evaluation of Worst-Case Optimal Join Algorithms.” Master’s thesis.
Technische Universität München, 2017.

[7] K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar. “Distributed Evaluation
of Subgraph Queries Using Worst-Case Optimal Low-Memory Dataflows.” VLDB
Endowment. Volume 11. 6. 2018, Pages 691–704.

[8] R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker,
M. Paradies, S. Plantikow, J. Sequeda, et al. “G-CORE: A Core for Future Graph
Query Languages.” International Conference on Management of Data (SIGMOD).
ACM. 2018, Pages 1421–1432.

[9] Apache hadoop. url: http://hadoop.apache.org (visited on 09/26/2019).
[10] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L.

Veldhuizen, and G. Washburn. “Design and Implementation of the LogicBlox
System.” International Conference on Management of Data (SIGMOD). ACM.
2015, Pages 1371–1382.

[11] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T.
Kaftan, M. J. Franklin, A. Ghodsi, et al. “Spark SQL: Relational data Processing
in Spark.” International Conference on Management of Data (SIGMOD). ACM.
2015, Pages 1383–1394.

[12] A. Atserias, M. Grohe, and D. Marx. “Size Bounds and Query Plans for Relational
Joins.” Foundations of Computer Science (FOCS). IEEE. 2008, Pages 739–748.

[13] P. Beame, P. Koutris, and D. Suciu. “Skew in Parallel Query Processing.” SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM. 2014,
Pages 212–223.

76

https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
http://hadoop.apache.org

[14] A. Bodaghi and B. Teimourpour. “Automobile Insurance Fraud Detection Using
Social Network Analysis.” Applications of Data Management and Analysis. Springer,
2018, Pages 11–16.

[15] P. Boldi and S. Vigna. “The WebGraph Framework I: Compression Techniques.”
World Wide Web Conference (WWW). Manhattan, USA: ACM Press, 2004,
Pages 595–601.

[16] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. “HaLoop: Efficient Iterative
Data Processing on Large Clusters.” Volume 3. 1-2. VLDB Endowment, 2010,
Pages 285–296.

[17] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson. “Parallel
Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication using Com-
pressed Sparse Blocks.” Symposium on Parallelism in Algorithms and Architectures.
ACM. 2009, Pages 233–244.

[18] S. Chu, M. Balazinska, and D. Suciu. “From Theory to Practice: Efficient Join
Query Evaluation in a Parallel Database System.” International Conference on
Management of Data (SIGMOD). ACM. 2015, Pages 63–78.

[19] Databricks. Apache Spark Documentation: RDD Programming Guide. url: https:
//spark.apache.org/docs/2.2.3/rdd-programming-guide.html (visited on
09/26/2019).

[20] Databricks. Databricks Scala Guide. 2018. url: https://github.com/databricks/
scala-style-guide/blob/7eb5477781c11f9a75a2d8d6ef773ca6965f4ea0/README.
md (visited on 05/25/2019).

[21] A. Dave, J. Bradley, T. Hunter, and X. Meng. GraphFrame. 2016. url: https:
//databricks.com/blog/2016/03/03/introducing-graphframes.html (visited
on 02/18/2019).

[22] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters.” Symposium on Operating System Design and Implementation (ODSI).
San Francisco, CA: Usenix, 2004, Pages 137–150.

[23] V. Dias, C. H. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy. “Fractal:
A General-Purpose Graph Pattern Mining System.” International Conference on
Management of Data (SIGMOD). ACM. 2019, Pages 1357–1374.

[24] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. “Self-Organization and
Identification of Web Communities.” Computer 3 (2002), Pages 66–71.

[25] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
“GraphX: Graph Processing in a Distributed Dataflow Framework.” Symposium on
Operating System Design and Implementation (ODSI). Volume 14. Usenix, 2014,
Pages 599–613.

[26] P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and J. Lin.
“Real-Time Twitter Recommendation: Online Motif Detection in Large Dynamic
Graphs.” VLDB Endowment. Volume 7. 13. 2014, Pages 1379–1380.

[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. “Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center.” NSDI. Volume 11. 2011. 2011, Pages 22–22.

77

https://spark.apache.org/docs/2.2.3/rdd-programming-guide.html
https://spark.apache.org/docs/2.2.3/rdd-programming-guide.html
https://github.com/databricks/scala-style-guide/blob/7eb5477781c11f9a75a2d8d6ef773ca6965f4ea0/README.md
https://github.com/databricks/scala-style-guide/blob/7eb5477781c11f9a75a2d8d6ef773ca6965f4ea0/README.md
https://github.com/databricks/scala-style-guide/blob/7eb5477781c11f9a75a2d8d6ef773ca6965f4ea0/README.md
https://databricks.com/blog/2016/03/03/introducing-graphframes.html
https://databricks.com/blog/2016/03/03/introducing-graphframes.html

[28] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu. “Graphflow:
An Active Graph Database.” International Conference on Management of Data
(SIGMOD). ACM. 2017, Pages 1695–1698.

[29] B. Ketsman and D. Suciu. “A worst-case optimal multi-round algorithm for parallel
computation of conjunctive queries.” SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. ACM. 2017, Pages 417–428.

[30] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H. Jarrah.
“DUALSIM: Parallel Subgraph Enumeration in a Massive Graph on a Single
Machine.” Conference on Management of Data. ACM. 2016, Pages 1231–1245.

[31] P. Koutris, P. Beame, and D. Suciu. “Worst-case Optimal Algorithms for Parallel
Query Processing.” International Conference on Database Theory (ICDT). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016.

[32] kubernetes. url: https://kubernetes.io (visited on 09/26/2019).
[33] L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao, X. Lin, L. Qin, W. Zhang,

et al. “A Survey and Experimental Analysis of Distributed Subgraph Matching.”
arXiv preprint arXiv:1906.11518 (2019).

[34] J. Laskowski. The Internals of Spark SQL, QueryExecution - Structured Query
Execution Pipeline. url: https://jaceklaskowski.gitbooks.io/mastering-
spark-sql/spark-sql-QueryExecution.html (visited on 09/26/2019).

[35] LDBC. LDBC SNB Documentation. 2017. url: https://github.com/ldbc/ldbc_
snb_docs (visited on 04/10/2019).

[36] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collec-
tion. http://snap.stanford.edu/data. June 2014.

[37] J. Leskovec and R. Sosič. “SNAP: A General-Purpose Network Analysis and Graph-
Mining Library.” Transactions on Intelligent Systems and Technology (TIST) 8.1
(2016), Page 1.

[38] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. “Pregel: A System for Large-Scale Graph Processing.” International
Conference on Management of Data (SIGMOD). ACM. 2010, Pages 135–146.

[39] A. Mhedhbi and S. Salihoglu. “Optimizing Subgraph Queries by Combining Binary
and Worst-Case Optimal Joins.” CoRR abs/1903.02076 (2019). arXiv: 1903.02076.
url: http://arxiv.org/abs/1903.02076.

[40] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. “Naiad:
A Timely Dataflow System.” Symposium on Operating Systems Principles. ACM.
2013, Pages 439–455.

[41] T. Neumann. “Efficiently Compiling Efficient Query Plans for Modern Hardware.”
VLDB 4.9 (2011), Pages 539–550.

[42] M. E. Newman. “Detecting Community Structure in Networks.” The European
Physical Journal B 38.2 (2004), Pages 321–330.

[43] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. “Worst-Case Optimal Join Algorithms.”
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM.
2012, Pages 37–48.

78

https://kubernetes.io
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-QueryExecution.html
https://jaceklaskowski.gitbooks.io/mastering-spark-sql/spark-sql-QueryExecution.html
https://github.com/ldbc/ldbc_snb_docs
https://github.com/ldbc/ldbc_snb_docs
http://snap.stanford.edu/data
http://arxiv.org/abs/1903.02076
http://arxiv.org/abs/1903.02076

[44] H. Q. Ngo, C. Ré, and A. Rudra. “Skew Strikes Back: New Developments in the
Theory of Join Algorithms.” arXiv preprint arXiv:1310.3314 (2013).

[45] D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra.
“Join Processing for Graph Patterns: An Old Dog with new Tricks.” GRADES.
ACM. 2015, Page 2.

[46] openCypher Project. CAPS: Cypher for Apache Spark. 2016. url: https://github.
com/opencypher/cypher-for-apache-spark (visited on 02/18/2019).

[47] G. Sadowski and P. Rathle. “Fraud Detection: Discovering Connections with Graph
Databases.” White Paper-Neo Technology-Graphs are Everywhere (2014).

[48] S. Salihoglu and M. T. Özsu. “Response to “Scale Up or Scale Out for Graph
Processing”.” Internet Computing 22.5 (2018), Pages 18–24.

[49] C. Schroeder dewitt. Leapfrog Triejoin Implementation for ‘Database Systems
and Implementation’ at Oxford University. 2012. url: https://github.com/
schroeder-dewitt/leapfrog-triejoin (visited on 03/14/2019).

[50] W. F. Tinney and J. W. Walker. “Direct Solutions of Sparse Network Equations by
Optimally Ordered Triangular Factorization.” Proceedings of the IEEE. Volume 55.
11. IEEE, 1967, Pages 1801–1809.

[51] A. Uta, B. Ghit, A. Dave, and P. Boncz. “low-latency spark queries on updatable
data.” Proceedings of the 2019 International Conference on Management of Data.
ACM. 2019, Pages 2009–2012.

[52] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al. “Apache Hadoop Yarn: Yet Another
Resource Negotiator.” Symposium on Cloud Computing. ACM. 2013, Page 5.

[53] T. L. Veldhuizen. “Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algo-
rithm.” arXiv preprint arXiv:1210.0481 (2012).

[54] R. Xin and J. Rosen. Project Tungsten: Bringing Apache Spark Closer to Bare Metal.
2015. url: https://databricks.com/blog/2015/04/28/project-tungsten-
bringing-spark-closer-to-bare-metal.html (visited on 09/26/2019).

[55] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. “Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing.” Conference on Networked Systems
Design and Implementation. USENIX. 2012, Pages 2–2.

79

https://github.com/opencypher/cypher-for-apache-spark
https://github.com/opencypher/cypher-for-apache-spark
https://github.com/schroeder-dewitt/leapfrog-triejoin
https://github.com/schroeder-dewitt/leapfrog-triejoin
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

A Additional experimental results

A.1 GraphWCOJ local mode scaling

Run-times and speedups of the local mode GraphWCOJ scaling experiment. Time shown in
minutes.

Twitter

Partitioning Query Parallelism Time Speedup

Shares 3-clique 1 0.0 1.0
Shares 3-clique 2 0.0 1.8
Shares 3-clique 4 0.0 3.1
Shares 3-clique 8 0.0 3.2
Shares 3-clique 16 0.0 5.5
Shares 3-clique 32 0.0 6.5
Shares 3-clique 48 0.0 6.9
Shares 3-clique 64 0.0 6.5
Shares 3-clique 96 0.0 6.9
Shares 4-clique 1 0.3 1.0
Shares 4-clique 2 0.2 1.9
Shares 4-clique 4 0.1 3.6
Shares 4-clique 8 0.0 6.4
Shares 4-clique 16 0.0 6.6
Shares 4-clique 32 0.0 11.9
Shares 4-clique 48 0.0 10.0
Shares 4-clique 64 0.0 15.7
Shares 4-clique 96 0.0 18.6
Shares 5-clique 1 2.6 1.0
Shares 5-clique 2 1.5 1.8
Shares 5-clique 4 0.8 3.5
Shares 5-clique 8 0.4 7.0
Shares 5-clique 16 0.2 11.9
Shares 5-clique 32 0.2 11.9
Shares 5-clique 48 0.1 19.8
Shares 5-clique 64 0.2 17.3
Shares 5-clique 96 0.1 21.4
work-stealing 3-clique 1 0.0 1.0
work-stealing 3-clique 2 0.0 2.0
work-stealing 3-clique 4 0.0 3.6
work-stealing 3-clique 8 0.0 6.2
work-stealing 3-clique 16 0.0 9.7
work-stealing 3-clique 32 0.0 12.1
work-stealing 3-clique 48 0.0 12.7
work-stealing 3-clique 64 0.0 13.2
work-stealing 3-clique 96 0.0 12.8
work-stealing 4-clique 1 0.3 1.0
work-stealing 4-clique 2 0.2 2.1
work-stealing 4-clique 4 0.1 4.1
work-stealing 4-clique 8 0.0 8.1
work-stealing 4-clique 16 0.0 15.4

Continued on next page

80

Partitioning Query Parallelism Time Speedup

work-stealing 4-clique 32 0.0 26.4
work-stealing 4-clique 48 0.0 33.6
work-stealing 4-clique 64 0.0 37.8
work-stealing 4-clique 96 0.0 40.4
work-stealing 5-clique 1 2.6 1.0
work-stealing 5-clique 2 1.4 1.9
work-stealing 5-clique 4 0.7 3.8
work-stealing 5-clique 8 0.3 7.8
work-stealing 5-clique 16 0.2 15.4
work-stealing 5-clique 32 0.1 27.8
work-stealing 5-clique 48 0.1 45.5
work-stealing 5-clique 64 0.1 41.4
work-stealing 5-clique 96 0.1 45.0

LiveJournal

Partitioning Query Parallelism Time Speedup

Shares 3-clique 1 1.7 1.0
Shares 3-clique 2 0.8 2.2
Shares 3-clique 4 0.4 4.1
Shares 3-clique 8 0.4 4.4
Shares 3-clique 16 0.2 8.5
Shares 3-clique 32 0.1 14.7
Shares 3-clique 48 0.1 13.7
Shares 3-clique 64 0.1 12.1
Shares 3-clique 96 0.1 14.8
Shares 4-clique 1 15.1 1.0
Shares 4-clique 2 8.2 1.8
Shares 4-clique 4 4.2 3.6
Shares 4-clique 8 2.4 6.4
Shares 4-clique 16 2.2 7.0
Shares 4-clique 32 1.1 13.2
Shares 4-clique 48 1.1 13.8
Shares 4-clique 64 0.8 19.3
Shares 4-clique 96 0.7 22.0
Shares 5-clique 1 531.3 1.0
Shares 5-clique 16 54.3 9.8
Shares 5-clique 32 47.5 11.2
Shares 5-clique 48 29.0 18.3
Shares 5-clique 64 29.7 17.9
Shares 5-clique 96 23.6 22.5
work-stealing 3-clique 1 1.7 1.0
work-stealing 3-clique 2 0.7 2.4
work-stealing 3-clique 4 0.3 5.0
work-stealing 3-clique 8 0.2 10.0
work-stealing 3-clique 16 0.1 19.6
work-stealing 3-clique 32 0.0 36.7
work-stealing 3-clique 48 0.0 50.0
work-stealing 3-clique 64 0.0 54.7

Continued on next page

81

Partitioning Query Parallelism Time Speedup

work-stealing 3-clique 96 0.0 61.3
work-stealing 4-clique 1 15.1 1.0
work-stealing 4-clique 2 7.5 2.0
work-stealing 4-clique 4 3.8 4.0
work-stealing 4-clique 8 1.9 7.8
work-stealing 4-clique 16 1.0 14.7
work-stealing 4-clique 32 0.6 25.8
work-stealing 4-clique 48 0.4 34.8
work-stealing 4-clique 64 0.4 34.2
work-stealing 4-clique 96 0.4 36.1
work-stealing 5-clique 1 531.3 1.0
work-stealing 5-clique 16 37.1 14.3
work-stealing 5-clique 32 18.8 28.3
work-stealing 5-clique 48 13.2 40.3
work-stealing 5-clique 64 12.1 44.1
work-stealing 5-clique 96 10.9 48.7

Orkut

Partitioning Query Parallelism Time Speedup

Shares 3-clique 1 16.3 1.0
Shares 3-clique 2 7.7 2.1
Shares 3-clique 4 4.0 4.0
Shares 3-clique 8 3.7 4.4
Shares 3-clique 16 1.9 8.8
Shares 3-clique 32 1.0 17.0
Shares 3-clique 48 1.2 14.1
Shares 3-clique 64 1.3 13.0
Shares 3-clique 96 0.9 17.4
Shares 4-clique 1 136.5 1.0
Shares 4-clique 2 67.2 2.0
Shares 4-clique 4 35.4 3.9
Shares 4-clique 8 19.0 7.2
Shares 4-clique 16 18.6 7.3
Shares 4-clique 32 9.5 14.4
Shares 4-clique 48 9.6 14.3
Shares 4-clique 64 6.5 20.9
Shares 4-clique 96 5.4 25.4
Shares 5-clique 1 1112.1 1.0
Shares 5-clique 16 99.7 11.2
Shares 5-clique 32 101.4 11.0
Shares 5-clique 48 70.0 15.9
Shares 5-clique 64 67.5 16.5
Shares 5-clique 96 50.6 22.0
work-stealing 3-clique 1 16.3 1.0
work-stealing 3-clique 2 7.4 2.2
work-stealing 3-clique 4 3.7 4.4
work-stealing 3-clique 8 1.7 9.3
work-stealing 3-clique 16 0.9 18.8

Continued on next page

82

Partitioning Query Parallelism Time Speedup

work-stealing 3-clique 32 0.4 36.9
work-stealing 3-clique 48 0.3 54.0
work-stealing 3-clique 64 0.3 58.0
work-stealing 3-clique 96 0.2 69.6
work-stealing 4-clique 1 136.5 1.0
work-stealing 4-clique 2 65.2 2.1
work-stealing 4-clique 4 32.5 4.2
work-stealing 4-clique 8 16.2 8.4
work-stealing 4-clique 16 8.1 17.0
work-stealing 4-clique 32 4.0 33.8
work-stealing 4-clique 48 2.7 50.3
work-stealing 4-clique 64 3.0 45.6
work-stealing 4-clique 96 3.2 42.5
work-stealing 5-clique 1 1112.1 1.0
work-stealing 5-clique 16 77.8 14.3
work-stealing 5-clique 32 39.6 28.1
work-stealing 5-clique 48 31.6 35.2
work-stealing 5-clique 64 35.2 31.6
work-stealing 5-clique 96 37.4 29.8

A.2 GraphWCOJ distributed scaling

Run-times and speedups of the distributed GraphWCOJ scaling experiment. Time shown in
minutes.

LiveJournal

Partitioning Query Parallelism Time Speedup

batched work-stealing 3-clique 1 1.7 1.0
batched work-stealing 3-clique 16 0.2 8.3
batched work-stealing 3-clique 32 0.1 15.5
batched work-stealing 3-clique 48 0.1 22.2
batched work-stealing 3-clique 64 0.1 27.2
batched work-stealing 3-clique 96 0.0 42.5
batched work-stealing 3-clique 128 0.0 49.1
batched work-stealing 3-clique 192 0.0 59.5
batched work-stealing 3-clique 384 0.0 83.3
work-stealing 3-clique 1 1.7 1.0
work-stealing 3-clique 16 0.1 13.7
work-stealing 3-clique 32 0.1 27.1
work-stealing 3-clique 48 0.0 34.7
work-stealing 3-clique 64 0.1 24.3
work-stealing 3-clique 96 0.0 41.1
work-stealing 3-clique 128 0.0 45.5
work-stealing 3-clique 192 0.1 23.5
work-stealing 3-clique 384 0.1 28.8
work-stealing 5-clique 1 531.3 1.0
work-stealing 5-clique 16 30.5 17.4
work-stealing 5-clique 32 18.2 29.2

Continued on next page

83

Partitioning Query Parallelism Time Speedup

work-stealing 5-clique 48 14.2 37.5
work-stealing 5-clique 64 11.4 46.7
work-stealing 5-clique 96 8.5 62.7
work-stealing 5-clique 128 6.7 78.7
work-stealing 5-clique 192 3.7 142.1
work-stealing 5-clique 384 2.9 182.1

Orkut

Partitioning Query Parallelism Time Speedup

work-stealing 3-clique 1 16.3 1.0
work-stealing 3-clique 16 0.8 19.2
work-stealing 3-clique 32 0.4 38.5
work-stealing 3-clique 48 0.3 55.5
work-stealing 3-clique 64 0.2 71.8
work-stealing 3-clique 96 0.2 98.6
work-stealing 3-clique 128 0.1 118.2
work-stealing 3-clique 192 0.1 149.0
work-stealing 3-clique 384 0.1 172.6
work-stealing 5-clique 1 1112.1 1.0
work-stealing 5-clique 16 155.9 7.1
work-stealing 5-clique 32 84.4 13.2
work-stealing 5-clique 48 58.2 19.1
work-stealing 5-clique 64 43.0 25.9
work-stealing 5-clique 96 30.2 36.8
work-stealing 5-clique 128 25.7 43.3
work-stealing 5-clique 192 23.9 46.5
work-stealing 5-clique 384 19.6 56.7

84

	1 Introduction
	1.1 Graph pattern matching
	1.2 Binary joins vs WCOJs: an intuitive example
	1.3 Graphs on Spark
	1.4 Research questions and contributions
	1.5 Thesis overview

	2 Background
	2.1 Spark
	2.1.1 Resilient distributed datasets
	2.1.2 Spark architecture
	2.1.3 Catalyst
	2.1.4 Broadcast variables

	2.2 Worst-case optimal join algorithm
	2.2.1 Leapfrog Triejoin

	2.3 Distributed worst-case optimal join in Myria
	2.3.1 Shares

	2.4 Compressed sparse row representation
	2.5 Sizes of public real-world graph datasets

	3 Worst-case optimal join parallelization
	3.1 Single variable partitioning
	3.2 Logical Shares
	3.2.1 RangeShares

	3.3 Comparision of static partitioning schemes
	3.4 Work-stealing
	3.4.1 Work-stealing in cluster mode

	4 GraphWCOJ
	4.1 Combining LFTJ with CSR
	4.2 Exploiting low average outdegrees

	5 Optimizing a Leapfrog Triejoin in Scala
	6 Spark integration
	6.1 User interface
	6.2 Integration with Catalyst
	6.3 A sequential linear Leapfrog Triejoin
	6.4 GraphWCOJ

	7 Experiments
	7.1 Algorithms
	7.2 Datasets
	7.3 Queries
	7.4 Linear search threshold
	7.5 Baseline: BroadcastHashjoin vs LFTJ
	7.6 LFTJ vs GraphWCOJ
	7.7 Scaling of GraphWCOJ
	7.8 Distributed work-stealing

	8 Related Work
	8.1 WCOJ on Timely Data Flow
	8.1.1 The BigJoin algorithm
	8.1.2 Applicability to Spark and comparison to GraphWCOJ
	8.1.3 Indices used by BigJoin and GraphWCOJ
	8.1.4 Theoretical guarantees
	8.1.5 Conclusion

	8.2 Survey and experimental analysis of distributed subgraph matching
	8.3 Fractal: a graph pattern mining system on Spark

	9 Conclusions
	9.1 Distributed work-stealing
	9.2 Finer-grained work-stealing

	References
	A Additional experimental results
	A.1 GraphWCOJ local mode scaling
	A.2 GraphWCOJ distributed scaling

