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Abstract

Data stored in Relational Database Management Systems (RDBMSs) for do-

mains like social networks and e-commerce is often inter-connected and contains

graph-like structures. This provides an opportunity for running graph queries

and solving graph problems in RDBMSs which has led to the development

of SQL Property Graph Queries (SQL/PGQ), an upcoming SQL extension

providing graph query support. However, no major implementation of this ex-

tension currently exists. The SQL/PGQ extension is particularly useful for an-

alytics, therefore we use an analytical, vectorised open-source database system,

DuckDB for its implementation. Architecting the new extension involves major

design decisions on storage, data representation, path-finding algorithms, map-

ping of graph operators and performance evaluation. Our results show that

implementing the extension using an intermediate Compressed Sparse Row

(CSR) representation for graph storage is scalable and performant. Further-

more, the Kleene star operator can be mapped to a User Defined Function

(UDF) allowing an unobtrusive extension and scalable execution.
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1

Introduction

1.1 Motivation

The majority of the data in application domains such as finance, e-commerce, and health

services in the past decades has been stored in RDBMSs due to their stability, support

for complex analytical queries, transactional guarantees and maturity (1). The underlying

data in these fields often contains graph-like connections which emerge along tables encod-

ing many-to-many relationships with foreign keys. Analysing this graph data can provide

useful insights for fraud detection and recommendation systems (2). However, support for

graph operations in queries such as pattern matching and path-finding in RDBMSs using

vanilla SQL (SQL:1999) is cumbersome or absent (3).

This has led to the rising popularity of Graph Database Management Systems (GDBMSs)

such as Neo4j (4), TigerGraph (5) and Memgraph (6), and query languages like Cypher (7),

PGQL (8), Gremlin (9), etc. All these diverse query languages support two major graph

operations - pattern matching and navigational queries (10). However, these systems suffer

from two major problems: i) Lack of maturity i.e. stability and performance as they are

relatively new systems ii) Absence of a standard query language. Furthermore, transporting

data from an RDBMS to GDBMS is expensive and time-consuming, and leads to graph

queries running on stale data due to a lack of synchronisation between the RDBMS and

GDBMS.

The above reasons have led to research efforts to directly add graph query support to

RDBMSs (3, 11, 12, 13) and creation of SQL/PGQ (14). SQL/PGQ (14) is an upcoming

extension to the SQL ISO standard that allows creation of property graphs (15) (a set of

edges, nodes, labels and properties) on underlying RDBMS tables through Data Definition

Language (DDL) statements. It further supports graph analysis by adding pattern match-
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1.2 Problem Statement

ing and flexible shortest path queries to SQL using Data Manipulation Language (DML)

statements. Implementing the extension gives the opportunity to reuse SQL’s powerful

analytical functionality, and combine graph queries with relational operators. Running the

shortest path queries using the extension is intuitive and likely faster compared to writing

complex recursive SQL queries that use a naive iterative algorithm instead of specialised

graph algorithms (such as Dijkstra (16)).

RDBMSs are suitable candidates for graph processing as graphs can be represented as

tables and the majority of deployed data-intensive systems contain an RDBMS as the

primary storage of data sets (2). Furthermore, as graph processing systems are often used

for read-heavy analytical workloads (2), analytical database systems (e.g. column stores)

are primary candidates to serve as the basis of a graph query engine (17). Still, no efficient

implementation of graph query support using SQL/PGQ on a database currently exists.

1.2 Problem Statement

1.2.1 Research Goals

The main goal of the project is to architect a minimal and efficient implementation of

SQL/PGQ to DuckDB (18), an analytical embeddable database developed at CWI. We

have identified the following technical challenges for this project:

1. Adding a minimal amount of new query operators to the database system to be able

to execute SQL/PGQ efficiently.

2. Identifying what new algorithms, data structures and parallel execution mechanisms

are needed to make these operators efficient.

3. Determining a way of evaluating the properties of our choice quantitatively (e.g.

using established Database Management system (DBMS) benchmarks).

4. Implementing the extension as a pluggable module into the database system.

These challenges are non-trivial to solve because there are many design choices that interact

with each other and currently, there are no analytical, highly performant graph systems

for a baseline reference.
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1.3 Thesis Outline

1.2.2 Research Questions

The technical challenges help us define the research questions to be answered in this thesis.

1. How can SQL/PGQ be mapped to relational query operators including the new

path-finding operator?

(a) What design decisions need to be made to scope down the extension for im-

proving performance and feasibility?

(b) What approach should be selected to ensure changes can be implemented as a

minimal extension?

2. What path-finding algorithm is needed to minimally support SQL/PGQ?

(a) How can the algorithm be integrated into a vectorised query engine?

(b) What data structure representation will be required for implementing the algo-

rithm?

3. How can the performance of the system be systematically evaluated?

1.3 Thesis Outline

The rest of the thesis is structured as follows. In Section 2, we provide the background

information necessary for understanding the thesis. In Section 3, we elaborate and com-

pare our design choices along with the rationale behind choosing them. In Section 4, we

provide the implementation details of our selected approach along with challenges faced

implementing it in DuckDB. In Section 5, we present and discuss the results of our bench-

marks. In Section 6, we provide the related work as part of our literature study. Finally, in

Section 7 we conclude the thesis by revisiting the research questions and answering them,

and we give suggestions for future work.
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2

Background

In this section, we discuss the background and related work for understanding the thesis.

First, we introduce the graph data model (Section 2.1.1) and then elaborate on the property

graph model (Section 2.1.2). We discuss the SQL/PGQ (Section 2.2) language that we want

to support for our extension. We then discuss the algorithms for the path-finding problem

(Section 2.3) and the CSR format for representing graphs (Section 2.4). We then describe

the DuckDB DBMS (Section 2.5) which was chosen to be extended with graph query

support and for performing the scalability experiments. Finally, we describe the graph

benchmarks selected for the scalability experiments (Section 2.6).

2.1 Graph Background

In this section, we introduce terms related to graph processing.

2.1.1 Graph Data Model

Figure 2.1: A simple graph with 4 nodes and 4 edges.

A simple graph is defined as a tuple G = (V, E) where V is the set of nodes and E is

the set of edges. A simple graph is an unweighted, undirected graph containing no graph

loops or multiple edges between the same nodes (19). An example of a simple graph is

shown in Figure 2.1.
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2.1 Graph Background

A

C D

B

Figure 2.2: A directed graph with 4 nodes and 4 edges.

On the other hand, a directed graph has edges with direction represented by arrows as

shown in Figure 2.2. The starting point of the arrow is called the source node (vertex) and

the endpoint is called the destination node.

Reachability: In graphs and social networks, a node d is reachable from another node

s if there exists a sequence of adjacent nodes starting from s and ending at d. A path in a

directed graph is a sequence of distinct edges which joins a sequence of distinct nodes with

the edges directed in the same direction. Therefore, in Figure 2.2, node C is reachable

from node A through the path (AD, DC) while node A is not reachable from node D.

2.1.2 Property Graph Model

Labels

customer account
cid : 1

  name : Pulkit
        dob : 01/08/94

account
cid : 2

name : Nihit
       dob  : 01/06/90

transfers

hasAccount

tid : 1
amount : 50

customer

transfers

aid: 5
date: 04/04/2012

aid: 10
date: 01/02/2013

Figure 2.3: Sample Property Graph representing information of bank customers.

The Property graph (PG) model (20) is a popular method to model graph-like data

and it is used in graph databases like Neo4j (4), TigerGraph (5), Memgraph (6), and

in query languages like PGQL (8) and Cypher (7). The SQL/PGQ extension also uses

5



2.2 SQL/PGQ and GQL

the PG model. Property graphs are multigraphs that can have self loops with directed

or undirected edges. In the PG model, a graph consists of nodes representing an entity

and edges representing relationships between the entities. Both nodes and edges can have

multiple properties (key-value pairs) and labels (types).

An example of a property graph for data of bank customers is shown in Figure 2.3,

with nodes for customers and accounts, edges for transfers and hasAccount. The labels are

shown in blue dashed boxes, node properties in black solid boxes, and edge properties in

black dashed boxes. The property graphs can also be represented as tables and the tabular

representation is shown in Figure 2.4.

cid name dob

1 Pulkit 01/08/1994

2 Nihit 01/06/1990

tid src_aid dst_aid amount

1 5 10 50

aid cid  date

5 1 04/04/2012

10 2 01/02/2013

customer
 table

transfers
table

account
table

Figure 2.4: Tabular representation of Property Graph defined in Figure 2.3.

2.2 SQL/PGQ and GQL

SQL/PGQ is a proposed extension to SQL that supports read-only queries on relational

databases and is useful for pattern matching operations, shortest and nested path queries (14).

It simplifies the pattern matching operations which would lead to long, complex queries

in vanilla SQL(SQL:1999) and it introduces new operators to make the language more

expressive (21). The operators introduced are:

• CREATE PROPERTY GRAPH: for creating property graph views on existing tables.

• MATCH: for pattern matching.

• Kleene star: for reachability computation.

• MATCH SHORTEST: for shortest path computation.

• MATCH CHEAPEST (optionally): language opportunity (22) for finding cheapest paths

if the graph has weighted edges.
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2.2 SQL/PGQ and GQL

Graph Query Language (GQL) (23) is an upcoming new composable graph-specific query

language that draws from G-CORE (Section 6.2.4), Cypher (Section 6.2.1), PGQL (Sec-

tion 6.2.3) and supports CRUD operations and graph data maintenance (i.e. updates on

graphs) (23). GQL and SQL/PGQ have the same pattern matching syntax. A major dif-

ference besides GQL supporting graph updates is that SQL/PGQ will project tables from

a graph, while GQL would be used to project graphs from graphs, and treat graphs as

first-class objects inspired by G-CORE (14).

An example of the creation of property graphs is shown in Listing 2.1. Furthermore, an

example of pattern matching without Kleene star (simple pattern matching) in Listing 2.2,

and reachability syntax (with a Kleene star operator) in Listing 2.3. Under reachability

(Kleene star), there can be 0 to n-1 intermediate nodes (given n nodes in the graph).

Shortest path syntax is similar to the reachability query with the addition of MATCH ANY

SHORTEST clause. The synatx takes inspiration from Cypher (Section 6.2.1) and PGQL

(Section 6.2.3).

1 // Property graph is created which is a view on top of existing relational
tables Person , Technology and Likes.

2 CREATE PROPERTY GRAPH bank_pg
3 VERTEX TABLES (customer , account)
4 EDGE TABLES (transfers SOURCE account DESTINATION account ,
5 hasAccount SOURCE customer DESTINATION account)

Listing 2.1: Creation of property graphs in SQL/PGQ.

1 SELECT a2.id
2 FROM GRAPH_TABLE( bank_pg ,
3 MATCH (a1 IS account)-[t IS transfers]->(a2 IS account)
4 WHERE a1.aid = 5
5 COLUMNS (a2.id , t.amount)
6 ) gt

Listing 2.2: Sample Pattern matching in SQL/PGQ.

1 SELECT a2.id
2 FROM GRAPH_TABLE( bank_pg ,
3 MATCH (a1 IS account)-[t IS transfers *]->(a2 IS account)
4 ) gt

Listing 2.3: Kleene star operator in SQL/PGQ.

7



2.3 Reachability and Path Finding Algorithms

2.3 Reachability and Path Finding Algorithms

Breadth-First Search (BFS) is a common traversal algorithm for deciding reachability and

running centrality-based computations (24). During BFS, vertices at a certain level/hop

from the source vertex are traversed before moving on to the next level. Plain BFS suffers

from random access of nodes, inefficient storage of data, and redundant computation of the

visited nodes (25). Furthermore, the Kleene star operator for reachability introduced in

SQL/PGQ would amount to a path problem with multiple source-destination pairs which

can be sped up by running multiple, concurrent BFSs. MSBFS (25) developed by Then

et al. is a sequential, multi-source version of BFS that shares traversal information across

the concurrent BFSs, uses bitsets to improve memory usage, and reduces random access.

It uses an ordered adjacency list representation of the graph to sequentially traverse the

graph. It uses three k -wide bitsets to store the state of the vertices with k being set to the

cache line width (e.g. 512 bits in case of AVX-512). The three bitsets used are:

• seen: stores nodes seen so far by each BFS.

• visit : stores information per BFS about nodes to be visited in the current iteration

of the algorithm.

• visit_next : stores nodes to be visited in the next iteration.

The MSBFS pseudocode with comments explaining its execution is presented in Listing 2.3.

For further reading on the algorithm, we refer the reader to the original paper (25).

1 //G: Graph , B: set of BFSs , S: set of source vertex for each BFS
2 Input: G, B, S
3
4 // initalise only the starting nodes for each BFS as seen and visited for

that BFS.
5 // seen and visit arrays size = number of BFS ,
6 // while size of each element = number of nodes
7 // seen[v] : bit at position i indicates v was seen by bfsi

8 // visit[v]: determines if v must be visited in the current iteration
9 // visit_next[v]: a set bit i indicating v must be vistied in the following

iteration for bfsi

10 // seen [0] = 10 means vertex 0 has been seen by bfs0; 01 means it has been
seen by bfs1

11 for each bi ∈ B
12 seen[si] ← 1 << bi

13 visit[si] ← 1 << bi

14
15 reset visitNext

8
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16 while visit ¬ ∅
17
18 //BFS traversal split into two loops for better memory access
19 //all vertices explored sequentially to calculate which BFS explores the

neighbors of vertices in visit array.
20 for i = 1, . . . , N
21 if visit[vi] = B∅, skip
22
23 for each n ∈ neighbors[vi ]
24 visitNext[n] ← visitNext[n] | visit[vi]
25
26 for i = 1, . . . , N
27 if visitNext[vi] = B∅ , skip
28 // computation performed only once for every newly discovered vertex
29 visitNext[vi] ← visitNext[vi] & ~seen[vi]
30 seen[vi] ← seen[vi] | visitNext[vi]
31 if visitNext[vi] = B∅

32 do BFS computation on vi

33
34 visit ← visitNext
35 reset visitNext

2.4 Compressed Sparse Row (CSR) Data Structure

CSR is a compact representation of graphs that reduces random access while accessing

nodes and edges as compared to an edge list representation of graphs. CSR consists of two

arrays (columns) - the first array for vertices and the second for edges. The second array

(of size |E|) is the second column of the edge list graph representation and the first column

of size |V| + 1 contains indices for each vertex to index into the second column. The space

required is also proportional to the number of vertices and edges of the graph. It is fast for

finding neighbours of a particular node but adding or removing nodes or edges requires a

change to the entire data structure (26). For our case, since SQL/PGQ in the first iteration

does not support any direct updates on the graphs, we can rebuild a (read-only) CSR graph

for every MATCH query.

A CSR for a sample graph is presented in Figure 2.5. For node i, the adjacent vertices

are from csr_e[csr_v[i]] to csr_e[csr_v[i+ 1]− 1].

For node 0: neighbours are from csr_e[csr_v[0]] to csr_e[csr_v[1]−1] i.e. from csr_e[0]

to cse_e[2] which are 1, 1, 2 (first 3 elements in csr_e).

The graph in Figure 2.5 has dense node identifiers (0...|V|-1) for faster memory access;

the node identifiers can be sparse but in that scenario, we can use another array to relabel

9
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Figure 2.5: Graph and the corresponding CSR representation. Since node 3 is a sink node,
it does not index into the csr_e array.

the nodes to dense ids.

2.5 DuckDB

DuckDB (18) is an open-source, embeddable database primarily built for OLAP queries.

It supports vectorised execution and is ACID compliant using Multi-Version Concurrency

Control (MVCC) (18) supporting hybrid OLTP/OLAP queries. The basic unit of data in

DuckDB is a Vector, which is a subset of logical columns (default value is 1024 tuples), thus

a table is a list of vectors (27). Vectors in DuckDB support compression, DuckDB supports

relational operators as vector operations, and a bit vector is used for faster filter operations

on vectors. DuckDB also has inter-pipeline parallelism and supports defining scalar UDFs

which are parallel by default. This is advantageous as for architecting a minimal extension,

we can leverage User Defined Functions (UDFs) and use the fact that DuckDB already

parallelises their execution for scalable results. DuckDB has the following components:

• Parser ( 1 ): parses the SQL statements and converts them to C objects (parse trees).

It is heavily influenced by the PostgreSQL parser and uses Flex1 and Bison2 to

generate the parsed grammar.

• Transformer ( 2 ): transforms the C objects into C++ objects defined by DuckDB.

• Catalog ( 3 ): stores the metadata information (tables, schemas, functions) of the

database.
1https://github.com/westes/flex
2https://www.gnu.org/software/bison/
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Figure 2.6: DuckDB execution pipeline.

• Binder ( 4 ): resolves the parsed column and table names to the metadata information

stored on the Catalog and verifies that the query is semantically correct.

• Plan Generator ( 5 ): transforms the parse tree into logical query operators like scan

and projection.

• Optimizer ( 6 ): responsible for the generation of a new logical plan by query rewrit-

ing, predicate pushdown and join order optimisations for faster execution.

• Physical Executor ( 7 ): transforms the logical plan into a physical plan. Then push-

based execution (28) is called for the physical operators and metadata is stored into

the Catalog.

• Storage manager ( 8 ): manages access to the physical data stored in memory and on

disk. The executor calls the storage component for accessing base table data. It also

contains components for checkpointing, write-ahead logging which are used in error

recovery in case of a crash.

DuckDB tables contain rowids, a pseudo column1 that contains row identifiers based on

physical storage. These are dense identifiers starting from 0 for the first row, 1 for the

second row and n− 1 for the last row if the number of rows is n and none of the rows have

been deleted. Deleting a row introduces gaps in the rowids that are reclaimed later (e.g.

during checkpointing), however, rowids are stable within a transaction (29).
1https://docs.oracle.com/cd/B19306_01/server.102/b14200/pseudocolumns.htm
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SF Nodes Edges

0.1 1,700 18,135
0.3 3,900 57,095
1 11,000 226,293
3 27,000 698,627
10 73,000 2,380,850
30 184,000 7,273,036

100 499,000 23,841,591
300 1,254,000 70,144,162
1000 3,600,000 233,283,101

Table 2.1: Person data sizes along with the edges representing their friends in the LDBC
benchmark.

2.6 Graph Benchmarks

We describe the graph benchmarks that are used in the thesis.

2.6.1 SNB Business Intelligence Workload

The Linked Data Benchmark Council (LDBC) Social Network Benchmark (30) Business

Intelligence is an industry benchmark for measuring the performance of DBMSs for an-

alytical graph data management. The benchmark uses a realistic social network dataset

that contains information about people, their friends, comments, their city and country.

The business intelligence workload has join-and aggregation-heavy queries touching a large

portion of the graph. Since SQL/PGQ is also intended for read-only analytical queries it

is convenient to use a benchmark that does not deal with frequent updates and is analytics

heavy.

2.6.2 Labelled Subgraph Query Benchmark (LSQB)

The Labelled Subgraph Query Benchmark (LSQB) is a subgraph query matching micro

benchmark to test the query optimiser and join performance of DBMSs. Its reference

implementation contains different databases like Neo4j (4), DuckDB (Section 2.5), Mem-

graph (6), and Umbra (31), and allows us to run query benchmarks. Since it supports

DuckDB and uses the same dataset as LDBC SNB (Section 2.6.1), it is useful for running

microbenchmarks with the translated Kleene star query candidates.
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3

Design Considerations

In this section, we provide details and rationale for scoping down the specification (Sec-

tion 3.1). We then give an overview of the design choices that were considered for support-

ing SQL/PGQ in DuckDB (Section 3.2), focussing on the Kleene star translation and the

reasoning behind choosing our approach. Finally, we present an overview of the DuckDB

components affected by our approach (Section 3.2.3).

3.1 Simplification of SQL/PGQ Specification

As of 2022, the SQL/PGQ specification has not been finalised, and it contains some parser

rules that make the implementation cumbersome such as supporting PROPERTIES clause,

optional KEY clause, and abbreviated patterns which are elaborated below. We deemed that

these rules are not required for having a minimal implementation. We also propose some

minor changes for an easier implementation and expected performance improvements. The

major proposed changes are:

• Remove PROPERTIES keyword: In the SQL/PGQ specification, properties can be

explicitly defined to limit the attributes returned per edge or node. However, we

implicitly assume all properties to be enumerated for a simpler design.

• Explicit mandatory definition of KEY clause: In the SQL/PGQ specification,

the KEY clause is optional. It has to be inferred from the primary/foreign keys of the

underlying table if the KEY is not used during creation of property graph. However, we

have made the KEY field a mandatory argument that is defined explicitly for Vertex

and Edge tables. This leads to a lower implementation overhead due to avoiding key

inference.

13
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• Removal of DROP and ALTER: Since property graphs are materialised views, sup-

port DROP and ALTER will lead to synchronisation issues with the underlying data

making the implementation more complicated. To reduce the design overhead, prop-

erty graphs will be newly materialised for each MATCH query, leading us to always use

current data.

• Filtering of tables only supported at the top level for pattern match-

ing: In the SQL/PGQ MATCH query, nodes and edges can have filtering clauses e.g.

MATCH (a:account{aid = 10})-[t:transfers]->(a2:account). However, we only

support filtering using a WHERE clause for pattern matching as shown in Listing 2.2.

Since this is the first version of the implementation, and there was a way to provide

global filtering we deemed this to not be a core feature.

• Unique labels per property graph: We enforce a uniqueness for every label used

per property graph across all vertex and edge tables. Without this constraint, we will

have to do extra computation to figure out the underlying table being referenced by

the label in the MATCH clause. For example, in Figure 2.3 if we allow customer and

transfer tables to have the same label (customer), we would have to infer which label

is being used in a MATCH query (in Listing 2.2)with account. We do this to simplify

our implementation.

• Removal of abbreviated edge patterns:: The SQL/PGQ MATCH queries allow

abbreviated edge patterns like MATCH (a1:account)–>(a2:account) where the edge

pattern transfers has to be inferred from the property graph definition. To reduce

the implementation overhead for key inference, we mandate mentioning edge patterns

in MATCH and Kleene star queries.

3.2 Supporting SQL/PGQ in DuckDB

In this section, we elaborate on the changes required for supporting SQL/PGQ in DuckDB.

We want SQL/PGQ to be an extension in DuckDB (Research Question 1b) which is why

we prefer lightweight changes over more obtrusive ones.

3.2.1 Parser Rules

New parsing rules have to be added in DuckDB’s parser to incorporate the statements

for creation of property graphs (Listing 2.1), pattern matching (Listing 2.2) and Kleene

14
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star (Listing 2.3). Currently, DuckDB does not offer mechanisms to extend its parser nor

are there any plans to do so due to the difficulty of an extensible grammar. Therefore, a

SQL/PGQ implementation must change the grammar rules in the parser.

3.2.2 Adding Support for the Operators

1 -- SQL/PGQ pattern match query
2 SELECT a1id , a2id
3 FROM GRAPH_TABLE (aml ,
4 MATCH (a1 IS account)-[t1 IS transfers]->(a2 IS account)-[t2 IS transfers

]->(a1)
5 COLUMNS (a1.aid AS a1id , a2.aid AS a2id)) gt
6
7 -- SQL query
8 SELECT a1id , a2id
9 FROM

10 (SELECT a1.aid as a1id , a2.aid as a2id
11 FROM account a1
12 JOIN transfers t1 ON a1.aid = t1.src_aid
13 JOIN account a2 ON a2.aid = t1.dst_aid
14 JOIN transfers t2 ON a2.aid = t2.src_aid
15 AND t2.dst_aid = a1.aid
16 ) gt

Listing 3.1: Pattern matching query in SQL/PGQ translated into SQL.

The CREATE PROPERTY GRAPH statement (Listing 2.1) is similar to creating a CREATE

VIEW statement in DuckDB and can follow a similar execution pipeline without introduc-

ing a new physical operator. The pattern matching syntax without Kleene star (simple

pattern matching) is syntax sugar for equijoins (as shown in Listing 3.1) which can be

leveraged for mapping it to the DuckDB execution pipeline. However, adding support for

the Kleene star operator requires specialised operators to yield efficient execution. It can

be mapped to RECURSIVE CTE but that would likely be inefficient as compared to using a

specialised reachability graph algorithm. Furthermore, we will have to create and maintain

a graph representation like CSR to run graph algorithms efficiently. There are two major

approaches that can be used for its integration that are described below:

3.2.2.1 Approach 1: Adding a new physical operator

To integrate the Kleene star, we can add a new logical and physical operator in DuckDB

that follows its own execution pipeline. Kleene star would be treated like an operator like

SCAN and JOIN. This gives us the advantage of having full control over the execution of
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the operator, and the lifecycle of the CSR representation, and we can optimise the code

specifically for our use case. However, it requires a major change in the execution pipeline

of DuckDB as the introduction of a new operator would require changes to the Optimiser,

Logical and Physical Execution part of the DuckDB pipeline (Figure 2.6). We would have to

implement parallelisation for the new operator. For parallel MSBFS, Kaufmann et al. (32)

describe a within-search parallelism approach that is at odds with the DuckDB execution

model where every search is executed by a single core, and parallelism is achieved by giving

different chunks of data to different cores.

Furthermore, as the DuckDB codebase is constantly changing with new features (e.g.

DuckDB execution changed from pull based to push-based execution during the duration of

this thesis), such heavy changes would create maintainability issues. Adding such a major

change also goes against our design goals of architecting a minimal extension. As DuckDB

is an open source system, it can be forked to create a new system where the changes of the

parser are implemented and any changes to the execution pipeline can be made without a

dependency on the current design goals of the DuckDB developers. However, this approach

will require us to maintain this separate repository and incur a huge technical debt. Lastly,

this will require us to popularise a new database or our fork which is an uphill task and

we lose out on the existing popularity of DuckDB.

3.2.2.2 Approach 2: Using DuckDB’s User Defined Functions

Another approach is to leverage UDFs in DuckDB for the creation of CSR and reachability,

and then transpile/remap the shortest path query to a SELECT query. This mapping changes

the query in the Binder stage, and can then leverage the existing execution pipeline without

affecting the rest of the pipeline (Figure 2.6). This approach also is parallelisable by default

as UDFs are parallel out of the box. A major advantage of this approach is maintainability

and ensuring minimal code changes.

Before running the reachability algorithm, a graph representation of the source and

edge tables has to be created for efficiently running graph algorithms. The CSR is kept

in memory using two large arrays in the DuckDB’s client context and is created for every

new Kleene star query. This keeps the data in sync because if we do not rebuild CSR for

every query, we would end up with stale snapshots in case data from the original tables

has been modified. However, we have to ensure that the CSR creation process is fast and

has minimal overhead; otherwise this approach might be too slow.

The major disadvantage of this approach is that we are using scalar UDFs for allocating

memory using malloc (which goes against the design goals of UDFs), while majority of
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Figure 3.1: DuckDB components affected by the SQL/PGQ support.

the UDFs are used for operations like text search, aggregation and arithmetic operators.

Another thing to note is that the arrays used for CSR consume a large amount of memory

which is not expected from DuckDB. Therefore, we should keep memory guards and throw

an exception if memory cannot be allocated to avoid bringing down the entire application

with an "Out of Memory" error. Furthermore, while DuckDB’s UDFs have out-of-the-box

parallelism, this is only advantageous if we find paths for multiple source-destination pairs.

However, due to the minimal changes and ease of convenience/pluggability in DuckDB,

we decided to go with the UDF approach.

3.2.3 DuckDB Components Affected by the Code Change

In Figure 3.1, we highlight the DuckDB components requiring a change to support SQL/PGQ

operators in DuckDB with the selected UDF approach.

• The parser 1 is affected as we parse the SQL/PGQ queries for CREATE PROPERTY

GRAPH and MATCH queries as explained in Section 3.2.1.

• The transformer 2 is utilised to convert the trees to custom C++ objects used by the

rest of the pipeline. This requires changes to handle the tree nodes for the introduced

grammar rules. Hence the parser changes necessitate a change in the transformer.

• Binder 4 is utilised in a CREATE PROPERTY GRAPH statement to resolve the table

names. For MATCH and the Kleene star queries, it is used to transpile the query to a

SELECT query. This is explained in more detail in Section 4.

• Simple MATCH and the Kleene star queries leverage the existing SELECT query exe-

cution, hence they avoid any other changes in the rest of the pipeline while CREATE
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PROPERTY GRAPH requires changes to Catalog 3 to store the Property Graph meta-

data, Physical Executor 7 to execute the query and some changes to Storage Man-

ager 8 for logging and checkpointing.
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4

Implementation

This section presents important implementation details for adding SQL/PGQ support in

DuckDB. We first explain the implementation of the MATCH clause without the Kleene star

operator in Section 4.1. We then explain the creation of CSR in DuckDB using UDFs in

Section 4.2. Finally, we explain the reachability UDF used for the Kleene star operator in

Section 4.3.

4.1 Implementing MATCH Clause Without the Kleene Star Op-
erator

For implementation of the MATCH clause without the Kleene star operator, we had described

its translation to equijoins in Listing 3.1. Furthermore, the equijoins query is equivalent to

a SQL cross product query where the JOIN conditions have been added to the WHERE clause

(Listing 4.1). We chose the option of using the cross product query for simple MATCH query

translation as it was simpler to implement in the Binder (Figure 3.1 4 ).

The pseudocode along with the comments for the translation of SQL/PGQ MATCH query

without the Kleene star operator is shown in Listing 4.2. We iterate over the MATCH clause

list (Listing 3.1 line 12) to: i) create the expressions for the WHERE clause ii) populate

the alias_table_map used to create the cross product table reference for the FROM clause.

Based on the edge direction, we create the source and the destination expressions as shown

in Lines 25-28 of Listing 4.2. The columns for the equality condition (used in source and

destination expressions) are selected using the key of the vertex and edge tables (defined

at the creation of property graphs as shown in Listing 2.1). We have shown the snippet

for the LEFT edge direction in Listing 4.2 (Lines 23-31). For the RIGHT edge direction,

the source and destination expressions will be switched. For ANY direction (bi-direction),
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4.1 Implementing MATCH Clause Without the Kleene Star Operator

we create a conjunction of disjunction of both LEFT and RIGHT edge direction expres-

sions. For example, if left_src_expr, left_dst_expr are the source-destination expressions

for LEFT direction, and right_src_expr, right_dst_expr are source-destination expres-

sions for the RIGHT direction, then ANY direction expression will be: (left_src_expr

AND left_dst_expr) OR (right_src_expr AND right_dst_expr). We use the populated

alias_table_map to create the FROM clause and move the disjunction of source-destination

expressions to the WHERE clause of the SELECT statement (Lines 35, 36). We finally wrap

the SELECT statement under a SubQuery (Lines 37,38). Using this approach, our statement

then follows the execution pipeline of a SELECT statement in DuckDB (Figure 3.1 4 - 8 ).

1 SELECT a1id , a2id
2 FROM
3 (SELECT a1.aid as a1id , a2.aid as a2id
4 FROM account a1 , transfers t1 , account a2 , transfers t2
5 WHERE a1.aid = t1.src_aid
6 AND a2.aid = t1.dst_aid
7 AND a2.aid = t2.src_aid
8 AND t2.dst_aid = a1.aid
9 ) gt

Listing 4.1: Pattern matching using cross products.

1 Input: match_list , where_expr , select_list
2
3 // conditions to store the conditions for WHERE clause , alias map to store

the table and alias names used for the FROM clause.
4 conditions , alias_table_map
5
6 // match_list cannot be empty.
7 prev_vertex = match_list [0]
8 // property graph entry in the catalog during the CREATE PROPERTY GRAPH.
9 prev_vertex_entry = GetEntryFromLabel(prev_vertex ->label)

10 alias_table_map[prev_vertex ->alias] = prev_vertex_entry ->name
11
12 for (i = 1; i < match_list.size(); i+=2) {
13 //edge pattern will always be between 2 vertex patterns.
14 edge = match_list[i]
15 vertex = match_list[i+1]
16
17 edge_entry = GetEntryFromLabel(vertex ->label)
18 vertex_entry = GetEntryFromLabel(edge ->label)
19 //alias to be used in the FROM query.
20 alias_table_map[vertex ->alias] = vertex_entry ->name
21 alias_table_map[edge ->alias] = edge_entry ->name
22 switch(vertex ->direction) {
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23 case LEFT:
24 //keys defined in CREATE PROPERTY GRAPH used for equality columns.
25 src_expr = CreateExpression(vertex_entry ->key , edge_entry ->source_key

, vertex ->alias ,
26 edge ->alias)
27 dst_expr = CreateExpression(prev_vertex_entry ->key , edge_entry ->

destination_key ,
28 prev_vertex ->alias , edge ->alias)
29 conditions.append(src_expr)
30 conditions.append(dst_expr)
31 prev_vertex_entry = vertex_entry
32 }
33 }
34 // create the cross product reference using the alias_map
35 select ->from_list = CrossProductRef(alias_map)
36 select ->where_expr = conditions.append(where_expr)
37 subquery ->node = select
38 Bind(subquery)

Listing 4.2: Code snippet showing MATCH query translation to a SELECT statement in DuckDB
Binder.

4.2 Creating CSR

For supporting the shortest path query in SQL, we create a Compressed Sparse Row (CSR)

representation of the graph using two large arrays, namely csr_v and csr_e, for storing

nodes and edges. The CSR is compact and limits the number of random accesses required

as the identifiers of a given node’s neighbour nodes are stored together allowing fast scan

for large outdegree nodes in order as shown in Section 2.4. We use two UDFs to create

the CSR and two helper functions to initialise these functions. The functions have an

extra parameter called index_id which refers to the id of the Kleene star instance if there

are multiple instances of the operator in a single MATCH query. However, without loss of

generality for explaining the functions and the queries, we assume that we only have a

single Kleene star referred to by the index 0 in our translated SQL queries. We describe

the functions and their parameters below.

• create_csr_v(size, dense_id, cnt): It is used to create the first (vertex) CSR array

and returns the total edge count.

– size: the total size to be allocated for csr_v.

– dense_id: the new identifier that vertex will be mapped to, in the range of

0, . . . , |V | − 1.
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– cnt: the number of outgoing edges (outgoing degree) from the vertex.

• csr_init_vertex(size): It is used to initialise and allocate space for the csr_v array.

This function uses a lock for the csr_v allocation by the first thread (as DuckDB is

multi-threaded). We allocate two extra 0s in the array for creation of running sum

and which will be explained in the Section 4.2.1. Afterwards, a flag is set to mark

the array as initialised and any other thread will not call init to avoid reinitialisation

and locks.

• create_csr_e(v_size, e_size, src_rowid, dst_rowid): It is used to create the second

(edge) array of the CSR. It returns a place-holder constant value (1).

– v_size: total number of vertices in the graph.

– e_size: total number of outgoing edges in the graph.

– src_rowid: rowid of the row representing the source node of the edge in the

vertex table.

– dst_rowid: rowid of the row representing the destination node of the edge in

the vertex table..

• csr_init_edge(v_size, e_size): Allocates space for csr_e array and calls the run-

ning sum for the csr_v array. The flag and locking mechanism are similar to the

csr_init_vertex function.

– v_size: total number of vertices in the graph.

– e_size: total number of outgoing edges in the graph.

1 SELECT sum(CREATE_CSR_VERTEX (0, (SELECT max(a.rowid) + 1 FROM account a),
2 sub.dense_id , sub.cnt )) AS numEdges
3 FROM (
4 SELECT a.rowid as dense_id , count(t.src_aid) as cnt
5 FROM Account a
6 LEFT JOIN Transfers t ON t.src_aid = a.aid
7 GROUP BY c.rowid
8 )

Listing 4.3: SQL to create CSR Vertex array

1 SELECT CREATE_CSR_EDGE (0, (SELECT max(a.rowid) + 1 FROM Account a),
2 <<invoke sum(create_csr_vertex)>> ,
3 src.rowid , dst.rowid )
4 FROM
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5 Transfers t
6 JOIN Account src ON t.src_aid = src.aid
7 JOIN Account dst ON t.dst_aid = dst.aid

Listing 4.4: SQL to create CSR Edge

The two CSR creation functions have atomic increment operations and the csr_v array

uses atomic integers to avoid locking besides the first init functions. This is because we

want CSR creation to be a fast operation and have minimal overhead to ensure that CSR

(re)creation is not a major bottleneck. The SQL query used for the creation of csr_v

array is shown in Listing 4.3 and for creation of csr_e array is shown in Listing 4.4. cre-

ate_csr_vertex is a parameter to the create_csr_edge function which, by introducing a

dependency ensures csr_v array is created first. In Listing 4.4, we only add the place-

holder for invocation of create_csr_vertex function without the parameters to avoid code

repetition, for a compilable query one can copy the Listing 4.3 to replace the placeholder.

SF Rank (s) Dense rank (s) rowid (s)

0.1 0.0068 0.0079 0.0036
0.3 0.0203 0.0145 0.0110
1 0.0336 0.0292 0.0254
3 0.0669 0.0767 0.0471

Table 4.1: Comparison of running time in seconds for generation of dense identifiers using
window functions (rank, dense_rank) and rowid.

We leverage DuckDB rowids to get the dense ids for our CSR. The other option was

to use window functions (rank, dense_rank) 1 over the vertex table and apply sorting.

To compare the performance of these two approaches, we ran a LSQB microbenchmark

(Section 2.6.2) on DuckDB. The approach of using rowids was selected as it is faster as

shown in Table 4.1. Furthermore, rowids are a common feature across RDBMSs, therefore

this approach can be used in other RDBMSs too.

1 def create_csr_edge(src , dst):
2 pos = ++csr_v[src + 1];
3 csr_e[pos - 1] = dst;

Listing 4.5: Code snippet for create_csr_edge for creating the csr_v and csr_e arrays using
atomic increment.

1https://duckdb.org/docs/sql/window_functions
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Figure 4.1: Sample Graph containing the transfer information from different account ids.
Sparse vertices represent the account ids and edges represent the transfer amounts. Vertices
are relabelled using dense rowids of DuckDB.
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Figure 4.2: CSR creation pipeline for the graph in Figure 4.1. The grey box represents an
extra element not used in the final CSR.
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Figure 4.3: Intermediate states of arrays during create_csr_edge. The green boxes show
the change for each source-destination pair. The grey box represents an extra element which
is not used during the process.

4.2.1 CSR Creation Pipeline

As we leverage the rowids of DuckDB, the original vertex ids (primarily the primary key

of the vertex table, e.g. an arbitrary int64 value for each row) are relabelled to dense ids

as shown in Figure 4.1. The steps of CSR execution are:

• As shown in Figure 4.2, create_csr_v gets the relabelled source vertex and outgoing

edge counts as input 1 .

• csr_v is allocated the size: |V| + 2, using malloc in csr_init_vertex 2 .

• In create_csr_vertex, the csr_v array is created with the two dummy 0s (for padding),

followed by the outgoing edge counts of each vertex 3 .

• The relabelled edge table (source and destination vertices are replaced with their

rowids) is given as input to create_csr_edge. Note that source and destination pairs

are not ordered by any column(s) 4 .

• During csr_init_edge, space is allocated for csr_e array equivalent to total edge

counts in the graph and it creates a running sum on csr_v 5 .

• Finally, in create_csr_edge for every source-destination pair, the source index in

csr_v is used to determine the index of destination in csr_e array and it is then pre-

incremented (atomic increment) by 1 as shown in Listing 4.5. In effect, this moves

the running sum up an index in the csr_v array and assigns the corresponding

neighbours in the csr_e array 6 . The CSR for the graph in Figure 4.1 is shown in

Figure 4.2 6 .
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The code snippet for the create_csr_edge is shown in Listing 4.5 and the states of arrays

during execution are shown in Figure 4.3 with the changing values highlighted at each step.

Creating the CSR in such a way allows multiple threads to concurrently access the CSR

arrays even for out of order source-destination pairs.

4.3 Reachability UDF

For mapping Kleene star into SQL operators, we need a reachability UDF that takes as

input a source-destination pair of vertices and returns True if the destination is reachable

from source and False otherwise. We implement reachability using the Then et al. MSBFS

algorithm (25) (Section 2.3) as it is batched and suitable for many source - many destination

pairs. Furthermore, since the outcome of pairs does not depend on an order they can

be executed by multiple threads and performance should also improve with DuckDB’s

vectorised execution (1024 tuples being processed at the same time). However, before

running the reachability algorithm, we first need to create the CSR so that we have a graph

representation in memory. We utilise the execution order in Common Table Expressions

(CTEs) for this where create_csr_vertex and create_csr_edge functions are called in the

CTE while reachability is put in the WHERE clause of the outer SELECT query. Another

approach to ensure ordered execution was to use LATERAL JOINS, however they are not

supported in DuckDB.

1 SELECT gt.a1id , gt.a2id
2 FROM GRAPH_TABLE (aml , MATCH (a1 IS account)-[t1 IS TRANSFERS *]->(a2 IS

account) COLUMNS (a1.aid AS a1id , a2.aid AS a2id)) gt;
3
4 // Translation of query with Kleene star
5 WITH cte AS (
6 SELECT min(CREATE_CSR_EDGE (0, (SELECT max(a.rowid) + 1 FROM account a),
7 CAST (SELECT sum(CREATE_CSR_VERTEX (0, (SELECT max(a.rowid) + 1 FROM account

a),
8 sub.dense_id , sub.cnt )) as numEdges
9 FROM (

10 SELECT a.rowid as dense_id , count(t.src_aid) as cnt
11 FROM Account a
12 LEFT JOIN Transfers t ON t.src_aid = a.aid
13 GROUP BY c.rowid
14 ) sub) AS BIGINT),
15 src.rowid , dst.rowid )) as csr , (SELECT max(a.rowid) + 1 FROM account a) as

vcount
16 FROM
17 Transfers t
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4.3 Reachability UDF

18 JOIN Account src ON t.src_aid = src.aid
19 JOIN Account dst ON t.dst_aid = dst.aid
20 )
21 SELECT src.aid AS a1id , dst.aid AS a2id
22 FROM Account src , Account dst
23 WHERE
24 ( REACHABILITY (0, false , (SELECT cte.vcount FROM cte1), src.rowid , dst.

rowid) = (SELECT cte.csr FROM cte));
25 //cte.csr = 1

Listing 4.6: Translation of match query with a Kleene star operator

The translation of a Kleene star query to a SELECT query with the three UDFs is shown

in Listing 4.6. The CTE is called in an inner query to force DuckDB logical planner to use

a hash join (33) and avoid using a blockwise nested loop join (33) as it leads to scalability

issues. The create_csr_edge function returns a constant (1) which is used as the equality

condition.

The entire translation of the query is done in the Binder (Figure 3.1 4 ) of DuckDB as it

is the first place in the execution pipeline with access to the Catalog. This is done to ensure

that labels used in the query actually refer to an underlying table. The label existence

is done using a map stored in the Catalog (between labels and property graphs) defined

during the CREATE PROPERTY GRAPH statement. Furthermore, the vertex and edge labels

can have empty identifiers, e.g. (IS account)-[IS transfers]->(a2 IS account) in

which a temporary identifier is assigned to transfers and the first account label, as it will

be used to alias to that table in the translated SQL query. If we would only use the table

names then in the translated JOIN query, we will not be able to differentiate if we are

referring to the first account table (source) or the second (destination).

4.3.1 Sub-Optimisation for MSBFS

Due to DuckDB’s vectorised execution model, 1024 source-destination pairs are processed

at the same time. There is a possibility that some sources are being repeated in 1024 pairs,

so it provides an opportunity for a suboptimisation to reserve 1 MSBFS lane for every

unique source as MSBFS computes the reachability of all nodes from the source nodes.

The occurrences of the repeated sources are saved in a map to avoid extra computation

(re-running the same BFS), however we require extra memory to store this mapping.

Furthermore, the MSBFS algorithm according to the experiments in the original paper (25)

works best with bitsets as wide as the CPU cache line width (which is generally 128-512

bits in most modern computers). If there are multiple cases of repeated source-destination
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A B C

|to_visit| <= threshold

  |to_visit|
        >
 threshold

num_visit >= threshold

num_visit
        <
 threshold

Populated to_visit list

Figure 4.4: States for the dynamic MSBFS.

pairs, we have the opportunity of saving the entire seen bitset even for thousands of source-

destination pairs on the cache line for faster execution. We try to vary the lane sizes and see

the effect of this suboptimisation through scalability experiments we run in Section 5.4.2

and Section 5.4.1.

4.3.2 Dynamic MSBFS

A dynamic version of the MSBFS can be tried with multiple states where we use and

populate a list of vertices (to_visit) to be explored in the next iteration MSBFS in some

states. Instead of running the for loop for all vertices in the graph (line 21 in Listing 2.3),

we use the to_visit array. In the initialisation, to_visit only contains the source vertices,

and to transition among states we use a threshold size |V|/i (i is a variable used for our

experiments with values 2, 3 and 4): The states are shown in Figure 4.4 and we describe

them in detail below:

• State A: This is the starting state with a populated to_visit list that we use instead

of iterating all nodes in the graph. In the second for loop (line 27 in Listing 2.3), we

populate the to_visit list. At the end of the iteration, we check the size of to_visit

list and if it is less than the threshold, then we remain in state A, otherwise we

transition to state B.

• State B: We revert to the original algorithm and iterate all vertices in the graph.

In the second for loop, we do not populate a to_visit list; instead we keep a size

variable (num_visit) to keep track of the number of elements to be visited. If the
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4.3 Reachability UDF

size (num_visit) is greater than threshold then we remain in state B, otherwise we

transition to state C.

• State C: This is an intermediate state. We know the number of elements to be visited

is lower than the threshold, however we do not have the to_visit list. Therefore, we

iterate over all the vertices but we populate the to_visit list which will be used in

the next iteration. We transition back to state A from this state.

The idea of the dynamic approach is to reduce the number of iterations in the graph. We

keep a threshold based on the |V|/i as we want to see if keeping a list of 25% or 50% of

the elements might amount to more work than iterating the elements in sequential order.

The experimental results of this dynamic MSBFS are shown in Section 5.4.4.

4.3.3 Lack of Support for Filtering using UDFs

Filtering is not supported for reachability queries (using the Kleene star operator) as it

would require changes to the CSR for filtering out vertices and edges, and would increase

code complexity. As this was a minimal extension, we deemed pushing this support to a

subsequent version.
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5

Evaluation

To assess the scalability of the proposed approach, we conducted a series of experiments.

In this section, we discuss the performance experiments and their results. We first explain

the experimental setup (Section 5.1) and the query selection. We then present and discuss

the results of different scalability experiments (Section 5.3 and Section 5.4).

5.1 Experimental Setup

A machine in the internal CWI SciLens (34) cluster was used to run the experiments.

Furthermore, a sufficiently large RAM allowed us to keep the CSR in memory for larger

scale factors and efficiently run MSBFS, including its multi-threaded variant which was

not possible on a commodity machine. The configuration of the machine is described in

Table 5.1.

Operating
System

Linux

OS Distribution Fedora 28
Kernel Version 4.18.7

CPU Intel Xeon
RAM 128GB

Threads 16
Disk Size 1.5TB

Disk Type SSD

Table 5.1: Configuration of the jewels05 machine in CWI’s SciLens cluster.
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5.2 Query Selection

5.2 Query Selection

From the SNB Interactive workloads (Section 2.6.1), we choose query 13 for our scalability

experiments. The query aims to find the length of the shortest path between two Person

nodes along Knows edges over any number of intermediate hops as it uses the Kleene star

operator as shown in Figure 5.1. The query has a large search space and captures a typical

use of the Kleene star. In this query, Person is the vertex table and PersonKnowsPerson

is the edge table.

Figure 5.1: SNB Interactive Query 13 for a complex read.

5.3 Create CSR Scalability

CSR creation is run for the entire graphs up to Scale Factor 300. create_csr_edge takes

the creation of create_csr_vertex as its parameter, therefore its execution time will always

be greater than create_csr_vertex. For the smaller scale factors, the data size is too small

where the overhead of using multiple threads actually hampers execution time for the

smaller scale factors as seen in Figure 5.2. However, for larger scale factors CSR creation

scales well with an increase in threads as seen in Figure 5.2, and is a relatively fast process

(e.g. csr_edge creation for SF 100 takes 1.72 seconds with 8 threads). This is extremely

important as the CSR is regenerated for every new MATCH query.

5.4 Reachability

Reachability is implemented as a DuckDB scalar UDF. In the experiment, the number of

rows to be checked for reachability is fixed at 10000 as the cross product of 100 unique

sources and 100 unique destinations from the Person table selected using md5 hashing

(to select random vertices but with a reproducible order). Since the aim was primarily to

observe scaling behaviour and reachability is a significantly complex and slower function

than CSR creation, a smaller data size was enough to observe the scaling behaviour (in

juxtaposition with the create_csr functions that required a larger data size to have a

high enough execution time). The CSR has to be created before we run the reachability

algorithm, so we add the dependency in the CTE as shown in Section 4.3. The fullquery
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Figure 5.2: Running times of create CSR vertex and edge.
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Figure 5.3: Running times of full query with the reachability function run for 10k source,
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is similar to Kleene star translated query as shown in Listing 4.6 with edge tables replaced

with PersonKnowsPerson and vertex tables with Person.

5.4.1 Sub-Optimisation

A sub-optimisation in the implementation was introduced where a single MSBFS lane is

utilised for a unique source vertex. The source vertices used are stored in a hashmap

and at the end of the algorithm, the mapping is used to retrieve the position in the

Vector and return whether the source-destination pairs are reachable. For example, running

reachability with the sub-optimisation on 2 source-destination pairs (1, 4), (1,5) will lead

to only 1 lane being utilised, instead of 2 lanes without the sub-optimisation. The results

of running MSBFS with and without this optimisation are shown in Figure 5.3. We can

observe the query runtimes without the optimisation are 2-3X slower than the running

times with the optimisation. The experiments were conducted with the cross product of

100 unique source and 100 unique destination pairs. Therefore, on average, a source was

repeated 10 times for a DuckDB vector of size 1024.

5.4.2 Lane Size

To figure out if increasing the lane size had an impact on execution times, we ran fullquery

benchmark with various lane sizes (32, 64, 128, 256 and 512). With the smaller scale

factors, it became clear that bigger lane sizes were faster as shown in Figure 5.4, therefore

for larger scale factors (SF ≥ 10), benchmarks were only run for the three large lane

sizes - 128, 256 and 512. In these experiments, 100k rows were checked for reachability

with the cross product of 1000 unique source and 100 destination vertices selected using

md5 hashing. The source unique vertices were increased by a factor of 10 because with the

suboptimisation, 128 lane bits were enough to handle 100 unique vertices at every iteration

of the UDF; hence 128 lane sizes ended up performing better than the bigger lane sizes in

all cases.

As shown in Figure 5.4, lane sizes 128 and 256 perform better than lane size 512 in some

cases for SF 10 (threads 8, 12) and 30 (threads 1, 2). However, at SF 100 and 300, lane

size 512 outperforms the smaller lanes (128, 256) for all cases. We think this is because

for scale factors 10 and 30 using the huge lane size is pushing data out of cache lines

which worsens our performance. However, the computation advantage that we get with

the bigger lane size of running more BFSs concurrently negates this loss of performance.
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Figure 5.4: Running times of fullquery with different lane sizes.
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Figure 5.5: Running times in seconds for dynamic MSBFS. None variant refers to the original
MSBFS.

Therefore, for future work we could explore dynamically changing the lane size depending

on the underlying data statistics/size.

5.4.3 AVX512

Observing the trend of a bigger lane size improving performance (in Section 5.4.2), we

tried compiling the code in Clang1 (version 14.0.0) on an AVX-512 2 enabled machine, and

using AVX512 hints to SIMD-ise the code. However, the auto compiler failed to improve

results with the compiler indicating that the loops were not vectorisable. Therefore in

future work, adapting the code by explicitly writing SIMD statements could be looked into

for improving performance.

5.4.4 Dynamic MSBFS

The dynamic MSBFS defined in Section 4.3.2 gave no notable performance improvement

as compared to the original algorithm as shown in Figure 5.5. In the figure, the variant
1https://clang.llvm.org/
2https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
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refers to the i where the threshold is defined as |V|/i, and none variant refers to the original

algorithm. Overall the sequential access of nodes in the original algorithm compensates for

iterating more elements in the graph and performs as good or better than the dynamic

version.
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Related Work

In this section, we describe the related work and existing research in the field of graph

queries in RDBMSs, GDBMSs and graph query languages. We first describe the surveys

related to graph queries and graph systems (Section 6.1). We then introduce some popular

graph query languages along their query syntax (Section 6.2) to show how they have

evolved. We then discuss the approaches taken by different RDBMSs in supporting graph

queries (Section 6.3) and compare them with our approach. Finally, we end with the

literature on reachability and path-finding algorithms (Section 6.4).

6.1 Surveys

6.1.1 Foundations of Modern Query Languages for Graph Databases

Angles et al. (10) published a survey categorising the basic features and evaluation se-

mantics of graph query languages, focusing on SPARQL (35), Cypher (Section 6.2.1) and

Gremlin (Section 6.2.2). They identify pattern matching and navigational expressions as

the major use case of query languages. The authors sub-categorise the evaluation seman-

x1: customer x3: account
  

name = x2 
        

aid = x4hasAccount

Figure 6.1: Basic graph pattern for Figure 2.3.
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tics for pattern matching and navgiational expressions, and elaborate on their usage in the

3 languages. The authors categorise graph patterns into:

• Basic graph patterns (bgps) follow the same structure as the type of graph database

they are intended to query but instead of only allowing constants, basic graph pat-

terns also permit variables. An example of a bgp for the property graph of Figure 2.3

is shown in Figure 6.1.

• Complex graph patterns are basic graph patterns extended with operations like pro-

jection, union, difference, optional (aka left-outer-join), and filter.

A match of a graph pattern is finding a mapping between the graph pattern variables to

the constants/exact values in the original graph while ensuring the structure is preserved

(edges, vertices, labels in a graph pattern map to edges, vertices and labels in the underlying

graph). The matching can be done under various semantics:

• Homomorphism based semantics: This is the unconstrained semantics where multiple

variables can map to the same term in the graph (e.g. multiple nodes in the graph

pattern can map to the same node in the underlying graph). It is used in SPARQL

and Gremlin.

• Isomorphism based semantics: This semantic has more constraints on the structure

of the mappings. It is further sub-divided into:

– No-repeated-anything semantics: The direct injective mapping between graph

pattern and the underlying graph.

– No-repeated-edges semantics: Only edge variables need to be injective; labels,

nodes and properties need not be. It is currently used in Cypher.

– No-repeated-nodes semantics: Only node variables need to be injective.

The authors discuss the complexity of evaluating the match semantics for a bgps with pro-

jection. The evaluation problem (bgps with projection) is NP-complete for the homomorphism-

based semantics and the three versions of the isomorphism-based semantics. However, in

the concept of data-complexity (36), where the basic graph pattern is fixed, and the com-

plexity is defined on the basis of the underlying graph size, the problem becomes solvable

in polynomial time. For cgps, the authors further point out the lack of complexity analysis

in Cypher and Gremlin.

39



6.2 Graph Query Languages

Navigational expressions are used to navigate the topology of the underlying graph and

can recursively match paths of arbitrary length. The authors focus on path expressions as

they are the most common form of navigation queries. Due to the paths potentially having

cycles, evaluation semantics for path queries are categorised into:

• shortest path semantics: Paths with the minimal length that satisfy the constraint

are considered under this semantics.

• arbitrary path semantics: All paths are considered under this semantics, which could

be infinitely many, which is why the existence of a path is a more practical use-case

of this semantics.

• no-repeated-node semantics: All paths are considered where the node appears exactly

once in the path (simple paths).

• no-repeated-edge semantics: All paths are considered where an edge appears exactly

once in the path. Cypher uses this semantics.

Finding nodes connected by arbitrary paths or finding a shortest path satisfying a regular

path query can be done in polynomial time, whereas for no-repeated-node/edge semantics,

the problem becomes intractable. The authors conclude that providing the categorisation

and examples should help in understanding query languages and can be used as a guide

for any proposed query language.

6.1.2 The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing: Extended Survey

Sahu et al. (2) conducted a survey on the major user challenges with graph processing

systems in industry and academia through an online questionnaire and reviewing mailing

lists/bug reports (2). The participants provided an overview of entities being stored, the

size of the graphs, graph processing software, used and the major computations done on

graph data. They found scalability and visualisation being the two major challenges for

existing software. Furthermore, they found even small to medium size organisations using

large graphs (> 1 billion edges) pointing to the pervasiveness of large graph data.

6.2 Graph Query Languages

Due to the existence of multiple graph management systems and the space being frag-

mented, multiple graph query languages exist which we describe below. The languages
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can be imperative or declarative, however they have two common features - support for i)

pattern matching and ii) navigational queries (10). There has been an effort by the LDBC

and the industry to standardise the languages which first led to the joint development of

the G-CORE research language (37) and eventually resulted in the formation of SQL/PGQ

and GQL by ISO, described in detail in Background (Section 2.2).

6.2.1 Cypher

Cypher (7) is a declarative property graph query language initially developed by Neo4j (4)

team and was open sourced as the OpenCypher project1. It is used by Neo4j, SAP

Hana (17), Memgraph (6) and was one of the first languages to introduce ASCII art-syntax

for graph pattern matching. Pattern matching is the central feature of the language; an

example MATCH clause is shown in Listing 6.1. A Cypher query takes a property graph as

input and outputs a table. Cypher structures the queries linearly, which is why in List-

ing 6.1 the projection (RETURN statement) is at the end of the query. Furthermore, Cypher

supports graph updates, filtering, aggregation, and chaining of queries (7).

1 // filter accounts with aid=5 and return the ids of the accounts to which
it transfers money.

2 MATCH (a1:account{aid :5}) -[t:transfers]->(a2:account)
3 RETURN a2.id

Listing 6.1: Sample pattern matching in Cypher.

6.2.2 Gremlin

Gremlin (9) is a graph query language, part of the Apache TinkerPop graph framework

with a focus on navigational (path) queries and a more functional syntax. Gremlin supports

both imperative and declarative syntax. Gremlin is used in Amazon Neptune (38), Janus-

Graph (39) and Azure Cosmos DB (40). Furthermore, Gremlin traversals can be evaluated

as OLAP and OLTP graph system traversals using the Gremlin Traversal Machine (41), a

distributed, graph-based virtual machine. Gremlin queries can be embedded inside a host

programming language leading to language variants like Gremlin-Java, Gremlin-Groovy,

Gremlin-Python, etc.

A sample of a MATCH query in Gremlin is shown in Listing 6.2. Gremlin further supports

recursive, branching, path and mutating (changing the graph) traversals (41).
1https://www.opencypher.org
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1 //g is the graph , V() returns the set of vertices in the graph ,
2 // .as is used to define a temporary variable 'a1',
3 // __ applies to the command one level up.
4 g.V().
5 match(
6 __.as('a1').hasLabel('account ').has('aid', 5).out('transfers ').hasLabel

('account ').as('a2')
7 ).select('a2').id

Listing 6.2: Sample pattern matching in Gremlin.

6.2.3 PGQL

PGQL (8) is a property graph query language designed by Oracle with SQL-like syntax,

and used in Oracle PGX (42). Due to the syntax similarities with SQL and multiple

SQL features like filtering, aggregation, ordering, and nested queries, it is intuitive to use

for existing SQL users. PGQL introduced the concept of using the graph as an intrinsic

type, allowing queries to construct and return graphs (by the SELECT GRAPH statement).

PGQL, like Cypher is based on the paradigm of graph pattern-matching. Pattern-matching

queries in PGQL involves three clauses - SELECT, FROM and WHERE followed by optional

clauses for limiting, grouping and ordering results. A MATCH clause example in PGQL is

shown in Listing 6.3 where amlGraph contains the account activity data of bank customers

(Figure 2.3).

1 SELECT a2.id
2 FROM amlGraph
3 WHERE
4 (a1 WITH aid = 5) -[: transfers]->(a2)

Listing 6.3: Sample pattern matching in PGQL.

6.2.4 G-CORE

LDBC1 initiated the design of a new graph query language starting with G-CORE (37), a

composable and tractable graph query language with Cypher-like syntax (7). G-CORE has

been designed to support major features from PGQL, Cypher and Gremlin. It introduces

the concept of treating paths as first-class citizens (37) which allows paths to have labels and

properties. Furthermore, direct operations on paths like filter, match are also supported.

G-CORE uses the Path Property Graph Model, an extension of the Property Graph Model

with paths. G-CORE is a design language and was not implemented in any industrial
1https://ldbcouncil.org/
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system. G-CORE queries have a complexity analysis to show they are tractable in data

complexity (36), a minimum requirement for a practical query language. Design decisions

have been taken by the authors like using shortest path semantics instead of all paths

to avoid creating an NP-complete problem. A pattern matching example in G-CORE is

shown in Listing 6.4. Furthermore, G-CORE supports graph aggregation, multi-graph

queries, weighted shortest paths and reachability queries. For further queries, we refer the

reader to the original paper (37).

1 //GCORE always returns a value through the CONSTRUCT clause.
2 CONSTRUCT (a2.id)
3 MATCH (a1:account) -[: transfers]->(a2:account)
4 WHERE a1.aid = 5

Listing 6.4: Sample pattern matching in G-CORE.

6.2.5 GSQL

GSQL is a query language used in Tigergraph (5) with extended support for aggregation-

based graph analytics (43). Pattern matching in GSQL is similar to PGQL syntax and

an example is shown in Listing 6.5. Deutsch et al. (43) introduce the concept of data

containers called accumulators to store aggregated internal values. Accumulators are of

two types:

• Global accumulators (defined using @@): They have a single instance per query for

calculating global aggregates.

• Vertex accumulators (defined using @): Each vertex stores its own accumulator in-

stance for calculating vertex-centric aggregates. An example of a vertex accumulator

is shown in Listing 6.6 where money transferred per account is stored in totalTransfer.

Accumulators allow composition, single-pass multi-aggregation (by different grouping cri-

teria) and parallelisation opportunities. Furthermore, GSQL supports loops enabling the

specification of graph algorithms like Pagerank without using UDFs. The authors achieve

3X speedup for aggregation queries using accumulators over using SQL-style aggrega-

tion (43).

1 SELECT a1.aid
2 FROM amlGraph AS account:a1 -(transfers >:t)- account:a2
3 WHERE a1.aid = 5;

Listing 6.5: Sample pattern matching in GSQL.
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1 SumAccum <int > @totalTransfer
2 SELECT a1
3 FROM account:a1 -(transfers >:t)- account:a2
4 ACCUM a1.@totalTransfer += t.amount;

Listing 6.6: Sample vertex accumulator in GSQL.

6.3 Relational Systems with Graph Query Support

6.3.1 Graph Pattern Matching - Do We Have to Reinvent the Wheel

Gubichev et al. (11) use Lehigh University Benchmarks (LUBM) on three different data

models - RDF, property graph and relational systems to compare graph pattern matching

performance. Multiple systems are used for different models like Neo4j, Sparksee1 for

Property Graph, Virtuoso2 for relational systems. The queries are rewritten to take into

account rules of the ontology and data is enriched with inference from the ontology rules

as LUBM has primarily been used for RDF data. Under analysis, the authors mention

disadvantages of using API over a declarative language:

• Intermediate results are immediately returned reducing performance.

• Application developer has the additional work of query optimisation and is labour-

intensive.

The authors also point out that native graph stores have suboptimal performance for pat-

tern matching operations with queries timing out for large datasets on Neo4j and Spark-

see (11). The authors conjecture that relational systems with graph query languages and

graph operations are best suited for pattern matching operations.

6.3.2 Extending SQL for Shortest Paths

It is cumbersome to perform reachability and cheapest path queries on relational databases

using plain SQL (SQL:1999). The three ways currently used are: i) Recursion ii) Program-

ming State Model (PSM) iii) Explicit chain of joins. However, these methods make the

query writing error-prone and verbose, break the declarative paradigm of SQL and can

have poor performance due to not using specialised graph algorithms (44). Leo et al. (44)

propose a new way - an extension to SQL introducing a new predicate for reachability and
1https://dbdb.io/db/sparksee
2https://virtuoso.openlinksw.com/
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a new function to calculate the cost of the cheapest path. This is implemented in Mon-

etDB by adding two operators to the compiler – i) GraphSelect - model a graph based on

the edges and vertices parameters and then verify whether each tuple is connected and ii)

GraphJoin - cross product followed by a GraphSelect. Their prototype shows that dynamic

graph construction dominates the query run time for a single source-destination pair but

batching multiple source-destination pairs amortises the time for construction reducing the

execution time to become almost linear with respect to number of edges.

6.3.3 Grail

Due to the popularity of graph analytics, specialised GDBMS have become popular. How-

ever, Yildirim et al. (45) argue that specialised systems for graph processing are not re-

quired, and already ubiquitous RDBMSs can be used for supporting graph queries with

an intermediate layer for query translation. They present Grail, an intermediate layer that

translates and optimises graph-like queries into T-SQL to be used directly on the Microsoft

SQL Server RDBMS. Grail stores the graphs as vertex and edge tables in the RDBMS and

transforms the algorithms and intermediate values using relational algebra. In the com-

parison for with Giraph 1, GraphLab (46), the transformed T-SQL queries perform best

for large data sizes and the specialised systems time out, while for smaller data sets, the

specialised systems are faster.

6.3.4 IBM Db2 Graph

Tian et al. (47) add Gremlin support to IBM Db2 database where they optimise synergy

with existing analytic queries (SQL and ML queries) over optimising for performance. The

authors are able to extract graphs using a configuration file that defines mapping between

vertex and edge tables; automatic extraction on existing tables is also possible by using of

primary and foreign key constraints (47).

6.3.5 GRFusion

Hassan et al. (48) add graph query support in VoltDB, an in-memory relational system

focussing on transactional (OLTP) workloads. They materialise graph views using an in-

memory data structure (based on adjacency list) that has bi-directional linkage to the

relational data. The advantage of having a separate topology avoids joins during graph
1http://giraph.apache.org/.
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traversals. GRFusion supports the graph and the relational model in the same query exe-

cution pipeline which allows the predicate pushdown optimisation for traversals.

6.3.6 SQLGraph – When ClickHouse Marries Graph Processing

Zheng (49) presents his work of forking out ClickHouse and extending it with a graph

processing engine to create SQLGraph. The presenter adds graph query support to an

existing RDBMS as they recognise the challenges of graph processing in plain RDBMSs:

• Slow traversal of graphs through joins.

• Difficulty in extraction of graphs.

• Cumbersome to support iterative graph algorithms using recursive SQL queries.

SQLGraph treats graphs as first-class citizens, uses the Clickhouse API for graph visuali-

sation, and supports graph algorithms like pagerank, community detection, random walks,

etc.. Furthermore, additional UDFs can be added to support different algorithms in Python

or C++. For running graph queries, users have to define vertex and edge tables which are

converted to a CSR and Compressed Sparse Column (CSC) representation in the back-

ground for faster access. SQLGraph runs on a single machine and main memory, as main

memory is able to support large graphs (with billions of edges) and it is costly to have inde-

pendent partitions of a graph. The system performs better than Neo4j (4), TigerGraph (5),

JanusGraph (39) when compared for pagerank and multi-hop path queries.

6.3.7 GraphGen

Xirogiannopoulos et al. (12) present the GraphGen framework which allows the extrac-

tion of graph views from RDBMS and supports analytics through GraphGenDL (based

on Prolog) or Java programs. The system has a relational backend, and a relational +

graph frontend where the extracted graphs are independent entities supporting complex

graph algorithms using the Java API (50). The authors enumerate the challenges of using

such an approach – i) difficulty in mapping graph edges/nodes with relational databases,

especially in the case of self joins ii) keeping track of underlying database updates and iii)

lack of ability to build a new schema or rearrange indices for optimisation. The authors’

experiments expose new challenges for query optimisation:

• Query rewriting in optimisers
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• Challenges in dealing with data blowup due to large self joins (finding a concise

representation to load the view in memory)

• Building a cost model to decide where to execute the queries (either in memory for

complex queries or pushing the computation into the database for simple or infrequent

queries)

They conclude that CSR is a suitable representation to load graphs in memory.

6.3.8 GRainDB: A Relational-core Graph-Relational DBMS

Jin et al. (51) extend DuckDB with graph modelling, visualisation, and querying capabili-

ties to create a new DBMS called GRainDB. The authors comment on the complementary

nature of GDBMSs and RDBMSs and users benefitting from their combined capabilities

like RDBMS being able to model n-ary relations while GDBMS providing the ability to

store semi-structured data. The authors recognise many-to-many join being common in

graph workloads, for which they extend DuckDB’s physical storage and query processor

by adding physical RIDs (rowids) as columns to tables with primary and foreign key con-

strains. These dense integer rowids based columns are utilised for joins instead of column

values based joins in vanilla RDBMSs. Futhermore, the authors add visualisation support

for nodes, edges of a graph and pre-create an index based on rowids when users model

a graph. Their experiments a performance speedup in many-to-many joins using these

pre-defined indexes and utilising rowids for joins.

6.3.9 Relation to Existing Papers

The major difference between our work and the elaborated systems is that none of them

make design decisions related to SQL/PGQ implementation. However, some of their results

motivate our design choices like:

• Xirogiannopoulos et al. (12) using CSR for in-memory graph representation.

• Leo et al. using batched mamy source-destination pairs to amortise the running time

of graph construction.

• GRainDB (51) using rowids in DuckDB for improving join performance.

In terms of design, Clickhouse implementation is the closest to our implementation as it

also materialises graphs in-memory, on a single machine and utilises CSR representation

for graphs. However, its implementation is not open source and the design details are
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only mentioned in a presentation. The authors also do not mention any algorithm specific

optimisations, however they do provide a more diverse range of algorithms and use cases

than our current implementation.

GRainDB (51) also uses DuckDB as a backend but they fork from the original DuckDB

and create a new system. In both systems, the idea of using rowids is important as they use

it for creating their indices and joins and we use these dense ids for CSR representation

of graphs. GRainDB supports a custom query language while we support SQL/PGQ.

Furthermore, they go with the design decision of making changes to the executor and

working outside of DuckDB for improving performance which comes with the additional

challenge of popularising the system for other users. In contrast, our non-intrusive approach

of using UDFs and SQL queries, makes it possible to keep it in the original DuckDB as an

extension.

6.4 Reachability Algorithms

6.4.1 Floyd-Warshall

Floyd Warshall is an all-pairs shortest path algorithm (52) (which is a special case of the

multi-source multi-destination shortest path problems that are sometimes formulated in

SQL/PGQ). The algorithm uses dynamic programming. For finding a shortest path be-

tween nodes i and j, the algorithm uses an intermediate node k, where the shortest path

could either pass through k or not pass through it. This leads to the recursive strategy

described in Listing 6.7. The space requirement for the algorithm is θ(V 2) and run time

complexity is O(V 3), which makes it unsuitable for using it with SQL/PGQ (as graphs

generally tend to have large number of vertices). There are parallel versions of the algo-

rithm to reduce the space and run-time complexity by partitioning the adjacency matrix

to different processors and using individual processors to compute a part of the result

matrix (53). However, the methodology would require low level constructs (like Message

Parsing Interface (54)) for broadcasting information and synchronisation using a barrier

which would be a major implementation overhead in DuckDB.

1 if(k == 0):
2 shortestPath(i, j, 0) = wt(i, j)
3 else:
4 shortestPath(i, j, k) = min( shortestPath(i, j , k-1), shortestPath(i, k,

k-1) + shortestPath(k, j, k-1 ))

Listing 6.7: Recursive strategy for Floyd-Warshall algorithm.

48



6.4 Reachability Algorithms

6.4.2 Multiple-Source Shortest Paths in Planar Graphs

Klein (55) introduces an efficient multiple source-destination pair shortest path algorithm

for planar graphs. The basic idea of the algorithm is to find the shortest path tree rooted

at a node, and then iteratively modify the tree to find shortest path tree rooted at its

neighbours. Some edges are removed, and some are added for the tree rooted at the

neighbour but we can re-use edges and reduce the amount of computation as compared to

creating the tree from scratch. The optimisation works on the principle that edges that

are not in the tree form a tree in the shortest path tree of the planar dual graph. This

optimisation only works for planar graphs which social network graphs are not.

Cabello et al. (56) extend the Klein algorithm to general graphs by modifying the shortest

path tree data structure to a kinetic data structure (57). However, the algorithm perfor-

mance depends on the genus (58) of the graph. For random graphs like social networks,

with a high genus the algorithm does not scale well.

6.4.3 Delta-stepping: a Parallelizable Shortest Path Algorithm

Meyers et al. (59) introduce Delta (∆) stepping, a single source shortest path algorithm.

In the algorithm, nodes are divided into buckets based on ∆. Lighter nodes (weight <

∆) are all traversed in the same iteration (can be done parallelly) while heavy nodes

(weight > ∆) are only traversed when all edges of lighter nodes have been relaxed. The

performance of the algorithm heavily depends on the parameter (∆); ∆ = 1 and integer

edge weights leads to a version of Dijkstra’s (16) algorithm and ∆ = max (node degree)

leads to Bellman-Ford. The idea of the algorithm is to find a compromise between the two

extremes, however the authors note that doing so for a parallel version of the algorithm is

not always possible. The authors analyse the run time complexity for various graph and

edge weight possibilities to show a high number of cases where the algorithm performs in

linear time on directed graphs with constant maximum degree.

6.4.4 Fast Exact Shortest-Path Distance Queries on Large Networks by
Pruned Landmark Labeling

Akiba et al. (60) present a new method for shortest-path distance queries by using a

combination of pruning on BFSs and distance aware-2 hop labelling. A 2 hope labelling is

based on the idea of pre-computing shortest paths between every pair of vertice (u,v) and

an intermediate node w between that pair. The authors run BFS for each vertex in the

order v1, v2,... vn, given n vertices in the graph, and add the distance information to labels
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of the visited vertices. At every new BFS iteration, there is a set of vertices S for which

the minimum distance can be correctly computed if the shortest path passes through a

node in S. For a BFS starting from v visiting u, if there is a vertex w∈S such that d(v, u)

= d(v, w) + d(w, u), then the authors prune u. Using this pruning leads to a reduction in

search space, specially for the latter iterations of BFSs. Furthermore, the authors note that

the order of vertices is important; their experiments show visiting vertices with a higher

degree or closeness-centrality first leads to a faster execution time than visiting vertices in

random order. Furthermore, the authors use bit-operations for optimising the algorithm,

and suggest variants for handling directed and weighted edges. This is a useful algorithm

based on BFS for all pair-shortest path queries, however SQL/PGQ more commonly uses

many pair source-destination queries which are a subset of all pair shortest-path problem.

6.4.5 Parallel Array Based Single and Multi Source BFS on Large Dense
Graphs

Kaufmann et al. (32) extend the ideas of MSBFS defined in Section 2.3 and present multi-

threaded single-source and multi-source BFS algorithms. These algorithms have a lower

memory requirement than MSBFS as running a separate instance of MSBFS on each core

leads to high memory usage, and multiple sources are required for the speedup given by

MSBFS. The authors present parallelised bottom-up and top-down versions of the algo-

rithms separated by a barrier using atomic instructions instead of locking. Furthermore,

they found that by static partitioning of vertices and degree ordered vertex relabelling,

the majority of the work was taken up by the initial worker threads. Even if the parti-

tioning ends up being balanced, due to small-world networks, a run time skew would be

observed in each iteration (32). Instead, they use fine-grained tasks with work stealing to

achieve a better balance of vertices, and distribute degree-ordered vertices in a round-robin

scheduling across worker threads.

6.4.6 Efficient Batched Distances Closeness Centrality, Betweenness Cen-
trality in Unweighted and Weighted Graphs

Centrality algorithms determine the importance of vertices in a graph. There are three

types of centralities discussed by the authors:

• Degree centrality: number of incident edges on the vertices.

• Closeness centrality: ranks vertices by average geodesic distance (shortest paths) to

all other vertices.
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• Betweenness centrality: number of shortest paths between any two vertices that a

vertex is on.

Closeness and betweenness are computationally expensive (due to computation of all

pairs geodesic computations ), therefore Then et al. (61) suggest using batched execution

to reduce random access and leverage vectorised execution for faster computation. The au-

thors utilise bitfields and bitwise operations, store data with spatial locality and vectorised

execution on modern CPU caches for performance improvements. The authors present MS-

BFS (Section 2.3), batched versions of Bellman Ford, and Brandes’ (62) algorithm for the

different centrality computations in weighted and unweighted graphs (61).

6.4.7 GraphBLAS Solution to SIGMOD 2014 Programming Contest Us-
ing Multi-Source BFS

Elekes et al. (63) implement and modify the MSBFS algorithm to solve the graph queries

involved in the 2014 SIGMOD Programming contest1. The authors use an adjacency matrix

representation to store the graphs with seen, visit and visit_next all being matrices too.

This is a different approach where matrix multiplication is used to calculate MSBFS,

however it is 1-2 orders of magnitude slower than the top solutions of the contest that

employed a more low-level approach.

1https://github.com/ldbc/sigmod2014-contest-graphblas
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Conclusion

In this thesis, we explored architecting a minimal extension of SQL/PGQ in DuckDB.

We first scoped down the specification to reduce the changes being introduced in the

underlying database, improve performance and decrease implementation complexity while

still retaining the core features for graph query processing. We explored different design

choices for the implementation and researched the literature for a reachability algorithm

that scales for our use case. The main contribution of the thesis is that we were able to

find a pluggable way to integrate SQL/PGQ in a database.

7.1 Research Questions

In the following section, we answer the research questions we had defined in Section 1.2.2.

7.1.1 RQ 1: How can SQL/PGQ be mapped to relational query opera-
tors including the new path-finding operator?

As defined in Section 3, we outline the approaches selected for mapping the SQL/PGQ

clauses to relational operators where creation of property graphs is done by defining a simi-

lar execution pipeline as CREATE VIEWS, simple pattern matching is mapped and rewritten

to a cross product query (Section 4.1), while the path-finding operator (Kleene star) is

mapped to a SELECT query defined using custom UDFs. We give reasoning on why we

chose the UDF approach for the Kleene star implementation and how it helps in architect-

ing a minimal and maintainable extension (Section 3.2.2).
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7.1 Research Questions

7.1.1.1 RQ 1a: What design decisions need to be made to scope down the
extension for improving performance and feasibility?

In Section 3.1, we outlined the decisions to scope down the specification and the reasoning

behind scoping elements out. We ensured that the basic support for simple pattern match-

ing and path-finding was still part of the specification and the scoping down was done to

reduce implementation complexity. Some of the scoped out features can be added as part

of future work based on the SQL/PGQ adoption and features requested by users.

7.1.2 RQ 2: What path-finding algorithm is needed to minimally sup-
port SQL/PGQ?

We explore the literature and select MSBFS (25) for our use case of supporting path-

finding and reachability. It is a batched algorithm that is useful for many source many

destination queries, which are expected to occur frequently in SQL/PGQ queries using the

Kleene star operator. With our experiments (Section 5.4), we find that MSBFS integrates

well with the DuckDB vectorised execution model and batched algorithm scales well for

graph algorithms.

7.1.2.1 RQ 2a: How can the algorithm be integrated in a vectorised query
engine?

To integrate the algorithm, we make use of UDFs to have a pluggable extension and use

their default parellelisation. As the algorithm is batched it fits well with the vectorised

execution model of DuckDB. Furthermore, we try adding some sub-optimisations to the

algorithm like running a BFS only for unique source vertices (Section 4.3.1), introducing

dynamic states to reduce the amount of iterations (Section 4.3.2), and using SIMD hints

along with Clang compilation to try SIMDise the for loops (Section 5.4.3). From our

experiments, we observe the algorithm scales well with an increase in threads (Section 5.4).

7.1.2.2 RQ 2b: What data structure representation will be required for im-
plementing the algorithm?

We utilise CSR structure with dense keys to represent the graphs and store them as large

arrays in memory. Even large graphs (>1 million nodes) can be materialised in memory,

and the creation of the structure is also done with DuckDB UDFs as part of a SQL query

(Section 4.2). Furthermore, CSR creation is a relatively fast process as demonstrated in

Section 5.3.
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7.1.3 RQ 3: How can the performance of the system be systematically
evaluated?

LDBC’s SNB BI workload is used for evaluation as it generates a realistic social network

dataset that is a common application for graph workloads. Query 13 of the BI workload is

used to test the scalability of the approach as it involves a Kleene star operator with the

Person vertices and Person_knows_Person edges (Section 5.2). We are able to test the

scalability of our UDFs in DuckDB using this approach as seen in Section 5.

7.2 Future Work

As this thesis was the first minimal implementation, various directions for future work exist.

Support can be added for weighted graphs, path queries, specially cheapest path calculation

that will require a different algorithm than MSBFS. Worst-Case optimal join (64) support

can be added to DuckDB as many pattern matching queries end up with cyclic paths and

this is also useful for non-graph queries. Furthermore, the MSBFS implementation can

be made SIMD friendly to take advantage of 512 bitsets in cache. Work can be done to

support filtering in CSR to accomodate WHERE clause in the Kleene star query, reusing CSR

for larger graphs and for implementing the parser as an extension module to DuckDB.
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Acronyms

CSR Compressed Sparse Row. ii, iii, vi, 4, 9, 10, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29,

30, 31, 32, 46, 47, 48, 53, 54

DBMS Database Management system. 2, 4, 47

GDBMS Graph Database Management System. 1, 38, 45, 47

LDBC Linked Data Benchmark Council. 12, 41, 42

LSQB Labelled Subgraph Query Benchmark. 12

MSBFS Multi-Source Breadth First Search. vi, vii, 8, 27, 28, 33, 34, 36, 50, 51, 53, 54

PG Property graph. 5, 6

RDBMS Relational Database Management System. ii, 1, 2, 23, 38, 45, 46, 47

SQL/PGQ SQL Property Graph Queries. ii, iv, vi, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15,

16, 17, 18, 19, 41, 47, 48, 50, 52, 53

UDF User Defined Function. ii, 17, 19, 31, 34, 43, 46, 48, 52, 53, 54
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