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Abstract

Selecting a good join order for a query can have a significant impact on query
execution performance. A good cardinality estimator is a necessary component
of the join order optimization process. Cardinality estimators frequently rely
on base table statistics to provide estimates. DuckDB is an in-process database
system that can run directly on parquet and CSV files. When querying on these
files, almost no statistics are provided, making accurate cardinality estimation
and therefore join ordering, difficult. In this work we develop a cardinality
estimator that requires little to no statistics, implement it in the DuckDB join
order optimizer, and evaluate its performance.

Foreign-key Primary-key joins are very popular in practice, and exhibit proper-
ties that are used by our new cardinality estimator, even in the absence of base
table statistics. When tested on the Join Order Benchmark using parquet files,
the new join order optimizer selects plans that produce 66% less intermediate
tuples on average. When run on base tables, 95% less intermediate tuples were
produced, and results were comparable to state-of-the-art systems. The new
join order optimizer improved end-to-end execution times by 18% on average
when run on parquet files, and 25% on average when run on base tables.

By assuming all joins are foreign-key primary-key joins, and by leveraging their
inherent properties, our simple cardinality estimator significantly improves the
quality of join orders selected by the join order optimizer. The selected join
orders improved by an order of magnitude and are comparable to state-of-the-
art systems.
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1

Introduction

Before a database system executes a query, many checks, transformations, and optimiza-
tions are performed. Query checks involve scanning, parsing, and semantically validating
the query text to ensure correctness. Then, an internal representation of the query is
created, usually as a tree-like data structure called a logical plan. The logical query plan
is then optimized and passed to the execution engine which produces a query result.

In database research, the process of finding an optimal plan is called query optimization.
There are many methods to optimize a query plan, including join order optimization, which
determines the order in which the requested relations are joined. Join order optimization
requires a cardinality estimator, a cost model, and a join enumeration algorithm (1, 2, 3).
The performance difference between a query plan with a good join order and a bad join
order can be extremely large, therefore, join order optimization has become a well-studied
research topic within database systems.

Many query optimizers begin the optimization process by applying a set of rules that
preserve the semantic meaning of a query while improving the execution strategy. One
example of a rule-based optimization is FILTER push down, or removing cartesian joins
and replacing them with INNER joins when a join condition exists. Both of these rules
have the goal of minimizing the number of intermediate tuples generated, which results in
faster execution times (4).

When rule-based optimization is finished, a query optimizer will attempt to optimize
the join order. The join order of a query plan describes the order in which base tables
are joined. Join order optimization is considered a cost-based optimization as there are
many join orders to choose from, and a predicted cost for a join order is used to choose
the optimal order. Figure 1.1 shows an example of two different join plans given three
relations. A query that joins n relations will have n� 1 joins, and n! different join orders.
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1. INTRODUCTION

A on B on C

A on B

A B

C

A on B on C

B on C

B C

A

Figure 1.1: Two different join orders for three relations. The left plan joins relations A and
B first, while the right plan joins relations B and C first. The order of the joins can affect the
cost estimates produced by a cost model.

Enumerating and estimating the cost of n! join plans is prohibitively expensive given time

constraints and a potentially high number of relations. Therefore, the set of join orders

considered, also known as the search space, must be pruned. Some join order optimizers

do this by only considering left-deep trees (5, 6). The process of producing candidate join

orders is done by a plan space enumeration algorithm, as illustrated in Figure 1.2.

Figure 1.2: The join order optimization process. The plan enumerator emits pairs of sets of
relations. The cardinality of joining the pair is calculated by the cardinality estimator which
may use statistics like histograms and samples. The cardinality estimate is passed to the cost
model, which assigns a cost to the join. A dynamic programming table stores the cost of each
join and references to the child intermediate joins. The optimal join order is then found by
examining the entry in the DP table with all relations and following the references to the child
nodes.

A cost model is responsible for estimating the cost of a query plan (4). Many factors

can affect the estimated cost of a query plan such as join order, estimated cardinality, and

I/O time. A cost model normally has two categories of input. One describes the estimated

amount of data that will be processed while executing the query plan, and the other is an

estimate of the physical costs incurred when executing the query plan (i.e memory/network
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bandwidth). The first category is usually labeled as cardinality estimation. Many state-
of-the-art systems (PostgreSQL, DB2, SQLServer) maintain table statistics to help with
estimating the costs of both inputs (4, 7, 8, 9). With perfect cardinality estimates, the join
order optimizer can select near-optimal plans. However, if these inputs are off, especially
cardinality estimation, it can lead to sub-optimal and potentially disastrous plans. One
reason why cardinality estimates are consistently inaccurate is because they are built on
assumptions of independence and uniformity. These assumptions make it hard for state-
of-the-art cardinality estimators to detect join-crossing correlations and skew, which are
present in real-world data sets (1, 10).

DuckDB is a fast in-process database system developed by Mark Raasveldt and Hannes
Mühleisen (11). It was designed to be an in-process analytical DBMS, or “The SQLite of
analytics”. It can run queries directly on CSV and parquet files. DuckDB has rule-based
optimization, but the cardinality estimator used by the join order optimizer is naive.
Every join is assumed to be a foreign-key primary-key join and the cardinality of a join
is estimated to be the cardinality of the larger table. In addition, the effects of table
filters are not accounted for when initializing the base table. The cost of a query plan
then becomes the sum of all estimated cardinalities of the intermediate joins. While the
assumption that every join is a foreign-key primary-key join is not necessarily a weakness,
the formula used to calculate the cardinality of the join fails to consider the effects of
independent filters, skew, correlation, or how column values can multiply or be filtered
out throughout many joins.

The cardinality estimator in the DuckDB join order optimizer can be upgraded. Many
state-of-the-art systems use statistics to aid with cardinality estimation and still select
disastrous join orders. The intended workflow for DuckDB does not allow it to collect
similar statistics as many sessions are short-lived, or data is queried directly from parquet
or CSV files, which do not provide statistics. With these constraints, the goals for this
thesis can be defined as such,

G1 Develop an accurate cardinality estimator using minimal to no base table statistics

G2 Enable the DuckDB join order optimizer to select query plans with faster end-to-end
execution time

G3 Implement and evaluate these changes

This thesis presents and describes a minimal cardinality estimator and cost model for
the DuckDB join order optimizer designed to achieve the mentioned goals. The new join

3



1. INTRODUCTION

order optimizer will not explicitly require table statistics, but will improve the quality
of selected query plans when provided with an estimated HyperLogLog count for each
column. Comparing query profile results from the Join Order Benchmark (JOB) and the
TPC-H benchmark, the new DuckDB join order optimizer selects query plans that process
65% fewer tuples during query execution compared to plans selected by the old join order
optimizer. When statistics are provided DuckDB’s new join order optimizer selects query
plans that process 95% fewer tuples during query execution compared to plans selected
by the old join order optimizer.

4



2

Background

In 1979 Selinger et al. introduced the System R query optimizer. The System R optimizer
had three distinct components; a query plan enumerator, a cardinality estimator, and a
cost model to estimate how computationally expensive each join order would be. The
System R plan enumerator restricted the search space to just left deep trees. For each
subset of relations, the cheapest option was stored in a dynamic programming table, and
the enumerator would add on new relation to each subset until all relations were joined
(5).

In 2006, Moerkotte et al. introduced the query plan enumeration algorithm DPccp.
DPccp improved on the SystemR algorithm by also considering bushy trees. A weakness
of DPccp, however, was that it would only work on simple binary join predicates and inner
joins (12). Two years later, Moerkotte et al. presented DPhyp as an improvement to DPccp.
DPhyp models a given query as a hypergraph and does not suffer from the same limitations
(13). DPhyp is the plan enumeration algorithm used in DuckDB today. DPhyp is built on
dynamic programming principles, so a cost model must exhibit optimal substructure
in order to properly find the optimal query plan. Optimal substructure for join ordering
means that an optimal solution for joining n relations incorporates optimal solutions for
joining n�i and i relations (where 1 � i < n). The optimal solutions for the sub-problems
can be determined independently (14).

The plans produced by a join order enumerator are then evaluated by a cost model. In
System R, the cost of a join order is the sum of the costs of each intermediate join. System
R calculates the cost of a single join by estimating the two popular inputs described in the
introduction; physical properties of the data and machine, and the estimated cardinality of
the join (5). While the use of both inputs seems practical, Leis et al. analyzed the accuracy
of state-of-the-art systems with similar cost model inputs. To determine the importance of
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2. BACKGROUND

inputs like I/O and CPU utilization (physical costs), the authors developed a simple cost
model that only considered the sum of the estimated cardinalities of all intermediate join
nodes. The state-of-the-art results were then compared to the results of the simple cost
model. The analysis revealed that inaccurate cardinality estimates are the main reason
why a query optimizer selects sub-optimal or “disastrous” query plans. Therefore, in
the presence of inaccurate cardinality estimates, costs incurred by the physical properties
of a machine can be considered negligible. Since cardinality estimation errors increase
exponentially with the number of joins (15), the paper concludes that simply the sum of
the estimated cardinalities of intermediate nodes has comparable cost accuracy to complex
cost models that consider details regarding a systems hardware (1).

In order to accurately estimate the cardinality of a join, many of the same traditional
database systems mentioned in (1) will collect column statistics like maximum frequency
values, histograms, distinct value count, or column correlation (16, 17, 18). As mentioned
in the introduction, DuckDB provides an estimate of the distinct count of columns ingested
into DuckDB. Knowing the distinct count of two columns that are joined by an equality
condition can help determine the distinct count of the join and the cardinality of the join.
HyperLogLog statistics are not always available on parquet or CSV files.

When estimating the cardinality of join, it is also helpful to know what types of joins
there are, and which ones are popular in practice. A very popular join type is the foreign-
key primary-Key (FK-PK) join. An FK-PK join is popular because all values in a foreign
key column are derived from a primary key column located in another table. When PK-FK
joins occur between unfiltered tables, every value in the foreign key column must match a
value in the primary key column. A foreign-key primary-key join satisfies the Containment
of Value Sets assumption.

• Containment of Value Sets. If Y is an attribute appearing in several relations, then
each relation chooses its values from the front of a fixed list of values y1; y2; y3; : : : ,
and has all the values in that prefix. As a consequence, if R and S are two relations
with an attribute Y , and V (R; Y ) < V (S; Y ), then every Y -value of R will be a
Y -value of S (19).

While this thesis will focus on reducing the number of intermediate tuples processed
during the execution of a query plan, understanding the low-level details of how a join
gets executed is also important. Suppose two tables L and M are joining on L:m = R:s,
and jLj > jRj. During a hash join, the relation with the least number of records is called
the build side, so relation R in the current example. All records of R:s are then hashed and
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placed into buckets, called the partitioning phase. In the ideal case, all of these records
can fit into main memory, or even better, CPU cache. Once the partitioning phase is
over, the probing phase begins. During the probing phase, each record of L:m is hashed
with the same hash function used for R:s, and the hash buckets of R:s are probed for a
match. All matches produce a record in the resulting join (4). With this knowledge, it is
evident that smaller build sides for joins are preferred. If the build side of a join is large,
the probing phase can take a long time, since every partitioned block needs to be loaded
from main memory, or worse, storage.

Plan enumeration methods, cardinality estimation methods, base table statistics, and
popular join types are all important concepts to understand when building a join order
optimizer. A dynamic programming table that stores optimal join plans forces the cost
model to exhibit optimal substructure. A cost model with optimal substructure requires
a cardinality estimator that is symmetric, producing the same cardinality estimate for a
set of relations regardless of join order. An accurate cardinality estimator must leverage
properties of popular join types, and use table statistics whenever possible. With a basic
understanding of these concepts, the rest of this thesis will describe how a join order
optimizer provided with little to no statistics can produce query plans comparable to
state-of-the-art systems.
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3

Design

3.1 Cardinality Estimator

Foreign-Key Primary-Key (FK-PK) joins are common joins in query benchmarks, since
they are common in real-life use cases. FK-PK joins satisfy the Containment of Value
Sets property mentioned in Chapter 2. When this property is satisfied, knowing the
number of distinct values in a column will help predict the cardinality of a join. Given the
widespread use of FK-PK joins, the design of our cardinality estimator will assume that
the Containment of Value Sets property is consistently guaranteed.

A table resulting from a FK-PK join can duplicate column values, or selectively filter
them out given some join condition. The design of the new DuckDB cardinality estimator is
influenced by these properties. To represent these properties when estimating cardinalities,
we will introduce two new variables for each column, multiplicity and selectivity. We can
define these variables more formally as

• Multiplicity - The average frequency of each distinct value in a column.

• Selectivity - The probability a column domain value is found in a column.

Selectivity is defined by the probability a column domain value is found in a column. This
will require a variable to represent the current number of distinct values in a column, as well
as a variable to represent the number of distinct values in its domain. Two variable names
we can use to represent these numbers are current domain and total domain. The current
domain will represent the number of distinct values in a column, while the total domain
will represent the number of distinct values in the column’s total domain. Following from
the containment of value sets property, all distinct values of a column’s current domain
are selected from the column’s total domain. A column’s current domain can never be

9



3. DESIGN

larger than its total domain, so the selectivity of a column should never be greater than
one. Total domain and current domain will be abbreviated as tdom and cdom respectively
for the rest of the paper. The selectivity for a column x in table A can be determined by
the equation

cdom(A:x) = the number of distinct values in the current domain of A:x

tdom(A:x) = the number of distinct values in the total domain of A:x

sel(A:x) =
cdom(A:x)

tdom(A:x)
(3.1)

Equation 3.1 shows that the selectivity of an unfiltered table can be < 1. It is important
to note that every column’s current domain may not be equal to its total domain in the
absence of filtering. Certain data sets have “dead data” when joining two tables, meaning
some primary keys never have a match in a foreign key table. For example, in the TPC-H
data sets, only two-thirds of the customers have orders (20). By assuming a column’s total
domain could be more than the current domain, the new cardinality estimator can better
handle cases of “dead data”.

A column’s multiplicity is defined as the average frequency of each distinct value, and
cannot be defined with the same two variables. To define multiplicity, the cardinality of a
table must also be known. Equation 3.2 is the formula to define the multiplicity of column
x in table A

card(A) = the cardinality of table A

mul(A:x) =
card(A)

cdom(A:x)
(3.2)

A column’s multiplicity is defined as the table cardinality divided by the current number
of distinct values in the table. This definition assumes uniformity in the column, making
our multiplicity equation susceptible to skew and correlation. In primary key columns,
every value is guaranteed to be distinct, so the current domain of the column is equal to the
total domain of the column and the cardinality of the column. This makes the multiplicity
and selectivity equal to 1, meaning there are no duplicated values, or missing values. A
foreign key column, however, is allowed to have duplicated column values, and the average
frequency by which those values are duplicated is determined by the cardinality of the
table and the current domain of the column.

10



3.1 Cardinality Estimator

The next step is combining the sel and mul equations into a cardinality estimation

equation. Suppose there are two relations, A and B joining on A:w = B:x. A and B

can be base tables or intermediate tables. Knowing card(A) and card(B), the goal is to

determine card(A on B). If we select a random tuple z from table A, we can predict the

number of resulting tuples z will produce in (A on B), with the following equation

P (z 2 (A on B):x) = P (z 2 B:x) �mul(B:x) (3.3)

Our probability equation can be reformulated using our selectivity equation since selec-

tivity naturally represents the probability that a value is in the current domain of a table.

So we can write the following

sel(B:x) = P (z 2 B:x) (3.4)

To get an estimated count of tuples in (A on B) resulting from A, we can modify equation

3.3 and multiply it by card(A). We can write this as (A on B)A,

(A on B)A = card(A) � P (z 2 B:x) �mul(B:x) (3.5)

= card(A) � sel(B:x) �mul(B:x) (3.6)

We can compute how many tuples end up in (A on B) from table B using a similar

equation

(A on B)B = card(B) � P (z 2 A:w) �mul(A:w) (3.7)

= card(B) � sel(A:w) �mul(A:w) (3.8)

Equations 3.6, and 3.8 can be expanded by substituting the equations for mul (3.2) and

sel (3.1),

11



3. DESIGN

card(A on B)A = card(A) � sel(B:x) �mul(B:x) (3.9)

= card(A) � cdom(B:x)

tdom(B:x)
� card(B)

cdom(B:x)
(3.10)

=
card(A) � card(B)

tdom(B:x)
(3.11)

card(A on B)B = card(B) � sel(A:w) �mul(A:w) (3.12)

= card(B) � cdom(A:w)

tdom(A:w)
� card(A)

cdom(A:w)
(3.13)

=
card(B) � card(A)

tdom(A:w)
(3.14)

Equations 3.11 and 3.14 are nearly identical, except for the tdom term in the denomina-
tor. The join condition is A:w = B:x, which are the tdom terms present in 3.11 and 3.14.
Since every join is assumed to be a FK-PK join, the Containment of Value Sets property is
satisfied, and the two columns have the same total domain and tdom(A:w) = tdom(B:x).
Consequently, equations 3.11 and 3.14 are equivalent.

Equation 3.11 enables us to represent the selectivity of a filter in the following way,

jsel(A.*, B.*) =
1

tdom(A:�)
(3.15)

Where a pair jsel(A:*; B:*) represents the join selectivity of a join condition between
relations A and B. The *s in the equation represent the columns used in the join. Our
cardinality estimation equation then becomes,

card(A on B) =
card(B) � card(A)

tdom(A:w)

= card(A) � card(B) � jsel(A.*, B.*) (3.16)

This result is a simple, yet effective cardinality estimation equation. A benefit of this
cardinality estimation equation is that it does not need to keep track of a cdom, only table
cardinalities and tdoms. Barely any statistics are required. This cardinality estimation
equation also assumes independence and uniformity within the data set, so inaccurate
estimates are likely in the presence of skew and correlation.

12



3.1 Cardinality Estimator

While this equation was developed independently, it is very similar to the formula de-
scribed in (2, 4, 5), which is

card(A on B) =
card(A) � card(B)

Max(V (A:w); V (B:x))
(3.17)

For a join condition A:w = B:x. V (A:�) represents the number of distinct values
in column A:�. While the two equations are extremely similar, the equation 3.11 was
developed using multiplicity and selectivity ideas. Equation 3.17 was developed using the
probability that a tuple from the cartesian product would be in the resulting equality join.

Equation 3.16 assumes that the two joining relations have only one join condition be-
tween them. It is possible, however, to join n tables with an arbitrary number of conditions.
When this happens, our cardinality estimator must determine which join conditions to ap-
ply. As an example, suppose three tables A, B and C are joined with three join conditions,
A:� = B:�, B:� = C:�, and C:� = A:�.

Calculating the cardinalities of (A on B); (B on C); and (C on A), we get

card(A on B) = card(A) � card(B) � jsel(A.*, B.*) (3.18)

card(B on C) = card(B) � card(C) � jsel(B.*, C.*)

card(C on A) = card(C) � card(A) � jsel(C.*, A.*)

If we join each of these tables with the third table, two more filters can be applied.
Equation 3.18 will be used as an example.

card(C on (A on B)) = card(A) � card(B) � card(C) �

jsel(C.*, B.*) � jsel(C.*, A.*) � jsel(A.*, B.*) (3.19)

While in practice it seems like all filters should be applied, studies on cardinality esti-
mators have shown that they notoriously underestimate cardinalities and that these errors
are propagated as more joins are considered (1, 15, 21). In order to avoid underestimat-
ing cardinalities while still applying at least one join condition to each table, we need to
re-characterize this problem as a graph theory problem.

Given

• a set of relations fR1; R2; :::; Rn+1g = R

• a set of join selectivities, J, where 8 jsel(A:�; B:�) 2 J; A 2 R ^B 2 R

13



3. DESIGN

We can create a graph G using relations in R as vertices and join conditions as edges.
Each edge then has a weight equivalent to the join selectivity of the join condition. Once
this graph is constructed, a minimum spanning tree of the graph will find a set of join
selectivities such that each relation will have at most one join selectivity applied, and the
product of the join selectivities will be the most selective. Our cardinality equation then
looks like

card(R) =
Y
R2R

card(R) � �(R; J) (3.20)

Where �(J) is the product of all join selectivities in the minimum spanning tree of the
graph created using (R; J). This cardinality estimation equation above means that we can
estimate the cardinality of any join as a calculation of just base tables and filters. In
addition, it requires only the knowledge of the number of distinct values in a column. The
equation fits very nicely into the dynamic programming approach for join order optimiza-
tion as well. Every entry in the dynamic programming table is represented as a set of
relations, and now the cardinality is also represented as a set of relations.

3.2 Cardinality Estimation with No Statistics (Equivalence
Sets)

Currently, Equation 3.20 only works under the assumption that DuckDB has access to
table statistics, specifically the number of distinct values in a column (or at least an
estimate). These statistics are available on base tables and are estimated as a function
of the HyperLogLog count on 10% of values in a column, and the total cardinality of the
table.

In the absence of statistics and distinct column counts, Equation 3.20 breaks down.
Parquet and CSV files seldomly provide statistics on distinct column counts, only min,
max, and table cardinality are provided. To make sure Equation 3.20 can still work in
the absence of a statistics-provided distinct count, we introduce the idea of equivalence
sets. An equivalence set is a set of columns that are transitively joined. By assuming all
joins between columns in an equivalence set are FK-PK joins, all columns have the same
tdom.

SELECT count(*) from A, B, C
WHERE A.x = B.y
AND B.y = C.z;

14



3.3 Commutativity & Associativity

In the query above, if every join is assumed to be a FK-PK join, then {A.x, B.y, C.z}
is an equivalence set. This equivalence set has one tdom value, which can be determined
via two strategies depending on if statistics are available or not. If the number of distinct
values is known for a subset of columns in the equivalence set, the tdom for the equivalence
set will be the highest reported distinct value count among the columns in the equivalence
set. If none of the columns in the equivalence set have a reported distinct value count,
then the column with the lowest cardinality in the equivalence set is assumed to be a
primary key and will initialize the tdom for the equivalence set. The lowest cardinality
column in an equivalence set is used as the primary key because primary key columns
typically have lower cardinalities than their foreign key column counterparts. Given the
tdom of a column, we can calculate the join selectivity (or jsel) of any join condition that
uses that column.

3.3 Commutativity & Associativity

As mentioned in Chapter 2, the current DuckDB join order optimizer uses the dynamic
programming algorithm Dhyp developed by Moerkotte et al. To ensure an optimal sub-
structure when calculating the optimal join order, every optimal join must be the result
of two other optimal joins. Since the cost of a join is just the sum of intermediate cardi-
nalities, we can guarantee the optimal substructure. However, to ensure that cardinality
estimates do not change, Equation 3.20 must produce the same result regardless of join
order. Therefore Equation 3.20 must be associative and commutative.

To prove commutativity and associativity we need to prove the following

card(A on B) = card(B on A) (3.21)

card(A on (B on C)) = card((A on B) on C) (3.22)

The proofs for these are trivial given how we have defined the equation. The cardinality
equation takes as input a set of base tables and a set of filters. The result is then a
product of the cardinalities of the relations and �(J). Multiplication is by definition
commutative and associative. Therefore we can conclude that our equation is associative
and commutative.

3.4 Selectivity Estimation

When Equation 3.20 is applied on base tables, it uses the estimated cardinality of a table
after a filter has been applied. With no statistics on a table, it is hard to know the
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3. DESIGN

selectivity of a filter. In these cases, the new join order optimizer will naively estimate a
selectivity of 20%. In the presence of HyperLogLog statistics, there are a few cases where
selectivity estimates can be more accurate. For instance, if there is an equality filter on a
column A:f , like (A:f = 100), the resulting cardinality of the base table can be estimated

to be card(A)

tdom(A:f)
. This idea can be trivially extended to equality filters connected with

an "OR". If a column is filtered in the following way

SELECT *
FROM A
WHERE A.f = 100 or A.f = 200 or A.f = 300;

we can estimate the cardinality to be o � card(A)

tdom(A:f)
, where o represents the number of equal-

ity filters joined with an or. This idea was already present in the SystemR paper (5).

3.5 Cost Model

Inspired by the conclusions made by Leis et al. in (1), the cost of a join plan will be
the sum of all estimated cardinalities of all intermediate joins in our cost model. In this
section, we will analyze how our cost function is affected by our cardinality estimator. We
will start by analyzing the cost of a join between three tables A, B, and C with no table
filters. The join conditions are A:� = B:� and B:� = C:�,

card(A on B) = card(A) � card(B) � jsel(A:�; B:�)

card((A on B) on C) = card(A) � card(B) � card(C) � jsel(A:�; B:�) � jsel(B:�; C:�)

cost((A on B) on C) = card(A on B) + card((A on B) on C)

card((A on B) on C) = card(A) � card(B) � jsel(A:�; B:�)+

card(A) � card(B) � card(C) � jsel(A:�; B:�) � jsel(B:�; C:�)

cost((A on B) on C) = card(A) � card(B) � jsel(A:�; B:�)
�

1 + card(C) � jsel(B:�; C:�)
�

cost((A on B) on C) = card(A on B)

�
1 + card(C) � jsel(B:�; C:�)

�
We can compare the above to cost(A on (B on C))

cost(A on (B on C)) = card(B) � card(C) � jsel(B:�; C:�)
�

1 + card(A) � jsel(A:�; B:�)
�

cost(A on (B on C)) = card(B on C)

�
1 + card(A) � jsel(A:�; B:�)

�

16



3.5 Cost Model

These equations show that the cost of an early join is distributive, and is applied again
for every subsequent join in the join order. A benefit of this is that expensive first joins
will be avoided, keeping the estimated cardinality of initial joins low, and reducing the
cost of the whole join plan. This section serves only as a simple analysis of a left-deep join
plan under the assumption there are always n � 1 join conditions for n relations. It will
be left as future work to analyze how this cost model behaves given bushy trees or more
than n join conditions.

3.5.1 Weaknesses

The cost formula breaks down in the presence of only naive table filter estimates of 20%
or 0:2. Continuing from the previous example in section 3.5, suppose table B has two
foreign keys and is joined with filtered tables A and C. With no statistics for selectivity
estimation, cost(A on (B on C)) = cost((A on B) on C). The join conditions are A:� = B:�
and B:� = C:�. The cost of the two join orders can be calculated as follows,

card(A on B) = 0:2A � card(A) � card(B) � jsel(A:�; B:�)

card(A on B) = 0:2A � card(A on B)�

card((A on B) on C) = 0:2A � card(A on B)� � 0:2C � card(C) � jsel(B:�; C:�)

card((A on B) on C) = 0:2A � 0:2C � card((A on B) on C)�

card(A on B)� = card(A on B) when no base table filters are applied.

cost((A on B) on C) = card(A on B) + card((A on B) on C)

cost((A on B) on C) = 0:2A � card(A on B)� + 0:2A � 0:2C � card((A on B) on C)�

If a perfect PK-FK relationship is assumed between B:� = A:� and B:� = C:�, then
tdom(A:�) = card(A) and tdom(C:�) = card(C). In this instance,

jsel(A:�; B:�) =
1

card(A)

jsel(B:�; C:�) =
1

card(C)

(3.23)

17



3. DESIGN

The formula then reduces to

cost((A on B) on C) = 0:2A � card(B) + 0:2A � 0:2C � card(B) (3.24)

Now we will compare this to the cost(A on (B on C)),

card(B on C) = card(B) � 0:2C � card(C) � jsel(B:�; C:�)

card(A on (B on C)) = 0:2A � card(A) � card(B) � 0:2C � card(C) � jsel(A:�; B:�) � jsel(B:�; C:�)

cost(A on (B on C)) = card(B on C) + card(A on (B on C))

= card(B) � 0:2C � card(C) � jsel(B:�; C:�)+ (3.25)

0:2A � card(A) � card(B) � 0:2C � card(C) � jsel(A:�; B:�) � jsel(B:�; C:�)

= 0:2C � card(B) + 0:2A � card(B) � 0:2C (3.26)

By only applying naive 0:2 selectivity estimates, there is no difference between cost((A on
B) on C) 3.24 and cost(A on (B on C)) 3.26. The term 0:2A � 0:2C � card(B) is present
in both equations, the only difference being the selectivity applied on the cardinality
of B in the first term (i.e 0:2C � card(B) vs. 0:2A � card(B)). If the selectivity of the
filters on table A and B were known, or the estimates differed in any way, the cost of
each join order becomes different, and a cheaper join order can be selected (provided the
estimates are accurate). This cost example shows that accurate selectivity estimation is
very important. When no statistics for a table are available, it is not possible to have
accurate filter estimation, so this weakness will be present when querying directly from
parquet or CSV files. Improvements to selectivity estimation in the absence of statistics
will be left as future work.
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4

Implementation

Implementation of the cardinality estimation equation in Chapter 3 did not come without
challenges. One issue that continually was a problem was ensuring that the cardinality
estimate for a set of relations was the same regardless of the join order. The continuation
of this problem led to the design of Equation 3.20

Algorithm 1 describes the code used to implement Equation 3.20 including the logic
used to calculate �(J). Given a set of relations, it will return the estimated cardinality
as a result of joining all the relations. Lines 4-6 calculate the cross product of all of the
relations, while lines 7-41 calculate what join selectivities to apply. The join selectivies
applied are from the minimum spanning tree on the graph created by the relations and
the join conditions. The minimum spanning tree is calculated using a greedy strategy
that selects at most n � 1 tdoms that join as many relations as possible given the input.
The strategy for finding these algorithms is based on Kruskal’s minimum spanning tree
algorithm (14). The for loop on line 8 iterates through the filters in decreasing value of
tdoms. Lines 9 - 14 check to see if the filter joins relations in the requested set. Lines
15-40 then determine if the filter connects relations that are already a part of a current
spanning tree, or if the filter starts a separate spanning tree. A separate spanning tree
may or may not be joined by a future edge. If not, the spanning trees are multiplied
without a connecting join selectivity or tdom. This represents that a cartesian product is
taking place.

When our cardinality estimator is initialized, the equivalence sets need to be initialized
as well. The equivalence sets help determine the tdoms defining the join selectivity of an
edge. As mentioned in section 3.2, relations in an equivalence set are transitively joined
by equality filters. Assuming all the equality joins are FK-PK joins, the relations are
assumed to have the same total domain. Calculating the equivalence classes happens
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4. IMPLEMENTATION

Algorithm 1 Algorithm for estimating the cardinality of a set of relations
Require: Filters all filters
Require: Relations relations being joined

1: numerator  1

2: selectivity  1
3: connected_relations []

4: for relation 2 Relations do
5: numerator  numerator � relation:card

6: while connected_relations[0]:size() != relations:size() do
7: for filter in sort(Filters; filter:tdom, decreasing) do
8: left_connected filter:left_binding:column in relations

9: right_connected filter:right_binding:column in relations

10: # if the filter does not connect any relations, continue
11: if not left_connected and not right_connected then
12: continue
13: for subgraph, i in connected_relations do
14: left_connected filter:left_binding:column in subgraph

15: right_connected filter:right_binding:column in subgraph

16: if left_connected XOR right_connected then
17: subgraph:demonimator �= filter:tdom

18: if left_connected and not right_connected then
19: other_table = filter.right_binding.column

20: if right_connected and not left_connected then
21: other_table = filter.left_binding.column

22: for subgraph2 in connected_relations[i + 1 :] do
23: if other_table in subgraph2 then
24: subgraph:denominator �= subgraph2:denominator

25: break
26: if not left_connected and not right_connected then
27: new_subgraph Subgraph(denominator = filter:tdom)

28: connected_relations += [new_subgraph]

29: continue
30: selectivity  prod(connected_relations; x : x:denominator)
31: selectivity  1

selectivity
32: return numerator � denominator
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in one pass through the filters before the join order optimization. Every filter connects
two equivalence sets and each relation starts in its own equivalence set. With this as a
starting point, one can iteratively go through each join condition and determine which
existing equivalence sets are joined by the equality condition, and combine them into one.
Algorithm 2 outlines the logic used to determine equivalence sets. To determine the total
domain of each equivalence set, two strategies can be used. In the presence of distinct
column value statistics, the total domain is initialized as the highest reported distinct
count among all relations in the equivalence set. When no statistics are available, the
total domain is initialized using the lowest cardinality column among the relations in the
equivalence set.

Algorithm 2 Algorithm for determining equivalence sets
Require: Filters all filters

1: equivalent_sets []

2: for filter in Filters do
3: matching_set_indexes []

4: # Find the indexes of the equivalence sets the filter combines.
5: for set, i in equivalent_sets do
6: if filter:left_column in set then
7: matching_set_indexes += [i]

8: else
9: if filter:right_column in set then

10: matching_set_indexes += [i]

11: # Combine the equivalence sets based on the indexes gathered
12: if length(matching_set_indexes) == 2 then
13: es_1 = matching_set_indexes[0]

14: for relation 2 matching_set_indexes[1] do
15: equivalent_sets[es_1] += [relation]

16: if length(matching_set_indexes) == 1 then
17: equivalent_sets[i] += [filter:left_column; filter:right_column]

18: if length(matching_set_indexes) == 0 then
19: equivalent_sets += [filter:left_column; filter:right_column]

The setup operations required to initialize the new DuckDB join order optimizer are
described in 3. First, the selectivity estimation is performed. If a column that is being
joined has a filter, then the tdom of that column must also change. DuckDB implements
push-down filters, so all columns in an equivalence set are filtered before they are joined.
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4. IMPLEMENTATION

When the filter affects all base tables, the excluded values no longer show up as intermedi-
ate tuples and therefore should not be considered in the tdom of the cardinality estimation
equation.

Once selectivity estimation is completed, equivalence sets and tdoms are calculated.
Finally, the join order optimizer is called.

Algorithm 3 Join Order Optimizer Setup and Execution
1: Selectivity_Estimation();
2: Init_equivalence_sets();
3: Init_Tdoms();
4: Join_Order_Optimization();
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5

Experimental Setup

The new DuckDB join order optimizer described in Chapter 3 will be compared against

PostgreSQL, SQLServer, and an older version of DuckDB with the original join order

optimizer. The evaluation will compare the number of intermediate tuples generated,

referred to as the intermediate cardinality count for the current and future sections, and

end-to-end execution times. For end-to-end execution times, only the DuckDB systems

will be compared, as the rest of the databases have different execution engines, making

accurate comparisons of execution times nearly impossible. By comparing the intermediate

cardinality counts between all systems, the evaluation can focus on the quality of the plans

selected by each join order optimizer.

Intermediate cardinality counts for each database system will also be compared against

explicit plans, which represent a baseline or control. Comparisons of intermediate cardi-

nality counts will be normalized, so if a DBMS has an intermediate cardinality count twice

that of the explicit plan, the reported value is 2. The baseline plans for the join order

benchmark are taken from plans produced by Hertzschuch et al. in the paper Simplicity

Done Right for Join Ordering. These plans use precise selectivity estimates and the max-

imum frequency statistic to determine a strict upper bound on the true cardinality of a

join. For the TPC-h benchmark, plans produced by PostgreSQL will be used as the base-

line. (1) shows that the plans produced by PostgreSQL and the estimated cardinalities

are very accurate.

Each benchmark evaluation is split into two sections; the evaluation of cardinality sums

between each tested database system, and the evaluation of execution times between

DuckDB with the old join order optimizer and the new join order optimizer, referred to as

“duckdb-old”, and “duckdb-tdoms” for the rest of the thesis. When comparing end-to-end
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execution times, the results will be normalized to the system that had a higher end-to-end
execution time. Absolute execution times will be explained and presented when necessary.

5.1 Benchmarks

TPC-H

The TPCH benchmark is a decision support benchmark meant to simulate ad-hoc queries
on data one would find in the real world. The benchmark is made up of 22 queries that are
more complex than the average OLTP transactions. The underlying data of the TPC-H
benchmark is meant to resemble the data of a business that operates on an international
level. The TPC-H data set can be scaled up to 100TB by specifying a scale factor of 100000,
but our evaluation is only performed on a data set with a scale factor of 10, meaning 10GB
of data. The optimal join order for each query remains the same regardless of scale factor,
and there is minimal skew and correlation. The TPC-h benchmark is not a very join-heavy
benchmark, with only 6 joins in the most join-heavy query (20).

Join Order Benchmark

The join order benchmark is a suite of 113 queries that can be run on the IMDB dataset.
Since the IMDB dataset is a real-world data set, it is full of correlations and non-uniform
data distributions. These qualities make accurate cardinality estimation much more diffi-
cult. The data set is a snapshot from May 2013 and contains 3.1GB of data in CSV format.
The queries focus specifically on join ordering, with queries having anywhere between 3
and 16 joins, with an average of 8 per query (1).

Join Order Benchmark on Parquet Files

To measure the quality of the new join order optimizer in the absence of statistics, the
join order benchmark will be run on parquet files. To produce the parquet files, the
JOB dataset will be converted to parquet. The same comparison metrics will be used,
intermediate cardinality counts, and end-to-end execution time.

5.2 Hardware

The execution times presented in the following section were measured on a MacBook Pro
(14-inch, 2021) with an M1 chip, 32 GB of memory, and 500 GB of storage. To identify
queries with significant results, a difference of 100ms (or 0.1 second) will be required for a
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difference in end-to-end execution time. A difference of 100ms was chosen because it lies
below the human perception threshold (10).

5.3 Result Classifications

Execution times will only be compared between DuckDB with the old join order optimizer,
and DuckDB with the new join order optimizer. This allows us to isolate the impact of the
new cardinality estimator on the end-to-end execution times. Therefore, for the current
and following sections, DuckDB-tdoms refers to DuckDB with the new join order optimizer
and DuckDB-old refers to DuckDB without the join order optimizer improvements.

Our research question focuses on cardinality estimation as the exclusive input to a cost
model of a join order optimizer. Therefore we want to evaluate the quality of the plans
produced by the join order optimizer by using intermediate cardinality counts and end-
to-end execution times. With this in mind, we will focus on query results that meet
characteristics described in the following categories,

C1 Queries where the new join order optimizer produces a lower intermediate cardinality
count, but a higher end-to-end execution time.

C2 Queries where the new join order optimizer produces a higher intermediate cardi-
nality count, but a lower end-to-end execution time.

C3 Queries where the new join order optimizer results in a lower end-to-end execution
time. Intermediate cardinality counts for all queries in this category are guaranteed
to be lower for plans generated by the new join order optimizer, otherwise the queries
would end up in C2.

In order to reduce noise and identify noticeably faster queries, we constrain the above
groups to require a difference in end-to-end execution time of at least 100ms or 0:1 second.
All queries are run 10 times, and the median time is reported in the results in an effort to
reduce noise.
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6

Evaluation

6.1 TPCH Benchmark

Intermediate Cardinality Counts

Our first evaluation will be measuring intermediate cardinality counts of queries in the
TPC-h benchmark. As mentioned earlier, work done in (1) shows that PostgreSQL’s
cardinality estimator is especially good for the TPC-H benchmark, so the PostgreSQL
plans will be considered the baseline plans. Queries 15 and 18 are excluded from our
results since PostgreSQL and SQLServer optimize the query using a "Group By" pushdown
optimization, while DuckDB does not. Query 19 is excluded as well because DuckDB fails
to push down a table filter in the same way as PostgreSQL and SQLServer. Since the
Group By operator and table filter are not pushed down, the intermediate results for
queries 15, 18, and 19 are skewed heavily in favor of PostgreSQL and SQLServer, hence
their absence from our results.

Table 6.1: Comparison of intermediate cardinality counts of query plans chosen and executed
by different database systems on the TPC-H benchmark. The intermediate cardinality counts
are normalized to the explicit plan for each query. If a system produces twice as many
intermediate tuples as the explicit plan, the normalized value is 2, while the explicit is always
1.

sys max avg median

DuckDB-tdoms 18.6 4.674 1.000
DuckDB-old 18.60 6.817 3.105

explicit (PostgreSQL) 1.0 1.0 1.0
sqlserver 3.98 0.91 1.0
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6. EVALUATION

Table 6.1 presents a summary of the TPC-H intermediate cardinality counts of four

database systems. The results show that the new join order optimizer improves interme-

diate cardinality counts across the min, max, avg, and median. If we analyze our results

and look for queries that satisfy properties in the three categories mentioned in section 5.3,

we only get q02, q03, q08, q09, and q21 showing up in C3. The intermediate cardinality

counts for these queries are plotted in Figure 6.1. The largest improvement is query 9,

where there is an improvement of almost 95%. The results of all intermediate cardinality

counts (including for the excluded queries q15, q18, and q19) can be found in Chapter 9.
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Figure 6.1: TPC-H queries where DuckDB-tdoms has a lower intermediate cardinality
count than DuckDB-old. PostgreSQL and SQLServer are also provided as reference. All
intermediate cardinality counts are normalized to the PostgreSQL results.

End-to-End Execution Times

Table 6.2 presents the end-to-end execution times of running the TPC-H benchmark on

DuckDB with the new join order optimizer vs the old join order optimizer on scale factor

10. The new join order optimizer significantly improves the maximum end-to-end execu-
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Table 6.2: Summary of end-to-end execution times of TPC-H queries on scale factor 10.

sys max avg median

DuckDB-tdoms 1.163s 0.397s 0.300s
DuckDB-old 4.440s 0.593s 0.293s

tion time, with a reduction of 74%. Figure 6.2 shows the normalized end-to-end execution
results for all queries that had faster execution times. The values indicate that a lower in-
termediate cardinality count does indeed translate to a faster execution time. The results
for all end-to-end execution times (including for the excluded queries q15, q18, and q19)
can be found in Chapter 9.
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Figure 6.2: TPC-H queries where DuckDB-tdoms has faster end-to-end execution results.
Each result is normalized to the end-to-end execution time of DuckDB-old. For each query in
this figure, DuckDB-tdoms produced a lower intermediate cardinality count during execution.

6.2 Join Order Benchmark

Intermediate Cardinality Counts

Table 6.3 and Figure 6.3 summarize the performance of PostgreSQL, SQLServer, DuckDB-
old, DuckDB-tdoms, and the explicit plans gathered from (21). The results show that JOB
queries run on DuckDB-tdoms result in a lower intermediate cardinality count compared
to DuckDB-old.
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Table 6.3: Comparison of intermediate cardinality counts produced by query plans chosen
and executed by different database systems. Intermediate cardinality counts are normalized
to the explicit plan per query.

sys max avg median

PostgreSQL 346.04 11.61 1.00
explicit 1.00 1.00 1.00

SQLserver 368.01 8.71 0.73
DuckDB-old 18874.70 391.86 14.085

DuckDB-tdoms 327.89 16.91 1.005

On average, DuckDB-old produced an intermediate cardinality count almost 400x greater
than the explicit plans. DuckDB-tdoms plans resulted in an intermediate cardinality count
16.9x greater than the explicit plans, a reduction of more than 95%. A normalized median
of 1:005x is a good indicator that even though some outliers skew the average, DuckDB-
tdoms produces plans with comparable costs to the explicit and PostgreSQL plans at
least half the time. The intermediate cardinality counts of every query can be found in
Chapter 9.

Some of the intermediate cardinality counts reported by PostgreSQL, SQLServer, and
DuckDB are less than the explicit plans. This can be for a few reasons. The explicit plans
enumerate a much smaller subset of the plan space compared to DuckDB and potentially
PostgreSQL and SQLServer. For this reason, the explicit plans do not find the optimal
join orders. The explicit plans do, however, avoid disastrous plans by utilizing the maxi-
mum frequency statistics and precise selectivity estimation to produce a guaranteed upper
bound for the true cardinality of a join. DuckDB-tdoms, DuckDB-old, PostgreSQL, and
SQLServer do not make use of guaranteed upper bounds, and therefore produce plans that
can still blow up.

18 queries have a higher intermediate cardinality count under DuckDB-tdoms compared
to DuckDB-old. There is a lot of variability in these values and after some investigation,
it was possible to identify specific reasons for why each query has a worse intermediate
cardinality count under DuckDB-tdoms compared to DuckDB-old. Below is a more de-
tailed explanation of each reason, and Table 6.4 labels each query with a reason as to why
it performed worse with the new join order optimizer.

F1 The filter company_name.country_code = ’[us]’ is predicted to match 1488 tu-
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Figure 6.3: Box plot of intermediate cardinality counts for all JOB queries. The interme-
diate cardinality count for each query is normalized to the explicit plan. In these tests, the
queries are run on base tables. Note that this is a log scale and not linear.

ples. In reality, the filter matches 84,842 tuples, which is 57x the predicted amount.
With a lower predicted amount of tuples resulting from the filter DuckDB-tdoms
will join the company_name base table earlier in the join process, causing more in-
termediate tuples to be produced than originally predicted.

F2 Filter estimation logic for keyword IN (...) filters has not yet been implemented.
This logic is the same as keyword = ’...’ OR keyword = ’...’ as explained
in section 3.4. Currently, a selectivity of 20% is applied which is consistently an
overestimation for these types of filters.

F3 The filter cast_info.note="(voice: English version)" is predicted to match
362 tuples of the cast_info table by DuckDB-tdom’s naive filter estimation. In
reality 93,095 tuples are matched which is 257x the predicted amount. Similar to
F1, filters that are predicted to be extremely selective result in the cast_info base
table being one of the first joined in the join tree.
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6. EVALUATION

F4 Many of the filters are of the form contains(title, "money"). These types of

filters employ a naive estimation of 20%. Queries in Table 6.4 with reason F4 have

many contains filters and each one is extremely selective. The old optimizer gets

lucky and puts these selections at the bottom of the join tree. The new optimizer

puts the selections closer to the top of the join tree.

S1 Only U.S companies are queried as part of a larger query. The U.S has many more

movie companies than other countries, so naturally, when a query searches for U.S-

based movie companies, it is incorrect to assume 20% of all companies are from the

U.S. Queries with S1 violate the independence assumption, and there is skew.

S2 Movie Ids with some rating are requested, which results in a join between movie_info_idx

and info_type. This join has skew. 33% (459925) of the tuples in the movie_info_idx

table have info_type_id=’rating’. When a filter like movie_info_idx.info >

6.0 is applied on the movie_info_idx table, the selectivity estimator assumes 20% of

the tuples match, or 276007 tuples. This naive estimate is not the reason why our car-

dinality estimation is incorrect, but when joining on movie_info_idx.info_type_id

= info_type.id where info_type.info_type_id=’rating’ our independence as-

sumption negatively affects our estimations. We assume that all 113 info_type.id

values are equally distributed across the 276007 tuples from the movie_info_idx

table. In reality, since the filter movie_info_idx.info > 6.0 has already been ap-

plied, most of the resulting 276007 tuples are already ratings. A query like

SELECT * FROM
movie_info_idx, info_type
WHERE movie_info_idx.info_type_id = info_type.id
AND info_type.info_type_id=’rating’;

predicts a result of 5018 tuples, when in fact the result is closer to 259848 tuples

(these are the exact numbers for JOB query 14b, which requests all Movie IDs with

a rating > 6:0 with the word “murder” in the title).

32



6.2 Join Order Benchmark

Table 6.4: JOB Queries producing higher intermediate cardinality counts when run on
DuckDB-tdoms vs. DuckDB-old.

query cost DuckDB-tdoms cost DuckDB-old reason(s)

06d 2,770,110 1,985,119 F2

07c 2,060,924 1,265,777 F2

08a 49,980 49,594 F3

08b 37,036 9,501 F3

09a 821,906 543,847 F1

09b 285,908 177,782 F1

09c 2,045,156 1,187,818 F1

09d 4,013,646 2,655,294 F1

11b 10,915 463 S1

12a 52,733 27,402 F1&S1

12b 1,163,408 534,533 F1&S1

12c 468,082 288,545 F1&S1

13b 1,159,042 119,728 F1&S1

13c 1,154,450 27,776 F1 & S1

14b 259,910 1,171 S2

19c 2,984,681 2,978,260 F1 & S1

22c 3,560,704 2,089,391 F1 & S2

22d 7,242,514 4,487,769 S2

End-to-End Execution Times

If we compare end-to-end execution times we see some favorable results. In this section,

we are only comparing DuckDB-tdoms and DuckDB-old so we can isolate the e�ects of

the new cardinality estimator in our cost model and join order optimizer. The results

from Table 6.5 and Figure 6.4 show that overall end-to-end query times improved for

the join order benchmark by an average of25%. Comparing these improvements to the

average improvements in intermediate cardinality counts, the di�erence is not as large as

one would hope. Taking a look atFigure 6.4, however, we can see that DuckDB-tdoms is

more robust as there are only three join order benchmark queries that take longer than

half a second to complete, while DuckDB-old has 11 queries that take longer than half a

second to complete.
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Table 6.5: End-to-end execution time statistics on Join Order Benchmark queries run on
base tables.

sys min max avg median

DuckDB-tdoms 0.005s 1.400s 0.167s 0.122s

DuckDB-old 0.026s 2.358s 0.224s 0.135s

Figure 6.4: A box plot of end-to-end execution times for JOB queries. Note that this is a
log scale and not linear.

We can now take a closer look at individual queries and see which ones fall into the

three categories mentioned insection 5.3.

Figure 6.5 shows the timing results of all queries in categoryC1, which are queries

that have a smaller intermediate cardinality count when run on DuckDB-tdoms, but take

longer to execute when compared to DuckDB-old. Queries 08c and 08d are the only two

queries in the categoryC1. For these queries, DuckDB-tdoms produces a plans that have

a foreign-key foreign-key (FK-FK) join, which is not easy for the execution engine to

handle. In a FK-FK join, the build side can have duplicate values, so when each value is

hashed and placed into the bucket, hash collisions will be chained using linked lists. This

will make the probing phase take longer as well, as the whole linked list must be traversed,

requiring a random read from memory for each entry.
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Figure 6.5: All JOB queries where DuckDB-tdoms had a lower intermediate cardinality
count than DuckDB-old, but higher end-to-end execution time.

No JOB queries are in category C2, meaning no plans were found with higher interme-

diate cardinality counts and lower end-to-end execution times.

Figure 6.6 shows the normalized end-to-end execution times of all queries in category

C3 mentioned in Chapter 5. Queries inC3 have lower intermediate cardinality count and

faster end-to-end execution time when run on DuckDB-tdoms when compared to DuckDB-

old. For each query, the intermediate cardinality count of DuckDB-tdoms is consistently

more than 10x less than the intermediate cardinality counts of DuckDB-old. The absolute

end-to-end execution times and cardinality counts for all queries can be found inChapter 9.

6.3 Join Order Benchmark on Parquet Tables

Intermediate Cardinality Counts

We now take a look at the performance of our new join order optimizer when running join

order benchmark queries on parquet �les. DuckDB will not have access to table statistics

in these tests, and therefore will use the lowest cardinality of a table as thetdom of an
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Figure 6.6: Execution and optimizer times of select JOB queries on DuckDB-tdoms and
DuckDB-old. For every query in the plot, DuckDB-tdoms is at least 100ms faster than
DuckDB-old. Times are normalized per query to the end-to-end execution time of DuckDB-
old.

equivalence set. For these experiments, all tables in the IMDB dataset were exported to

parquet �les. The same experimental setup was used, with the only di�erence being that

the JOB queries were amended to query directly from the parquet �les.

Table 6.6: Comparison of intermediate cardinality counts produced by query plans selected
by DuckDB-tdoms and DuckDB-old.

sys max avg median

DuckDB-tdoms (on parquet �les) 4007.07 133.814 1.595

DuckDB-old 18874.70 391.861 14.085

explicit 1.00 1.000 1.000

DuckDB-tdoms (on base tables) 327.89 16.91 1.005

Table 6.6and Figure 6.7show the results of running the join order benchmark on parquet

�les instead of base tables. Results for all queries can be found inChapter 9. While these

results are not as favorable as the results insection 6.2, there is still an improvement. The

di�erence between DuckDB-tdoms on parquet �les and DuckDB-tdoms on base tables

comes from the fact that fewer statistics are available in parquet �les, providing the query

optimizer with less information to estimate selectivities on base tables.
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Figure 6.7: Box plot of intermediate cardinality counts of JOB queries executed on parquet
�les. Note that the �gure has a log scale and not a linear scale.

End-to-End Execution Times

Table 6.7 clearly shows that the new join order optimizer selects plans with lower end-

to-end execution times for JOB queries run on parquet �les. Figure 6.8 further improves

these results and shows that there are no signi�cant outliers. No job queries on parquet

data take longer than 1 second to execute when run on DuckDB-tdoms, while at least �ve

job queries take longer than 1 second to execute when running on DuckDB-old.

Table 6.7: Summary of end-to-end execution time when running join order benchmark
queries on parquet data.

sys min max avg median

DuckDB-tdoms-parquet 0.025s 0.817s 0.343s 0.343s

DuckDB-old-parquet 0.058s 2.538s 0.417s 0.346s
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Figure 6.8: Boxplot of total time statistics for running JOB queries on parquet �les. Note
that this is a log scale and not linear scale.

When running the JOB queries on just parquet �les, queries fall into the following

categories described insection 5.3.

C1 Queries where the new join order optimizer produces a lower intermediate cardinality

count, but a higher end-to-end execution time.

Queries 09d, 20b, 29a, 29b, 29c fall into this category.Figure 6.9 shows that for

queries 29[a-c], the optimizer is the cause for the increased end-to-end execution

times. An analysis of increased optimizer times can be found insection 6.4. The

intermediate cardinality count di�erence between DuckDB-tdoms and DuckDB-old

for query 09d is 201, so the end-to-end execution di�erence is considered to be noise

from reading parquet �les. Query 20b has a FK-FK join. As mentioned earlier,

FK-FK hash joins take longer to complete due to duplicate values in the build side.
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Figure 6.9: Optimizer and Execution run-times for JOB queries run on parquet �les.
The queries in this graph have lower intermediate cardinality counts, but higher end-to-end
execution times.

C2 Queries where the new join order optimizer produces a higher intermediate cardi-

nality count, but a lower end-to-end execution time.

Query 07c is in this class. Analyzing the cardinalities of the build-side of each join

in query 07c, we see that DuckDB-old has 4x the amount of build-side tuples when

compared to DuckDB-tdoms. Table 6.8 shows a summary of the statistics for query

07c. The intermediate cardinality count of DuckDB-tdoms is 1.5x that of DuckDB-

old, and the average hash time was measured using one thread to avoid confusing

execution results due to parallelism. Smaller build side cardinalities lead to faster

hash join executions because the CPU will not have to swap as many hash buckets

into CPU cache.

Table 6.8: Build side, probe side, and hash join execution statistics for q07. We see that
although DuckDB-tdoms has 1.5x the intermediate cardinality count of DuckDB-old, the build
side cardinality plays a major role in how fast the query can execute.

sys cost
total build

side cardinality

Average time to execute

a hash join (seconds)

DuckDB-tdoms-parquet 1891945 205461 0.047s

DuckDB-old-parquet 1265777 827537 0.167s
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C3 Queries where the new join order optimizer results in a lower end-to-end execution

time.

22 queries are in this class, namely 02a, 02b, 02c, 02d, 05a, 05b, 06f, 07c, 08c, 08d,

13a, 13d, 17e, 17f, 18a, 19d, 20a, 20c, 25a, 25c, 31a and 31c. Each query has a lower

cardinality count as well, otherwise, it would be in classC2.

6.4 Number of Relations vs. Optimizer Time

Figure 6.6, and Figure 6.9 show that the optimizer is taking more time for some of the

queries. One factor that determines how long the optimizer takes is the number of relations

present in the SQL query. Figure 6.10 compares the optimizer time of DuckDB-old with

DuckDB-tdoms, plotting average optimizer time as a function of the number of relations

for all the JOB queries.

Figure 6.10: Optimizer time plotted as a function of the number of relations in a query.
The optimizer timings are from running JOB queries on base tables.

Figure 6.10 plots optimizer time as a function of the number of relations in the query.

The results show that as the number of relations grows, the longer it takes for the op-

timizer to �nish. This is to be expected as there are n! possible join orders, and the

plan enumerator in DuckDB-tdoms can emit an exponential number of pairs of relation

sets as join candidates. To avoid enumerating all possible pairs, the join order optimizer

only emits 10,000 pairs, originally 2,000 pairs in DuckDB-old. This is one cause of the
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slowdown in the optimizer. Another reason is that every call to the cardinality estima-

tor with a new distinct set of relations must call the minimum spanning tree algorithm,

which is O(n � log(n)) in the number of join conditions. This call was not present in

DuckDB-old. When the plan enumerator �nishes emitting 10,000 pairs, a greedy plan

enumerator algorithm takes over, which isO(n3) in regards to the number of relations, so

cubic growth occurs. The greedy algorithm was already present in DuckDB-old, so it does

not contribute to the slowdown.

While the optimizer time takes longer, normalizing it to the execution time does not

help with analysis. The optimizer time is solely dependent on the number of relations.

The size of the data, and therefore the time spent executing the query plan, does not a�ect

the optimizer time. As long as the number of relations remains the same, the optimizer

will have the same run-time.

It is important to note that when the optimizer switches from dynamic programming

plan enumeration to approximate plan enumeration, no information from the dynamic

programming table is used by the approximate plan enumerator. Even if the dynamic

programming table has a low-cost plan for (n-1) relations, the approximate join order

optimizer will not consider that plan, and will instead build its own.
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Discussion

In Chapter 1, three research goals were introduced in an e�ort to improve the quality of

the DuckDB join order optimizer, and subsequently the query optimizer. In Chapter 3, a

minimal cardinality estimator was introduced, requiring only the number of distinct values

in a column. A simple cost model was also described, requiring only cardinality estimates

as input.

The intermediate cardinality counts and end-to-end execution times from running the

TPC-h benchmark clearly show that DuckDB-tdoms selects better plans than DuckDB-

old on average. 6 of 19 queries had smaller intermediate cardinality counts and execution

times. Query 9 had a intermediate cardinality count improvement of 95%, and a run-time

improvement of 80% (Figure 6.1 and Figure 6.2). No queries in the TPC-H benchmark

regressed, indicating that for queries that are not join heavy, the new join order optimizer

did not regress the end-to-end performance of DuckDB.

The results produced from the Join Order Benchmark inChapter 6 clearly show that

DuckDB-tdoms selects plans that produce smaller intermediate cardinality counts than

DuckDB-old on average. This is true when no statistics are available, and when statistics

are available. The intermediate cardinality counts of DuckDB plans run on base tables

are comparable to state-of-the-art systems as well, as min, max, average, and median

intermediate cardinality counts are all within an order of magnitude of the same results

produced by SQLServer and PostgreSQL (Table 6.3).

The di�erence in maximum end-to-end execution time for the Join Order Benchmark

results shows that the new join order optimizer is more robust, and avoids disastrous plans

selected by the previous join order optimizer. Figure 6.8 provides evidence of this when

running benchmarks on parquet �les, as the maximum execution time decreased from 2.5

seconds to less than 1 second.Figure 6.4 provides stronger evidence of this when running
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the Join Order Benchmark on base tables by reducing the end-to-end execution time from

2.5 seconds to less than 1.5 seconds. Removing two outliers (<2% of queries) that have

expensive FK-FK joins, the highest execution time for a Join Order Benchmark query on

base tables becomes 0.57 seconds.

The results in Table 6.4 showed 18 queries that had higher intermediate cardinality

counts. While these values were a result of the naive selectivity estimation logic and skew

within the database, only 11 of the queries resulted in higher end-to-end execution times.

From these �ndings, we can conclude that intermediate cardinality counts do notdirectly

correlate to end-to-end execution times for any one query. It is clear that physical factors

such as build-side cardinalities, CPU memory, and cache misses a�ect the end-to-end

execution time of certain queries, as well as optimizer time. Table 6.3 and Table 6.5,

however, show that on average, a lower intermediate cardinality count will lead to a lower

end-to-end execution time.

Another result worth mentioning is the e�ect of the changes on the optimizer run-time.

Figure 6.10 clearly shows that the new join order optimizer takes more time compared to

the old. Although this is the case, Table 6.5 justi�es the increased optimizer time, since

the average end-to-end execution time is less.

Chapter 6 presents more than enough data to prove that the research goals were achieved.

For 15% of the join order benchmark queries, the new join order optimizer produces plans

that are signi�cantly better in cardinality counts and end-to-end execution times. For the

78% of the queries, there is no di�erence in end-to-end execution times. For the last 7%

of the join order benchmark queries, the new join order optimizer produces plans that are

worse, but their poor performance is outweighed by the improvements in other queries.

The poorly performing queries are a result of skew and correlation in the database, which

is something our cardinality estimator has not yet been made to handle.Table 6.4 de-

scribes why each query had a higher intermediate cardinality count with the new join

order optimizer. Each one of these reasons can be labeled as an item for future work,

which we describe below.

Future Work

ˆ Faster Cardinality Estimation

When predicting cardinalities we calculate the spanning tree of the subset of relations

and join conditions. This can be made more e�cient by caching spanning tree results

from subsets and analyzing how many edges were added per relation.
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ˆ Faster Plan Enumeration when Given Many Relations

If there are more than 10 relations, and a number of them have smaller cardinalities,

the optimizer can immediately run the approximate heuristic instead of the dynamic

programming plan enumeration algorithm. This will improve optimizer overhead.

Another improvement in this area would be implementing the work ofNeumann et al.

in Adaptive Optimization of Very Large Join Queries where join order optimization

can be scaled to thousands of queries (22).

ˆ Support for the IN Clause

As mentioned in Chapter 6, there is no selectivity estimation logic for �lters like IN

("...", ...) beyond the naive 20% �lter. Extending the selectivity estimator to

estimate these clauses should improve the quality of the optimizer as well.

ˆ Sampling, Histograms, and Statistics Selectivity estimation can be improved by

adding samples, histograms, or more statistics. Work in (23) can estimate the max-

imum frequency of values in a column in a dynamic database. If accurate maximum

frequency values are added, we can produce an accurate maximum upper bound on

the cardinality of a join.

ˆ Selectivity Estimation in the Absence of Statistics

As mentioned in subsection 3.5.1, when no statistics are present for a column, the

naive 20% �lter is used, which will make the cost model less accurate. With more

accurate selectivity estimation by gathering statistics on the �y, the cost model will

also become more accurate and the quality of the query plans will improve.

The statements made in this section are drawn from evidence produced by running the

join order optimizer on benchmarks that either have small scale and real-world skew, or

large scale with synthetic skew. With more time, it would be interesting to test the new

join order optimizer on benchmarks with larger data sets and real-world skew.
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Related Work

The paper Access Path Selection in a Relational Database Management Systemwas the

�rst paper to introduce the concept of query optimizers with plan space enumeration, car-

dinality estimation, and a cost model. The plan enumerator in the 1970 paper produces

all left-deep join plans. For every join, a cost is calculated based on the estimated cardi-

nality of the join, the types of table scans (when joining base tables), the number of page

fetches, and CPU usage. The paper includes selectivity estimation techniques for equality

joins and comparison joins. The selectivity estimation techniques in theSystem Rpaper

depend on index counts when available. The work in this thesis has a similar cost model

and cardinality estimator, but goes further to include cases when no statistics or indexes

are available. In addition, equivalence sets are introduced, which help to identify primary

key columns and distinct column counts when no statistics are available. This technique

is not mentioned in the System R paper. This thesis describes the distributive e�ect of

the cost model used and proves the importance of selectivity estimation in the absence of

statistics.

The plan enumeration algorithm used in DuckDB is an implementation of the DPhyp

algorithm described in the paperDynamic Programming Strikes Back by Moerkotte et al.

The paper introduces an e�cient plan enumeration algorithm that enumerate possible

join orders for a given query plan (13). The plan space enumeration algorithm is only one

component of join order optimization, and therefore cannot be directly compared to work

done in this thesis.

The paper Simplicity Done Right for Join Ordering by Hertzschuch et al.also presents

a fast and e�ective way to determine an optimal query plan. Assuming access to the

common statistic of most frequent values (top-k statistics) and precise selectivity estimates

of base table �lters, the authors produce a query optimizer that outperforms PostgreSQL
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and MonetDB with similar (or better) execution times for all 113 Join Order Benchmark

queries. Using the most frequent value statistic, an upper bound for the cardinality of a

join can be determined. The paper also introduces an enumeration scheme di�erent from

the one proposed byMoerkotte et al. in Dynamic Programming Strikes Back. First, all

FK-PK joins, described as non-expanding joins in the paper, are applied. Then,n : m joins

with the smallest upper bounds are applied. Then the next nextn : m joins are applied

in order of smallest upper bound. The results are quite favorable, achieving a faster query

response time for 62% of the join order benchmark queries. The di�erences between work

in this thesis and that of Hertzschuch et al. is in relation to the plan enumeration scheme,

and base table statistics. (21) assumes knowledge of most common value statistics and

precise selectivity estimation, while the tdom method requires either only an estimated

distinct count, or no statistics at all. Of all papers discussed in this section, this paper

comes closest to producing similar results and knowledge.

Every Row Counts: Combining Sketches and Sampling for Accurate Group-By Result

Estimates by Freitag et al. describes techniques developed to estimate the number of

distinct values in a group by clause. The paper introduces an e�cient HLL sketch imple-

mentation that supports updates, deletes, and inserts. In addition, an e�cient algorithm

for �nding high value-frequencies is introduced. The results show that the new counting

HLL implementation exhibits almost identical estimation accuracy in comparison to the

baseline in the presence of deletions and updates, with an increased overhead 5%. The

baseline was HLL run on an identical data set with no deletions (23). Frequency estima-

tion also had favorable results, improving in speed by a median of 9.8x compared to a

baseline hash table implementation. This paper proposes unique ways to gather statistics

on dynamic data but did not provide any results evaluating these statistics when used

with a cardinality estimator or in the larger scope of a query optimizer.

How I Learned to Stop Worrying and Love Re-optimization by Perron et al. introduces

an orthogonal concept to query optimization called re-optimization. The research goal

of the paper was to determine if re-optimizing poorly performing queries would provide

any bene�t to end-to-end execution time. To detect when re-optimization should occur,

the system compares the cardinality of an intermediate join to the predicted cardinality.

If the di�erence is large enough, the query gets re-optimized. The study �nds that only

20 poorly performing queries from the join order benchmark make up more than 95% of

the execution time di�erence when compared to plans chosen using perfect join estimates.

The results show that a simulated re-optimization obtains the same performance bene�ts

provided by perfect cardinality estimation when tested on the Join Order Benchmark.
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The re-optimization isn't implemented in practice, however. Intermediate results are ma-

terialized, then the EXPLAIN ANALYZEoutput is analyzed to determine if a re-optimization

would occur. If re-optimization does occur, the execution time of the re-optimization is

compared to the execution time without. Similar to this thesis, the paper does not test on

large scale data sets. A production implementation may provide di�erent results, and the

performance bene�ts are not guaranteed if tested in production. Re-optimization also re-

quires asking the question "when do you re-optimize?". The answer can be very dependent

on the data set, and on how accurate the cardinality estimator is (3).

Looking Ahead Makes Query Plans Robustintroduces another query optimization tech-

nique based on Lookahead information passing or LIP. Using pre-computed �lter structures

called bloom �lters, selectivities of �lters on dimension tables are estimated based on re-

sults of probing the bloom �lters in batch. The resulting join order is then determined by

the predicted selectivities of the �lters from most selective to least selective. The authors

introduce a cost model for building the bloom �lters, and execution times were used to

measure the performance improvements. Overall, there was a 5 - 10x speedup when using

LIP. Tests were done on theSTAR SCHEMA Benchmark, an unnamed synthetic bench-

mark, and TPC-H at scale factor 100. The paper only considers queries where a known

"fact" table can be used as the outer relation for every join, and plan enumeration search

spaces are restricted to left deep trees for this reason (6). This thesis includes the use of a

plan enumeration algorithm that considers bushy trees with no knowledge of dimension or

fact tables, and includes an evaluation on query optimizers where no data pre-processing

is performed (i.e building of bloom �lters).

Are We Ready For Learned Cardinality Estimation? analyzes whether or not cardinality

estimation and query optimizers can use learning techniques in production. The authors

analyze �ve learned models and determine that in a static environment (with no inserts,

updates, or deletes), learned models are more accurate but su�er from high training costs.

In more dynamic environments, learned models can not keep up with data updates which

may change correlation and skew. In addition, learned models are much harder to main-

tain ( 24). While the cardinality estimation models can be used as input for the cost

model when determining an optimal plan, the time required to train each model makes

their implementation in DuckDB implausible, as DuckDB is meant to be used for ad-hoc

analytical queries. The high overhead of start-up and learning times do not �t within the

scope of DuckDB use-cases.

LEO DB2s LEarning Optimizer introduces a simple learned optimizer that uses results

from previous query executions to inform future calls to the optimizer. Statistics from
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previous query executions are stored as �correcting� statistics and do not replace base

table statistics. LEO stores cardinality statistics, and second-order statistics (i.e number

of pages in a table). Experiments on an arti�cial data set and TPC-H showed that

adjustments provided by LEO enabled the optimizer to choose query plans that performed

up to 14 times better than execution plans without adjustments (2). The paper su�ers

from the same problem asHow I Learned to Stop Worrying and Love Re-optimization;

when do you re-optimize? There is a trade-o� between re-optimizing and improved run

times.

HyperLogLog is a near-optimal probabilistic algorithm for estimating the number of

distinct elements of large data sets. With only a single pass over the data andm bytes,

HyperLogLog can produce an estimate of the distinct count with an accuracy of about

1.04/
p

m. The input stream of a dataset is divided into m substreams, and every value

is hashed. Then bit-order observables (i.e leading 0's) are maintained for each substream.

It then produces an estimate of the distinct count based on the normalized version of the

harmonic mean of the indicator function. The indicator function is based on the bit order

observables from each stream (25). While the algorithm presented in the paper does not

provide a direct comparison to the work in this thesis, it is important to understand how

the statistics used in this thesis are gathered.

The paper Cardinality Estimation Done Right: Index-Based Join Sampling by Leis

et al. also presents a query optimizer with an improved cardinality estimation. In order

to overcome poor cardinality estimates, the paper introducesindex-based join sampling.

For a join A:x = B:y , rather than joining two independent random samples fromA and

B to predict the cardinality of (A on B ), a random sample fromA:x probes the indexB:y .

The algorithm assumes that indexes allow a user to cheaply count the number of matches,

making the join sampling e�cient and accurate. The plan enumeration is similar to that of

System R's and only considers left-deep trees, however, the algorithm does not determine

the join order, calculating only the estimated cardinality of a join using index-based join

sampling. The results show that with a sampling budget of 100,000 index lookups, only 3%

of JOB queries are o� by a factor of 10 or more when compared to a baseline. For larger

data sets, the samples must be larger as well to maintain similar results. The overhead for

index-based sampling in RAM takes about 30ms and is therefore cheap and fast enough

for applications that require fast response times (10). This thesis deviates from this work

by not requiring indexes, which can be expensive to build in DuckDB, and are not present

in parquet or CSV �les.
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Conclusion

This thesis presents a minimal cardinality estimator requiring little to no base table statis-

tics. The motivations behind the design of the cardinality estimator were simple and are

re�ected in the equation. The cardinality estimator works in conjunction with the cost

model and the plan enumerator to keep the logic of the join order optimizer simple and

maintainable.

In DuckDB, the dynamic programming table used to maintain the current best join order

requires a cost model to exhibit optimal substructure. Developing and implementing a

cardinality estimator with this requirement was challenging, but ultimately achievable.

The cardinality estimator does not account for skew or correlations and therefore is not

very accurate. Inaccurate cardinality estimates are re�ected in the selection of some JOB

query plans, yet the JOB results as a whole show that the cardinality estimator is an

improvement from what it previously was. Remembering our goals fromChapter 1, it

meansG1 was achieved.

The results show an overall improvement to query plans selected by the DuckDB query

optimizer. When executing the Join Order Benchmark on base tables, maximum, average,

and median intermediate cardinality counts all decreased by a factor of 98%, 95%, and 92%

respectively. When run on parquet �les, the maximum, average, and median intermediate

cardinality counts decreased by 78%, 66%, and 87%. The improvements in decreased

cardinality counts were re�ected in end-to-end execution time as well, with experiments

on base tables showing an improvement of 40%, 25% and 10% for maximum, average, and

median and 68%, 18%, and 1% for the same statistics but with the Join Order Benchmark

run on parquet �les. The conclusion can therefore be made that the new DuckDB query

optimizer is more robust and selects more e�cient query plans, indicating that goal G2

was achieved.
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9. CONCLUSION

The cardinality estimator required more optimization overhead, but the improvement in

end-to-end execution times justi�es the extra overhead. In addition, the code was merged

to DuckDB master. Goal G3 was therefore also achieved (26).

While the work presented in this thesis presents results comparable to state-of-the-art

systems, there is still plenty of room for improvement. Better �lter estimates on base

tables with and without statistics will improve the accuracy of the cardinality estimator.

In addition, the cardinality estimator can be made more e�cient so that it does not need

to repeat the complete spanning tree algorithm for every new set of relations. The plan

enumerator can also be improved to switch to a greedy algorithm or adaptive optimization

if more than 11 joins are detected, as the current plan enumerator will take too long.

In the future, it would be interesting to see the results of implementing the mentioned

improvements in the DuckDB optimizer. If such a simple cardinality estimation technique

can provide us with the favorable results presented in this thesis, it is worthwhile to

investigate how these re�nements could further improve the quality of the join order

optimizer.
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Appendix TPC-H Data

Intermediate cardinality counts for the TPC-H benchmark. If a query has no results, then

there was no intermediate join present in the query tree.
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Intermediate Cardinality Counts of TPC-H queries 1 to 12 run on base tables.
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Intermediate Cardinality Counts of TPC-H queries 13 to 22 run on base tables.
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Summary of end-to-end execution times of TPC-H queries on scale factor 10.

query
duckdb-tdoms

total time

duckdb-old

total time

duckdb-tdoms

optimizer time

duckdb-old

optimizer time

q01 0.375 0.379 0.000 0.000

q02 0.090 0.097 0.000 0.000

q03 0.196 0.244 0.000 0.000

q04 0.326 0.327 0.000 0.000

q05 0.196 0.203 0.001 0.000

q06 0.095 0.095 0.000 0.000

q07 0.541 0.536 0.001 0.000

q08 0.195 0.251 0.001 0.001

q09 0.913 4.440 0.001 0.000

q10 0.300 0.281 0.000 0.000

q11 0.049 0.050 0.000 0.000

q12 0.168 0.282 0.000 0.000

q13 0.457 0.443 0.000 0.000

q14 0.133 0.139 0.000 0.000

q15 0.421 0.426 0.000 0.000

q16 0.305 0.322 0.000 0.000

q17 0.818 0.833 0.000 0.000

q18 1.163 1.303 0.000 0.000

q19 0.288 0.293 0.000 0.000

q20 0.570 0.561 0.000 0.000

q21 1.020 1.209 0.000 0.000

q22 0.146 0.160 0.000 0.000
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Appendix JOB data

Intermediate cardinality counts for the Join Order Benchmark on base tables.
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Intermediate Cardinality Counts of JOB queries 01a to 04b run on base tables.
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Intermediate Cardinality Counts of JOB queries 04c to 08a run on base tables.
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Intermediate Cardinality Counts of JOB queries 08b to 11c run on base tables.
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Intermediate Cardinality Counts of JOB queries 11d to 15a run on base tables.
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Intermediate Cardinality Counts of JOB queries 15b to 17e run on base tables.
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Intermediate Cardinality Counts of JOB queries 17f to 21a run on base tables.
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Intermediate Cardinality Counts of JOB queries 21b to 25a run on base tables.
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Intermediate Cardinality Counts of JOB queries 25b to 29a run on base tables.
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Intermediate Cardinality Counts of JOB queries 29b to 33b run on base tables.
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Summary of end-to-end execution times for queries 01a to 09d of the

Join Order Benchmark when run on base tables. Results are in seconds.

query relations
duckdb-tdoms-parquet

total time

duckdb-old-parquet

total time

duckdb-tdoms-parquet

optimizer time

duckdb-old-parquet

optimizer time

01a 5 0.024 0.077 0.000 0.000

01b 5 0.016 0.065 0.000 0.000

01c 5 0.017 0.033 0.000 0.000

01d 5 0.016 0.080 0.000 0.000

02a 5 0.029 0.194 0.000 0.000

02b 5 0.028 0.191 0.000 0.000

02c 5 0.013 0.194 0.000 0.000

02d 5 0.050 0.193 0.000 0.000

03a 4 0.086 0.107 0.000 0.000

03b 4 0.042 0.041 0.000 0.000

03c 4 0.100 0.179 0.000 0.000

04a 5 0.062 0.054 0.000 0.000

04b 5 0.018 0.027 0.000 0.000

04c 5 0.109 0.087 0.000 0.000

05a 5 0.029 0.074 0.000 0.000

05b 5 0.024 0.047 0.000 0.000

05c 5 0.105 0.094 0.000 0.000

06a 5 0.054 0.056 0.000 0.000

06b 5 0.052 0.043 0.000 0.000

06c 5 0.050 0.042 0.000 0.000

06d 5 0.264 0.073 0.000 0.000

06e 5 0.055 0.073 0.000 0.000

06f 5 0.299 0.432 0.000 0.000

07a 8 0.069 0.109 0.014 0.001

07b 8 0.065 0.069 0.014 0.001

07c 8 0.413 0.292 0.014 0.001

08a 7 0.087 0.103 0.003 0.001

08b 7 0.086 0.085 0.003 0.001

08c 7 1.374 0.722 0.003 0.001

08d 7 1.089 0.577 0.003 0.001

09a 8 0.167 0.167 0.013 0.001

09b 8 0.126 0.128 0.013 0.001

09c 8 0.172 0.175 0.013 0.001

09d 8 0.429 0.203 0.013 0.001
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Summary of end-to-end execution times for queries 10a to 17f of the

Join Order Benchmark when run on base tables. Results are in seconds.

query relations
duckdb-tdoms-parquet

total time

duckdb-old-parquet

total time

duckdb-tdoms-parquet

optimizer time

duckdb-old-parquet

optimizer time

10a 7 0.107 0.159 0.002 0.000

10b 7 0.103 0.156 0.002 0.000

10c 7 0.180 0.201 0.002 0.000

11a 8 0.032 0.048 0.007 0.001

11b 8 0.028 0.029 0.007 0.001

11c 8 0.097 0.144 0.007 0.001

11d 8 0.319 0.141 0.007 0.001

12a 8 0.061 0.065 0.007 0.001

12b 8 0.068 0.076 0.007 0.001

12c 8 0.112 0.080 0.007 0.001

13a 9 0.088 2.449 0.018 0.002

13b 9 0.074 0.060 0.018 0.002

13c 9 0.065 0.053 0.018 0.002

13d 9 0.147 2.166 0.018 0.002

14a 8 0.088 0.129 0.005 0.001

14b 8 0.080 0.070 0.005 0.001

14c 8 0.109 0.245 0.005 0.001

15a 9 0.089 0.105 0.018 0.003

15b 9 0.079 0.088 0.018 0.003

15c 9 0.138 0.124 0.018 0.003

15d 9 0.146 0.111 0.018 0.003

16a 8 0.068 0.185 0.011 0.001

16b 8 0.579 0.521 0.011 0.001

16c 8 0.180 0.240 0.011 0.001

16d 8 0.177 0.229 0.011 0.001

17a 7 0.195 0.249 0.004 0.001

17b 7 0.276 0.225 0.004 0.001

17c 7 0.279 0.214 0.004 0.001

17d 7 0.284 0.223 0.004 0.001

17e 7 0.247 0.502 0.004 0.001

17f 7 0.310 0.313 0.004 0.001
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Summary of end-to-end execution times for queries 18a to 26c of the

Join Order Benchmark when run on base tables. Results are in seconds.

query relations
duckdb-tdoms-parquet

total time

duckdb-old-parquet

total time

duckdb-tdoms-parquet

optimizer time

duckdb-old-parquet

optimizer time

18a 7 0.222 0.642 0.004 0.001

18b 7 0.142 0.144 0.004 0.001

18c 7 0.196 0.232 0.004 0.001

19a 10 0.222 0.205 0.022 0.003

19b 10 0.173 0.150 0.022 0.003

19c 10 0.256 0.236 0.022 0.003

19d 10 0.399 0.691 0.022 0.003

20a 10 0.164 0.468 0.020 0.003

20b 10 0.132 0.092 0.020 0.003

20c 10 0.128 0.348 0.020 0.003

21a 9 0.096 0.093 0.018 0.003

21b 9 0.068 0.071 0.018 0.003

21c 9 0.098 0.143 0.018 0.003

22a 11 0.122 0.087 0.022 0.003

22b 11 0.101 0.084 0.022 0.003

22c 11 0.240 0.123 0.022 0.003

22d 11 0.383 0.135 0.022 0.003

23a 11 0.121 0.072 0.022 0.003

23b 11 0.121 0.053 0.022 0.003

23c 11 0.126 0.106 0.022 0.003

24a 12 0.268 0.241 0.028 0.003

24b 12 0.197 0.214 0.028 0.003

25a 9 0.194 0.518 0.018 0.003

25b 9 0.152 0.154 0.018 0.003

25c 9 0.304 0.669 0.018 0.003

26a 12 0.162 0.237 0.026 0.003

26b 12 0.115 0.212 0.025 0.003

26c 12 0.209 0.220 0.026 0.003
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Summary of end-to-end execution times for queries 27a to 33c of the

Join Order Benchmark when run on base tables. Results are in seconds.

query relations
duckdb-tdoms-parquet

total time

duckdb-old-parquet

total time

duckdb-tdoms-parquet

optimizer time

duckdb-old-parquet

optimizer time

27a 12 0.085 0.053 0.027 0.003

27b 12 0.084 0.051 0.027 0.003

27c 12 0.109 0.071 0.027 0.003

28a 14 0.200 0.093 0.032 0.004

28b 14 0.127 0.071 0.032 0.004

28c 14 0.226 0.092 0.032 0.004

29a 17 0.272 0.191 0.106 0.004

29b 17 0.257 0.155 0.107 0.004

29c 17 0.317 0.235 0.124 0.004

30a 12 0.174 0.154 0.026 0.003

30b 12 0.172 0.153 0.027 0.003

30c 12 0.257 0.187 0.027 0.003

31a 11 0.196 1.018 0.023 0.003

31b 11 0.188 0.171 0.023 0.003

31c 11 0.246 1.359 0.023 0.003

32a 6 0.005 0.068 0.001 0.000

32b 6 0.026 0.068 0.001 0.000

33a 14 0.063 0.031 0.029 0.003

33b 14 0.062 0.027 0.030 0.003

33c 14 0.066 0.032 0.029 0.003
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Appendix JOB on parquet data

Intermediate cardinality counts for join order benchmark on parquet �les.
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Intermediate Cardinality Counts of JOB queries 17f to 22a run on parquet files.

80



REFERENCES

22b 22c 22d 23a 23b
  

0

2

4

6

8

10

  

0.44

2.65

8.79

198.38 48.76

1.57 1.54

5.45

309.76 135.26

1.0 1.0 1.0 1.0 1.0

duckdb-tdoms-parquet
duckdb-old-parquet
explicit

23c 24a 24b 25a 25b
  

0

2

4

6

8

10

In
te

rm
ed

ia
te

 C
ar

di
na

lit
y 

Co
un

t

204.35 87.89

1.11 1.35
0.88

349.8 220.31 106.38 26.76

1.071.0 1.0 1.0 1.0 1.0

25c 26a 26b 26c 27a
JOB Query

0

2

4

6

8

10

  

2.66

1.43 1.18 1.34

3.05

20.33 129.75 184.17 42.55

7.06

1.0 1.0 1.0 1.0 1.0

Intermediate Cardinality Counts of JOB queries 22b to 27a run on parquet files.

81



REFERENCES

27b 27c 28a 28b 28c
  

0

2

4

6

8

10

  

3.08
3.69

1.61 1.47

3.11

7.14

8.44

4.45
11.75

3.66

1.0 1.0 1.0 1.0 1.0

duckdb-tdoms-parquet
duckdb-old-parquet
explicit

29a 29b 29c 30a 30b
  

0

2

4

6

8

10

In
te

rm
ed

ia
te

 C
ar

di
na

lit
y 

Co
un

t

3.6

8.36

3.87

2.25 2.27

10.06 25.7 10.98

2.29 2.31

1.0 1.0 1.0 1.0 1.0

30c 31a 31b 31c
JOB Query

0

2

4

6

8

10

  

1.44

3.35

0.0

1.91.99

90.12

1.09

139.9

1.0 1.0 1.0 1.0

Intermediate Cardinality Counts of JOB queries 27b to 31c run on parquet files.

82




	List of Figures
	List of Tables
	1 Introduction
	2 Background
	3 Design
	3.1 Cardinality Estimator
	3.2 Cardinality Estimation with No Statistics (Equivalence Sets)
	3.3 Commutativity & Associativity
	3.4 Selectivity Estimation
	3.5 Cost Model
	3.5.1 Weaknesses


	4 Implementation
	5 Experimental Setup
	5.1 Benchmarks
	5.2 Hardware
	5.3 Result Classifications

	6 Evaluation
	6.1 TPCH Benchmark
	6.2 Join Order Benchmark
	6.3 Join Order Benchmark on Parquet Tables
	6.4 Number of Relations vs. Optimizer Time

	7 Discussion
	8 Related Work
	9 Conclusion
	References

