
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master’s Thesis

A Testing Strategy for Hybrid Query
Execution in Database Management

Systems

Author: Florian Gerlinghoff (2734858)

1st supervisor: prof. dr. Peter Boncz
daily supervisor: Boaz Leskes (MotherDuck)
2nd reader: dr. Natalia Silvis-Cividjian

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

September 24, 2023



ii



Abstract

Powerful personal computing devices give rise to a new model of query processing
in database management systems: hybrid query execution. In this model, the
execution of a single database query can be distributed between a client and a
server. Because the client can take part in the processing as well, local resources
can be harnessed more efficiently and computation can be moved close to the
data. Hybrid query execution has been implemented based on DuckDB, an
analytical, embeddable database system.

In this master’s thesis, we describe the development of a test suite for verifying
the functional correctness of the hybrid-query-execution implementation. We
used an existing test suite for DuckDB as a starting point and progressively
enabled the SQL-based tests to target the new query processing model. Our
effort was directed by regularly measuring the code coverage achieved by the
test suite, thereby identifying new problems to work on.

Through this systematic approach, we increased the code coverage from 25% to
around 80%. Our test suite serves as a valuable tool for validating the correct
operation of hybrid query execution in DuckDB.
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Introduction

Data has become a crucial asset for many companies worldwide. So crucial, in fact, that
it has even been called the “oil of the 21st century”. This prompted companies to collect
more and more data, for example, to aid business decision making or to be able to apply
advanced technologies like machine learning. All this data, of course, has to be processed
at some point.

Database research has been at the forefront of this development and contributed to
the rise of big data systems like Apache Hadoop and Apache Flink, or more recently
cloud-based data warehouses such as Amazon Redshift, Google BigQuery and Snowflake.

But for many purposes, this massive amount of data might not even be necessary. For
many purposes, only the most recent data might be useful or the totality of data could be
summarized, shrinking the data volume that needs to be processed immensely. And what
remains might fit onto a single machine. In short, laptops and other personal computers,
powerful as they are nowadays, might be able to answer many of the questions from the
data locally. No complex distributed system needed. This is the central thesis behind the
dictum “Big Data Is Dead”1 and calls for rethinking how data processing is done.

It is the motivation for the emergence of a new way of query processing: Hybrid query
execution2. This novel execution model taps into the resources available on local computers
to enhance the performance and reduce the cost of processing. While in a traditional
client-server architecture, the client only uses a thin connector to the database server, in a
hybrid-execution architecture, a complete database system is available locally. This enables
the client to participate in the processing of queries and the computation of results, putting
its own compute resources to use.

1https://motherduck.com/blog/big-data-is-dead/
2In the following, we refer to this model simply as hybrid execution.

1
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1. INTRODUCTION

DuckDB, an analytical, embeddable database system, can run on a variety of platforms,
from smartphones to laptops to big servers, and comes with a small footprint and good
performance. Therefore, it is well-suited to be used in a hybrid-execution architecture.
And in fact, a company called MotherDuck3 has implemented hybrid execution on top of
DuckDB.

While, in a world of “Big Data Is Dead”, less data is sufficient to answer questions,
analyze trends, or help with decision-making, this does not derogate the importance of
the data or the conclusions drawn from it in any way. Consequently, it is essential that
database systems process this highly important data correctly and reliably, providing
accurate results to queries. Faults could have dire consequences, ranging from incorrect
decision-making to the erosion of customer trust due to frequent errors.

To become confident that a software system works correctly or, if not, to identify and fix
existing problems and raise the quality of the system, software testing is an essential tool.
Especially a new technology like hybrid execution should be thoroughly tested, making
sure that everything works in practice as intended.

In this research, we develop a test suite for the implementation of the hybrid-execution
model by MotherDuck, which is based on DuckDB. To reduce the likelihood of bugs staying
undiscovered and gain high confidence in the system, our primary goal is to achieve a wide
coverage of the system’s functionality while minimizing the development effort.

DuckDB uses an extensive test suite of SQL-based tests that are not coupled to internals of
DuckDB, but specifies SQL statements and expected results as a higher level of abstraction.
Therefore, it is portable between different database systems. This includes MotherDuck,
since the expected result does not change when switching to the hybrid-execution model.
We want to build upon this test suite and leverage it to test hybrid execution, giving us
quickly a set of tests that encompass a substantial portion of our system’s surface area.
This leads us to the following research questions:

RQ1 How can the DuckDB test suite be adapted to test our DuckDB-based implementation
of hybrid execution?

RQ2 How effective are these adaptations?

We use code coverage as an evaluation and guidance tool. It helps us to identify
weaknesses in the test suite and directed our efforts to address these shortcomings. This
approach gives us valuable insight into the strengths and limitations of using code coverage
in this context.

3https://motherduck.com/. The work in this thesis was done while the author was at MotherDuck.
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In this thesis, we describe our stepwise approach of developing this test suite and applying
code coverage to evaluate each step. We were able to increase the overall coverage from
44% to 84% and to develop a test suite that is used often and extensively in practice,
validating each and every change made to the system. But before describing how we got
there, we set the scene.

In Chapter 2, we take a look at the inner workings of database systems and present one
specific one called DuckDB. We also provide information about software testing and the
different approaches that exist in this area. In Chapter 3, we go on to describe the test
suite that is used to ensure that DuckDB works correctly and with high performance. This
test suite is the basis for our following work. Chapter 4 portrays hybrid query execution
and explains how it is implemented with DuckDB. These chapters provide the foundational
information for our own research.

In Chapter 5, we motivate why we base the development of a test suite for hybrid
execution on an existing test suite. Afterwards, we arrive at the gist of this master’s thesis:
We describe how we developed a comprehensive test suite for hybrid execution in Chapter 6
and evaluate the implementation steps we took. We discuss our approach in Chapter 7.
Finally, we conclude the thesis in Chapter 8 and end with ideas for future work.

3



1. INTRODUCTION

4



2

Background and Related Work

This chapter provides a background on database systems and software testing. We begin
with an overview of relational database management system (RDBMS), highlighting their
components and describing how SQL queries are processed. We then present DuckDB, the
RDBMS based on which hybrid query execution has been implemented. Finally, we turn
to software testing, exploring its significance in ensuring the quality of software systems,
including DBMSs. We categorize different approaches of software testing and give an
overview of various code coverage metrics which are also used to determine the effectiveness
of tests. In the last section, we give a brief account on the testing of DBMSs.

2.1 Relational Database Management Systems

Every more-than-simplistic software application has to deal with persistent data. It needs to
store information that users entered into the system, data from events that were triggered,
or results from the processing of outside data sources. And even though all this data could
potentially be stored in normal files on the computer’s file system, this way of storage
would soon become inconvenient and inefficient to work with [81, pp. 5–7]. One of several
drawbacks that arises from storing data in a flat file system is that program-specific code
is required to access the data instead of being able to use an abstract and standardized
query language. Furthermore, when the application does not take measures against it,
data can easily become redundant and consequently inconsistent, conflicts can arise from
concurrent access to files, and data can quickly get lost when the application crashes.

For that reason, many software applications rely on a database management system
(DBMS) to handle the access and manipulation of data, along with all the aforementioned
concerns. From the perspective of other applications, a DBMS provides an interface to

5



2. BACKGROUND AND RELATED WORK

databases, i.e., (possibly very large) collections of interrelated data. The implementation
of the DBMS functionalities is hidden behind this interface. Hence, applications do not
need to be concerned with storage organization, data consistency, integrity, security, etc.
[81, p. 2].

Definition 1. A database management system (DBMS) is a software-based system that
maintains databases for other applications and makes the data available to them for reading
and writing.

2.1.1 The Relational Model

The abstract interface to the data provided by a DBMS is called the data model. It describes
the data itself, the values that are valid, as well as relationships within the data [81, p. 8].
One of the main data models is the relational model, which was first presented in a 1970
paper by Codd [11] and found widespread adoption in the decades that followed [27, p. 3].
The relational model organizes the data into relations (or tables), which themselves consist
of columns. A column is of one particular data type. A relation contains records (or tuples)
with attributes that correspond to its columns. Each record in a relation is unique and can
be identified by a set of attribute values. The corresponding attributes form the unique
primary key. Records can reference other records, potentially in other relations, by this
primary key [81, p. 8]. A visualization of two relations, one containing data about bookings
made in an airline reservations system and the other storing information about passengers,
is shown in Figure 2.1. A DBMS that uses the relational model is called relational database
management system (RDBMS).

Most RDBMSs use the Structured Query Language (SQL) [41] to make it possible to
store and retrieve data while working on the abstraction level of the relational model
[81, p. 13]. Application programmers and other users do not have to be concerned about
how operations are accomplished or about their performance, but only declare what they
want to do. The job of the RDBMS is to convert these abstract operations to efficient
instructions for the operating system.

Definition 2. A relational database management system (RDBMS) is a DBMS that is
based on the relational model. It often employs SQL as a language to query and manipulate
data.

SQL itself consists of various sublanguages. The data definition language (DDL) is
used to create database objects such as tables, thereby defining the shape of the data
in a database. Part of the DDL are statements like CREATE or DROP TABLE. With the

6



2.1 Relational Database Management Systems

FrequentFlyerSurnameGivenNameId

Id PassengerId SeatNrBookingDateFlightNr

2042

2043

2044

2045

101145

101109

101007

101038

HQE 897 2023-08-14

HQE 897

HQE 1021

HQE 937

2023-08-15

2023-08-15

2023-08-15

48A

NULL

NULL

1E

Julius

Norman

Saifur

Yannis

Springer yes

Rahman

Lockyer

Ioannidis

no

no

yes

101007

101038

101109

101145

Record/Tuple

Column

Primary Key

Reference Cardinality

Attribute

Relation
"Bookings"

Relation
"Passengers"

Figure 2.1: Two relations in a database of a fictional airline reservations system

data manipulation language (DML), data is written to or deleted from a database. The
INSERT INTO and UPDATE statements are a part of this sublanguage. Lastly, to retrieve
data from a database, a data query language (DQL) is used to write SELECT queries.

2.1.2 Relational Algebra

Queries on relational databases can conceptually be expressed with the operations of the
relational algebra. SQL is based on this algebra. The operations are defined over one or
two input relations and produce a new relation as output. They are [81, pp. 47–57]:

• Selection σϕ(R): Selecting only the tuples of relation R that satisfy the predicate ϕ

• Projection Πa1,...,an(R): Produces a new relation with the tuples from R, but only
keeps attributes a1, ..., an. Duplicates are removed

• Rename ρa/b(R): Produces a relation with the same tuples as R, but with attribute
a renamed to b

• Union R
⋃

S: From two relations R and S with the same attributes, produces a new
relation that contains the tuples of both. Duplicates are removed

• Set difference R − S: From two relations R and S with the same attributes, produces
a new relation that contains all tuples from R that are not in S

• Cartesian product R × S: Produces a relation that concatenates every tuple from R

with every tuple from S

7



2. BACKGROUND AND RELATED WORK

Extensions of the relational algebra define operations for purposes like arithmetic calcu-
lations or aggregations.

From the aforementioned operations, join operations can be derived that combine data
from two relations. For example, in Figure 2.1, to see which passenger, referred to by
their name, booked which flight, the Bookings and Passengers relations have to be linked.
This is done by combining tuples from the Bookings relation whose PassengerId is equal
to the Id of a tuple in Passengers.

The theta-join combines tuples from two relations if they satisfy a given predicate θ. It
is defined as R ./θ S = σθ(R × S). The natural join R ./ S produces a relation in which
tuples of R and S are combined if and only if the values of their shared attributes are
equal.

In the previous example, to join the Bookings and Passengers relations, a theta-join
can be used with θ := (Bookings.PassengerId = Passengers.Id). This operation is also
called equi-join, since the join predicate is an equality of two attributes.

2.1.3 Types of Workload

Database systems are mainly used in two different ways [75, p. 847]: Firstly, they facilitate
business operations by managing data from business transactions. Individual business
transactions are usually small and only retrieve or update a few tuples in the database, but
a large number of them has to be processed during everyday operation [75, p. 847]. This
type of usage is called online transaction processing (OLTP). For example, in the airline
reservation system shown in Figure 2.1, when a customer books a new flight, a new tuple
is added to the Bookings relation without touching any other tuple. The DBMS must be
able to process such modifications fast and handle a large quantity of them simultaneously.

The second usage scenario is to use a DBMS as decision support system. That is,
data is used to recognize trends, identify business problems, guide decision making, or
draw conclusions [14, p. 689]. This type of workload is called online analytical processing
(OLAP). For example, to achieve full utilization of their airplanes, an airline might want to
establish for each flight the average number of passengers that did not show up, canceled
very late, or could not board because the plain was already full. Such a query would touch
a lot of tuples from the database and use more complex operations such as aggregations
and groupings, but only read a small subset of the attributes of each tuple. Furthermore,
those analytical queries are triggered only occasionally.

The different types of workload result in different data access patterns. During trans-
actions in OLTP, a handful of records are accessed completely. For example, a complete

8



2.1 Relational Database Management Systems

2042 101145 HQE 897 2023-08-14 48A 2043 101109

HQE 1021 2023-08-15 NULL 2044 101007 HQE 897 2023-

NULL 2045 101038 HQE 937 2023-08-15 1E08-15

Figure 2.2: Row-oriented storage layout for records from the Bookings relation

2042 101145

HQE 897 2023-08-14

48A

2043 101109

HQE 1021 2023

NULL

2044 101007

HQE 897

2023-08-15 NULL

2045 10

HQE 937

2023-08-15 1E ...

1038

-08-15

Figure 2.3: Column-oriented storage layout for records from the Bookings relation

record is inserted into the Bookings relation when a customer books a flight. To allow

fast access to an entire record, all attributes that belong to one record are stored together.

In Figure 2.2, this row-oriented storage model is shown for the Bookings relation from

Figure 2.1.

OLAP queries, on the other hand, often access a lot of records, but only use a subset of

their attributes. To attain sequential memory access, which is faster than random memory

access when reading large data sets, data is often stored in a column-oriented fashion. The

column-oriented storage model is visualized in Figure 2.3. It is also called the decomposition

storage model [12] because records are broken down into their attributes. The CPU can

read and aggregate the values of one column first and then jump to the next column of

interest. This way of processing uses the cache more efficiently, allows for faster disk access,

and can utilize CPU prefetching. Furthermore, data can be compressed better because

columns of the same data type are stored sequentially. Therefore, the likelihood is higher

that data is homogeneous or even consists of similar values for each tuple [1]. This way of

storing data was pioneered by MonetDB [6; 37].

Table 2.1 summarizes the differences between OLTP and OLAP.
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OLTP OLAP

Query frequency Many queries executed simultane-
ously

Only few queries executed in a
period of time

Data volume Queries access or modify only a
small number of tuples

Queries read many tuples, poten-
tially from multiple sources

Response time Queries should finish promptly A high response time is accept-
able

Operation types Mostly simple operations such as
SELECT, INSERT, but also JOIN,
often in database transactions

Read-heavy, more complex
queries with joins and aggrega-
tions

Storage model Row-oriented Column-oriented

Table 2.1: Comparison of OLTP and OLAP workloads

2.2 Query Processing in RDBMSs

When software applications want to read data from a database, they send SQL queries
to an RDBMS and get back the query results. What happens behind the scenes is of no
concern for the application and hidden behind the abstract DBMS interface.

In this section, though, we take a look at the inner workings of an RDBMS and see
how a query gets processed. This knowledge is the foundation to understand how hybrid
query execution, a new processing model, is implemented, which we explain in Chapter 4.
We start with the high-level architecture of an RDBMS and continue to dissect the query
processing flow. We finish off this section with an overview of how the processing of queries
can be parallelized.

2.2.1 Components of an RDBMS

A DBMS broadly consists of three main subsystems: the query processor, the storage
manager, and the transaction manager [81, p. 20].

The query processor receives an SQL query from the DBMS client, which is subsequently
parsed and compiled into a query plan. A query plan describes the operations needed
to calculate the desired result [68]. Finally, the query plan is evaluated and the result is
returned to the client [2]. We cover the query processor in more detail in Section 2.2.2.

The storage manager is needed if the size of the processed data exceeds the available
memory capacity or when data needs to be persisted. Using operating system primitives,
its task is to efficiently store, organize, and retrieve data from physical storage such as

10
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SSDs [81, pp. 18–19]. It makes database pages available to the query processor for reads
and writes through the buffer pool, a part of the computer’s memory [30]. The storage
manager can also assume many other responsibilities and become closely interwoven with
the query processor (see [32] for a summary).

The third subsystem is the transaction manager. Database transactions, i.e., multiple
operations that form a single logical unit, must conserve four properties [34]:

• Atomicity: Either all operations of a transaction are executed completely or none at
all

• Consistency: The complete execution of an transaction leaves the database in a
consistent state, i.e., no database constraints are violated

• Isolation: Multiple concurrent transactions must not interfere with each other. The
final state of the database must be equivalent to a state that would have been reached
if all transactions were executed sequentially

• Durability: The result of completed transactions are permanently stored and are
effective even in the face of system crashes or malfunction

The task of the transaction manager is to ensure that transactions are executed with
these four ACID properties. In particular, the transaction manager handles the recovery
from failures and concurrent access to databases [81, pp. 20–21].

2.2.2 How a Query Is Processed

In the following paragraphs, we describe a representative process of how a query is processed.
Figure 2.4 shows a visualization of this process.

Parsing and Binding An RDBMS receives a query usually as SQL text, which can
easily be processed by humans, but not by machines. Thus, the first step during query
processing is to bring the query into a machine-processable form. The lexer deconstruct
the query string into tokens from which the parser creates a parse tree. Afterwards, the
parse tree is validated for syntactical and semantical correctness. This validation involves
the binding of identifiers for tables, views, columns, etc. that are referenced in the query
to the actual database objects (name resolution) [81, p. 689].

Planning The system subsequently transforms the parse tree into a logical query plan.
It is a tree of relational algebra operations [81, p. 689; 68] that represents the data flow for
the execution of the query [52].

11
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Lexing & Parsing
Syntactic Analysis
Semantic Analysis

Query
Planning

Parse Tree

Rewriting

Logical Query Plan

Cost-based Optimization Optimized Logical
Query Plan

Execution
Physical Query PlanResult

Statistics

Databases

Figure 2.4: Steps that a DBMS takes to process a query

We take the query in Listing 2.1 as a running example. It queries the relations depicted

in Figure 2.1.

SELECT flight_nr
FROM Bookings
JOIN Passengers ON Bookings.passenger_id = Passengers.id
WHERE surname = 'Springer';

Listing 2.1: Example query to find the flight number of Mr. Springer

Figure 2.5a shows the logical query plan that is produced for this query: First, the two

tables Bookings and Passengers are joined, the result relation is filtered to only include

tuples where the value of the surname attribute equals “Springer”, and finally a projection

is done to reduce the relation to its flight_nr column.

Rewriting In the following step, the logical query is rewritten into an optimized but

semantically equivalent form following a set of rewrite rules. For example, subqueries are

translated into joins [52], selections/filters are moved closer to the data source, and views

are unfolded and substituted with their definition [67].

The query plan in Figure 2.5a is transformed in this step to the one shown in Figure 2.5b.

A transformation known as filter pushdown is used: The Passenger relation is filtered

first before it is joined with Bookings. This leads to better performance since fewer tuples

have to be processed during the join, which is a comparatively expensive operation.
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Passengers Bookings

⨝Bookings.passenger_id = Passengers.id

𝜎surname = 'Springer'

Πflight_nr

(a) Unoptimized logical query plan generated

Passengers

Bookings

⨝Bookings.passenger_id = Passengers.id

𝜎surname = 'Springer'

Πflight_nr

(b) Optimized query plan after filter pushdown

Figure 2.5: Logical query plans for the SQL query in Listing 2.1

Cost-Based Optimization Many relational algebra operations can be executed in
different ways. For example, an equi-join on the join attribute a, which produces all
combinations of tuples from two relations R and S were the values for a are equal, could,
among others, be executed as [54]:

• Nested-loops join, where for every tuple tR ∈ R in an outer loop, every tuple tS ∈ S

is checked in an inner loop for Πa(tR) = Πa(tS).

• Sort-merge join, where R and S are in a first step sorted by a and then sequentially
scanned, adding groups of matching tuples to the result relation.

• Hash join, where first a hash table is constructed for the values of a from relation R,
which is then probed with the tuples of S.

However, there is no single “best” join algorithm, but the optimal choice depends on
factors like the size of the relations or whether they are already sorted. The job of the
query optimizer is to select a proper implementation for each of the relational algebra
operation in the logical query plan. The low-level implementations are called physical
operators.

The query optimizer produces a physical query plan, also known as query execution plan.
This plan not only specifies the physical operators to run, but also which indexes should be
utilized during execution, the order in which to join relations, and other low-level details
[81, pp. 690–691]. The final physical query plan is selected on the basis of its minimum
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Passengers Bookings

Sequential Scan
Filter: surname='Springer'

Sequential Scan

Hash Join
Inner, passenger_id = id

Projection
flight_nr

Figure 2.6: Physical query plan for the SQL query in Listing 2.1

estimated costs according to a cost model. It can consider, for example, the expected CPU
utilization or I/O costs [67; 59]. The costs are mainly influenced by the cardinalities of
intermediate results, which are estimated using statistics about the data [49]. The query
optimizer explores alternatives by enumerating possible plans in the search space and
comparing their estimated costs [67].

For the logical query plan shown in Figure 2.5b, the query optimizer might choose a
hash join and produce the physical query plan in Figure 2.6.

Execution Finally, the physical query plan is evaluated by the query execution engine
either by interpreting the physical operators in the execution plan iteratively (Volcano-style
model [33]) or by further compiling the execution plan to machine code.

When interpreting a query, the parent operators call a function on their children to
retrieve the next tuple. This can be seen in Listing 2.2. The many function calls, but
also other factors like frequent metadata lookups, lead to significant overhead of query
interpretation, especially when the CPU rather than I/O is the bottleneck [81, p. 733].

Query compilation [58] reduces the CPU cost of processing, because multiple functions can
be combined by the compiler and metadata lookups can be done at compile time. However,
additional time is needed to compile queries, hence this approach has a disadvantage for
small queries [25]. Generated code can also impede the debuggability of the system [44].

The interpretation overhead in the Volcano-style model can be amortized by using
vectorized execution. In this execution model, operators do not work on individual tuples,
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std::unique_ptr<Tuple> next() {
while (t = child.next()) {

if (predicate(t)) {
return t;

}
}
return nullptr;

}

Listing 2.2: Pseudocode implementation of the next method of a filter operator

but blocks of thousands of tuples called vectors [7]. Not only does this approach reduce the
interpretation overhead, for example by reducing the number of function calls or branches,
but it also enables CPUs to exploit opportunities for parallelism, loop unrolling and other
optimizations, and can better leverage SIMD instructions [46]. With vectorized execution,
the performance for OLAP workloads is on par compiled query execution [44].

Conceptually, the evaluation of an query operator tree starts at its leaf nodes by reading
data from sources. The tree is traversed upwards as child operators move the result tuples
they produce to their parent operators until the final result is materialized at the root of
the tree [81, pp. 724–725].

One variant for implementing query execution is to materialize the result of each operator.
That is, the complete result relation is constructed, potentially stored on disk, and then
read by the next operator in the chain [81, pp. 724–725]. Alternatively, an evaluation
method called pipelining can be used to reduce the amount of data that needs to be stored
during processing. In this model, an operator can process tuples from its child operators
and pass already computed results on to its own parent. It does not have to wait for all
results to be computed. Therefore, intermediate results do not have to be materialized1,
which can lead to more efficient execution [81, pp. 725–726].

Two different implementations can be distinguished: pull-based and push-based pipelining.
In the pull-based (or demand-driven) model, an operator gets a request from its parent to
compute the next tuple, fetches itself the next tuples from its children, computes the result
tuple, and returns it to its parent. Listing 2.2 demonstrates this with pseudocode for the
implementation of a next function for a filter operator that emits tuples that satisfy a
given predicate. This function would be called by the parent’s next function.

1There are some operators like joins or set difference that require the materialization of intermediate
results.
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In the push-based (or producer-driven) model, each operator computes tuples eagerly
when it receives input from its child operators and puts them into its result buffer. Parent
operators continue processing when new tuples are in that buffer [81, pp. 726–727; 66].

2.2.3 Parallel Query Execution

Modern hardware comes with many CPU cores, which DBMSs aim to utilize through
parallel query execution. This can happen through interquery parallelism, i.e., executing
multiple queries at the same time, or intraquery parallelism where operators of the same
query are executed in parallel [31, pp. 127–128; 81, p. 1039].

Types of Intraquery Parallelism A first opportunity for intraquery parallelism can
be realized by decomposing physical operators to work on distinct sets of tuples in parallel
[81, p. 1040]. For example, there are parallel implementations of various sort and join
algorithms [31]. Hence, for queries on large data sets with a modest number of operations,
multiple cores can work on the same operation—or even a sequence of operations—in
parallel and do not sit idle.

Aside from that, different physical operators can be evaluated at the same time, either
because they do not depend on each other or by using pipelining [81, pp. 1052–1055].
Pipelining we have already described briefly in Section 2.2.2.

An execution plan can be represented as a tree of physical operators. A pipeline is a
sequence of physical operators where the output of one operator is the input to the next.
The pipeline ends in a pipeline breaker. These are operators that need to process all tuples
before forwarding them to the next pipeline. Hence, one pipeline has to wait for another
pipeline to finish, and the flow is interrupted. Examples for pipeline breakers are sorts,
aggregations, hash joins since a hash table has to be constructed for one of the joined
relations, and the final result materialization.

In a pipeline, child and parent operators can run on different threads. Parallelization can
be achieved because a parent operator can start to process tuples that it receives from its
children even before the latter finished completely [81, p. 1053]. Additionally, independent
operators can run in parallel on different threads.

Figure 2.7 indicates the pipelines for the execution plan in Figure 2.6. The pipeline
breaker for the left (red) pipeline is the join of the Passenger and Bookings relations.
The pipeline breaker for the right (blue) pipeline is the final result materialization. The
two sequential scans can be executed in parallel on different threads because they are
independent from each other.
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Passengers Bookings

Sequential Scan
Filter: surname='Springer'

Sequential Scan

Hash Join
Inner, passenger_id = id

Projection
flight_nr

Figure 2.7: Pipelines in the query plan from Figure 2.6

To achieve an even higher degree of parallelism, it is possible to execute many instances
of a single pipeline in parallel on distinct subsets of tuples of the input relations. For
example, when the Passenger relation contains one million tuples, the table scan and
filtering can be distributed across 10 threads, each processing a data segment of 100,000
tuples.

Morsel-Driven Parallelism Morsel-driven parallelism is a kind of pipelined parallelism
that achieves a better division of work between available CPU cores and is suitable for
NUMA memory designs [48]. The input data to a pipeline, coming from child operators or
data stores like tables, is split into small segments called morsels. A dispatcher schedules
pipeline jobs on worker threads to operate on a morsel until they reach the next pipeline
breaker. At this point, the intermediate results are materialized.

The scheduling mechanism takes into consideration the number of available cores. Since
a thread processes one pipeline job with the associated morsel at a time and then requests
the next unit of work from the dispatcher, this transition provides an opportunity to
dynamically adjust the number of threads used for processing. Hence, the number of
threads can flexibly be adjusted to changes in the degree of parallelism, even while a query
is executed.

To implement morsel-driven parallelism, all physical operators must support it. One
DBMS which uses this kind of parallelism is DuckDB, which we describe in the next section.
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2.3 DuckDB

DuckDB [73] is a RDBMS that is optimized for analytical (OLAP) workloads. Thanks to its
easy setup and user friendliness, but also good performance and scalability [69, 09:15–12:51,
14:51–15:49], it has become a popular tool among data scientists [71, 21:26–23:19].

DuckDB runs embedded in a host application. This arrangement enables fast data
transfer (or even data sharing) between the host application and the DBMS, and simplifies
the installation for users since no setup of a database server is required [18]. Instead,
DuckDB is linked into the host application, which can then communicate with the DBMS
using its C/C++ API. Bindings for other programming languages are available, too [17].
Especially important to data scientists, DuckDB can conveniently be used from Python
and R.

DuckDB, by and large, follows the separation of components described in Section 2.2.1,
and queries traverse the stages described in Section 2.2.2.

The parser for DuckDB is based on the one for PostgreSQL2 and produces a parse tree
composed of DuckDB-specific nodes. The storage format is column-oriented to better
serve analytical workloads. Furthermore, DuckDB uses an interpreted, vectorized query
execution engine together with push-based pipelining and morsel-driven parallelism.

New functionalities can be added to DuckDB and existing can be modified by loading
extensions. Extensions can change the parsing behavior, create new database operators,
append new optimizer rules, or add new storage locations. They are a powerful way to make
DuckDB itself more powerful and the cornerstone to implement hybrid query execution
(see Chapter 4).

2.4 Software Testing

In today’s digital age, software systems are prevalent and deeply integrated in domains
ranging from health care to transportation to communication. Due to their pervasive and
sometimes critical role, these systems are expected to be of high quality. However, the
view of what quality encompasses exactly can vary. For users, it usually means that “a
product meets user needs and expectations” [56, p. 520]. For software engineers, quality
might involve building a product with good internal properties [56, p. 520] such as low
coupling, high cohesion, and other indicators of manageable complexity [22, Part III].

2https://github.com/pganalyze/libpg_query
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The ISO norm 25010 [39] describes eight categories of quality characteristics for software
systems, addressing both the users’ as well as the internal view. They encompass the
aspects of functional suitability, performance/efficiency, compatibility, usability, reliability,
security, maintainability, and portability. If they are important to stakeholders, the quality
characteristics transition to explicit requirements. Through software testing, development
teams can assess if a system meets its requirements.

Software testing is the process of systematically executing a software system under
controlled conditions to evaluate and assess specific quality aspects [42, def. 3.4272].
Various types of tests are employed to target the characteristics described in ISO 25010.
For instance, performance testing assesses whether the software can work within constraints
for time and resource consumption [42, def. 3.2873], security testing evaluates how well
security objectives are met [42, def. 3.3661], and usability testing focuses on the system’s
fitness for use [42, def. 3.4458].

Definition 3. Software testing is the process of executing a system under specified conditions
to evaluate if quality requirements are met

2.4.1 Functional Software Testing

One facet of the quality characteristic termed functional suitability is functional correctness,
i.e., how accurately the system provides the correct result or does the correct action [39].
The correct or expected behavior for a given input is outlined in functional requirements.

Software errors occur when there is a difference between the observed and expected
behavior of the software, or when it transits into an erroneous state [42, def. 3.1441]. They
can arise from a misunderstanding of requirements or failing to translate them into an
appropriate specification [29]. For example, a requirement can be inappropriate for the use
case it tries to solve because no actual users were involved in the analysis process [88], or
the requirements might be incomplete [23]. But oftentimes, errors are introduced during
the implementation phase—after the specification has already been written. When this
happens and the software does not meet the specification, it has one or more defects, also
called bugs [42, def. 3.1081; 29].

Functional software testing verifies that the software meets this specification and can
thus help to ensure that no software defects are present. Complementary approaches to
achieve the same goal include code reviews, program proving [5, pp. 16–17], and static
code analysis (“linting”) [82, pp. 257–258]. This kind of functional testing is called static,
whereas dynamic testing involves executing the program with a given combination of inputs.
In this work, we are only concerned with dynamic testing.
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2.4.2 Manual and Automated Testing

In the field of functional software testing, again different approaches can be distinguished.
A first division can be made between manual and automated testing. During manual
testing, a human tester performs actions on the software that were previously defined
during the design of test cases and looks out for suspicious behavior [5, p. 22]. However, this
approach is costly and takes a long time. It may also be less reliable than the alternative
[55, p. 128]: automated testing. This approach utilizes software tools to execute tests and
compare actual outcomes with the expected ones [5, pp. 22–23]. It makes it possible to run
many tests frequently, reliably, and at low costs. A major advantage of this approach is
that developers can start the tests and get the results back shortly after, which makes the
feedback loop between implementation and testing very short. As discussed, for example,
in [76; 43], manual testing can still offer advantages over automated testing such as lower
effort to develop tests, higher flexibility, and that different kinds of bugs are found. In any
case, automated testing will be the sole object of our interest in this work.

2.4.3 Black-Box and White-Box Testing

Another distinction can be made between black-box and white-box testing. These categorize
different strategies to select test data, i.e., the inputs to the software under test for a
particular test case.

To be sure that all defects were found by tests, all possible inputs and input combinations
need to be checked. Otherwise, there is no way to be sure that the software does not
contain code that produces the wrong result for some specific input [55, pp. 8–9]. However,
this strategy known as exhaustive testing is infeasible even for small programs. Therefore,
in practice, representative inputs must be chosen that give enough confidence that the
software works correctly for all inputs [5, pp. 12–13].

Black-box testing describes one category of heuristics to select representative input
combinations. Here, test data is selected without regard for the software’s internal structure
or source code. Instead, only the specification is used for this purpose [5, p. 14].

An example for a simple black-box heuristic is equivalence partitioning. With this
technique, input values which, according to the specification, are processed in the same
way, are grouped together. For each group, one test case is created with one representative
value as input [5, p. 27].

For white-box testing, on the other hand, testers have knowledge of the software’s
internals. Test cases are designed by analyzing a program’s logic and deriving test data
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that causes this logic to be executed. For this reason, this approach is also called structural
testing. However, the expected behavior against which to compare the system’s actual
behavior is given by the specification, not the source code [5, p. 86]. The aim is to derive
test cases that examine most, if not all, of the code, as defined by a code coverage criterion
(see Section 2.4.4). The ideal, though usually impractical state of a white-box test suite is
to cover all code paths through an application [55, p. 10].

Myers, Sandler, and Badgett recommend to use the black-box approach first to design
the majority of test cases and then use the white-box approach to find test scenarios that
are not yet covered [55, p. 42].

2.4.4 Code Coverage

Code coverage is a measure of the extent to which the source code of a software system is
executed by tests. Suppose that a program consists of two independent functions f1 and
f2 and that there exists one test case that calls f1. The function coverage is then 50%
because one of the two functions was executed.

Looking at the source code as a set of functions gives a very macroscopic view of how
well the program is tested. But if f1 itself is made up of 100 lines of code, but the test
case only ever executes 20 of them and then returns early, it is questionable whether the
test even covers f1 adequately.

For this reason, various coverage criteria were defined at a more fine-grained level. Besides
function coverage, some other basic coverage criteria are listed below.

• Statement coverage: The percentage of statements, mostly corresponding to one line,
that were executed at least once during a test run [5, pp. 86–87].

• Branch coverage: Control structures like if, while or switch create branches in the
control-flow graph of the application. That is, based on a condition, the execution
jumps either to one or another statement. Branch coverage represents the percentage
of edges that were taken in the control flow graph during a test run [5, p. 99]. For
example, a branch coverage of 100% can only be achieved when the test suite executes
both the true and false case for every conditional statement.

• Condition coverage: While branch coverage only looks at the branches that were
taken, condition coverage additional checks that every possible boolean combination
of conditional statements were tested [60]. For example, if the source code contains
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if (a && b), all four combinations of a and b each being true or false need to be
tested to achieve a condition coverage of 100%.

• Path coverage: This coverage criterion looks at the possible execution paths from a
program’s entry point until it terminates and denotes the percentage of execution
paths taken during a test run [5, p. 113]. However, this criterion is more of theoretical
nature as no tool exists to measure the path coverage in complex software programs
[5, p. 114].

2.4.5 Testing Levels

Depending on the granularity of the test, different testing levels can be distinguished. Unit
tests exercise small components of the system [55, p. 85]. The “units of work” are usually
(public-facing) functions. The tests run in isolation from other components and outside
dependencies, which allows them to run fast and deterministically. However, defects that
occur during the interaction of several components can still go unnoticed. To find these is
the objective of tests at higher levels.

Unit tests are usually written by software developers and can be created with both the
black-box and white-box approach.

At the opposite end of the testing spectrum, end-to-end tests (also called system tests)
validate the system as a whole. These tests mirror real-world scenarios more closely and
use real dependencies.

2.5 Testing of Database Systems

The academic literature on the functional testing of RDBMSs primarily revolves around
automated black-box testing of the whole system. In this section, we give a succinct
overview of research on this topic.

In database systems, it is difficult to test the individual components separately since they
are all intertwined and interact in complex ways with each other [21; 35]. Nevertheless,
there is some work in this area. For example, the testing strategy described in [13] targets
directly the transaction manager, the one in [87] the query optimizer. However, these tests
are never unit tests in a classical sense, but use the SQL interface to interact with the
DBMS and do therefore still exercise the whole system. One reason for this is that the
internal interface of DBMS components can be quite complex, which makes the generation
of test input data challenging3. Moreover, using SQL, a standardized language supported
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by many RDBMSs, makes it possible to test many different database systems with a single
tool.

With SQL, there are infinitely many possible queries that a DBMS could process.
Manually created test suites can only cover a small, though mostly representative subset
of this wide input space. Therefore, an active area of research is random query generation,
also called fuzzing, to find new errors. These randomly generated test cases are end-to-end
tests: they send a query to the DBMS and validate the result.

For random query generation, three problems have to be solved:

• The data generation problem: Generating a database against which to run queries.
The values in the database should follow a representative distribution [8; 74]. An
alternative to using synthetic data is to rerun real-world queries [90; 80]

• The query generation problem: Generating a query that is syntactically valid but
also semantically for a given database [91; 50]

• The test oracle problem: Determining whether the result returned by the DBMS is
correct [77; 79; 78]. This task is simple when tests are manually created since humans
can determine the expected result from the specification. But to automatically find
the correct result for a given query, one, in fact, would have to implement a DBMS.
This is why one common test oracle is indeed to use another DBMS as a reference.

To maximize the value of each test query, internal validation can be applied to find bugs
in the system [47].

Fuzzing is one pillar of the testing strategy for DuckDB, too. Additionally, the correctness
of DuckDB is checked using a large number of manually written tests as well as internal
validation during the test runs. In the next chapter, we describe the DuckDB test suite in
more detail.

3Internally, DBMS vendors might still write tests against internal interfaces, but do not publish papers
on this topic.
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The DuckDB Test Suite

For DuckDB, an extensive test suite is in place. It is used to test the correctness and
performance of the DBMS as well as the integration into various programming languages
and the interoperability with other DBMSs. Additional checks were established to ensure
good code quality. Figure 3.1 shows an overview of the test suite, which we describe in
more detail in the following sections. We outline the test suite for version 0.8.1 of DuckDB.

Correctness

Compatibility

Performance

Code Quality

SQLLogic
Tests

C++ Tests

Fuzzing

ODBC, R, Swift,
Julia, NodeJSPython Tests

Benchmarks

Linting Code
Coverage

Figure 3.1: Overview of tests contained in the DuckDB test suite

3.1 Correctness Testing

To verify the correctness of the system, the DuckDB developers use a mix of C++- and
SQL-based unit tests as well as several fuzzing tools.
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# SQL statement that is expected to succeed.
# A new database table is created in the process.
statement ok
CREATE TABLE integers (i INTEGER)

# The database table is filled to prepare
# for the following query.
statement ok
INSERT INTO integers VALUES (1), (2)

# The query is expected to return the two values
# inserted previously.
query I
SELECT * FROM integers
----
1
2

Listing 3.1: Example of an SQLLogic test script

3.1.1 SQLLogic Tests

The SQL-based tests are written as scripts in the SQLLogicTest format. The SQLLogic
test framework1 was initially designed and implemented for SQLite, a popular open-source,
embeddable OLTP database system. It consists of a set of test scripts in combination with
a program, the test runner, that can execute these scripts. Each test script contains a list
of SQL statements that are executed sequentially. Additionally, it is possible to specify the
result that is expected from running a query. Listing 3.1 shows an example of an SQLLogic
test script.

The developers of DuckDB follow a test-driven development style, which means that they
write tests for the feature they want to implement before the actual code [70, 29:39–30:36].
This has led to the creation of a rich set of test scripts for all the SQL features implemented
in DuckDB. Furthermore, when a new bug is discovered, a regression test is created by
first reproducing the bug in an SQL test if possible.

Besides checking normal query results, SQLLogic tests are also used to validate the
transaction semantics. Transactions, which can consist of several SQL statements, are
expected to be executed as one logical operation and isolated from other simultaneous

1https://www.sqlite.org/sqllogictest
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statement ok
CREATE TABLE integers (i INTEGER)

statement ok con1
BEGIN TRANSACTION

statement ok con1
INSERT INTO integers VALUES (1), (2)

# On the second connection, the inserted values should
# not yet be visible for the second connection
query I con2
SELECT * FROM integers
----

statement ok con1
COMMIT

# After committing the transaction, the
# inserted values should become visible
query I con2
SELECT * FROM integers
----
1
2

Listing 3.2: Testing the ACIDity of DuckDB transactions in an SQLLogicTest script. con1
and con2 are the identifiers for two different connections to the same database.

transactions. In Listing 3.2, an SQLLogic test script is shown that verifies that the values

inserted into a table during a transaction are only made visible after this transaction

is committed. The test relies on multiple DuckDB connections that access the same

underlying database.

EXPLAIN queries in SQL produce a textual representation of the query plan for a given

inner query, but do not actually run that query. DuckDB uses EXPLAIN queries in SQLLogic

test scripts to check that the query optimizer follows the right rules. In the test scripts,

the textual query plan is matched against a regular expression, which is useful to see if

specific operators are present in the plan.
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There are SQLLogic test scripts in the test suite that execute the well-known TPC-H2

and TPC-DS3 benchmarks for OLAP database systems. The benchmarks contain queries
related to a specific business scenario. The queries work on a large volume of data and
some are of high complexity, which makes them a handy tool to assess the overall condition
of the DBMS.

To get the most out of each test, some internal verification steps are taken when DuckDB
runs a test script [70, 19::04–26:05]. For example, when the query plan is created or
modified, every operator in the new plan is serialized and then deserialized again. By
ensuring that the result of this procedure is equivalent to the original statement, the tests
can show that the serialization functionality works correctly [72]. A similar check is done
to verify that copying a statement does not change its value. Another technique used
in the test suite is to run the query with no optimizations, without operator caching, or
as prepared statement. The invariant that must hold is that all these changes must not
change the query result. That is, for instance, the optimized and unoptimized versions of a
query must produce the same output.

Version 0.8.1 of DuckDB was tested with 2623 SQLLogic test scripts 4.

3.1.2 C++ Tests

To have more control over how tests are executed, some of DuckDB’s tests are written in
C++. One example is a test that kills the process running DuckDB to later verify that
the database can be recovered. Other C++ tests are used, among other things, to execute
multiple queries in parallel, to make sure that databases are stored correctly, or to test
internal utility functions. In version 0.8.1, the test suite contained 40 of those tests.

3.1.3 Fuzzing

The SQLLogic tests make sure that typical workloads are executed correctly, but they
only cover a small and fixed subset of possible inputs. Hence, DuckDB uses random query
generation, or fuzzing, as an additional testing tool. Because fuzzers tend to find bugs in an
unpredictable manner, they are continuously checking DuckDB in the background. Three
fuzzers are hosted via Google OSS-Fuzz5. These are AFL++, libFuzzer and Honggfuzz,
which are aimed at detecting memory corruption vulnerabilities in a variety of programs.

2https://www.tpc.org/tpch/
3https://www.tpc.org/tpcds/
4https://github.com/duckdb/duckdb/tree/6536a772329002b05decbfc0a9d3f606e0ec7f55/test/
5https://github.com/google/oss-fuzz
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3.2 Compatibility Testing

Two fuzzers that are specifically targeted DBMSs are SQLLancer6 and SQLsmith7. DuckDB
provides means to start these two fuzzers, but does not run them continuously at the time
of writing.

3.2 Compatibility Testing

Users can interact with DuckDB through a variety of interfaces. First and foremost, there is
the C/C++-API. The test suite includes C++ tests that make sure that basic functionalities
such as querying data, executing utility functions, changing the configuration, or creating
user-defined functions work correctly via this interface. Similar tests are done for the other
programming languages for which DuckDB provides bindings: Julia, NodeJS, Python, R,
and Swift.

For Python, extra care has to be taken because DuckDB is deeply integrated with the
rest of this ecosystem. For example, DuckDB relations can be converted into Pandas8 data
frames and vice versa. Furthermore, DuckDB is compatible with the Python Database
API9. There are tests to test that DuckDB is well integrated with these other Python tools.

Applications can also connect to DuckDB via ODBC, a standardized API for DBMSs,
JDBC, which resembles ODBC but for the Java programming language, and ADBC, a
database API on top of Apache Arrow10. DuckDB has tests in place to verify that the
basic connection setups work correctly. Because these interfaces are also used by other
DBMSs and database tools, it makes it possible to reuse many of their tests. For example,
DuckDB runs some of the tests from the nanodbc library11.

DuckDB provides compatibility with the SQLite DBMS, so that DuckDB can be used as
a drop-in replacement. There are tests that verify that clients can access DuckDB via this
interface, too.

3.3 Performance Testing

DuckDB regularly runs tests to quickly discover any regressions in query processing
performance. During a performance test, several benchmarks are run multiple times and

6https://github.com/sqlancer/sqlancer
7https://github.com/anse1/sqlsmith
8https://pandas.pydata.org/
9https://peps.python.org/pep-0249/

10https://arrow.apache.org/
11https://nanodbc.github.io/nanodbc/
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3. THE DUCKDB TEST SUITE

the average execution time is calculated. If the difference to the previous run is greater
than 10%, a regression is reported.

DuckDB uses a rich set of benchmarks, from small microbenchmarks that only execute a
few small commands to standardized ones that are also used by other DBMS vendors. The
latter include:

• TPC-H2 and TPC-DS3, industry-standard benchmarks for performance that were
developed by the Transaction Processing Performance Council (TPC)

• the H2O.ai benchmark [20] which focuses on the performance of GROUP BY and JOIN

statements

• the Join Order Benchmark [49] which uses data from the IMDb

Additionally, DuckDB supports the following benchmarks, which, however, are not run
continuously as part of the regression tests:

• ClickBench12, a benchmark developed by ClickHouse (another DBMS for OLAP
processing) which is based on real data from a web analytics platforms

• the Social Network Benchmark of the Linked Data Benchmark Council (LDBC) [85],
which contains OLAP queries on a social graph

• the Train Benchmark [84] for queries on railway-related graphs

3.4 Code Quality Measurements

Automatic static testing is performed for every code change in DuckDB. First, the source
code is automatically checked to meet the coding standards. Second, the code coverage is
collected when running the suite of correctness tests. A report is created about files for
which the coverage is too low.

12https://github.com/ClickHouse/ClickBench
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4

Hybrid Query Execution

Hybrid query execution is a novel query processing model for distributed databases that
aims to make efficient use of the resources available on a DBMS client and reduce the amount
of data that is exchanged over the network. It promises to lead to better performance for
queries that involve local data as well as common data science workflows.

By embedding a full DBMS into the client, the processing of a single query can be done
partly on the client and partly on the server (intraquery distribution), depending on where
the processing is most efficient. This is often determined by where the processed data is
located: If, for example, all data resides remotely, the server can do all the processing, as
in a traditional client-server architecture. But when both local and remote data is involved
in the same query, both nodes can participate and exchange only small, processed result
relations rather than raw data.

In this chapter, we start with a comparison of two architectures that resemble the two
extreme ends of hybrid execution: a typical client-server architecture where the bulk of the
processing happens on the server, and the single-node architecture where a single node
does all the processing locally. After giving a motivating example to demonstrate the
potential benefits of the hybrid execution model, we go on to first give a high-level and
then a detailed overview of it.

4.1 Advantages and Disadvantages of Existing DBMS Ar-
chitectures

There is no one-size-fits-all database system that can serve all needs of the very different
kinds of database users [83]. This argument can be extended to the architectural level of
DBMSs from the viewpoint of where query processing happens: Different architectural
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styles come with different benefits and drawbacks which might fit one database application
but not another. In the following section, we mainly introduce and compare two different
styles of architectures, the single-node and the client-server architecture.

4.1.1 Distribution of Query Processing

DBMS

DB
Application

(a) Single-node

DB
Application

Client

DBMS

Server

(b) Client-server

Peer

DBMS

DB
Application

Peer

DBMS

DB
Application

Peer

DBMS

DB
Application

(c) Peer-to-peer

Figure 4.1: Architectural styles from the viewpoint of distributing database application and
DBMS

When looking on the architectures of DBMSs from the viewpoint of where the processing
happens, three architectural styles can be distinguished, as shown in Figure 4.1. We will
consider two layers: the DBMS and the database applications that communicate with
it. We are primarily interested in the components included in the architecture and the
connections between them, giving each architectural style its unique structure.

The first is what we call the single-node architectural style (Figure 4.1a). Here, the
database application and the DBMS run on the same node and communicate through a
local connection. All data is stored in a single location.

Second, there is the client-server architecture (Figure 4.1b). In this architecture style,
the database application and the DBMS run on different nodes called client and server,
respectively. They communicate via a network. The data is stored only on the server.
The one logical server could also be comprised of many physical servers between which
data and processing are distributed. But from our architectural viewpoint, we consider the
server as a single node.

For completeness, we also want to mention the peer-to-peer (P2P) architectural style
(Figure 4.1c), in which both data and processing are distributed among equitable peers.
That is, each peer can request other peers, but can also be requested, to participate in the
processing of queries and transfer of data. In the following section, however, we will only
focus on a comparison between the single-node and client-server architectural styles.
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4.1.2 Comparison of Client-Server and Single-Node Architectures

In a typical client-server architecture for a relational database management system
(RDBMS), the client is thin. This means that even though the client can cache data
or perform other small tasks such as consistency checking, the bulk of the processing
happens on the server side. The client, for the most part, only sends SQL queries to the
server and receives back the result [62, pp. 20–21], but only after having to wait for the
network round trip to finish.

But oftentimes, the clients themselves possess plentiful compute resources: Modern
desktop computers, laptops, and even smartphones have powerful processors. Since the
clients do not participate in the query processing, these resources go unused.

A single-node architecture gives a different picture. Here, the “client”1 performs the entire
processing and can thus utilize its resources to the fullest. There is also no communication
over wide area networks happening between the database application and the DBMS
that could cause additional delays, assuming that all data is already available locally.
Accordingly, for the processing of small and medium-sized data sets for which the local
compute resources suffice, DBMSs which are built for single-node architectures can enable
a faster user-perceived query execution. This holds especially true in regions with no
high-speed internet connection.

Single-node DBMSs have another advantage from a monetary perspective. The computers
on which they run are already paid for or would have been bought anyway since they
are used for many other tasks aside from hosting a DBMS. By contrast, in a client-server
architecture, the DBMS has to be hosted on some server. This could be a dedicated
server, possibly in a data center, but it has to be bought, installed, and maintained. This
burden can be lifted thanks to cloud computing, where servers are fully managed by cloud
providers. But this does not come for free either: Customers of cloud providers pay for
storage, bandwidth and compute in fine-grained units (usage-based pricing) [26, pp. 14–15].
Those costs are not incurred in a single-node architecture. In summary, installing the
DBMS on existing local computers can reduce the capital and the operational expenditures.

Cloud computing comes with the additional disadvantage that data is stored in a
third-party’s data center [81, p. 995], while single-node systems come with privacy by
design.

1The term “client” is not completely accurate since in a single-node architecture there is only this single
node, the host of the DBMS. Nonetheless, we will call this node the “client” to emphasize that, for a DBMS
user, it plays the same role as a client in a client-server architecture.
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Local-only Client-server

Communication
overhead

No network communication for
query processing itself

Network communication between
client and server to exchange
queries and results

Access to
remote data

Remote data has to be down-
loaded first

Data is stored in cloud data cen-
ter or can be downloaded via
high-bandwidth connection

Capital
expenditure

Hardware is already paid for Might require upfront investment
in server hardware

Operational
expenditure

Low Server costs in data center or
cloud

Privacy Data is stored on trusted client When using cloud computing,
data is stored at third-party side

Resources Bounded CPU and memory Scalable CPU and memory; elas-
ticity

# Users Typically single-user system Multi-user system

Table 4.1: Comparison of the single-node and typical client-server DBMS architecture

However, running all queries locally, as in a single-node architecture, comes with disad-
vantages, too. For example, the data that is analyzed is often stored at a remote location
such as cloud storage. When users want to analyze the data on a local computer, the data
has to be downloaded first. This process could take quite a long time, depending on the
available bandwidth, and can occasion costs.

Moreover, single-node systems can only use the compute resources that are available
locally, while running a system in a data center offers scalability and elasticity, i.e., the
ability to quickly adjust the amount of resources in use [81, p. 992]. However, the need for
the availability of almost unbounded resources is questioned by the claim “Big Data Is
Dead” (see Chapter 1).

Database servers are designed and provisioned to support many users [81, p. 962]. Single-
node systems, on the other hand, are typically designed for a single user. This means that
it is more difficult to work on the same data.

Table 4.1 summarizes the comparison between single-node and client-server DBMSs based
on the dimensions mentioned before. In the following sections, we introduce hybrid query
execution, an architecture that can be seen as a middle ground between the single-node
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and client-server models, offering the benefits of a cloud-based DBMS while utilizing the
compute resources that are available locally.

4.2 A Motivating Example

The idea of hybrid query execution, or hybrid execution for short, is to move the compute
close to the data, thereby offering better performance while better utilizing locally available
resources.

Better performance is hoped to be achieved by reducing the amount of data that is
transferred via a network. Say that a data analyst at a big airline company runs a query
against a relation that contains all the ticket sales of the past week. The database is located
in the airline’s cloud-based data warehouse. Since the holiday season is just around the
corner, the Bookings relation contains a lot of tuples. But the analyst is only interested in
the few bookings made by passengers known for skiplagging, i.e., ending the trip already
on a stopover and not showing up to the flight to their booked end destination. They
have previously downloaded a CSV file from their airline alliance’s web portal containing
identification features of such customers. Here, too, the analyst is only interested in a small
subset of the data, specifically the information about customers that booked a flight within
the last year. After applying this filter, the CSV file is way smaller than the Bookings
relation.

If the analyst uses a DBMS that supports hybrid execution, the query processing might
take place as follows (depicted in Figure 4.2): First, the local CSV file will be read into a
temporary relation and filtered using the DBMS running on the client. The result relation
will then be uploaded to the server. Simultaneously, the Bookings relation will be filtered
for bookings from the past week on the server, which runs close to the data warehouse.
When the skiplagging data from the client arrives, it is joined with the filtered Bookings
relation. Finally, only the tuples of the small result relation will be transferred back to the
client.

Thanks to hybrid execution, neither was it necessary to upload the whole CSV file to
the server nor did the client have to fetch a large Bookings relation. Processing was done
as much as possible close to the data and the amount of data transferred via the network
was thereby reduced.

Now imagine that the analyst wants to further filter the results, sort them, or apply
projections on them. Since the result relation is now locally available, these operations can
be done entirely on the client, without requiring any communication with or processing
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Figure 4.2: Processing of the exemplary query of the airline’s data analyst. Client and
server process parts of the query concurrently and exchange data to synchronize.
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Figure 4.3: High-level visualization of the hybrid-execution model

on the server. Hence, there is no network delay and the operations can be computed in
almost no time.

4.3 High-Level Overview

In the hybrid-execution model, the system is composed of two high-level logical components,
a client and a server, and both have a fully-fledged DBMS at their disposal. This is shown
in Figure 4.3. Hence, both the client and the server can take part in processing an incoming
SQL query. When the client receives a query, its query optimizer decides where to execute
which parts of the query.

Take the query in Listing 4.1 as an example. It shows the flights that persons with the
surname “Springer” have taken. Two relations are joined in the process, but they reside in
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SELECT Bookings.flight_nr
FROM remote_db.Bookings
JOIN local_db.Passengers ON Bookings.passenger_id = Passengers.id
WHERE Passengers.surname = 'Springer';

Listing 4.1: Example SQL query that is executed hybridly

different locations: one locally, the other remotely.
Suppose that the Bookings relation is stored in cloud storage and has a large cardinality.

The Passengers relation, on the other hand, may be large, too, but the selection (WHERE)
operation is very restrictive and lets only few tuples pass through. For that reason, the
query optimizer decides to keep the Bookings relation on the server and instead transfer
the filtered Passengers relation from the client to the server for the JOIN that follows.
The following query is run on the client:

SELECT id FROM local_db.Passengers WHERE surname = 'Springer'.

The client then transfers the much smaller result relation to the server. There, the
intermediate results from the client are joined with Bookings and the final projection is
applied:

SELECT flight_nr
FROM remote_db.Bookings
JOIN (SELECT * FROM GET_CLIENT_RESULTS()) ON passenger_id = id.

As a final step, the results from the server have to be sent back to the client. In the
following section, we dissect the hybrid query processing process in more detail.

4.4 Implementation in DuckDB

Hybrid execution has been implemented on top of DuckDB. We describe DuckDB and
its query processing flow in Chapter 2. In DuckDB, extensions can be loaded that make
modifications to the phases of the query processing flow. Hybrid query execution was
implemented in such an extension, which we call the HQE extension, in combination with
an implementation of the server2. In this section, we describe what was added to the
phases of binding, planning, and execution. We focus primarily on DQL queries and only
write briefly about DML statements.

2The HQE extension is separate from DuckDB and resides in a different codebase which is developed by
a company called MotherDuck. DuckDB, on the other hand, is open source but maintained by DuckDB Labs.
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The hybrid-execution model enables a different way of processing queries, but the queries
themselves stay the same. Hence, no changes to the parser were needed.

4.4.1 Binding

The catalog in an RDBMS stores information about objects that are part of a database,
together with associated metadata. Each catalog corresponds to one database. The catalog
keeps track of the schemas, tables, and views defined in a database, indexes that the system
or users have created, columns contained in tables and views, and many other things.
Notably, it also includes statistics about the database objects, such as the number of rows
or the distribution of values in a table. The RDBMS stores information about catalogs
themselves in the system catalog.

After an SQL query has been successfully parsed, catalog information is used to resolve
identifiers of database objects referenced in the query (see Section 2.2.2). In the hybrid-
execution model, those database objects can reside on the local computer but also in the
cloud. Therefore, a special catalog was implemented that stores information about remote
database objects and keeps it up-to-date. The synchronization is especially important in
multi-user scenarios where catalog information can be changed by other parties.

Catalogs in DuckDB can be modified with SQL. For example, new schemas, tables, views,
and other database objects are created when users issue the corresponding statements
like CREATE SCHEMA. With hybrid execution, these operations are executed purely on
the server when they affect remote databases. The client cannot manipulate the local
catalog information for remote database objects directly, but only when it receives updated
information from the server. This prevents the client and server from getting out of sync.

The new catalog must also provide information about the location of databases to the
remote-local planner as well as statistics to DuckDB’s query optimizer.

4.4.2 Planning

The aim of hybrid execution is to perform the computation close to where the data is and
reduce the amount of data transferred over the network. Through the catalog extension,
information is available about the location of each database. When reading from local files,
the initial processing is set to happen on the client. For remote files such as those stored
on AWS, it should instead take place on the server, since it usually has a better network
connection and is often physically closer to the data.

Hence, developers of the HQE extension cannot unrestrainedly make changes to DuckDB, though it is
possible to contribute to the project.
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Figure 4.4: Logical query plan for Listing 4.1 with operations placed either locally or
remotely

Starting with this information, the remote-local planner traverses the optimized query
plan that DuckDB produced from the leaf nodes to the root and decides for every operator
if it should be placed on the client or the server. Table functions, the leaf nodes in the
operator tree, are placed close to the data, as described before. Other operators are usually
placed wherever its leftmost child is placed. This child is in general the one that is expected
to produce the largest intermediate result.

Some of DuckDB’s operators share state with each other. The remote-local planner has
to make sure that those operators are co-located on the same node.

For binary operators, it is possible that one child is evaluated locally, but the other
remotely. Then the result of one of the children has to be transferred to the client or the
server, respectively, depending on where the parent operator runs. A new logical query
operator called a bridge is introduced that facilitates this data transfer.

If the original root of the query operator tree is executed remotely, an additional operation
⊥ has to be inserted on top of the tree to send the result relation to the client, where it is
finally materialized. For DML statements that target remote databases, the data transfer
happens in the other direction: The client sends tuples to the server. Those data transfers
are initiated by the bridge operator, too.
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In Figure 4.4, the logical query plan for the query in Listing 4.1 is shown. The operations
are marked with the location where they are executed. Because the Bookings relation
has a larger estimated cardinality than the filtered Passengers relation, the theta-join is
also done remotely. The ⊥ operation had to be inserted at the top of the operator tree to
transfer the results back to the client through a bridge.

4.4.3 Execution

DuckDB uses morsel-driven parallelism (see Section 2.2.3). Therefore, query operator trees
are split into pipelines which are scheduled and executed for segments of the input data.
Pipelines start at a data source and end in a pipeline breaker, also called sink.

These sinks are also the places where, in the hybrid-execution model, a data transfer
between client and server can take place with the logical bridge operator. Bridges separate
fragments from each other. These are groups of one or more connected pipelines which
are executed entirely on the same node until their intermediate result is transferred to the
other node.

When the query execution starts, the fragments that are marked as to be executed
remotely are sent to the server. There they are scheduled, executed, and their results
transmitted to the client. The fragments have already been parsed on the client side, so
the server can skip this step of processing.

During execution, a bridge plays two roles: On the node that sends the data, it is a data
sink which marks the end of a pipeline. On the receiving side, it starts a new pipeline as a
data source, and the tuples are further processed when they arrive. Bridges are used both
for the server sending data to the client and the other way round.

Unlike other sinks, intermediate results do not have to be completely written to the disk.
Instead, tuples are buffered and sent in batches over the network.
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Foundational Considerations for
the Test Suite Design

The goal of this thesis is to devise a strategy to test the functional correctness of the

DuckDB extension for hybrid query execution (HQE) (see Section 4.4). In this chapter,

we motivate why we use DuckDB’s own test suite as a starting point and portray what

characteristics of hybrid execution should be tested. We end with an overview of test

evaluation methods and explain why we chose code coverage as metric.

5.1 The Trade-Off Between Risk and Costs

Functional testing is an important activity during the development of software to make sure

that it functions as intended. During dynamic testing, the software under test is executed

with selected inputs and the actual outcomes (return values, output, state changes, calls

to outside dependencies, etc.) are verified to match the expected ones. We have already

explored different testing techniques in Section 2.4.3. They are used to make sure that

many code paths through the system are exercised and the relevant input combinations

are tested to give enough confidence that all functionality works correctly. These different

techniques exist because only exhaustive testing, i.e., testing all possible combinations of

inputs to the application, can consistently find all possible defects in a program [29; 5,

pp. 11–12]. But exhaustive testing is not feasible in all but a few cases [5, pp. 1, 12]. For

example, there are infinitely many valid SQL queries that can be sent to a DBMS, not even

to mention the many different states (databases, tables, values, etc.) and configuration

options that influence the query result. Therefore, pragmatic heuristics for software tests
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are needed to demonstrate with some certainty that the system is of high quality and give
enough confidence that the risk of software failures is low enough.

This points to an inherent trade-off that has to be made between the costs of testing
and the risk that the software manufacturer is willing to accept [5, pp. 3–4]. New tests
need to be developed and maintained, and every test run takes some time1. Yet, they can
ever only show that a system has defects, never prove that it is free of them. This means
that there are diminishing returns on the investment in software tests [5, p. 4].

Still it holds true that more—and more effective—testing reduces the chance that defects
remain undetected [82, p. 20]. By conducting a higher number of sufficiently rigorous tests,
a larger portion of the codebase can be executed, potentially uncovering more bugs and
thereby enhancing the overall confidence in the software’s reliability and quality. Especially
when there is a low-cost way to significantly increase the number of tests, it will likely pay
off to go down this path.

5.2 Reusing an Existing Test Suite

DuckDB already has an extensive test suite in place, which we outline in Chapter 3. Our
objective is to reuse these existing tests and extract the most value from them when testing
the functional correctness of the HQE extension. This is captured in our research question
RQ1 on how to adapt the DuckDB test suite for hybrid execution.

We focus only on functional correctness and leave out all concerns about reliability and
robustness, performance, or security. The tests in the DuckDB test suite that are mainly
used to test the functional correctness are the SQLLogic tests.

With the SQLLogic framework, the whole DBMS is seen as a black box. Tests do
not target any specific internal code of the system directly. Instead, all interactions are
expressed in SQL, with implementation details assumed to be unknown to the test author.

SQLLogic tests are end-to-end tests, exercising the entire DBMS. Since the components
of a DBMS, which we describe in Section 2.2.1, exhibit intricate interactions between each
other and often come with a rather complex stateful interface, it is difficult to test them in
isolation. SQLLogic tests are written from a user’s perspective, so they are still able to
trigger all code paths that are executed in real scenarios while simplifying the writing of
tests thanks to a higher level of abstraction: All a test author needs to specify is the SQL
statement and possibly the expected result.

1The execution time for automated tests is comparably low, though, and it is in general not a problem
to run these tests very often.
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The abstraction from implementation details makes it possible to reuse SQLLogic tests
for other DBMSs. DuckDB based its test suite on the tests of SQLite. Now we are about
to reuse DuckDB’s tests for a hybrid-execution test suite. The results that are expected
for an SQL query are the same for vanilla DuckDB and DuckDB with hybrid execution,
because the placement of the computation should not affect what is computed.

This approach gives us a comprehensive test suite early on and with comparatively low
effort, ensuring a certain level of quality and giving developers the confidence to change
and deploy the software with assurance.

In general, end-to-end tests tend to be slower than component tests. For a good adoption
of the tests, we need to ensure that they are executed fast and deterministically.

5.3 Modifications Made by Hybrid Query Execution

To implement hybrid execution on top of DuckDB, the HQE extension hooks into the
different phases of the query processing flow (see Section 4.4). We want the tests to
demonstrate that DuckDB together with this extension still produces correct results.
Therefore, it is beneficial when tests cover a big surface area of DuckDB’s public interface
and hence exercise a big part of DuckDB’s functionality.

Hybrid execution transforms DuckDB from a single-node DBMS to a system with two
distributed nodes. Therefore, data can be placed in two different locations. Furthermore,
since there is now a network between these two nodes, communication issues can occur.

In its SQLLogic tests, DuckDB does not have the notion of different data locations.
Instead, every database is local on the client2. This assumption does not hold anymore for
hybrid execution. In this case, a database can reside either locally or remotely.

To start with, the tests for hybrid execution should verify that the correct result is
returned no matter if a particular database is residing on the client or the server. This
leads us to the creation of different test modes, which we expound in Section 5.3.1.

In this way, tests can exercise the query planner which decides where to execute a query
based on the data location. The additions in the binding and execution phases that stem
from the HQE extension can be tested in particular when interactions between the client
and the server take place.

Hybrid execution introduces problems that originate from the fact that it makes DuckDB
a distributed system. However, these problems mostly fall into the category of reliability
errors and are thus outside of the scope of this thesis. We also do not address tests for
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any additional features that can be built on top of hybrid execution, such as multi-user
support or collaborative data sharing, but only pay attention to the execution model itself.

5.3.1 Modes of Testing

Hybrid execution introduces the concept of database location which is not present in
DuckDB itself. To incorporate this concept, the test suite for hybrid execution should
confirm that:

a) Executing SQL statements against a local database still works as expected and is
not affected by the HQE extension.

b) Executing SQL statements against a remote database yields the expected result.
c) Executing SQL statements that use data from both local and remote databases yields

the expected result as well.
The last goal was not achieved in this thesis, but some ideas for it are discussed in

Section 8.2.1.
For the other two goals, each SQLLogic test script is run in two test modes: Local and

remote3. Because SQLLogic tests are written in SQL, it is possible to use them like this
with different DBMS configurations.

In the local test mode, the client is not connected to a server and all queries run against
a local in-memory database.

The remote test mode is used to check the execution of queries on the server. For this,
the client first has to connect to a server and create a remote database to work on. But to
speed up the tests, we do not want to connect via a real network. Instead, the server runs
in the same process as the client.

It is the remote test mode in particular that helps to validate the implementation of the
hybrid execution model since it is here that client-server interactions take place.

5.3.2 The Test Server

Automated tests should be fast, isolated and deterministic so that developers can run them
often, identify errors easily, and trust their results (no false positives) [61, p. 6]. Using
a real network for the communication between the DBMS client and server in the tests
would go against these objectives, as it would be too slow and error-prone. Therefore, we
use a fake implementation [53, p. 134] of the actual server in the remote test mode3.

3The test modes and test server implementation were not done as part of this thesis, but were already
completed by other developers previously.
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This fake server runs in the same process as the test runner, and newly created databases

are stored in memory. At the communication boundary, every remote procedure call is

instead converted to a local function call. Hence, there is close to zero communication

overhead, and no network problems can affect the test result.

A new server instance is spun up for every SQLLogic test script so that all tests run

isolated from each other and do not share any server state.

Having the client and server running in the same process greatly aids debuggability, too.

Developers can trace the whole execution on a single machine without having to correlate

information from multiple nodes. Furthermore, it allows for fine-grained control of the

server execution. For example, to test how the client can handle error conditions, a test

can be created in which the server is shut down after a short period of time.

However, a fake implementation of the server comes with downsides, too. Since the real

implementation is not fully exercised by the tests, those tests may not find all the problems

in the production code. Moreover, the fake implementation has to be kept up-to-date with

the real server, or otherwise both will diverge and the fake implementation resembles the

real one less and less.

The wish for deterministic execution when testing distributed database systems is not

new. FoundationDB is built around a deterministic core which abstracts from sources of

non-determinism such as the clock, network, or disk. Tests are executed in a deterministic

discrete-event simulator. This not only helps to execute queries deterministically, but can

also be used, for instance, to see how the system behaves in the face of erroneous conditions

[92].

The developers of the transactional TigerBeetle DBMS built deterministic simulators for

the network, storage, and other external dependencies, too. They run a fuzzer inside this

simulator to find problems which then can be easily reproduced [19].

5.4 Design of Experimental Evaluation

Software tests should be able to find many possible defects and hence reduce the risk of bugs

staying undiscovered. To evaluate whether the steps to adapt DuckDB’s SQLLogic tests

have the desired effect, we want to conduct measurements. A metric for these measurements

should be simple, consistent, and relevant. Code coverage is a widely-used metric that

fulfills these requirements and is thus used for our evaluation, too.
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5.4.1 Metrics for the Effectiveness of a Test Suite

Code coverage is a metric to describe how much of a system’s code gets exercised during a
test run (see Section 2.4.4). Although it does not express directly how “good” a test suite
is, high code coverage is a necessary condition of a good test suite: A test can only find a
bug in a particular piece of code or on some code path when this piece or path is actually
executed.

Other metrics have also been proposed to measure the effectiveness of a test suite.
Hutcheson defines the test effectiveness as the ratio of bugs found by tests to the total
number of bugs found (by tests and users) [36, p. 191]. It is also possible to use metrics
of software quality as indication for the test suite effectiveness. One such metric is the
reliability and corresponding measures of the time between failures or the failure count
[28]. Other authors have proposed to use a mutation score [16; 9] to determine test quality
[86; 64]. For this, an artificial defect is implanted into a program, producing a mutant.
Then, the mutants that are discovered by the test suite are counted. Hence, this metric
does not only capture if the code that contains an artificial defect is executed, as would
code coverage do. It also indicates whether test oracles are able to identify a failure [86].

But none of these metrics is as easily quantifiable as code coverage. Especially measuring
the number of bugs or time of production failures assumes long-standing production
experience to collect these metrics, which is not available in our case.

Mutation testing comes with an inherent complexity for large software systems, since
there are a lot of possible mutations for every part of the code. There have been attempts
to apply this kind of testing to large, but they come with their own limitations. In [4],
the authors at Facebook used machine learning to find mutants that reflect typical errors
made by programmers. But this approach requires a big effort to set up. At Google, the
mutation tests are run only incrementally and not for the whole codebase [65]. However,
we want to measure the effectiveness of the whole test suite at every step.

Because code coverage is easy to measure and there are many tools to help with this, we
use this metric to measure the effectiveness of our test suite.

5.4.2 Measuring the Code Coverage

We use the source-based code coverage tool4 that is integrated with LLVM, the backend
for the Clang compiler. It instruments the program with counters at various points, such
as the start of a function or statement, to count the number of times this function or

4https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
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statement is executed during a test run. This instrumentation comes with low overhead
and also works on optimized code. A code coverage report is then generated from the
counter values with LCOV5.

LCOV can visualize the function, line, and branch coverage. However, the branch
coverage numbers are not always accurate because conditional branches can also be created
for error propagation, and in general it does not work well with optimized code [63].
Therefore, we use the line coverage as metric to measure the test suite effectiveness.

The codebase of the HQE extension consists of DuckDB itself6 as well as additional code
to implement hybrid execution. However, what complicates the code coverage measurement
for DuckDB is that the same code is shared by the client- and server-side DuckDB instance.
In other words, no matter whether a DuckDB function is called by the client or by the
server, it is considered to be covered by a test in any case. But it would be interesting to
know what portion of the code is executed by the DBMS on the client and how much on
the server. We can get an approximate answer to this question by using the two different
test modes.

In the local test mode, only a very small part of the hybrid-execution code is needed;
the execution mostly happens in the DuckDB codebase. Since one objective of the local
test mode is to verify that the core DuckDB functionality is not affected by the HQE
extension, it is sufficient to measure the line coverage for:

• Only the code of DuckDB.
On the other hand, for the remote test mode, we want to know how much of the hybrid

execution-specific code is tested. But we are also interested in how much of DuckDB’s
code gets covered since we want to ensure that the available DuckDB functionalities also
work in combination with hybrid execution. Therefore, we look at the line coverage for:

• Only the code for hybrid execution.
• Only the code of DuckDB.

In the next chapter, we chronicle our effort to use the DuckDB tests for hybrid execution
and report on the code coverage achieved with the local and remote test mode, respectively.

5https://github.com/linux-test-project/lcov
6Concretely, DuckDB’s source code is integrated as a git submodule. It is not under our direct control.
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6

Leveraging DuckDB’s Test Suite
for Hybrid Query Execution

When creating a test suite, one has to find a balance between its thoroughness, the cost of
running it (including the test runtime) and the implementation effort. As motivated in
Chapter 5, we therefore want to find ways to leverage the extensive DuckDB test suite to
test hybrid query execution (HQE).

Using tests that are written in SQL comes with the advantage that they are not coupled
to internals of any RDBMS, but only use its standardized public interface. For a given
statement, the expected result is mostly1 defined by the SQL specification [41]. On top of
the standardized SQL, many database vendors add custom features with a corresponding
syntax and semantics to their particular DBMS. This leads to the creation of different
dialects of SQL.

When SQL-based test scripts only specify the statements to execute and the expected
results, they can validate the correctness of every DBMS that speaks the SQL dialect that
is used in the tests. The only ingredient of the test suite that has to change is the test
runner—the program that reads the SQL statements from the test scripts, sends them to
the DBMS under test, and asserts that the actual and expected results match.

The mode of processing, whether with hybrid execution or not, should not change the
result of queries. This fact, together with some adjustments of the test runner, allowed us
to repurpose the SQLLogic tests from DuckDB to test hybrid execution.

In this chapter, we engage with the two research questions that we pose in Chapter 1.
We attempt to answer RQ1 by chronologically documenting the steps we took to adapt

1Some small aspects are left unspecified. One example is the sort order of NULL values, i.e., if they
appear first or last in a sorted column [40, §10.10 Rule 3].
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DuckDB’s SQLLogic tests to validate the HQE extension. To easily refer back to them
later, every step is given an identifier Sn. Our aim was to use the existing tests as much
and effectively as possible. This meant in particular increasing the amount of code that is
executed by the tests.

We start by analyzing the situation we found at the beginning of our work and identify
problems that prevented some tests from being run, therefore keeping the code coverage
low. In the next step, we describe how we tackled one of these problems and again look
out for new ones. We repeat this process for all the steps that follow.

To see how effective these steps were (RQ2) and to inform the next step to take, we
regularly measure and analyze the code coverage that the tests achieve. Specifically, we
collect the line coverage for the following parts of the codebase (see Section 5.4.2):

1. The core DuckDB code, executed in the local test mode (“Local, DuckDB”)
2. The core DuckDB code, executed in the remote test mode (“Remote, DuckDB”)
3. The code for hybrid execution, executed in the remote test mode (“Remote, HQE”)

We contrast the coverage with the time that is required to run all tests in both the local
and remote test mode.

6.1 Initial Situation (S0)

DuckDB’s SQL-based test suite consist of SQLLogic test scripts. They are executed and
their results validated by a test runner.

At the beginning of our work, the SQLLogic tests from DuckDB were already used to
test the HQE extension. The scripts were executed by a custom test runner that uses the
Catch2 test framework2.

The test framework provides a main entry point into the test program and offers the
infrastructure that is needed to write unit tests. For example, it defines ways to create
new test cases or write assertions. A Catch2-based program can automatically discover
and execute the test cases, verify that the assertions hold, and generate a report about a
test run. Every test case is identified by a unique name and can be marked with several
tags. This makes it possible to select which tests to run.

The SQLLogic test scripts were sorted into different test groups, which correspond to
the directories in which the test scripts were located. For every group, a single Catch2 test
case was created in which all the test scripts in the group were executed one by one by

2https://github.com/catchorg/Catch2
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the custom test runner. However, this test runner came with major limitations, as we will
explore in the next section.

In the local test mode, only four SQLLogic tests scripts were executed—of the around
2600 SQLLogic test scripts from the DuckDB test suite (see Chapter 3). This resulted in a
line coverage of 21% for the DuckDB codebase. In the remote test mode, 101 test scripts
covered 39% of DuckDB’s source code and 50% of the hybrid execution code. The average
execution wall-clock time3 calculated from five test runs with both tests modes was 1.7 s.

Local, DuckDB Remote, DuckDB Remote, HQE Execution time

S0 21% 39% 50% 1.7 s

To increase the amount of code that is executed by the tests and hence increase the
chances of finding bugs in the HQE extension, we wanted to increase the number of
test scripts that are run. But before attempting this, as a stepping stone to subsequent
improvements, we first replaced the custom test runner.

6.2 Using a Feature-Complete Test Runner (S1)

Initially, a custom test runner was used to execute SQLLogic test scripts. However, a
major drawback of this test runner was that it did not support all the commands that are
used in the test scripts. For example, a test script can contain a require command which
instructs DuckDB to load an extension, or a loop command to execute some statements
multiple times. The custom test runner failed to interpret these commands. Hoping to get
more test scripts to run successfully, the first step we took was to replace it with DuckDB’s
own test runner. Executing more test scripts would also lead to a higher code coverage.

Of the 1997 test scripts, 825 contained test commands that were unsupported. Sometimes,
but not always, this led to a test failure, for example, because loop variables could not be
interpreted. In other cases, the command was just ignored. This was the case, for instance,
for require commands: The specified extension would just not be loaded. However, this
could still lead to wrong results or failures in subsequent SQL statements. For example,
there are SQL queries that read data from a remote source. They rely on an extension to
create a HTTP connection. If this extension was not loaded, those queries would fail.

For DuckDB, an alternative test runner had already been implemented, also based on the
Catch2 test framework. Because it is developed side-by-side with DuckDB and is targeted

3All experiments were done on a MacBook Pro (2020) with 8-core M1 chip and 16 GB of memory, using
the GNU Time (time) utility
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specifically towards executing its SQLLogic tests, this test runner does support all the test
commands used in the test scripts. And since it is developed in lockstep with the rest
of DuckDB’s test suite, it will support all test features that may be added in the future
as well. Aside from being able to run more DuckDB tests, an additional benefit of using
this test runner is that all test commands are also available for use in new tests written
specifically for the HQE extension. Therefore, we replaced the original test runner with
DuckDB’s one.

The DuckDB test runner was not designed with extension in mind. But to test hybrid
execution, some custom initialization logic has to run before each test. In particular, the
client DuckDB instance has to load the HQE extension and possibly connect to a test
server. Before being able to replace the test runner, we therefore had to create an extension
point in DuckDB’s test runner that derived classes can utilize.

Thereafter, two new test runner classes—one for each test mode—were created that
derive from DuckDB’s test runner. Both test runners load the HQE extension into DuckDB
before running any tests, but only the one for the remote test mode connects to a server and
creates an initial remote database against which to execute all subsequent SQL statements.

A set of SQLLogic test scripts was previously excluded from running because they did
not support some test command. With the new test runner, all these could now be enabled.
But during a test run still only 117 test scripts were executed in total: five in the local and
112 in remote test mode.

Since the number of executed test scripts did not increase by much, the improvements
in code coverage are also marginal. The local tests covered 23% (+2%) of the DuckDB
codebase. In the remote test mode, the coverage of the hybrid execution code stayed the
same with 50%, but there was a small increase in the line coverage of DuckDB up to 40%
(+1%). The execution wall-clock time stayed roughly the same with 1.8 s (+0.1 s) as
average of five test runs.

Local, DuckDB Remote, DuckDB Remote, HQE Execution time

S1 23% 40% 50% 1.8 s

Although using an alternative test runner did not affect the code coverage numbers much,
it was the foundation on which subsequent changes could be made. The reason that only
12 additional test scripts were executed, despite there being 825 that contain unsupported
test commands, is a result of how the test cases were organized. In the next section, we
describe how we changed the structure of the test suite to remedy this problem.
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6.3 Getting All Test Scripts to Run (S2a)

SQLLogic test scripts in DuckDB are assembled into groups based on the directory in
which they are located. To give an example, all test scripts that are targeted at testing the
logic of INSERT INTO are grouped together. We found that for each group, one Catch2 test
case was created in which all test scripts in this group were executed sequentially. This is
exemplified in Listing 6.1.

TEST_CASE("Insertion Tests Remote") {
auto test_group = "insert-into";
auto directory = std::filesystem::path {duckdb_test_root + test_group};
auto test_scripts = GetTestScriptsInDirectory(directory);

for (auto& script : test_scripts) {
RemoteTestRunner::ExecuteFile(script);

}
}

Listing 6.1: Code to illustrate how test cases were defined

The Catch2 framework automatically discovers and executes the test cases defined in the
program. The issue, though, was that a test case terminates as soon as the first assertion
fails. Hence, whenever there is one assertion failure in one of the test scripts, all remaining
test scripts in the group are not even attempted to be run. Assertions fail, for example,
when an unexpected SQL query result is produced by DuckDB or when an error occurs
during the processing of a statement.

At the time we faced this issue, a lot of test scripts were still not run successfully because
a few SQL statements were not supported by the HQE extension, the test runner still
failed to execute a small fraction of the test scripts, and because some actual bugs have
crept into the code. This meant that many test cases were terminated early, too, and many
test scripts were never run.

To increase the total number of scripts that the test runner executes, every test script had
to run independently of the others. We therefore enclosed every test script in its own test
case. Hence, even if the execution of one test script is unsuccessful and the corresponding
test case would thus fail, this does not impact the execution of other test scripts.

Another benefit of this change is that test scripts can be called individually. With the
Catch2 framework, it is possible to specify exactly which test cases to run when the test
program is started [57]. In particular, a test case can be specified by its name. Since a
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test case now maps to exactly one test script, developers can conveniently run a single test
script. This makes it especially easier to debug individual tests.

One problem still remained that caused other test cases to not be executed: invalid or
abnormal states. There were some tests that gave rise to segmentation faults and others
that provoked the AddressSanitizer to abort the execution. The entire test program would
stop after receiving those signals. Tests in this category had to be debugged or, as a first
aid, disabled for test runs to complete.

Since after taking these steps all test scripts were now executed, successfully or not, the
scale of test failures became apparent. Before continuing to collect the code coverage, we
first had to make sure that a complete test run finishes successfully.

6.4 Disabling Tests That Are Expected to Fail (S2b)

At this stage of development of the HQE extension, there were still some SQL features that
were not yet supported and known bugs in the system that still needed to be fixed. We
go into more details about this in Section 6.5. Because it was finally possible to execute
all test scripts after changing the structure of the test suite (see Section 6.3), many test
cases did fail, which led the test runner to produce an overwhelming output. Therefore, we
temporarily disabled the tests that were expected to fail.

A good regression test suite should give developers timely feedback on the correctness
of new code they wrote. For instance, after fixing a bug, all it should take is to push a
button to verify that a) the bug is indeed fixed and b) no other defects were introduced
along the way. The same goes for new features: developers should get from the test suite
the confidence to make any necessary changes while still being certain that they do not
break any other part of the system. For a test suite, this implies that it should be “green
by default”. This means that all enabled tests shall pass when they are run against the
current codebase, with no failures or errors, and that a test failure should indicate a recent
mistake made by the developer who observes it. A test suite that does not live up to this
standard has difficulty earning the trust of developers and might more often be ignored
than used.

To provide developers immediately with a tool to increase confidence in the code as a
whole and the changes they make, we wanted to get the SQL-based test suite to a green
state as fast as possible while still running most of the tests. This meant that we had
to ignore some bugs for the time being by disabling the test scripts that found them.
Moreover, we also disabled tests that required yet unsupported SQL features. At the cost
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of having an incomplete test suite, it gave developers the opportunity to run the majority
of tests and quickly find defects they might have introduced.

Therefore, we added a list of excluded test scripts. These test scripts are skipped during
a normal test run. However, it is still possible to call them directly, for example, to debug
and fix the root cause due to which they are disabled in the first place.

After we got the test suite to a green default state again, we were able to collect new
code coverage numbers. 82% (+59%) of the lines in DuckDB’s codebase were covered by
1716 test scripts in the local test mode. In the remote test mode, 745 test scripts were
executed, resulting in a line coverage of 66% (+26%) for DuckDB and 65% (+15%) for the
hybrid execution code. But since a lot more tests were executed, an average test run took
70 s (+68 s).

Local, DuckDB Remote, DuckDB Remote, HQE Execution time

S2 82% 66% 65% 70 s

The coverage for the hybrid execution source code is higher, though, when taking tests
that were specifically written for hybrid execution into account. With these tests, the line
coverage stood at 82%. But our primary focus will stay on DuckDB’s existing tests.

A challenge which the new exclusion list was to keep it up-to-date and remove test
scripts from the list whenever corresponding features are added or bugs are fixed. Another
possible concern was that developers just exclude newly failing tests instead of finding and
fixing the root causes of the failure. But this worry did not materialize.

Lastly, this long list of test names could be very confusing and difficult to work with. To
alleviate this problem, we categorized the failing tests by the error message they generated.
Still, it could be hard to see which test scripts exactly were already excluded and in which
category to put test scripts that were newly added to the exclusion list. But at least this
categorization was very helpful in creating an overview of unsupported SQL features and
known bugs.

6.5 Aggregating an Overview of Test Failure Causes

The test scripts in the exclusion list are classified by error category. This made it possible
to assemble an overview of why tests failed and hence which features are still unsupported,
where known bugs are, and what it would take to resolve these issues. This overview was
then used to prioritize the continuing work on the HQE extension.
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Often, the error messages of failing tests indicated that some of the SQL features that are
supported by DuckDB and are hence used in the SQLLogic tests were not yet supported by
the HQE extension. The reason was that a new database catalog had been implemented,
which did not yet allow to create new database objects of types such as sequences, indexes
or functions, or provide statistics for them.

Another major gap was the missing support for multi-statement transactions. All
statements in a transactions should be executed by the DBMS as a single logical unit
whose results only are made visible to other concurrent transactions after it is committed
[34]. However, with the HQE extension, transactions were not always atomic and isolated,
and rolling back changes often did not work.

Lastly, some other functionality such as PIVOT statements4 or server-side PRAGMA state-
ments5 also did not work. Together with other developers, these problems were—and some
still will be—tackled step-by-step.

A second approach to identify which features were not supported is by taking a look
at the code coverage achieved in the remote test mode. Since all SQL statements are
eventually translated to physical operators, it is possible to detect unsupported features by
looking at the coverage of these operators. This is shown in Figure 6.1.

In Table 6.1, the files with a line coverage of less than 50% are listed. It also contains the
following three files listed: physical_create_function.cpp, physical_create_index.cpp
and physical_create_type.cpp. This shows that with this method, too, we identified
that CREATE INDEX, CREATE FUNCTION, etc. were not supported. However, while we can
say for certain that SQL features that correspond to C++ files that were not covered were
unsupported, this implication only goes in one direction: Some files corresponding to
unsupported features actually were partially covered, for example, because DuckDB called
the functionality internally.

In Table 6.1, some C++ files responsible for handling the reading of data from CSV files
are listed as having low coverage. This was because all tests in this category were disabled
since many of them caused a segmentation fault. The problem was fixed later and the
coverage of these files went up as well.

This analysis showed that an important factor in increasing the code coverage even more
was to fix bugs and add support for new DuckDB features. But there were still some things
left to do on the test runner.

4https://duckdb.org/docs/sql/statements/pivot.html
5https://duckdb.org/docs/sql/pragmas.html
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Figure 6.1: Visualization of the line coverage of source files in duckdb/src/execution/operator
in the remote test mode after step S2. The area of each section corresponds to the number of
lines of code.
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File name Line Coverage

operator/aggregate/physical_streaming_window.cpp 46.9%
operator/helper/physical_pragma.cpp 0.0%
operator/helper/physical_reset.cpp 34.1%
operator/helper/physical_streaming_sample.cpp 0.0%
operator/helper/physical_vacuum.cpp 0.0%
operator/join/physical_index_join.cpp 0.0%
operator/persistent/base_csv_reader.cpp 35.2%
operator/persistent/buffered_csv_reader.cpp 49.6%
operator/persistent/csv_file_handle.cpp 33.3%
operator/persistent/csv_reader_options.cpp 35.5%
operator/projection/physical_pivot.cpp 0.0%
operator/projection/physical_projection.cpp 46.9%
operator/schema/physical_create_function.cpp 0.0%
operator/schema/physical_create_index.cpp 0.0%
operator/schema/physical_create_type.cpp 22.5%

Table 6.1: C++ files in duckdb/src/execution/operator with a line coverage less than 50%

6.6 Handling Multiple Connections (S3)

To test database transactions, it is possible to create multiple connections to the same
DuckDB instance in a SQLLogic test script. All its SQL statements are still executed
sequentially, but some are sent over one and some over another connection. Importantly,
changes that are made in transactions on one connection should not be visible to the other
connections before the transaction is committed.

The problem with tests in the remote test mode was that newly created database
connections did not run SQL statements against the remote test database. Instead,
DuckDB’s client-side database was used by default. Therefore, all statements on new
connections were executed as if in the local test mode.

To solve this, we changed the default database used by new connections to a remote
database at the beginning of each test run. Only after this change, some issues with the
transaction processing in the remote test mode became visible. They were previously
hidden because transactions work correctly on local databases.

This change actually forced us to disable some tests that were now failing due to
transaction issues. However, since the last measurement of the code coverage, other issues
had been resolved and some additional tests could be enabled. In the local test mode,
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1870 test scripts gave a line coverage of 84% (+2%) for DuckDB. In the remote test mode,

the line coverage from 1326 test scripts was 75% (+9%) for the DuckDB and 70% (+5%)

for the hybrid execution source code. With 85% (+3%), the code coverage for the hybrid

execution implementation would again be higher when additionally considering the tests

written specifically to test this aspect. An average test run took 96 s (+26 s).

Local, DuckDB Remote, DuckDB Remote, HQE Execution time

S3 84% 75% 70% 96 s

6.7 Check for Correct Errors on Expected Failures (S4)

In Section 6.4 we introduced the list of test scripts that are expected to fail and therefore

excluded from the standard test run. One problem with this list is that test scripts have to

be manually taken off this list whenever a bug is fixed or a previously unsupported feature

gets implemented.

To automatically find out if tests still fail for the expected reason, we first linked the

expected error message to every test script on the list. This was made easier thanks to the

existing grouping of test scripts by failure category. Then we implemented a tool that runs

the excluded tests and asserts that the produced error messages match the expected ones.

After running this tool, we could enable around 200 additional tests for which the root

cause due to which they were disabled was fixed. In addition, we included 580 test scripts

in the test run that are part of the DuckDB test suite, but not in the test directory on

which we initially focused our attention. A test run did thus consist of 4031 test cases:

2216 SQLLogic test scripts were executed in the local test mode, 1815 in remote mode.

However, even though many more test scripts were used, the code coverage only improved

slightly. The coverage of DuckDB in the local test mode stayed at 84%. In the remote test

mode, the coverage for DuckDB was now at 78% (+3%). For the hybrid execution code, it

even decreased to 64% (-6%). The reason for this was that new features were added to the

HQE extension, but those are never exercised by DuckDB tests. Instead, they are tested

separately in SQLLogic and C++ tests.

Local, DuckDB Remote, DuckDB Remote, HQE Execution time

S4 84% 78% 64% 136 s
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A test run now took already 136 s (+40 s). This could become an annoyance for
developers that want fast feedback from the tests. Hence, we set out to improve the test
running speed.

6.8 Running Tests in Parallel (S5)

The Catch2 test framework provides the facilities to split the test suite into chunks of
a certain size and run only one chunk. To deal with the variance in the time it takes
to execute individual test scripts, the scripts are pseudo-randomly assigned to chunks.
Otherwise, tests that tend to take longer than the average, such as tests that read from
CSV files, would be clustered together.

Each chunk of test scripts is executed in parallel by a job, created using the GNU
parallel tool6. With eight jobs, each covering 12.5% of the tests, on a laptop with eight
cores, the test execution time was reduced by 62% down to 52 s (-84 s).

6.9 Summary

For our analysis, we make distinctions for the two different test modes. For the local test
mode, the code coverage of the DuckDB code was captured (“Local, DuckDB”). For the
remote test mode, we collected the code coverage of the DuckDB codebase (“Remote,
DuckDB”) and the HQE extension codebase (“Remote, HQE”).

Through our work, we were able to more than double the overall code coverage from 40%
to 83%. Since we focused on making the most of the existing DuckDB tests, the increase
was most pronounced for the coverage of the DuckDB codebase: In the local test mode,
the coverage increased from 21% to 84%; from 39% to 78% it climbed for the remote test
mode.

We took the following steps to be able to use the majority of DuckDB’s SQLLogic tests
to run with hybrid execution:

• S0: Initial situation before the thesis-related work started
• S1: Switching to DuckDB’s own test runner that supports all test commands
• S2: Running test scripts individually and enabling most of them
• S3: Handling multiple database connections in the same test script; enabling tests

for added features/fixed bugs
6https://www.gnu.org/software/parallel/
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Figure 6.2: Line coverage after each step S0–S4

• S4: Using a tool to check which disabled tests can be enabled; including tests outside
of the original test script directory

• S5: Parallelization of the test execution

Table 6.2 summarizes the collected code coverage for every implementation step (the
coverage is the same for S4 and S5). The same data is visualized in Figure 6.2. There it
can be seen that the biggest leap regarding code coverage was made for the tests in the
local test mode. Furthermore, step S2, running test scripts independently and enabling
most of them, was by far the most successful in terms of the increase in coverage.

S0 S1 S2 S3 S4

Local, DuckDB 21% 23% 82% 84% 84%
Remote, DuckDB 39% 40% 66% 75% 78%
Remote, Hybrid execution 50% 50% 65% 70% 64%

Table 6.2: Line coverage after each step S0–S4

The higher test coverage was a result of enabling more and more SQLLogic test scripts
with each step. However, when the code coverage was already high, just running more test
scripts did not improve the coverage much further. This can be seen, for example, when
comparing steps S2 and S4 in Tables 6.2 and 6.3. Even though 500 additional test scripts
are executed after S4, the code coverage in the local test mode is only 2% higher—at the
cost of a much higher execution time.
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S0 S1 S2 S3 S4 S5

Test execution time 1.7 s 1.8 s 70 s 96 s 135 s 52 s
Number of test scripts (local) 4 5 1716 1870 2216 2216
Number of test scripts (remote) 101 112 745 1326 1815 1815

Table 6.3: Overview of the number of executed tests and the time required for this for steps
S0–S5
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Figure 6.3: The line coverage achieved and time needed for a test run as a function of the
number of test scripts that are executed

Those diminishing returns are also reflected in Figure 6.3. It shows the total coverage
for the DuckDB source code from the local and remote test mode combined. While the
execution time increases steadily and unrestrained with the number of executed test scripts,
the coverage converges asymptotically to around 85%.

The execution time was reduced only once parallelization was added (see Table 6.3).
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Discussion and Future Work

To create an extensive test suite for hybrid execution while keeping the implementation
effort low, we wanted to leverage the existing SQLLogic tests in DuckDB’s test suite (RQ1).
We chronicle the actions we undertook in Chapter 6. In the end, we used most of these
tests and executed them in the local and remote test modes, respectively.

We used code coverage as a metric to measure the effectiveness of our actions (RQ2).
From the measurements it became apparent that not all steps were equally effective, even
if put in relation with the time needed to implement them. Specifically towards the end,
when the code coverage was already quite high, only small leaps were made. This could be
ascribed to a focus that shifted, for instance, to improving the developer-friendliness of the
tools. On the other hand, many new test scripts were added even during the last steps,
which we expected to lead to better outcomes. Hence, a critical look must be taken at the
metric we used.

Before doing this, we want to take another look at where the code coverage stands after
the final step and identify holes in our test suite that are still left open.

7.1 Concluding Code Coverage Analysis

To identify holes in the code coverage, we reinstantiate the visualization from Section 6.5
for the last measured code coverage.

7.1.1 Subsisting Coverage Holes

Figure 7.1 already has a lot more green in it compared to Figure 6.1 and only a few parts
are marked red, showing that most of the source files are now covered to a sufficient degree.

Only four physical operators are left with a code coverage of less than 50%. These are:
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Figure 7.1: Visualization of the line coverage of source files in duckdb/src/execution/operator
achieved in the remote test mode after step S5. The area of each section corresponds to the
number of lines of code.
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7.1 Concluding Code Coverage Analysis

• operator/helper/physical_load.cpp: 0.0%; for loading other extensions

• operator/helper/physical_reset.cpp: 39.5%; for resetting configuration values

• operator/join/physical_index_join.cpp: 0.0%; for index joins, but indexes are not

yet supported in the HQE extenison

• operator/projection/physical_projection.cpp: 46.9%; join projections are not covered,

but neither are they in the original DuckDB codebase

When taking a closer look at which lines exactly are not covered in these but also in other

files, it appears that many error paths are not tested. That is, there are not many SQLLogic

tests that validate that exceptions, in particular internal ones, are thrown. However, many

of the internal exceptions seem to exist for the purpose of defensive programming, checking

conditions that are usually not triggered by interactions via the public interface of the

DBMS. Therefore, not having them covered is acceptable.

Other coverage holes are a result of functionality not being used for hybrid execution.

For example, the code in DuckDB that converts data into the Apache Arrow format is not

hit by any test because the HQE extension internally uses the Protobuf format instead.

A second example is all the code that is concerned with printing information such as the

progress of query processing on the terminal. The SQLLogic tests do not validate that

the rendering works correctly; DuckDB uses C++ tests for this purpose. Similarly, many

ToString and other helper methods are never executed by any test.

These are some of the reasons why even in the local test mode, where after step S4 only

six of the 2222 test scripts were disabled, the line coverage did not exceed 84%. DuckDB

has additional tests aside from the SQLLogic tests that help them to cover 93% of the lines

in their codebase. However, looking at the coverage of the source files does not clearly

indicate what can be improved about the test suite. Instead, it requires to take a long,

hard look at every file that is not well covered and determining if the not-covered functions

are indeed relevant and worth testing.

For the hybrid-execution codebase, we were presented with a similar situation. Lines

that were not covered often corresponded to error-handling code that stems from a

defensive programming style. Other files contained features that are not strictly part of the

implementation of hybrid execution, such as an AI-powered assistant for writing SQL and

analyzing data. As such, they were not covered by the hybrid-execution tests. However,

the code coverage pointed out some legitimate but small holes in the test suite as well.
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7.1.2 Impact of Unsupported Functionality on Code Coverage

From our earlier results in Tables 6.2 and 6.3 we can see that adding more and more test
scripts did not increase the code coverage much further in the local test mode. One reason
for this is that a line that is hit a single time during a test run weighs the same as a line
that was hit thousands of times. Hence, even though some lines might get executed a lot
more and possibly as part of more diverse code paths, the coverage is only concerned with
the number of lines hit. A (hypothetical) tool that measures the path coverage attained by
a test run might thus show improved metrics for steps S3 and S4.

Still we wanted to see what code coverage could be reached in the remote test mode
by adding the tests for features that are still unsupported. For this, we use the local test
mode with its code coverage of 84.0% as baseline. For each set of features, we disabled the
corresponding tests in the local test mode. The difference in code coverage to the baseline
is the increase in coverage we can expect in the remote test mode when implementing the
corresponding features and enabling those tests.

• When excluding the 204 tests related to CREATE INDEX, CREATE SCHEMA and other
SQL statements that are not yet support by the catalog of the HQE extension, the
coverage drops to 82.8% (-1.2%).

• When excluding the 17 test scripts that fail in the remote test mode because some
operators cannot be serialized and transmitted to the server, the resulting coverage
would be 83.7% (-0.3%).

• When excluding the 104 test scripts that are disabled because they fail for transaction-
related problems, the coverage surprisingly stays at 84.0% (±0%). One explanation
for this is that all the transaction-related DuckDB code is already executed by
single-statement transactions or transactions against a DuckDB catalog, both which
also work in the remote test mode.

In Figure 7.2, the minor differences are visualized. These experiments show the limitations
of code coverage as a metric for measuring the quality and effectiveness of a test suite.
The tests for database transactions are undeniably useful, as are the tests for the other
features, but their usefulness is not reflected in this metric. Adaptations like weighing
in the number of hits per line might improve the metric in this regard, but increase its
complexity and make it more difficult to understand.

Code coverage was a valuable metric for us since it led us to raise the number of DuckDB
test scripts to run, which increases the chances of finding bugs and resulted in a test
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Figure 7.2: Coverage in local test mode when excluding test scripts related to unsupported
aspects

suite that can give developers the confidence that executing queries remotely indeed works

correctly. However, an even easier metric that could have helped us to achieve the same

goal is simply the number of executed test scripts. This is a stance that other researchers

take, too: In the next section, we provide a brief and incomplete summary of the debate

on the correlation between code coverage and test quality.

7.2 Code Coverage to Measure Test Effectiveness

Code coverage is a metric widely used in practice to inform testers if the test suite can

detect most of the software defects. And even though it cannot make a point about the

quality of tests directly, increasing the coverage is hoped to increase the quality of the tests

as well. However, this correlation between code coverage and test quality is hotly debated.

Del Frate et al. observed that an “[i]ncrease in code coverage is likely to increase reliability”

[15], but the correlation between both aspects varied greatly between the tested programs.

The data of Frankl and Iakounenko showed that “the likelihood of detecting a fault increased

sharply as very high coverage levels were reached” [24]. And Kochhar, Thung, and Lo

even reported a “statistically significant correlation between code coverage and bug kill

effectiveness” [45] for real bugs. On the other hand, Cai and Lyu found that, even though

code coverage results in good fault detection capabilities on error-paths in the code, this
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correlation is “weak in normal testing” [10]. Summaries of more work in this area can be
found in [51] and [38].

In a large study on 31,000 test suites for five different programs, Inozemtseva and Holmes
concluded that a higher effectiveness of a test suite can be better explained by its size.
They only found a “low to moderate correlation between the coverage of a test suite and its
effectiveness when its size is controlled for” [38]. This finding aligns with our observation
that the attempt to solely increase the number of executed tests would have steered our
work in a similar direction as did code coverage and would have been even easier to measure.

In conclusion, we have the impression that we are hitting the limitations of the code
coverage metric. It is still possible to improve the tooling around it and, for example, rely
on branch instead of line coverage to get a more granular picture or exclude error branches
from the measurement to reduce the noise in the results. But despite this, other metrics,
such as a mutation score (see Section 5.4.1) or real errors encountered during the use of
the system, might provide more insightful information about possible improvements of the
test suite.

These metrics can also make a statement about the quality of test assertions. That is, by
testing if actual bugs are found, they can check if the tests actually test the right things.
Test coverage is not able to provide this information [64].

Even though it might not be perfect, code coverage is still a useful metric, especially
when writing new code. Since it is easy to collect automatically, we can continue using it
without much effort.

7.3 Use of the Test Suite in Practice

The test suite that we describe in this thesis is actively used in practice by MotherDuck.
The SQLLogic tests are automatically executed in local and remote test mode for every
GitHub pull request, so that potential bugs are detected before the changes are merged
into the main branch. They are also a vital part of the local development workflow, giving
fast feedback on the correctness of recent code changes. Due to the high test coverage that
was achieved, the test suite gives confidence that no existing functionality is broken and
that the software is most likely to continue to work as it should.

The tests helped to identify problems with the existing code, too. To give an example,
the tests helped to catch bugs where passing invalid arguments to a function that reads a
CSV file would result in an internal error, which transitions the database into an invalid
state, forcing the user to restart the DuckDB process or reloading the web app. The
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summary of the reasons for test failures that we describe in Section 6.5 was an invaluable
tool to get an overview of what functionality is fully supported by MotherDuck.

With the test suite, updates of external dependencies can quickly be validated. This is
especially important for DuckDB. MotherDuck tries to always support the latest released
version of DuckDB. Since DuckDB is developed in the open, recent changes can already be
integrated with MotherDuck, which prompts early adjustments on the side of MotherDuck
and generates feedback for the developers of DuckDB. The SQLLogic tests are a very good
indicator of what is working and what is not after updating to a new DuckDB version.

7.4 The Local Test Mode

One of the modes in which test scripts are executed is the local test mode, which runs
SQL statements against a local database without connecting to the server. The general
idea of this test mode was to verify that loading the HQE extension into DuckDB does
not produce any correctness regressions. However, we are grappling with the question of
whether this mode offers any substantial benefits.

Although the local test mode has been helpful in identifying certain bugs, it is unclear
whether it represents a realistic scenario, because the typical workflow of users involves
directly connecting to the server.

The cost of the local test mode, beside longer test execution times, is that connections
to the server have to be avoided during the test run. Solely for the purpose of testing, this
has necessitated inserting specialized code in SQL functions that would normally establish
such a connection. As such, the perceived value of the local test mode has diminished.

7.5 Using an External Test Runner

The first step S1 of our work was to use DuckDB’s test runner. The code for it is not
under our direct control but part of the DuckDB codebase. This separation poses certain
challenges, particularly in terms of modifying the test runner to suit our specific needs. In
order to implement changes, we have to create extension points within the test runner and
upstream these modifications to DuckDB.

The alternative process would be to fully integrate the test runner code into our codebase.
But this implies that changes to the test runner on the DuckDB side have to be laboriously
merged.
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Hence, despite some limitations, the use of an external test runner is by and large
beneficial. In particular, since the test runner is maintained as part of DuckDB, the
compatibility with the test suite is ensured while reducing our own workload.

70



8

Conclusion

In this master’s thesis, we developed a test suite for hybrid query execution. Hybrid query
execution is a novel form of query processing that utilizes the resources available on local
computers by allowing them to participate in the query processing, which would otherwise
take place purely on a server. Parts of a single query can be executed on the local database
client while other parts are processed on the server, aiming to bring the computation
close to the data. Hybrid query execution has been implemented on top of DuckDB, an
embeddable, analytical DBMS.

8.1 A Final Look at Our Research Questions

Our goal was to create a test suite that can ensure high software quality of and inspire
confidence in this implementation. Rather than designing such a test suite from scratch,
we investigated how we can leverage an existing test suite, namely the one for DuckDB
(RQ1). This allowed us to quickly attain a large number of tests and achieve a high
coverage of important DBMS functionality. While it is possible that tests designed from
first principles might have proven more targeted, finding bugs that are more specific to
hybrid query execution itself and with fewer tests, achieving a comparable coverage in the
same time frame would have been challenging.

The existing DuckDB test suite consists mainly of SQL-based test scripts that are
interpreted by a test runner. In the new test suite, these test scripts are executed in two
modes. In the first mode, SQL statements are run against a local database, in the second
mode against a remote database on the server. This helps to verify that hybrid query
execution functions correctly regardless of where the data is placed. However, a limitation
of our approach is that these two modes do not encompass all possible modes of execution.
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In particular, more complex data exchange patterns between client and server are currently
not tested.

Our work in adapting the test suite for hybrid query execution involved a series of steps,
all of which we describe in Chapter 6. Two key steps in this process included replacing
a custom test runner with DuckDB’s own test runner and enabling many test scripts by
executing them independently from each other. Furthermore, we were able to create an
overview of known errors along the way.

We wanted to know how effective our steps to adapt the DuckDB test suite were (RQ2).
For this, we measured the percentage of lines of code executed (covered) during a test run.
Our implementation steps were guided by measuring the code coverage achieved in the
previous step and, in general, identifying actions that can increase the coverage further.

In the process, we increased the line coverage for the entire codebase from 44% to 84%.
In the local test mode, the coverage of the DuckDB code even jumped from 21% to 84%.
The test suite provides great value in practice, too. The tests are executed whenever new
changes are integrated into the main branch, giving developers—thanks to the high code
coverage—the confidence they need to quickly iterate and improve the existing software.
Bugs can be detected early in the process, which keeps the cost of fixing them low and
raises the quality of the whole system.

Using the metric of code coverage led us mainly to get more and more test scripts to
run. Hence, we might have achieved similar results simply by aiming to increase the size of
the test suite. The metric also caused a considerable amount of noise and failed especially
at the end to capture the progress made by enabling more test scripts, even though the
new tests can arguably find different errors than other tests. A limitation is that we did
not measure any other metric that expresses the effectiveness of our tests.

Overall, the strategy to build on top of an existing test suite proved successful, since it
gave us a high number of tests and good test coverage quickly and with reasonable effort.
It helped to identify some bugs and raise the quality of the system. A big success was
especially that we could aggregate an overview of existing bugs and unsupported features.
This greatly helped to prioritize the work of the team.

Our work revolved around testing the correctness of the hybrid-execution implementation.
Other aspects like reliability or performance were outside the scope of this thesis but are
very important work, too. Future work should be informed by real-world experience with
the test suite, and an assessment of what is missing or how production bugs could have
been prevented. Still, we propose some improvements in the next section.
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8.2 Future Improvements to the Test Suite

High code coverage could be achieved by only having a single type of tests. But there is
value in executing various types of them, since each comes with strengths and weaknesses.
In the following sections we discuss future improvements we can imagine for the test suite
for hybrid query execution, also going beyond our focus on functional correctness.

8.2.1 Testing “Full Hybrid” Execution

In our test suite, we run test scripts in two test modes: local and remote. This means that
all data for a test is usually in a single place. But one important use of hybrid execution is
to combine data from local and remote sources, something that is not tested by our current
test suite.

For hybrid execution to operate as intended, not only do client and server have to work
correctly, but their interplay must also proceed properly. However, most interactions
between both nodes are rather simple in the remote test mode: they just exchange data at
the beginning or the end of the query processing.

A third test mode could promote more complex interactions by executing SQLLogic test
scripts “fully hybridly”. For this, the location of newly created database objects would
have to alternate between the client and the server. For example, the first table created
during a test could be stored in a local database, the second table in a remote one.

However, for this test mode to generate insightful results, it requires test scripts that
combine data from different sources. In terms of SQL, it requires tests that use binary
operations such as cartesian products, JOIN, or the set operations UNION, INTERSECT and
EXCEPT. One input to this operation then has to come from a local, the other from a
remote database. Hybrid execution would add a bridge operator to the query plan for the
purpose of data transfer.

A quick analysis of the DuckDB test suite showed that there are around 350 files that
meet these requirements, containing in total approximately 1500 relevant SQL statements.
But most of these statements have a very similar shape, such as an equi-join of two tables.

To give confidence that the client and server work smoothly together, many different
interactions should be tested. In other words, tests should produce many query plans that
have different numbers and combinations of bridges for the data transfer. For example, a
query during which data is simply shipped from the server to the client should work just
as correctly as a query with a lot of back and forth between both nodes.
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It is unclear if the DuckDB tests are the right starting point for these tests, since they

were not developed with data placement in mind. Hence, they are also not designed to

exhibit complex client-server interactions. A better way to test those might then be to

write tests from scratch that lead to the desired behavior.

8.2.2 More Diverse Workloads

A relatively static test suite is an excellent tool for regression testing, i.e., finding errors that

were introduced by recent changes. But some bugs might go into the system undiscovered

and lurk there for a long time, never found by the tests since the tests always execute the

same code.

Fuzzing is a testing method in which queries are randomly generated and the DBMS

is automatically inspected for unexpected behavior. Usually, the generation is directed

toward covering a large share of the source code [89; 3]. By continuously fuzzing the system,

a much bigger part of its surface area can be examined. Therefore, bugs can be found that

stayed hidden from the normal test suite.

DuckDB already uses randomized tests, and this would be a nice addition to the test

suite for the HQE extension, too. But in addition, the randomly generated queries can also

be executed in different modes such as remotely or “fully hybridly”. Since a query result

should remain the same regardless of where the data is located, the test oracle problem

(see Section 2.5) is straightforward to solve. A test oracle is some mechanism or method to

determine if the result produced by the DBMS is actually correct or not, something that

is not immediately clear when issuing random queries. But under the assumption that

core DuckDB processes queries correctly, one can compare the results of the different test

modes including the local one to identify problems.

Fuzzing can generate complex queries, but they will likely be different from the workloads

that the system encounters in production. It would therefore be valuable to test the system

under realistic conditions. One way to do this is to rerun production workloads and verify

that the results did not change. Snowflake [90] and Treasure Data [80] use previously

captured workloads for their testing.

These workloads are not only helpful to find correctness bugs, but also to identify

performance problems caused by recent changes.
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8.2.3 Testing Non-Functional Requirements

In this thesis, we were only concerned with testing for correctness. However, this is only one
of many quality attributes of a software system, some of which we mentioned in Section 2.4.
Other quality requirements that are definitely important for DBMSs are performance and
reliability.

DuckDB regularly runs a representative set of tests, including the TPC-H and TPC-DS
benchmarks. When the difference in the execution time to the previous run is above a
certain threshold, the problem is reported.

Something similar can also be conceived for the HQE extension. But the additional
advantage of running a cloud-based service is that all server-side queries are executed
in one central logical location. Hence, anonymized real-world workloads can be used to
measure the improvement or decline of the system’s performance.

One method to test the reliability of the system is to simulate faults and observe if the
system can tolerate them. For example, by using an artificial network between the DBMS
client and server in the tests, it is possible to inject network errors such as a high delay or
high packet-loss rate. Additionally, since the server can be fully controlled during the test
execution, it is also possible to examine how the whole system behaves when the server
“unexpectedly” terminates and if SQL statements are still processed successfully.

A third reliability test method is stress testing: the load that the system has to handle
is increased to a very high point while monitoring the resource utilization of the server
and other parts of the system. For example, many complex SQL statements could be
issued simultaneously. To run those tests, an environment that matches the production
environment closely is desirable to exclude the influence of non-relevant factors and identify
real issues.

Some of this work has already started, and we are looking forward to finding more errors
in more areas before our users do.
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