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Abstract

Citus is an extension on PostgreSQL that enables to scale distributed tables

and shards across many nodes. This extension provides a mode that enables to

‘query from any node’ to increase throughput. In this thesis, we aim to investi-

gate the scalability limits of this feature by means of measuring the performance

of Citus when executing 100% INSERT and 100% SELECT workloads. Quan-

tifying performance however is challenging since Citus is a distributed system

where queries are distributed across multiple worker nodes. To map the per-

formance and bottlenecks of Citus, we compose a benchmarking infrastructure

that enables to automate benchmarks without introducing significant overhead.

We found that for INSERTS the system seems memory limited and I/O bound,

but for SELECT queries the system behaves as CPU bound. Future research

should mainly focus on improving the efficiency of simple SELECT queries.
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1

Introduction

Database management systems (DBMSs) are continuously evolving to leverage horizontal

scaling and elasticity enabled by the cloud. Nowadays PostgreSQL is a popular choice for

developers, although this database was yet coined in the 1980s (4). The popularity of this

DBMS however makes cloud providers such as Google, Amazon and Microsoft attempting

to modernize PostgreSQL by optimizing and scaling different parts of the system. Exam-

ples of modern database systems that offer scalable PostgreSQL are Aurora (5), Spanner

(6) and Citus (7). In this thesis we focus on Citus, which was acquired by Microsoft in

2018. Citus allows to scale PostgreSQL by creating distributed tables and shards across

different nodes in a cluster. In addition, Citus enables elasticity by allowing users to scale

up or down by adding or removing nodes (7) to deal with in- or decreasing workload inten-

sities. Moreover, Citus is purposefully built as an extension of PostgreSQL such that it is

compatible with the open source ecosystem of libraries and tools that PostgreSQL offers (7).

Citus has a specific mode where a user can query from any node in the cluster. Although

this ‘query from any node’ mode of Citus existed for several years, its limitations are un-

known. With the amplifying availability of data however more use-cases have arisen that

demand databases that remain performant under intensive write- and read workloads.

Moreover, a frequent requirement for users is that the database should be consistent when

multiple concurrent writes happen. While NoSQL databases often guarantee high perfor-

mance in terms of throughput, they fail in ensuring data consistency. Since PostgreSQL

and thus Citus is based on the relational model, it provides a stronger level of consistency

which makes PostgreSQL-based systems a popular choice.
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1. INTRODUCTION

In this research we microbenchmark the ‘query from any node’ feature, which is the default

mode as of Citus 11. By exploring the behavior of Citus 11 under different conditions we

evaluate which bottlenecks occur for large Citus clusters. To explore optimal configura-

tions and fundamental limitations of Citus, we compose a novel infrastructure that enables

benchmarking with Yahoo! Cloud Serving Benchmark (YCSB) (8) while monitoring the

system under test (SUT). This infrastructure allows us to obtain an accurate profile of

the internal behavior of large Citus clusters during intensive workloads. In addition, we

compare the results of the benchmarks to the performance of Aurora and Spanner. As a

result, there will be more clarity on the performance of different PostgreSQL offerings.

Benchmarking is frequently used to show the performance of the database SUT under dif-

ferent conditions (9, 10, 11). However when monitoring a SUT the adopted mechanisms

should avoid significant overhead. This is important to avoid 1) a decrease in the overall

performance and 2) a wrong indication of bottlenecks. For example, if a monitoring process

is CPU intensive, one should avoid to measure the performance of the monitoring itself.

In addition, due to the distributed nature of Citus other challenges arise in monitoring

performance during benchmarks. Citus clusters often consists of a single coordinator and

multiple worker nodes that are distinct machines. These machines communicate through

the network and some nodes may fail during execution. Moreover, the execution of dis-

tributed queries involve operations on multiple worker nodes and also require a transaction

to perform multiple network hops. Monitoring all these different resources that communi-

cate and interfere during the execution of concurrent, distributed queries is challenging.

1.1 Goals

In this research we aim to benchmark Citus 11 and explore the behavior of Citus 11 under

different conditions to evaluate which bottlenecks occur if at large Citus clusters under

intensive workloads. We achieve this by first constructing an end-to-end benchmarking

framework and subsequently model the performance to predict the performance of Citus

under different system configurations. In addition, to assess the competitive landscape of

Citus we aim to compare its performance to Amazon Aurora and Google Spanner. More

specifically, the goals are:
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1.2 Outline

1) Understanding the performance and exploring limitations of Citus 11 through bench-

marks and analysis of the system. This leads to RQ1.

RQ 1. What are the bottlenecks of Citus 11 when a Citus cluster size or

workload increases?

• RQ 1.1 How can we instrument and analyze metrics in a distributed sys-

tem under test (SUT), without causing significant overhead?

• RQ 1.2 Which bottlenecks occur when the Citus cluster size increases?

2) Assessing the performance of Citus and compare it to its two main competitors; AWS

Aurora and Google Cloud Spanner.

RQ 2. How does Citus perform in comparison with AWS Aurora and Google

Spanner?

If we analyse the behavior of the system, we will get more insight into distributed database

systems, which will help future research as these systems are continuously evolving. For

Citus and PostgreSQL specifically, insights will be gathered to assess what some of their

current limits are and where they can improve their system. In addition, with a comparison

of different PostgreSQL offerings we will get more insight in when to use which system.

This ultimately makes it easier for developers to choose the most appropriate RDBMS for

their workloads. In summary, we aim for the following contributions:

• Gather insights about limitations of Citus 11 by exposing performance bottlenecks

• Find (sub-)optimal configurations for the performance of Citus (by e.g. managing

client connections)

• Insight in different scalable PostgreSQL offerings by three large cloud providers

1.2 Outline

In this research we first explain some basic terminology and background concepts that are

fundamental for understanding the subsequent chapters. Thereafter, we discuss related lit-

erature that discuss different benchmark- and profiling tooling along with some end-to-end

frameworks for benchmarking and profiling distributed systems. Subsequently, we discuss

3



1. INTRODUCTION

the initial benchmarks on Citus clusters along with AWS Aurora and Google Spanner.

Then, we will discuss the profiling of Citus to expose its bottlenecks. Lasly, we have our

discussion and future work.
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Background

2.1 Terminology

To profoundly understand this research, we go over some required DBMS terminology that

occurs in this thesis.

Relational Database Management Systems

Ted Codd proposed the relational model (12) to avoid having to constantly rewrite database

management systems. The fundamental principle of this model, which describes a database

abstraction, is to establish relations based on the values of data objects. He based this

abstraction on three different principles.

1. Simple data structures (i.e. relations) are used to store the database

2. The data must be accessible using a high level language, but the database itself

chooses the most effective execution method

3. The DBMS implementation is in charge of handling the physical storage

A relation itself is defined as "an unordered set that contains the relationship of attributes

that represent entities. Since the relationships are unordered, the DBMS can store them

in any way it wants, allowing for optimization" (13, pp.2). Data is changed by use of Data

Manipulation Language (DML). But schema changes are done through Data Defenition

Language (DDL) commands.

OLAP and OLTP

Most databases are optimized for either Online Analytical Processing (OLAP) or Online

5



2. BACKGROUND

Transactional Processing (OLTP) workloads. This is, different applications have different

kind of underlying query patterns which can roughly be distinguished in Online Analytical

processing (OLAP) and Online Transactional Processing (OLTP) workloads. The former

focuses on an Analytical workloads, i.e. complex queries involving summations or ag-

gregations on large parts of the data. Examples of modern OLAP systems are DuckDB

(14), ClickHouse (15) and Snowflake (16). OLTP however entails transactional workloads,

which typically consist of simple queries that include modifications of records and simple

reads (17). PostgreSQL, Spanner and Aurora focus on a transactional workload, where

the challenge is not that individual queries are heavy, but that a continuous, high volume

of transactions is executed at high throughput.

Transaction

In a database system, many things can go wrong. The network, application, hardware or

software involved can fail at any time. In addition, it may occur that multiple clients write

to the system concurrently. This could cause race conditions and leads to inconsistent

data. A race condition occurs when an application or system attempts to perform multiple

writes to an object at the same time. This could lead to undesirable behavior since the

operation needs to be completed in a particular order to be correct. Transactions simplify

these issues. That is, multiple read and write operations are condensed into one logical

unit and carried out as one operation. The transaction can either succeed or fail as a

whole. If a transaction succeeds, this is referred to as committed. If a transaction fails,

the transaction will be aborted or rolled-back (18).

ACID

Realiable transactions should ensure Atomicity, Consistency, Isolation and Durability (ACID).

1. Atomicity ensures that a transaction is either completed or rolled back in case of

failure, such that half-completed transactions in the database are avoided

2. Consistency is about seeing the right data at the right time. For example, a trans-

action only needs to access one version of the data during its execution.

3. Isolation covers concurrency, meaning that concurrent transactions cannot interfere

with each other. The challenge is to maintain a good performance while providing se-

rializability, i.e. the outcome of a transaction has to be equal to when all transactions

were executed serially instead of concurrently (18)

6



2.1 Terminology

4. Durability is important as changes in the database caused by transactions need to

persist after the transaction is committed.

The CAP theorem can be considered as a rule of thumb for distributed systems. This

theorem implies that when a distributed system is partitioned, i.e. two or more nodes

cannot interact with each other due to a network failure, the system can be either optimized

for availability or consistency. Hence, this theorem implies that distributed systems can

only provide two of the three guarantees. The guarantees are defined as follows:

• Consistency: data on all nodes are synchronized and see the latest version of the

data

• Availability: If some nodes are down due to e.g. a network problem not all requests

can be processed. In this case, availability ensures that every request either waits

until the problem is fixed or receives a response that the request failed.

• Partition tolerance: the system continues to operate despite arbitrary partitioning

due to network failures

The CAP theorem is rather indicative, it can happen that systems can offer all guarantees.

For example, when partitioned, consistency and availability could both be ensured (18).

Sharding

Sharding refers to partitioning a dataset into multiple parts. These parts of data are

distributed among multiple machines and the process of sharding intends to improve the

throughput of a system.

Hashing

Hashing is an irreversible cryptographic function (hash function) that maps data such that

it produces a unique string for a given piece of data.

Hash-based sharding

Hash-based sharding is a method to shard data across different nodes. Sharding keys are

hashed into a hash ring, and by applying a modulo this is turned into a partition-id. This

way, the data is split in equal size partitions that represent virtual shards (19). Once the

size of the data grows, or when a new node is added to a cluster, this may lead to the

7



2. BACKGROUND

necessity to re-partition the data.

Load balancer

A load balancer distributes incoming traffic among available servers so that request can

be handled at a fast rate (20). Examples of load balancers are the JDBC loadbalancer for

database load, or nginx (21) for web traffic.

Connections

A client can open multiple connections to a database to perform multiple operations in a

parallel fashion. However, handling these connections require CPU and thus can be CPU

bound. Establishing connections is an expensive task and keeping idle connections open is

sometimes more beneficial, but this depends on the specific case. PostgreSQL only allows

one operation at a time per connection, which could be a bottleneck while a large workload

is executed against the database. If a query is executed through a connection the client

awaits the response through the same connection. Only after the client receives a response,

a new query can be posed.

Connection Pooling

PgBouncer is a lightweight connection pooler that sits between your application and the

PostgreSQL database. When a new connection to the database is established, PgBouncer

‘grabs’ it and keeps the connection open so that it can be reused. This could ultimately

increase response time as establishing new connections come with a performance penalty,

and keeping the connections open will overcome this. The downside however is PgBouncer

itself has overhead and is single-threaded.

Write Ahead Log (WAL)

Write ahead logging is the basic technique of persisting changes to disk before they have

been persisted in all affected data pages. A WAL is an append-only file making writing to

a WAL file reasonably fast and is mainly intended to make databases resilient to crashes

(18). In the event of a crash recovery is able by reading out the log and redo the logged

changes that have not been applied to the data pages.

Paging

Paging is a mechanism by the operating system (OS) that loads processes from storage

into main memory. Main memory is often partitioned in fixed-size blocks, referred to as

8



2.1 Terminology

frames, which should be the same size as pages in a database. In PostgreSQL, pages are by

default 8kb. This mechanism is particularly used to ensure fast access to frequently used

data. The size of pages could be increased. In PostgreSQL there is also an option that

enables huge pages1, which could increase performance by reducing time spent on CPU

and memory management.

Checkpointing

A checkpoint is essentially a forcing of the dirty pages to disk. This means that the WAL

is no longer required, as they are then already persisted. Checkpointing thus guarantees

that all files have been updated with the information that is written to the database before

the point in time in which the checkpoint occurs. This is beneficial for when a PostgreSQL

server is restarted, since a checkpoint functions as a point in time from which all data will

be recovered to reflect the state at that current time. Checkpoints are often an intensive

process that could cause significant I/O as it flushes all dirty pages to disk, and therefore

its execution is often spread out by e.g. usage of background writers.

Snapshots

A snapshot is a current state of a particular data point. Namely, pages could contain

different versions of the same row. However, transactions should be able to see only one

version of each row to get a consistent picture of the data within the same execution of

the transaction.

Locking

To handle the concurrency of different transactions, most databases adopted some kind

of locking mechanism to ensure data consistency. PostgreSQL uses locking in numerous

occasions, for example when data pages are modified concurrently.

Concurrency control

PostgreSQL manages concurrent access to data by Multiversion Concurrency Control

(MVCC), providing transaction isolation. This is, reading locks do not conflict with write

locks, aiming for consistent transactions. The main goal of this concurrency control is to

show the right version of the data.

1https://postgresqlco.nf/doc/en/param/huge_pages/
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2. BACKGROUND

Two Phase Commit (2PC)

To enforce consistency across worker nodes, for example when some metadata is changed

that needs to be propagated to all worker nodes, 2PC is a commonly used technique that

achieves atomic transaction commit (18). In 2PC, the commit or aborting of a transaction

is split into two distinct phases: the ‘prepare’ and ‘commit’ phase. It requires a coordi-

nator or transaction manager which initiates the ‘prepare’ phase by sending a request to

all participating database nodes once a transaction is ready to commit. If not all nodes

respond, the coordinator will abort the transaction. Only if all nodes respond with a ‘yes’,

the coordinator initiates the second phase by sending ‘commit’ to all nodes and the commit

actually takes place.

Thread vs Processes

A thread is a set of instructions that is executed which can be managed by a scheduler.

Contrary to a process, threads can access memory and states of other threads belonging

to the same process, allowing for more dynamic share of resources. A process is thus more

CPU-intensive then a thread and has its own memory which is not directly accessible by

other processes.

Deamon Processes

A deamon process is a background process. This process only runs when the main process

is running. Thus, if the main process terminates the deamon process also terminates.

Stall

A transaction can be stalled e.g. if it needs to wait for a response. To avoid idle CPU

compute, the CPU will resume with another process in the meantime by context switching.

If a transaction is stalled, this could cause a cascading effect when other transactions are

dependent on the stalled transaction.

Context switching

Context Switching is a software event where a CPU is switching from one process to an-

other by saving the state of a current process in order to resume another execution later.

For every switch, the costs are saving the CPU state of the current process and loading

the context of a new process. A lot of context switches in a short period of time could

reduce performance as processors are fighting for available CPU rather than doing actual
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compute work.

Interrupt Requests (IRQs)

An interrupt request is a signal that is sent to stop a running program, while an interrupt

handler resumes as a running program.

System call

System calls are functions from the OS that call processes. For example, once a query

which requires a reading a specific page is executed, the kernel could be asked to read a

page which will place it in the OS page cache. Such a call to a kernel function is then called

a system call. A system call most often requires a context switch to a kernel process, which

therefore comes with a minor performance penalty since registers needs to be flushed and

new data required for this context have to be loaded into the registers.

Database Storage

Figure 2.1 gives an overview of volatile vs non-volatile storage. Volatile storage refers to

storage that is flushed every time a machine loses its power whereas non-volatile storage

is persistent after such an event. CPU registers are the most fast and small storage and

entail the storage of e.g. a single process. The CPU caches are fast accessible storage

of the CPU and consist of different levels. DRAM is also referred to as main memory.

It is the slowest volatile storage mechanism but way faster then any non-volatile storage.

Non-volatile storage is persistent storage, and the most fast non-volatile storage

Figure 2.1: Volatile vs Non-Volatile database storage. Image in based on lecture ‘Database
Storage I’ of Andy Pavlo at CMU1
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Cache

Caching is storing data in fast accessible memory. Usually a cache is relatively small and

fetching data from cache is supposed to be way faster then retrieving data from main

memory or disk. Each modern CPU core has its own memory cache and CPUs usually

have three different layers of caching. These layers are L1, L2 and L3 where L1 ≤ L2 ≤ L3

in terms of storage, but L1 ≥ L2 ≥ L3 in terms of accessing speed (18). A cache hit

ch refers to the event when a requested page resides in cache. In contrary, a cache miss

cm refers to the event when a requeste page does not reside in cache. For read-heavy

workloads, the cache hit ratio chr (2.1) is a good indication if the required data pages

are loaded into memory. If the cache hit rate is low, one could argue that the database

does not perform well or that the cache size could be decreased.

chr =
ch

(ch + cm)
(2.1)

Scalability

It is not trivial to determine the scalability of a distributed database. The performance

of a database system can be assessed if the load or system capacity changes. The latter

can be be scaled by e.g. adding or removing nodes from a cluster, commonly referred to

as horizontal scaling (11). Common metrics to measure the performance of a DBMS are

throughput, response time and latency. Scalability can be defined as “the ability to cope

with increased load" (18, pp. 10). As the amount of available data we process is doubled

every year we need to cope with increasing loads. This means that there is a need to

improve the performance of database systems to cope with these loads.

Load

According to Kleppmann (18) load can be described by different parameters which depend

on the architecture of your DBMS. Examples of these parameters are request per seconds

to a server, the amount of client connections, the ratio of reads and writes and data volume

(11, 18). Since we are interested to explore the behavior of Citus 11 specifically if the client

connections with the cluster increase, we define load here as a combination between the

number of client connections and the workload. The workload in this research is defined
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as the amount and complexity of transactions.

Throughput and Response time

Throughput is often defined as the number of records we can process per second. Instead

of the number of records however, we define throughput as the amount of transactions per

second as this is more appealing for OLTP use cases (22). Response time is related to

troughput, but is defined as the time between a client request and receiving a response.

Response time will vary across different runs of the same query and is thus rather a dis-

tribution of values. Since the arithmetic mean of all the responses does not conveniently

capture outliers, we will use percentiles and median (50th percentile) to reflect what per-

centage of the requests are answered within a specific amount of time (18). Lastly, latency

is the time a request is waiting to be handled. Latency can occur due to numerous reasons,

such as package loss on WAN networks or unresponsive nodes. Since Citus is a distributed

system, latency of communication between nodes within a cluster ought to be minimized

to obtain a desirable throughput.
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2.2 PostgreSQL

PostgreSQL is part of the Postgres project, coined in 1990 by Michael Stonebraker (23).

Historically, PostgreSQL is composed of multiple processes that share memory among

them. PostgreSQL is purposefully split into several processes since threads did not exist

yet in 1990. By splitting PostgreSQL into multiple processes, it was possible to make use

of more memory facilitated by its shared memory.

Interaction with a PostgreSQL database happens through a client-server system architec-

ture. A client can be described as a program that requests activity from a system or

program, called a server, to accomplish a certain task. A server thus is a program that

receives requests from one or multiple clients and performs certain operations to allow the

client to accomplish specific tasks (24). The client side of the PostgreSQL application

consists of a program that allows to communicate with the PostgreSQL database. This

could be a grapical user interface (GUI) such as pgAdmin or a terminal based interface

such as psql. The server side consists of the actual database server that coordinates and

manages connections and operations from which the Postmaster is the parent process.

Communication with PostgreSQL

The Postmaster process is a Deamon (background) process which initially handles the

connection from a client. This is a parent process which acts as a ‘supervisor’ and coordi-

nates the connection with the client. It does so by first checking if the client has required

permissions and, if permission granted, it starts several background processes that enable

the communication between the client and the database. From this point the client only

communicates with these back-end processes. Note that these processes are able to handle

a single query at the time submitted by the client. This makes that PostgreSQL is single-

threaded, i.e. process based (25). However, multiple clients can connect to the system such

that multiple queries can be executed concurrently. Still, while handling a large workload

scaling issues will arise since a process consumes more memory and requires more state

switches compared to a thread.

Shared Memory

Instead of reading and writing data directly from and to disk files, data is buffered in a

shared memory area. This is a slightly old-fashioned way to share memory among pro-

cesses. The shared memory area entails the shared buffer and shared WAL. Thus, once a
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new process is created by the postmaster and connected with the client application, this

process attempts to minimize disk I/O by only manipulating the shared buffer and shared

WAL rather then reading directly from disk.

Background processes

The postmaster executes several programs in the background at runtime. First of all, the

logger writes error messages to the log file. The checkpointer writes the dirty buffer

to the file at a certain point in time, the WAL writer writes the dirty WAL buffer to the

file, the Logger writes (error) messages to the log files and the Writer flushes all dirty

pages to disk after the WAL is written. The AUTOVACUUM Launcher is a background pro-

cess that regularly cleans up redundant data that entails e.g. deleted rows or old versions

of updated rows. The archiver is optional and writes WAL logs to an archive. Lastly,

the Stats Collector collects statistics about sessions and tables which can be queried

by pg_stat_activity and pg_stat_all_tables and forwards this collected data to other

processes by means of temporary files.

Query Processing in PostgreSQL

When a connected client issues queries against a PostgreSQL database, the queries are

handled by back-end processes. These processes consist of roughly five subsystems (figure

2.2): the parser, analyzer, re-writer, planner and executor. The parser splits the query

up in sub-tasks described in plain text and generates a parse tree. Subsequently, the ana-

lyzer performs semantic analysis and generates a query tree which is transformed by the

rewriter according to rules stored in the ‘rule system’. Following, the aim of the planner,

or optimizer, is to generate the most optimal execution plan. To do so, it evaluates statis-

tics and features of previous workloads, the costs of different query trees and ultimately

chooses the most effective tree to be executed by the executor. The executor operates

by means of the buffer manager. It uses some memory areas, such as temp_buffers and

work_mem which are allocated in advance to create temporary files if necessary.

Figure 2.2: PostgreSQL query parser

15



2. BACKGROUND

Concurrency Control in PostgreSQL

PostgreSQL uses a specific version of MVCC. The default and most commonly used isola-

tion level is read committed. When a data item is updated or inserted to the relevant page,

PostgreSQL will select the right version of the data belonging to an individual transaction.

It determines the right version by visibility check rules. For read committed, problems

may occur if two transactions concurrently read a value from the same row and then both

add 1 to this value in distinct transactions. It may happen that this value only increases

by 1 instead of 2. Serializable Snapshot Isolation prevents this issue in rigorous way by

cancelling one of the two transactions. Read committed however reduces this type of errors

which makes it more commonly used. Moreover, as long as the value is read and updated

within the same transaction, problems like the above will not occur.

Buffer Manager

The buffer manager takes care of the process of transferring data between main memory

(volatile) and persistent (non-volatile) storage. In PostgreSQL, the buffer manager consists

of a 3-layer structure: 1) the buffer pool, 2) buffer table and 3) buffer descriptors. The

buffer pool is an array in which each slot contains one buffer_id and stores exactly one

page. Buffer descriptors are stored in an array, where each descriptor points to exactly

one slot in the buffer pool and holds metadata of the page stored in this slot. The buffer

table maps the buffer tags to buffer ids in the buffer descriptor layer. Hence, when the

buffer manager receives a request to access a particular page corresponding to a given

buffer_tag, it calls the buffer table who maps the buffer_tag to a buffer_id, which

corresponds to a buffer_descriptor that knows the exact location of the required page.

On its turn, the buffer manager uses locks for various purposes.

How PostgreSQL relies on the OS

In PostgreSQL, a database thread is mapped directly to an operating system (OS) pro-

cess. The OS handles the coordination of these processes, meaning that the usage of shared

memory requires support from the OS. As a consequence, the shared buffer is historically

advised to set to 25% and maximum 40% of memory. The OS maintains its own separate

file cache, commonly referred to as the OS page cache, for the file system. This is, if the

DBMS reads a page from disk the OS is going to keep it in its page cache and there will

be another copy of the page in the buffer pool which comes with a minor performance

penalty. Values over 25% for the shared_buffers can be useful if a large part of the

workload fits in cache. This is particularly beneficial for read-heavy workloads such that
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disk I/O is avoided. A larger value could be detrimental if the workload is write-heavy

since the contents of shared_buffers are processed during writes.

PostgreSQL Logging

PostgreSQL provides several message levels to write certain events to the server log from

which the default is WARNING. Other values include, DEBUG1 ... DEBUG5, FATAL,

LOG, INFO, NOTICE and ERROR. Each event implies a certain severity of logging. DE-

BUG1 .. DEBUG5 is intended for debugging and provides successively-more-detailed

information for use by developers. INFO provides information implicitly requested by

the user, e.g., output from VACUUM VERBOSE. NOTICE provides information that

might be helpful to users, e.g., notice of truncation of long identifiers. WARNING pro-

vides warnings of likely problems, e.g., COMMIT outside a transaction block. ERROR

functions as a warning and reports an error that caused the current command to abort.

FATAL implies that a current session is aborted and reports an error. Lastly, PANIC

implies an error that led to aborting all database sessions (26).

User-Defined Functions (UDFs) and Stored Procedures

Stored Procedures and User-Defined Functions (UDFs) are SQL functions consisting of

procedural (i.e. declarative) statements. These functions are stored in the database and

can be invoked by the SQL interface. In PostgreSQL both stored procedures and UDFs

can be created by CREATE FUNCTION. However, stored procedures and UDFs have a couple

of differences. For example, stored procedures include functions such as UPDATE or DELETE,

while UDFs returns output.

GROUP COMMIT

A group commit is a feature in PostgreSQL that enables to flush a batch of transactions

logged in the WAL in one go. This means that if multiple writes happen concurrently they

will be appended to the WAL file and be flushed as a single batch as opposed to be flushed

individually. This is amortizing for the WAL costs and can improve the throughput simply

by adding more clients as shown in the benchmarks performed by Greg Smith in 20121. He

noticed that by using pgbench the throughput increased from 10 TPS for one connection

to 2000 TPS for 300 connections by using this feature.

1https://www.postgresql.org/message-id/CAEYLb_V5Q8Zdjnkb4+30_dpD3NrgfoXhEurney3HsrCQsyDLWw@
mail.gmail.com
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PREPARE statements

Clients are able to compile SQL queries in PostgreSQL by means of PREPARE statements

to optimize performance. When a PREPARE statement is executed, PostgreSQL parses,

rewrites and analyses the query. If subsequently an EXECUTE statement is executed, the

query is only planned and executed. This reduces the amount of work for subsequent

queries of the exact same format, since its values are passed on as parameters, leading to

an increase in throughput.

PostgreSQL extensions

As mentioned by the author of (27), one of Postgres’ main design choices enabled its exten-

sibility. Citus is purposefully build an extension on PostgreSQL. By being an extension,

Citus is directly compatible with PostgreSQL when e.g. a new PostgreSQL version is re-

leased. Moreover, in this way Citus leverages the open source ecosystem of PostgreSQL.
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2.3 Citus

Citus is based on a shared-nothing architecture. This is, each (virtual) machine runs

database software. The machines are called nodes and contain their own independent

CPUs, RAM and disks (18). Citus supports shared-nothing parallelism, meaning that a

Citus cluster is composed by different independent machines (figure 2.4) that communicate

with each other through the network. By no means one system can directly access memory

or disk of another system. The coordination of the communication of these independent

machines is done at the software level. In this case, the communication is entirely managed

by the DBMS itself. Frequently, each node in a shared-nothing cluster is a complete DBMS

in and of itself. This is, each machine is able to handle requests from the client, compiling

queries and managing access to the data on the disk. Data is distributed (sharded) across

nodes of the database cluster by horizontal partitioning such that each node contains a

subset of the data. Examples of systems that support Shared-Nothing are Teradata, Tan-

dem and IBM DB2 (25). A Citus cluster consist of exactly one coordinator and multiple

worker nodes, where each node hosts a seperate PostgreSQL server. The coordinator in

a Citus cluster initially handles queries from the client and routes or parallelizes them to

one or multiple worker nodes. Since the coordinator particularly keeps metadata and does

not contain actual shards, it can be a relatively small machine. There are three different

types of tables in Citus.

(1) Distributed tables - A distributed table is a larger table in Citus from which its data

resides on multiple worker nodes. Such a table is divided in shards and is partitioned by

a shard key.

(2) Reference tables - A reference table is a smaller table that resides on all nodes in the

Citus cluster. These tables are the same across all users.

(3) Standard Postgres tables - The standard Postgres tables are regular Postgres tables

that typically are used for administrative sections of an application and do not join with

a distributed table.

Citus allows to distribute tables across the cluster. Sharding a table across workers is not

fully automated; a client is required to manually choose a shard key or distribution key

and distribute their tables, such the data is sharded across different worker nodes in the
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cluster. Choosing the right shard key is of key importance to obtain a good performance

while using Citus. In Citus, a reference table is thus a table that resides on every node

in a Citus cluster containing information for most workloads whereas a distributed table is

a table that is sharded across many worker nodes in a Citus cluster distributed by a shard

key. Citus provides some Citus-specific commands that allow to distribute these tables

accross multiple worker nodes, e.g.:

SELECT create_distributed_table(‘table_name’, ‘shard_key’);

Figure 2.3: Citus Architecture (source: citusdata.com)

DDL are operations that usually modify metadata, such as creating or altering a new user

and are currently only supported via the coordinator node.

Citus 11

Citus 11 offers a specific mode, formerly referred to as Citus MX, that enables the client

to directly connect with worker nodes. This feature is standardized in Citus 11.0 and is

mainly intended to improve performance of simple create, read, update and delete (CRUD)

workloads. This means that for CRUD operations, a client can either connect with the

coordinator or any worker node. Worker nodes in a Citus cluster hold shards as opposed to

the coordinator node. More complex operations that change the metadata, such as adding

a new column, can only be executed through the coordinator.
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Figure 2.4: Citus 11 (or Citus 11.0) architecture (source: citusdata.com)

Query processing in Citus

Citus extends the plan and execute phase of PostgreSQL. The processing pipeline of Ci-

tus involves two distinct components; a Distributed Query Planner and Executor and a

PostgreSQL Planner and Executor. The Distributed Query Planner creates a plan tree in

the planning phase and translates the query into a format that enables parallelization of

the query. Moreover, the Distributed Query Planner aims to minimize network I/O and

performs several optimisations to ensure scalability. After this process, the query is split

up in two distinct parts: a part that runs on the coordinator node and a part consisting

of query fragments that run on individual shards on worker nodes. Once these query frag-

ments have been established, the distributed query plan is forwarded to the Distributed

Query Executor.

The Distributed Query Executor executes the distributed query plans while also handling

failures. The executor opens a connection per shard on a worker and forwards query frag-

ments directly to the shards. Since establishing a connection can be expensive, Citus caches

by default one connection per node. Thereafter the executor awaits until the partial results

have been computed, collects them and merges them to finally send the end-results back to

the client. Once the fragmented queries arrive on the child node, the regular PostgreSQL

Planner and Executor take care of the query.

Note that for DML operations or queries that involve a lookup based on the distribution

column the process is slightly different. These operations typically involve only one shard.

For these type of operations, the planner decides the correct shard by calculating its hash
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by looking at the metadata of the distribution column. Following, the query-plan is rewrit-

ten such that it includes the reference to the shard and is subsequently forwarded to the

distributed executor.

Life of a write Query in Citus 11

If a write query is executed on a Citus cluster, the query is parsed, analyzed and rewritten

similarly as a ‘regular’ PostgreSQL query. However, as briefly touched upon in the previ-

ous subsection, the Distributed Query Planner looks at the Citus-specific distribution

column. To determine to which worker and shard respectively the query will be to be

forwarded, it calculates the hash of the shard by means of the value in the distribution

column. For simplicity, we refer to the worker node that coordinates a query as a parent,

and the worker node that a query is forwarded to is referred to as a child. Once the planner

determined the route by calculating the hash of the required shard, the executor further

handles the query and forwards it to the right child node. Once the query reached the

child, the planner on the child node generates a new plan and lets this plan be executed

by the executor on the same node. The executor makes sure that the insert is written

to the WAL and modifies the index along with a page which, if it was not before, is now

dirty. In PostgreSQL the WAL is continuously flushed to disk while the dirty pages itself

are written to disk at least before a checkpoint occurs. After this checkpoint, the WAL

files are deleted since the data is now located on persistent storage. Once the WAL is

updated, the executor of the child worker node notifies the executor on the parent worker

node, which on its turn notifies the client that the query has succeeded.

Life of a Read Query in Citus 11

Similarly as the write query, the read query is forwarded from the executor on a parent

node to a child node where the actual shard that holds the tuple requested by the select

query is located. Once the query is forwarded to the child node, the planner and execu-

tor on the child node now take care of the query. The planner determines the route by

calculating the hash of the shard, and the executor executes this route. As opposed to a

write query, no write to WAL and modification of indices as well as pages are required.

Instead, a read query only needs to access the page containing the required data. If this

page is already loaded in the shared buffer cache, the page can be read immediately from

cache. If the page is not stored in the shared buffer, a system call to the kernel is made to

check whether the page is stored in the OS page cache. This requires a context switch and

therefore comes with a minor performance penalty compared to the shared buffer cache.
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However, if the page also does not reside in the OS page cache the data has to be read

from disk and the transaction will be stalled until the required page is loaded into memory

from disk. When the required page is accessed and the tuple is read, the child executor

notifies the parent executor which subsequently ensures that client receives the results of

its query.

Transaction logging in Citus

Citus stores a global process id (GPID) for every distributed query. This GPID functions

as a local process id (PID) to keep track of the worker and connection that initiated and

executes a particular query. The GPID reflects a single connection and not a distinct query.

Figure 2.5: Citus Global Process ID parsed (source: Citus Blog)

The Citus global process ID (GPID, figure 5.4) is used to uniquely identify a query by its

process ID. This global ID enables the user to cancel a specific query using

pg_cancel_backend(120000019449);

This can be useful e.g. if a slow query is blocking other operations. The first two integers

from the left represent the ID from the node that initiated this particular query, while

the resulting integers represent the Postgres process id. This Postgres PID refers to the

(internal) connection from the client with Citus, which handles a query.
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2.4 Amazon Aurora

In the shared disk model all different compute components are separated from the disk.

The disk is accessible through a network layer that gives access for multiple devices to a

centralized storage unit. The compute components, or nodes, still have their own mem-

ory but access the storage layer through the network. This is particularly beneficial to

reduce disk I/O and efficiently coordinate disk access. Moreover, several operations that

are usually performed within the database engine, such as writing dirty pages to disk, are

pushed onto the disk layer. According to (28), shared disk database systems have less

communication overhead between parallel query processing compared to shared-nothing

and can therefore be beneficial for this matter.

AWS leverages this architecture as Aurora (5) decouples compute and storage, which

allows them to optimize compute for flexibility and storage for durability. Aurora of-

fers both MySQL and PostgreSQL compatibility. Within Aurora, compute represents the

database engine and is mainly optimized for flexibility by taking care of e.g. client connec-

tion management, query processing, transaction management, locking and buffer cache.

Storage takes care of backups, restore and replication while compute is able to scale if the

workload changes. Their main philosophy is to reduce bottlenecks, which traditionally is

known to be disk I/O, but with the cloud era moved to network I/O. Namely, the speed

in which a modern DBMS issues writes could lead to an amplification of network traffic (5).

AWS Aurora provides a database cluster that consists of a primary instance that handles

writes and reads. All modifications of the data are done through this primary database

node. An AWS Aurora cluster can scale out by adding up to 15 replicas, i.e. read-only

instances. These replicas can greatly improve read-scalability, but write-scalability remains

limited. To reduce network I/O they write redo log records to storage instead of letting

the database engine issue the actual writes. In addition, only changes in writes are logged

and appended to the WAL file. Hence for Aurora the metaphor “the log is the database"

is commonly used to describe their main internal workings.

Aurora uses a boxcar technique to optimize I/O by transferring sets of ordered logs records.

The log records are ordered by their log sequence number (LSN), are shuffled, and are

shipped to the storage layer in a partial ordered state. The storage layer actually writes

the WAL files continuously to update the data pages. To improve response time, Aurora
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makes use of a six-way quorum which is spread across three availability zones (AZ). This

is, if 4 out of 6 writes succeed the write is considered as successful and an acknowledgement

is sent. The main benefit is that all steps are asynchronous from the database engine and

there are no events such as checkpointing that block writes. Moreover, continuous backups

are streamed to Amazon S3 storage.

This approach works quite well for workloads that entail only writes or reads, but it has

been criticized 1 as it is expected to pay a performance penalty if writes are read immedi-

ately after. Namely, all writes have to be replayed by the redo-logs in order to be read by

the client, which is a time consuming process. Moreover, compared to a monolitic archi-

tecture, Aurora writes six times as much records but the network traffic is less.

In the compute layer Aurora implemented several optimizations that increase throughput.

The first one is that the DBMS relies less on the OS compared to traditional RDBMSs

that offer PostgreSQL. Aurora partly replaced the shared buffer 75% of the memory, whilst

in traditional PostgreSQL this is often 25% to 40% (5). Another optimization is that the

cache in Aurora is independent of any database processes. This means that in case of a

restart or crash of the database, the cache is still in tact.

1MariaDB blog: https://mariadb.com/resources/blog/dissecting-the-architecture-of-google-alloydb-amazon-aurora-and-mariadb-xpand/
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2.5 Google Spanner

Google Spanner with a PostgreSQL interface is Googles globally distributed database which

offers a PostgreSQL interface. Spanner shards data across multiple Paxos state machines

which are located worldwide (6). If the workload intensity or the amount of (span)servers

changes, Spanner takes care of automatic resharding this data to balance the load. Span-

ner comprises multiple zones, where each zone has its own zonemaster that assigns data

to spanservers. In addition, each zone contains a placement driver that orchestrates the

movement of data between spanservers, e.g. for loadbalancing. Each spanserver is in

charge of 100 to 1000 tablets, which is similar to BigTables tablet (29). The state of a

tablet is stored in Write-Ahead-Logs and B-tree file structures that are stored on Colossus

(30). According to Corbett et al. (6), Spanner is rather a multi-version database since it

assigns timestamps to data.

In summary, a Spanner cluster consist of one or multiple spanner nodes that can be added

or removed any time. The exact definition of a node however in Spanner remains un-

clear, which makes it somewhat harder to compare Spanner to other distributed databases.

Moreover, the PostgreSQL interface of Spanner makes use of an open-sourced API called

PGadapter 1 that translates the PostgreSQL wire-protocol into a format readable by Span-

ner databases. This API, or proxy, thus needs to run in a separate process to enable com-

munication from the client to the Spanner database instance with a PostgreSQL interface.

1https://github.com/GoogleCloudPlatform/pgadapter
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2.6 Statistics

In order to get significant results from our benchmarks, we apply statistical formulas that

are discussed in this section.

Arithmetic Mean

The mean is denoted as µ and the sample mean is calculated as denoted in equation 2.2.

X =
1

N

n∑
i=1

Xi (2.2)

Variance and Standard Deviation

The sample variance is denoted as S and calculated as 2.3

S2 =
n∑

i=1

(xi −X)2

N − 1
(2.3)

Within the sample variance the divisor yields an unbiased estimator. The standard devi-

ation is calculated by taking the root of the variance
√
S2 = S.

Confidence Interval

A confidence interval shows accuracy of an estimation by giving bounds (31). It is cal-

culated as denoted below in equations, 2.4, 2.5 and 2.6. For the λ in equation 2.4, we

commonly use 1.96 to denote a probability of 0.95.

a =
λσ√
N

(2.4)

And the confidence interval is then calculated by

−a+X ≤ X ≤ a+X (2.5)
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This results in

− λσ√
N

+X ≤ X ≤ X +
λσ√
N

(2.6)

σ is replaced by the mean standard deviation of the benchmark simulations, N . In Python,

we use the Scipy package (32) to generate the λ value, given a certain percentage (usually

95).

Percentiles

To obtain a percentile, every measurement is ordered in ascending order. Then the 25th,

50th, 75th, 95th and 99th percentile can be identified. This is particularly convenient for

latency, as the distribution of response time tend to have a very long tail.
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Related Work

To assess the performance of Citus we comprise four different area’s of research; database

benchmarking, profiling distributed systems, database architectures and queuing theory.

There exists some research that entail most of these research area’s, but we first look into

every area individually to extract useful techniques that we can use for the performance

monitoring and the prediction of the behavior of Citus.

3.1 Benchmarking

Benchmarking databases has been done extensively to assess the performance and reliabil-

ity of database systems. However, the rise of the cloud and adaptable databases slightly

changed the way of benchmarking and its corresponding metrics. For example, the au-

thors in (9) conducted experiments to assess the performance of several cloud-based data

management systems such as Cassandra (33) and HBase (34). However, they specifically

focus on the differences between several storage architectures and data models rather then

performance (bottlenecks) of a single system.

3.1.1 Tooling

Cubukcu et al. (7) divided the most common workloads patterns that occur amongst Citus

users into roughly four different types: Multi-tenant (Software-as-a-Service), Real-time An-

alytics (Customer-facing dahsboards), High Performance CRUD (Microservices) and Data

Warehousing (Analytical Reports). From these four types, the High Performance CRUD

workloads are targeted as they are expected to comprise most of the future workloads of

Citus 11 users. Thus, for this research we will particularly focus on CRUD workloads as

directly querying from worker nodes in Citus 11 is specifically beneficial for multiple small
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reads and writes. Zhan et al. (35) list different tooling for benchmarking DBMS’s and

the type of use cases for which the tooling is suitable. For Citus 11 specifically, simple

queries such as inserting, selecting, update or deleting are targeted workloads. These type

of workloads, commonly referred to as CRUD workloads, fall under the OLTP-paradigm.

According to Zhan et al. (35) an appropriate benchmark tooling suite for OLTP workloads

are TPC-C and YCSB (10).

Pgbench

PostgreSQL itself offers pgbench as a standard benchmark suite, which is build-in tooling

to run simple benchmarks in Postgres. With pgbench the user is able to specify the amount

of queries executed against the PostgreSQL db, among with some other configurations. A

standard pgbench benchmark consists of inserts, updates and selects. In the case of CRUD

workloads, pgbench lacks specific functionalities such as loadbalancing which other bench-

mark tooling does offer. In addition, for extensive benchmarks pgbench is not widely used

in research.

TPC

The Transaction Processing Performance Council (TPC) is the industry standard for trans-

actions processing benchmarks. TPC states seven principles that creators of benchmarks

should strive for. The benchmarks need to be (1) relevant, (2) understandable, (3) consist

of good metrics, (4) scalable, (5) the coverage has to be sufficient, (6) there ought to be a

common acceptance towards the benchmark and (7) portability (35). Following their own

principles, they constructed TPC-H, a benchmark simulating a Decision Support System

(DSS). DSSs often are read-intensive and involve complex queries with myriad concur-

rent modifications, while consistent results are expected for accurate business analysis (8).

Some researches that extensively cover TPC-H are (36, 37, 38). Another TPC benchmark

that arised is TPC-C. According to (39), TPC-C is the most widely used and intended for

OLTP workloads. It consists of workloads that contain simple, short queries with frequent

updates. TPC-C is used in (17) amongst others.

Yahoo! Cloud Serving Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) (10) is a modular benchmarking tool that

is often used to benchmark NoSQL databases. It enables to load (insert) data into a DBMS

and on top of that it provides 6 different core workloads which are summarized in table

3.1. In their standard workloads, each row is roughly 1KB and consists of 10 columns,
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each filled with 100 bytes. Moreover, YSCB provides options to create your own simulated

workloads by adjusting the parameters accordingly. YCSB keys are randomly generated

and thus are not correlated in some sort with each other.

Table 3.1: YCSB Core Workloads (Source: (3))

Workloads Description

A: Update heavy workload Mix of 50/50 reads and writes.
B: Read mostly workload 95/5% Mix of Reads/Writes

C: Read only 100% reads
D: Read latest workload Traffic on recent inserts

E: Short ranges Short ranges of records are queried
F: Read-modify-write Client reads, modifies and writes a record

A workload could have a zipfian distribution (3.1), which is a discrete distribution often

used to model rare events. It is a special case of the Power Law distribution, and in this

case it means that some records in the DBMS are very popular and others not at all.

p(x) =
x−(ρ+1)

ζ(ρ+ 1)‘
(3.1)

Other possible distributions are uniform, where each record has an equal probability to

be ‘hot’. Lastly there is latest, where the latest records are ‘hot’. YSCB provides load

balancing through JDBC by setting loadBalanceHosts=true. This enables us to load

balance all connections across multiple worker nodes in Citus to distribute the load. Note

that when YCSB opens a connections to the database, this connection usually is kept

open. This means whenever a large amount of connections is open, the penalty of context

switching is significant in the case of a stalled transaction.

3.1.2 Frameworks

Benchmarking frameworks go a step beyond executing simple benchmarking workloads

against a Database. There exists several frameworks that discuss effective ways to map

the performance of a cloud-based or distributed systems (40, 41, 42, 43, 44). Most of these

frameworks however focus on a specific part of benchmarking e.g. the benchmarking of

query engine (42) or understanding query execution (44). Nevertheless, we can draw best

practises from these frameworks and adapt them in a way such that they will suit to profile
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Citus.

DIAMetrics

Although intended to benchmark query engines, DIAMetrics (42) is an end-to-end frame-

work for performance monitoring at scale. It consists of several components that act as

entry points and consist of the workload extractor, data scrambler, data mover, workload

runner and system monitoring. The workload extractor mines query logs and generates a

representative workload for testing. The data and query scrambler anonymizes data, the

data mover moves data between different formats, the workload runner is the execution

component that takes care of the actual execution of the workloads as well as the profil-

ing of each query. It subsequently takes care of the storage of generated metrics for later

analysis. The last component presents a report of the results to users and is able to alert

users if an issue is detected.

PEEL

Peel (43) is an Open-Source 1 end-to-end framework that enables transparent benchmark-

ing of distributed systems. It automatically orchestrates experiments, handles the set-up

and the deployment of systems. In their paper, the authors benchmark a supervised ma-

chine learning workload to exhibit the use of PEEL and evaluate a system under test.

PEEL organizes experiments in experiment suites, which can easily be started by using

e.g. the PEEL CLI. The execution lifecycle consist of the (1) setup of the experiments,

(2) execution of experiments and (3) tearing down the experiments. Once a workload exe-

cution is started, they make sure that only for specific parts of the benchmark the system

performance is recorded on the involved nodes by setting up an additional monitoring sys-

tem that is running in the background, e.g. dstat. When execution is finished, logs are

gathered from all compute nodes and all temporary file systems on these nodes are cleaned

and removed or replaced by new ones for a different configuration. To make sense of the

gathered log data PEEL provides an extensible ETL pipeline which contributes in filtering

relevant data form log files. Moreover, it enables to transform the logs and loads it into a

database.

1https://github.com/peelframework/peel
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3.2 Profiling

To get an accurate profile of a distributed database, we explore different profiling tools for

distributed systems that may contribute to obtain an accurate profile of the behavior of

Citus when executing benchmarks on a Citus cluster. There are several profiling tools from

which some are specifically intended for distributed systems. The larger part of current

available distributed profiling tools aim to sample threads that follow asynchronous paths

to ultimately construct traces of these threads or processes. According to (43, p.2), a trace

itself can be defined as a “set of spans that form a tree-like structure, typically arising

from one request". Examples of tools solely intended to profile distributed systems are e.g.

Dapper (45), Dprof (46), and Tprof (47) which are briefly discussed in 3.2.2.

3.2.1 Tooling

There is a large number of available tools for performance monitoring and analysis. To

obtain an overview of a number of profiling tooling, Gregg (1) listed different (hardware)

resources and corresponding tooling to measure utilization, saturation and errors for these

resources 1. We discuss some of these tools that are of interest to profile the behavior of

Citus.

Vmstat

One of the most traditional tools to monitor system-wide resource utilization is Vmstat

(48). This tool is capable of showing e.g. processes, memory, CPU and I/O utilization.

Htop

Htop is used for resource monitoring and offers a comprehensive UI to check the utilization

per process. The general usage of htop is simple due to its convenient UI, but when using

for monitoring this tool presents data in a way that makes it harder to parse for further

analysis.

Iostat

Iostat is another tool used by (17) that monitors system performance by reading from the

\proc filesystem in linux (49). It shows output of CPU utilization, disk I/O request and

I/O waits. Moreover, on device level it is able to show e.g. reads and writes per second,

MB written per second, average queue length, average waiting time and service time per
1https://www.brendangregg.com/USEmethod/use-linux.html
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request.

Dstat

Dstat is a vmstat-like tool (50) which is used by (43) to monitor performance of a dis-

tributed system. Dstat is a basic tool that offers a wide range of settings that enable to

e.g. show CPU, disk, network, process, swap and memory stats.

Perf

Perf is a popular Linux-based profiling tool which monitors the system through incremen-

tation of counters and is particularly useful for tracing errors.

Bpftrace

Bpftrace (51) is another tool useful for investigating performance problems. Bpf stands for

Berkeley Packet Filter, but despite its name Bpftrace is often used for tracing rather than

for packet filtering. It attaches actions to kernel and userspace tracepoints and dynamic

function probes. Tracepoints are specific points defined in the source code, while dynamic

function probes perform an action when some code is executed which is not necessarily

intended for tracing.

3.2.2 Distributed Tracing

Profiling tools often collect samples of events by making use of Performance Monitoring

Units (PMUs) (52, 53) . These tools could be divided in roughly two types; intrusive

profilers (45, 54, 55) and non-intrusive profilers. The former modifies source code of the

application to gather data at runtime, which more likely leads to overhead and is often

system specific. The latter often samples a thread or a process to extract useful informa-

tion from this event, without modifying the source code of the program (56).

Dapper

In 2010 Google introduced Dapper (45), an intrusive profiler which functions as a trac-

ing infrastructure with low overhead and is specifically intended for large-scale distributed

systems. Dapper relies on two fundamental requirements of which (1) is ubiquitous deploy-

ment and (2) continuous monitoring. Moreover, they ensured that the tooling guarantees

low overhead, application-level transparancy, scalability and fast availability of the gath-

ered data (i.e. data should be available for analysis within a minute). They found that
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to ensure low overhead, sampling is necessary and a single sample out of thousands of

request most often provides sufficient information. Dapper essentially constructs ‘Trace

trees’ where the tree nodes are referred to as spans, i.e. “basic units of work" (45, p. 3).

The edges between different spans are indicating a causal relationship, and each span refers

to its parent span. In Dapper, spans contain their span id, parent id, trace id, span name

and different annotations that can be specified by the user through the Dapper API. When

a sampled thread is traced, Dapper ensures to attach the above indicated trace context to

thread-local storage which is (albeit partly) passed on during callbacks. This is essential for

reconstructing traces that follow asynchronous paths. To ensure fast availability of data,

Dapper first writes data to local log-files, subsequently pulls the data from the different

sources and finally writes the data to Dapper Bigtable repositories to ultimately enable

analysis.

Dprof

Dprof (46) arised as a new tool to construct profiles of distributed performance. In its core,

it is a new timestamp synchronization algorithm that deals with the inaccuracy of times-

tamps of distributed systems. Dprof particularly focuses on synchronizing timestamps to

ultimately construct accurate traces, which makes it a bit more challenging to adopt this

tool for assessing the performance of Citus.

Iprof

Furthermore, Iprof (57) is a non-intrusive tool that reconstructs execution flows of requests

by inferring from system logs. The authors evaluated their tool on four distributed sys-

tems, from which they tested Cassandra (33) and HBase (34) using YCSB benchmarks.

They concluded that Iprof succeeded in inferring useful statistics from the logs produced

by YCSB, with an accuracy of 95% for Cassandra and 90% on average for all four systems.

Tprof

More recently, Tprof was invented by Huang et al. (47) and takes profiling one step further

by enabling fine-grained aggregation by focusing on similar trace structures. The authors

argue that a trace or span is a timespan in which a task executes. Such a span is split into

subspans, which each perform a specific task or access a specific resource. Its counterpart

is coarse-grained aggregation which provides a more broad system view by aggregating

many diverse traces and calculating the average or percentiles. This however means that

it cannot provide a detailed view of traces which tprof does enable, since the structure
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for traces differ (47). Tprof’s workflow is (1) grouping all traces, (2) partition traces by

request type, (3) grouped by span structures and ordering these structures.

LRTrace

Another non-intrusive approach of grouping traces is shown by Pi et al. (58), who propose

keyed messages to reconstruct traces and called their tool LRTrace. This is, a uniform

structure of log messages to address the challenge of extracting and reproducing logs in

distributed systems. They essentially develop two major components for leveraging their

keyed messages; a Tracing Worker and Tracing Master. A Tracing Worker runs on all

machines of the distributed system and is responsible for locally collecting both logs and

resource metrics. After collection of the data, the Tracing Master pulls the gathered

information by all Tracing Workers and transforms this data into keyed-messages. Lastly,

it stores the keyed-messages in a database for further analysis.

3.3 Bottlenecks

A bottleneck exposes a fundamental limitation in the performance of an application. The

key to improving performance is knowing which elements to speed up. As a result, it is

important to identify the limiting resource and determine if it is being used to its full

potential. We distinguish two main resources as (1) instruction execution and (2) data

transfer bandwidth. Some examples of common performance bottlenecks are load imbal-

ance or bandwidth saturation. Other performance patterns that might be of interest are

bandwidth limitations, non-cached memory access and synchronization overhead. The lat-

ter can occur due to e.g. locks protecting shared resources or speedup going down as more

cores are added. Determining bottlenecks is rather difficult in Citus due to its distributed

nature and we therefore aim for a methodological approach to identify these bottlenecks

in the first place. For the distributed databases, some common bottlenecks are known to

be latency (59) or memory bandwidth (59, 60).

3.3.1 Identification

Gregg (1) proposes the USE method (figure 3.3) to enforce to methodically think about

performance and for identifying systemic bottlenecks. The author argues that for every

resource, one needs to check utilization, saturation, and errors to assess the performance.

With resource, they mean all physical server components which include, inter alia, CPU,
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Figure 3.1: Flow Chart Diagram of USE-Method (1)

network and disk. With utilization of a resource they imply the percentage of time a

resource is busy during a specific time interval, during which a resource often is able to

accept more work. If a resource is saturated, the remaining work is most often waiting in

a queue.

Gregg defines key metrics of the USE method as follows (1, p. 5):

• Utilization is defined as a percent over a time interval (e.g., one CPU is running

at 90-percent utilization), or the percentage of the total capacity of a resource (e.g.

main memory) that is used

• Saturation can be identified when measuring the run queue length

• Errors simply as the count of all errors in a specific resource
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Another resource pointed out by Gregg that is of interest in this research is process/thread

capacity. The system can be limited by the amount of processes, which is defined as uti-

lization. The wait on the allocation of these processes (synchronization overhead) might

indicate saturation and when the allocation fails errors may occur. In addition, when uti-

lization is above a certain percentage, queuing will become more prevalent as the queues

will be longer. This process can be modeled by queuing theory. In summary, the USE

method requires to first compose a list of resources, then check utilization, saturation and

errors of all of these resources (by using the Flow Chart in 3.3) and then, if a bottleneck

is detected, analyze this bottleneck in-depth.

3.3.2 Understanding

Ousterhout (61) devoted her research on clarifying how observed bottlenecks can be un-

derstood for parallel jobs and parallel resource utilization by means of blocked time

analysis. She argues that tasks usually consists of multiple subtasks, which she calls

monotasks, that each utilize one specific resource, e.g. CPU, network or disk. The blocked-

time in this case implies the time spent waiting for a monotask to access a particular re-

source. By focusing on blocked-time for each monotask, the optimal performance of a single

task can be approximated by subtracting the blocked time from the total execution time

of one task. This way, the theoretically optimal runtime could be estimated if a specific

resource was infinitely fast. Ousterhout also focuses on straggler tasks which she defines

as “a task that takes much longer to complete than other tasks in the stage" (61, pp.32).

A straggler task is always part of another task, meaning that this ultimately slows down

the overall execution of a total task or query. By blocked-time analysis one can expose the

maximum gain (in terms of speed) for a task, if a resource would be optimized maximally.

Moreover, if straggler tasks are identified one could possibly understand identified bottle-

necks that slow down execution. Ousterhout states that measuring actual blocked-time

is challenging, but that we are able to measure how many data is read and how long it

took. This way one is able to estimate the bandwidth or disk I/O. More specifically, she

argues that one is able to obtain complete metrics about the time a monotask spends on a

resource if we combine existing per task I/O counters (e.g. shuffle byte read) with machine

level utilization metrics.
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3.3.3 Applicability

A single query executed against a Citus cluster could be considered as a thread or a

job that consists of one or multiple monotasks. Namely, in order to complete, a query

ought to access different resources such as network, CPU and disk on or between one or

multiple nodes in a Citus cluster. If we list all resources that are accessed by a single Citus

query and subsequently apply the USE method (1), we can identify potential resource

bottlenecks in a system under test. Thus, we split the execution of a single Citus query up

in different monotasks that each require a specific resource. To take this one step further,

by measuring the blocked time of each monotask belonging to a single Citus query, we

could identify straggler causes within the execution of a query that potentially decreases

the ultimate throughput on a large Citus cluster. With an indication of the blocked time we

could estimate the theoretically maximal throughput on Citus 11 if no resource bottlenecks

occur.

3.4 Scalability

The exact definition as well as the evaluation of scalability of distributed systems is fre-

quently discussed. According to (62), scalability could be defined as the throughput and

response time divided by the cost factor. Kuhlenkamp et al. (11, p. 1220) classified three

different types of scalability benchmarks; (1) Change load between subsequent workload

runs without changing system capacity, (2) Change system capacity between subsequent

workload runs without changing load, (3) Change system capacity and change load pro-

portionally between subsequent workload runs. In addition, Kleppman (18) argues that

assessing scalability can be viewed in two ways: 1) increasing load and keeping resources

constant and 2) increasing load and increase resources accordingly to keep the performance

unchanged. For this research, we will construct experiments that are based on the vari-

ations of load and system capacity (cluster size) as described in the 3 different types of

scalability benchmarks by Kuhlenkamp et al. (11). The authors in (63) take the cost factor

into account and present a new framework to assess scalability of a distributed systems.

However, for this research, the cost factor is out of scope although it is an important factor.

We instead focus on some older commonly used metrics:

• Speedup S: S(k) = k, where k is the number of workers

• Efficiency E measures the work rate per worker E(k) = S(k)
k
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• The scalability from scale k1 to scale k2 is the ratio of efficiency: ψ(k1, k2) =
E(k2)
E(k1)

However, in their paper (63) they state that these metrics are not suitable for distributed

systems, because these systems bring new dimensions of complexities. Therefore, they

propose a new framework to numerically assess the scalability of different configurations

of distributed systems. Although it is not our aim to numerically explore different config-

urations, we will use some of these metrics to assess the scalability of Citus 11.

3.5 Queueing

Queuing models are often used to assess performance bottlenecks in complex systems such

as a DBMS. Delis & Roussopoulos (64) describe queuing network models for different

DBMS architectures; standard client-server, RAD-Unify and enhanced client-server archi-

tecture to identify performance related issues for these architectures under different types

of workloads. Qiang et al. (65) present an implementation of a performance forecasting

framework for a DBMS by means of constructing a Layered Queuing Network (LQN). With

this queuing network, they focus on performance forecasting and aim to understand the

impact of hardware selection and software structures for a DBMS. In addition, they verify

whether the behavior of their implementation resembles real systems.

Another researched is performed by Dipietro et al. (2), who proposed a novel queueing

network model for Cassandra to map resource provisioning. Their model explicitly defines

configuration parameters which makes it possible to compare multiple setups. Due to its

distributed nature, Cassandra resembles the architecture of Citus 11 in myriad aspects,

such as the fact that clients can connect directly to a particular node. A difference however

is that Cassandra ultimately is a NoSQL database as opposed to Citus.

The most appealing from their research is that the authors modelled YCSB workloads to

assess the performance of their queueing network. In their case, they modelled the YCSB

workload generator as two separate queues that represent network and CPU, where the

YCSB workload CPU generates new requests which are sent through the network queue

(figure 3.2). Once an executed query returns at the YCSB generator queue, a new query

is generated. To distinguish different types of request, Dipietro et al (2) modelled two

different types of requests: a read-data from disk request (local request) or retrieve data

from another node (remote request).
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Figure 3.2: High-level overview of Cassandra YCSB architecture (source: (2))

Osman et al. (66) designed a clear framework to evaluate the performance of different

database designs. The most appealing about their research is that they attempted to

model queues for accessing tables and have clear definitions of parts of the queueing sys-

tem. As extensively described in Alomari et al. (67), queuing networks are classified in two

types: open and closed. The difference is that in a closed network the same amount of jobs

always reside in the system. Alomari et al. examine fork-join (FJ) queuing networks and

argue that for a client-server system with a known number of clients and a heavy workload

a closed queuing network is suitable, which means that a finite number of jobs is cycling

through the system.

In the case of a RDBMS the workload intensity is expressed as the amount of transactions

(txn), which can be be mapped to the number of customers N in a queuing network

that demand one or more jobs (67). To account for different types of workloads in a

real RDBMS, we could compose a multi class queuing network where we model different

classes of customers N ∈ {
−→
NR,

−−→
NW } where

−→
NR represents a vector of read transactions

and
−−→
NW represents a vector of write transactions. In a multiclass model each txn can be

routed differently, depending on the resources available and needed for the txn to commit.

Moreover, in the case of Citus we could model the system as a homogeneous FJ where the

distribution of service times at parallel queues is similar.

41



3. RELATED WORK

42



4

Benchmarking

To benchmark and compare the performance of Citus 11, AWS Aurora and Google Span-

ner, we will make use of YCSB benchmark tooling. First, we benchmark Citus to get a

general picture of its performance on Azure Managed Service, followed by benchmarking

Citus when we directly use the control plane software abstraction (Marlin) that manages

and provisions Citus cluster. At last we do a performance comparison between Citus, Au-

rora and Spanner.

4.1 Methodology

Citus has been extensively benchmarked by HammerDB 1 and a TPC-C workload. How-

ever, HammerDB simulates a workload that resembles queries used in a warehouse-like

system and measures their throughput in New Orders Per Second (NOPS). Citus 11 how-

ever is expected to increase the throughput of simple writes and reads. This type of

workloads can be categorized as create, read, update & delete (CRUD) workloads. Hence,

for benchmarking Citus, AWS Aurora and Google Spanner we are using YCSB (see 3.1.1).

Execution

To minimize the time-consuming process of manually executing numerous benchmarks, we

automate the initialization of a new infrastructure based on the Citus benchmark-suite
2. While using the Citus Benchmark Azure module, we initiate a new Citus cluster and

1https://www.citusdata.com/blog/2022/03/12/how-to-benchmark-performance-of-citus-and-postgres-
with-hammerdb/

2https://github.com/citusdata/citus-benchmark/
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a Driver VM respectively for testing and coordinating the benchmarks. This VM au-

tomatically executes multiple iterations of different YCSB workload configurations using

straightforward scripts for initialization 4.1. The Azure module itself consists of a few

bash scripts and .bicep files which enable the automatic configuration of Citus clusters

and Azure VM’s. To run YCSB, a few parameters (e.g. iterations, shard count and thread

counts) are added to these files to pass on to the benchmark script that runs on the Driver

VM. Once the new cluster and driver are allocated in the Azure cloud, a few Linux and

YCBS specific packages as well as a JDBC driver are installed through a cloud-init

script upon initialization of the Driver VM. To connect with the database, we make use of

the Java Database Connectivity (JDBC) driver. This is an API that enables to connect

with and execute queries against a database. JDBC is supported by YCSB and enables

the load balancing of connections across multiple database instances, herewith supporting

concurrent query executions. By distributing connections across multiple worker nodes, we

are able to distribute the load of concurrent queries among workers. The load balancing

provided by JDBC however is not necessarily in a round-robin fashion. Instead, the JDBC

driver lists suitable worker nodes and then randomly chooses one of the candidates. This

most often leads to an unequal distribution of direct connections from the driver across

worker nodes.

python3 benchmark.py --records=1000 --threads=100,200 run_all_workloads

By making use of the Python package Python Fire 1, we provide scripts that automates

the execution of different YCSB runs. The runs are performed in the order as described in

the YCSB Wiki page for core workloads 2. The algorithm used for running the workloads

in the required order is shown in algorithm 1. We iterate multiple times across differ-

ent workload configurations to obtain statistical significant results of multiple benchmarks

runs.

To run the actual benchmarks, we make use of tmux such that the execution takes place in

a distinct process. Tmux is realiable in the sense that it resumes with the benchmark if the

ssh connection with the driver suddenly drops. The loading and running of the workload

itself by YCSB is called by the benchmark script (run_workload(wn, r, o, ck)), but

1https://github.com/google/python-fire
2https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
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4.1 Methodology

Algorithm 1 run_all_workloads() function
Require: Ordered list of YCSB workloads W
Require: List of different thread counts (connections) C
Require: Records r
Require: Operations o

for iteration i do
for threads ck ∈ C do

truncate_table()

load_workloada(wa, r, ck)

for workloadn wn ∈W do
if wn == we then

truncate_table()

load_workloade(we, r, ck)

end if
run_workloadn(wn, r, o, ck)

end for
end for
generate_output()

end for

executed in a bash script (4.1).

bin/ycsb load jdbc \

-P workloads/$WORKLOAD \

-p db.driver=org.postgresql.Driver \

-p recordcount=$RECORDS \

-p threadcount=$THREADS \

-cp ./postgresql-42.2.14.jar \

-p db.user=$PGUSER \

-p db.passwd=$PGPASSWORD \

-p db.url="jdbc:postgresql://$CITUS_HOST/$PGDATABASE?loadBalanceHosts=true" \

| tee ${HOMEDIR}/${OUTDIR}/load_${WORKLOAD}_${THREAD}_${RECORDS}_${ITERATION}

_${WORKERS}_${RESOURCE}_${DRIVERS}_${PART}.log

When the benchmarks are finished, a csv containing the throughput and total execution

time per workload configuration is generated on the driver VM from the raw YCSB logs.

This CSV is subsequently transferred to the local machine using scp.
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Benchmarking on Marlin

To have the possibility to tune more parameters and exceed standard Azure settings such as

themax_connections which is set to 1000 by default, we enabled benchmarking on Marlin.

Marlin is the control plane software to provision Citus clusters and hosts Azure Managed

Service. By modifying the utilities (utils.rb) and config file (config.rb) we incorporate

YCSB specific parameters in Marlin. The YCSB specification file (ycsb_spec.rb) orches-

trates the end-to-end execution of the benchmarks. This process initiates the Citus cluster

and builds a config.yml file in which information about the cluster is stored. Moreover,

the process calls the .bicep files that spins up the driver VM and takes care of pre- and

postprocessing tasks for the benchmarks.

Expected bottlenecks for Citus

A practical implication of Citus 11 is that when the client opens many connections to the

Citus cluster, the amount of incoming connections for every worker equals the amount of

connections made by the client to the entire cluster. Since the the CPU only can handle

a limited amount of concurrent processes (i.e. connections), and since every connection

consumes memory, this will cause CPU saturation and Out of Memory (OOM) errors.

CPU Saturation and OOM errors ultimately negatively influence the response times of an

executed query due to the introduced overhead.

Evaluation

To evaluate scalability can make of different evaluation formulas (63).

• Speedup S: S(k) = k, where k is the number of workers

• Efficiency E measures the work rate per worker E(k) = S(k)
k

• The scalability from scale k1 to scale k2 is the ratio of efficiency: ψ(k1, k2) =
E(k2)
E(k1)

Speedup is most commonly used and a straightforward indicator of the performance, so we

will mainly use this metric. Since we are merely interested in OLTP workloads from which

the performance often is measured by the transaction throughput, we measure the amount

of transactions per second, but it can also be expressed in a time-interval T ϵ {t0, ..., tn}
which is calculated according to the formula in 4.1.

TPt1...tn =

∑j
i=1 Tri
tn − t0

. (4.1)
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4.2 Experiments and Results

Experiment set-up

The very first experiments are executed on Azure Managed Service which is referred to as

Citus in production. The Driver VM used consist of 64 vCores and is a Standard_D64s_v3

machine, while the coordinator and worker nodes all contain 16 vCores and consist of a

Standard_E16ds_v3 machine. In these first experiments the default shard count is set to 48

since this value is divisible by many numbers, the Citus version used is 10.2, PostgreSQL

version is 14 and we benchmark Citus using YCSB workload a for inserts and workload

c for reads.

Citus in Production

The most accessible way to use Citus is through Azure Managed Service that manages the

Citus cluster for the customer. There are a few limitations for the Managed Service, such

as a maximum amount of max_connections and the creation of more PostgreSQL users

which disabled by default. We perform initial experiments on Citus in production to in-

vestigate the current limitations for customers. More specifically, we explore the behavior

of the cluster for different thread counts and cluster sizes. Since Azure limits the amount

of connections with the Citus cluster to 1000, we vary the amount of connections between

200, 400, 600, 800 and 990 in the initial experiments. The amount of nodes we vary

is 4, 8, 16, 24. The shard count is set to 48. We test the Citus cluster under YCSB

workload A (100% INSERT) and workload C (100% SELECT), by 2 million inserts and 20

million operations (i.e. reads) respectively.

Figure 4.1: Transactions per Second (TPS) measured by YCSB for Citus in production,
varying thread counts and cluster sizes. Driver VM: Standard_E16ds_v3, worker nodes with
16 vCores, 2 million operations. INSERTS (left), READS (right)
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The graphs in figure 4.1 exhibit that the number of connections are becoming more impor-

tant when the cluster size grows. This is particularly evident in the 100% SELECT workload.

Optimal amount of threads

The graphs in figure 4.1 show that for both INSERT and SELECT queries the optimal amount

of threads is 990 and 800 respectively for a single iteration. Therefore, we do the resulting

experiments in this chapter with 990 connections for 100% INSERT workloads and 800 con-

nections for 100% SELECT workloads. The throughput for inserts is lower then for reads,

which is expected. For each insert a new tuple containing information about the record to

be inserted is appended to the WAL file. This file is subsequently flushed to disk, which

is an extensive operation. Only after the WAL file is written to disk, the transaction is

committed and a new query is fired through the same connection. Waiting for the WAL

being written to disk often stalls the transaction for a few milliseconds, which slows down

the total execution time of the transaction. For reads however, no write to WAL and thus

waiting for disk I/O is required. For a SELECT transaction however, fetching data from

disk might be necessary if not all data fits in RAM. Note that in these experiments we test

a workload 2M inserts on a cluster where each individual worker node contains 128GB of

RAM. Every insert on YCSB is around 1KB. This means that for this experiment we have

2 Million KB records, which translates into 2GB. 2GB fits easily in RAM, so for these

experiments no data pages need to be fetched from disk. Note that a workload of 2 Million

operations is not large, thus when the workload increases the behavior of the Citus cluster

will differ.

Scalability

To assess the scalability of Citus in production, we perform benchmark runs with a thread

count of 800 for reads and 990 for inserts. Moreover, we vary the amount of workers

between 5, 10, 15, 20, 25 and 30 to examine the scalability. The results are depicted

in figure 4.2. The graphs exhibit that the throughput for 100% INSERT does not really

scale well. The difference between 5 and 20 worker nodes is about 50.000 transactions per

second. This means that for a scale factor of 4, the speedup is only around 125000
75000 = 5

3 . For

workload c, the 100% SELECT workload, the throughput increases significantly from 5 to 20

worker nodes. However, after the peak at 20 worker nodes of around 500.000 transactions

per second, the TPS decreases and then seems to stagnate. This means that the peak for

Azure Managed Service for reads is around 20 worker nodes with 800 connections. For
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inserts, the scalability in production is bound by max_connections.

Figure 4.2: INSERTS (left) and SELECTS (right). TPS for Citus cluster of varying worker
nodes, shard count of 2 × worker nodes, 100M reads on 100M records, 800 and 990 threads
respectively and a single Driver VM of 64 vCores

Marlin

A Citus cluster deployed on Marlin enables more fine-grained tuning of different Post-

greSQL and Citus settings. This entails that with deploying from Marlin directly enables

to scale the amount of connections up to 10000 as opposed to the managed service, who

limits the amount of connections to 1000. Therefore, the performance of Citus when di-

rectly deployed from Marlin is significantly better as shown in figure 4.3.

Figure 4.3: Performance of Managed Service (production) vs Performance of Marlin. Both
consists of Citus clusters of 16 worker nodes with each 16 cores

V3 vs. V5 hardware

Azure provides VMs that run on different kind of hardware. Citus in production by

default used V3 hardware until it completely transferred to V5 table 4.1. In June 2022 all

V3 hardware has been updated to V5. This too results in a significant difference in the
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Table 4.1: Specifications for V3 and V5 hardware used for VMs in Azure

Configuration Standard_E16ds_v3 Standard_E16ds_v5

vCPU 16 16
Memory (GB) 128 128

SSD GiB 256 600
Max data disks 32 32

Uncached disk throughput (IOPS/MBps) 25600/384 25600/600
Max NICs 8 8

Max network bandwidth (Mbps) 8000 12500

performance of Citus for YCSB workload a and workload c. To investigate this difference

we performed multiple runs to compare V3 and V5 hardware. The results are shown

in figure 4.4 and exhibit a performance increase from > 50% for SELECT workloads. In

addition, the performance increase for INSERT workloads is also significant, although the

difference in performance is around 30%.

Figure 4.4: Performance in TPS on V3 and V5 hardware for read-only workload for 8-node
and 16-node Citus clusters (left), Performance on V3 and V5 hardware for insert-only workload
for both 8-node and 16-node Citus clusters (right).
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Optimal amount of threads

Due to PostgreSQL and Citus being single threaded, the only way to execute multiple

queries concurrently is to increase the number of connections to the database cluster.

However, at some point the overhead introduced by maintaining these connections will

exceed the benefits of having multiple connections. To assess these limits for Citus on

Marlin, we first performed some experiments to get an indication when the performance

drops if the amount of connections increases beyond that point. The results show that

the performance significantly drops for a 100% SELECT workload when there are > 800

connections to the entire cluster (figure 4.5).

Figure 4.5: Y-axis is Transactions per Second (TPS). Graph shows TPS for SELECT work-
load when different amount of connections are used. Machine used: Standard_E16ds_v5, 2TB
SSD, 128GB RAM, 100M records. Amount of connections on x-axis, throughput in transac-
tions per second on y-axis. Amount of connections are doubled every iteration: 400, 800, 1600
and 3200

For the 100% INSERT workload there is no drop in performance (figure 4.2). The issue that

arises with this workload is that beyond 3600 connections out-of-memory errors start to

occur frequently. This could indicate that the performance of a 100% INSERT workload is

limited by the available memory as we cannot upscale the amount of connections to the

Citus cluster.
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Figure 4.6: Y-axis is transactions per second. TPS for INSERT workload. Machine used:
(Standard_E16ds_v5), 2TB Disk, 128GB RAM, 100M records. Amount of connections on x-
axis, throughput in transactions per second on y-axis. Amount of connections are 800, 1600,
1800, 3200 and 3600

Increasing workload intensities

To test whether the workload influences the TPS, we tested different workload intensities

on 32x16vCpu clusters. The results are depicted in table 4.2. Increasing workloads in-

crease the TPS overall. This could mean that lighter workloads are more expensive, due

to the overhead introduced by the first few executed queries that will take longer. If the

workload becomes larger the relative fraction of queries necessary to ‘warm-up’ the cluster

is smaller, leading to a better average TPS. Note that we did not test workloads greater

then 500 Million transactions. We however expect that at some point the behavior of

the Citus cluster will differ since not all data will fit in RAM leading to increasing disk

I/O. Ultimately the cluster will become saturated if the workload intensity keeps increasing.

Scalability

Since the optimal amount of connections that does not result in out-of-memory errors for

inserts and reads seems to be 3600 and 800 respectively, we use those numbers for our

resulting experiments. Figure 4.7 shows that the performance of Citus clusters both in-

creases for reads and writes, but the performance increase curve is flattening out beyond

16 workers. As a result, we conclude that for Citus clusters with 32 worker nodes the

throughput does not scale well.
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Table 4.2: Throughput, mean and 99th percentiles query execution times for 100 million
INSERT queries without driver-to-cluster latency, cluster-to-driver latency and YCSB overhead,
3600 threads, 32 workers, 16 vCPUs

Workload TPS Mean (ms) 99th pctl. (ms) YCSB latency (ms)

1 Million 41203 10.11 27.29 12.59
10 Million 165978 5.70 18.82 11.69
100 Million 294601 5.10 21.68 11.34
500 Million 311992 8.92 51.71 11.18

Figure 4.7: Y-axis shows Transactions Per Second (TPS). TPS for SELECT workload (800
connections, right) and TPS for INSERT workload (3600 connections, left) for different amount
of workers. Machines used: (Standard_E16ds_v5), 2TB Disk, 128GB RAM, 100M inserts.

4.3 Performance Comparison

Aurora

To evaluate the performance of AWS Aurora we spin up an EC2 instance which functions

as a driver VM. Moreover, we configure an EC2 instance by installing scripts for YCSB

to work. We created simple bash scripts to automatically install and configure Aurora

instances, wich are automatically created when a YCSB benchmark (batch)-run is called

by the Python Fire scripts module.

Experiments and Results

Aurora does not enable to scale out by simply adding workers as opposed to Citus. Instead,

Aurora offers large machines. This means however that when the amount of compute
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required to handle a certain workload exceeds Amazons’ largest machine, the client needs

to extend its infrastructure by using more machines. This also requires that, if one wants

to scale beyond Auroras largest machine, one has to manually shard the workload across

different Aurora instances. For the benchmarks a C5.18x large EC2 instance (72 vCores) as

driver is used. Furthermore, a db.r5.24xlarge RDS instance with PostgreSQL (96 vCores)

is set up. The results of the benchmarks of Aurora are depicted in figure 4.8.

Figure 4.8: Results of Aurora vs Citus for the same amount of Vcores. For Aurora around
700 connections are used, for Citus 3200. All YCSB workloads (table 3.1).

The first thing we noticed while doing experiments that Auroras benchmarks results are

very consistent, meaning that the throughput reported by YCSB does not vary significantly

between different runs. In addition, the amount of connections does not influence Auroras

throughput greatly, but the best performance is obtained around 700 connections with the

cluster. For the 100% INSERT workload Auroras maximum throughput approaches 45000

TPS. The maximum TPS of the 100% SELECT workload however is around 700000 TPS for

one instance. Aurora enables to add up to 16 read replicas, so the performance of reads is

expected to reach around 16 ∗ 700000 = 11.2 million TPS.

Compiled Queries in Aurora

Aurora does not support the regular JDBC driver, but instead AWS provides their own

Amazon Web Services JDBC Driver for PostgreSQL1. This could mean that AWS sends

1https://github.com/awslabs/aws-advanced-jdbc-wrapper
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PREPARED statements which accelerate the execution speed of queries. With PREPARED

statements the query is only parsed once and the specific queries of the values are passed

in the form of parameters. To investigate this we eliminated ?loadbalancehost=true and

compared the throughput with and without this parameter. The throughput for reads

significantly decreased with around 200 thousand transactions per second, meaning that

the maximum SELECT throughput is now approaching 500000 TPS. 500k TPS however is

still roughly twice as much throughput as Citus obtains with a similar amount of vCores.

Why is Aurora so much faster for a read-heavy workload?

Standard PostgreSQL evicts data pages from cache if they are dirty, subsequently write

these pages to disk and then load a new page into cache. Aurora outperforms Citus in

YCSB workload c (100% SELECT). This could be explained by the fact that only the stor-

age layer takes care of keeping durable pages up-to date while network I/O is minimized,

which enables to use a different replacement policy. Instead of writing a dirty page to disk

Aurora only has to request a newer version of the page to load it into cache, which highly

speeds up the process and results in a better read performance. However, in these exper-

iments Citus does not have to access disk since all data fits in RAM, so the difference in

performance is likely due to other bottlenecks in Citus. These bottlenecks are potentially

the latency introduced by hopping the network to a different node, coordinating the dis-

tributed query, calculating the hash of a shard, context switching overhead due to dealing

with many different connections or copying and swapping data pages from the OS cache

to main memory and vice versa. Aurora might have introduced a smarter eviction policy

for pages into cache, and relies less on the OS for swapping data pages.

To investigate why Aurora performs so much better compared to Citus with respect to a

read-heavy workload, we will investigate what happens within Citus during a read-only

workload by sampling and profiling distributed queries in a SUT. With profiling we can

obtain an indication in which fragment a distributed query spends most of its time. By

indicating these straggler fragments, we could optimize these fragments to ultimately im-

prove the performance of Citus.

Spanner

Google offers a PostgreSQL interface for their Cloud Spanner instances. To communicate

with a Spanner instance using psql, Google developed and open sourced PGadapter. This

is a PostgreSQL API that enables the client to communicate with a Spanner instance.
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Since the PostgreSQL interface is available as of april 2022, it still lacks support of some

basic PG features and datatypes. This became apparent when executing YCSB workload

E which involves SCAN operators. Similarly as for the benchmarks with Aurora, for Span-

ner we spin up a Compute that functions as a Driver VM for coordinating and executing

the YCSB benchmarks against the Spanner cluster. To be able to use the PostgreSQL

interface for Spanner, a PostgreSQL API (PGadapter 1) is required which functions as a

proxy between the psql client and the cluster. Thus, for automating the benchmarks we

run PGadapter in a seperate tmux session when the YCSB benchmarks are initiated. We

use similar scrips for the automation of YCSB benchmarks as we did for AWS and Azure.

Cloud Spanner can in theory scale indefinitely by adding nodes. One node consists of 1000

processing units; the exact definition of a processing unit, however, is unclear. Spanner is

particularly highly scalable and easy to use. Spanner clusters are configured and available

almost instantly.

Experiments and Results

To benchmark Spanner with a PostgreSQL interface, a Spanner instance containing 1, 8

and 16 nodes is created. We execute all different YCSB workloads and compare the results

to Citus.

Since the exact definition of a compute node in Spanner is not clear, we compared the

results of Spanner to a Citus cluster of 6 nodes with 16 vCpu’s, 128GB RAM and 2TB

disk (figure 4.9). Spanner reaches only a TPS around 3700 for workload A (100% INSERT)

and around 6400 for Workload C (100% SELECT). In addition, as opposed to Aurora, the

throughput reported by YCSB for Spanner is very inconsistent. Another thing we find

that adding any new nodes does not increase the performance in terms of throughput for

Spanner.

The performance of Spanner can be increased by inserting in batches. But apart from

some ‘best practices’ reported by Google, there is not much guidance on how to improve

the overall performance. Spanner does however have a warm-up time, which is not taken

into account while running these benchmarks. In conclusion, Spanner with a PostgreSQL

interface does not perform well on YCSB benchmarks with this set-up.

1https://github.com/GoogleCloudPlatform/pgadapter
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Figure 4.9: Benchmark results of Spanner vs Citus. All YCSB workloads (table 3.1)

Comparison with Citus

Aurora performs better on almost all YCSB workloads compared to Citus. The only

exception is the 100% INSERT workload. For the 100% SELECT workload Aurora reaches a

throughput from around 700k TPS. This value is not even approached by a Citus cluster

containing in total 32×16 = 512 vCores. Aurora’s largest machine contains ‘only’ 96 vCores

and is thus highly efficient for YCSB workload c. Google Spanner, however, performs worse

on all YCSB workloads. A possible explanation for this poor performance is due to not

considering warm-up time for the experiments. Another aspect that could lead to a poor

performance is the required PGadapter. The PG API translates all PostgreSQL queries to

a format interpretable by Spanner. The translation of the queries comes with a performance

penalty. In addition, while Spanner may not seem to perform well on YCSB workloads, it

could perform well on different workloads. For example, workloads that are more analytical

and consist of JOINs.
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Profiling

In the previous chapter, we conclude that Citus does not scale well at 32 worker nodes.

With 32 worker nodes, only a speedup of 6.5x for INSERTS is achieved compared to a single-

node Citus cluster. To get an indication what actually happens when running large Citus

clusters, we examine the internal behavior of Citus during benchmark runs. To monitor

and assess the behavior of Citus, we create an infrastructure that automatically executes

YCSB workloads and collects the generated YCSB output and captures the internal be-

haviour. We build an infrastructure such that workloads can be executed automatically

using this framework. This framework consist of roughly three components; the control

plane Marlin, the Citus-benchmark repository which is executed on the driver and code

from the Citus-benchmark repository that is executed locally. The local processes are used

for monitoring the Citus cluster, parsing, storing and analyzing gathered data.

5.1 Benchmarking Infrastructure

For monitoring the SUT, we build a framework that captures and gathers data of Citus.

The execution workflow or the pipeline structure of this monitoring framework is explained

in this chapter.

Marlin

Marlin is the control plane in Microsoft that allows to spin up and customize a Citus cluster.

This repository is mostly written in ruby. If one wants to enable particular PostgreSQL and

Citus specific settings, it is most easiest to modify the source code of Marlin. Compared to

Azure Managed Services, Marlin has the possibility to tune the cluster with more settings,
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for example a higher amount of maximum connections. To enable to run benchmarks with

YCSB on Citus clusters, a few input parameters and functions have been added to the

source code. These additions allow to automate the benchmarks while defining specific

YCSB settings and cluster configuration settings. These inputs are depicted in table 5.1.

Table 5.1: Input parameters for benchmarking in Marlin

Parameter Type Explanation Example value

name string name of benchmark 32w32-s-citus-0-exp
cores int worker cores 16

master_cores int master cores 16
workers int amount of workers 32

master_disk_quota_mb int disk size (mb) 2048
worker_disk_quota_mb int disk size (mb) 2048

operations int operations YCSB 100 Million
records int records YCSB 100 Million

shard_count int shards in cluster 64
thread_counts list<int> connections 800,3600
iterations int iterations 5
drivers int driver VMs 1
parallel bool monitored benchmark run true

custom_configs bool use custom configurations true

Execution Pipeline

The execution pipeline of the benchmarking infrastructe is shortly explained below. We

will dive deeper into the different modules used after explaining the pipeline.

1. Configuration Cluster and benchmark configuration settings (table 5.1) are set in a

distinct ruby file (ycsb_spec.rb) in the Marlin repository which is cloned on a local

machine. Another ruby script (ycsb_bench.rb) functions as a host and coordinates

the whole benchmark process. If the ycsb_bench.rb script is executed, a Citus

Cluster is being configured using the configurations defined in ycsb_spec.rb and a

new Citus cluster is spawn up.

2. Metadata In the first phase of the process the script initiates the creation of a

config.yml file by calling the build.py script. The config file is saved locally and

stores all necessary metadata for the profiling process such as PostgreSQL user pass-

words and specific endpoints.
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3. Preparation The database contains 3 users by default: postgres, citus and monitor,

where the latter user is solely used for logging. Once a cluster is configured, the host

alters permissions for the monitor user on every worker node in the Citus cluster.

This is done by a separate script since the automatic propagation of ALTER statements

to the worker nodes failed during the time the infrastructure was build.

4. Driver VM One or more driver VMs are created by ARM and .bicep templates,

which are initiated by the host on the local machine. A cloud-init script specified

in driver-vm*.bicep file initiates the Citus-benchmark repository on all drivers. In

addition, it starts two distinct processes by using tmux from which 1) is the benchmark

process that executes and coordinates the benchmark and 2) is a server process used

to synchronize the benchmark process and monitoring among multiple machines. It

thus is used for the communication with the host and other driver VMs, if any.

5. Communication The host attempts to connect with the server on the Driver VM

until a connection is established. Once the driver is then ready to benchmark, the

host waits until it receives a message with the current state of the benchmark from

the driver that it can start the Monitoring Preperation process.

6. The Benchmark Process first checks whether YCSB and all necessary packages

are installed. If this is not the case, it makes sure that YCSB gets installed. Once

the installation is completed, it sends a message to the server process on the pri-

mary driver VM, who forwards the current benchmark state to the host. Now the

monitoring processes can be started.

7. Monitoring Preparation The host connects with all distinct worker nodes in the

cluster and truncates the pg_logs on these nodes. Subsequently it starts a separate

process, again with tmux, to initiate the sampling with iostat. If these operations

are succesfull it sends a message containing the current state of the benchmark to

the server on the driver VM.

8. Data Collection The host awaits until it gets a sign from the driver that the

benchmark run is finished. Upon this sign, the host stops all initiated processes on

the workers and directly gathers and deletes the generated data once all raw data is

transferred to the host.

9. Finalizing Once all pg_logs and telemetry data is transferred from the Citus work-

ers to the host, the host sends a message to the primary driver VM. This VM can
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then broadcast a message to all other VMs (if any) that a run is finished and initiates

a new iteration, if scheduled.

10. Background writer Steps 6 up to and including 9 are repeated until all iterations

are done. A separate thread attempts to transfer YCSB-specific data from the driver

VMs to the host every 5 minutes and stores this data in a PostgreSQL RDS instance

and S3 for later analysis.

Implementation Details and Considerations

The details of how each stage is implemented is discussed in the following paragraphs. The

initial start of the profiling process is initiated by means of Marlin. Marlin creates and con-

figures the Citus cluster. It enables to create clusters with specific PostgreSQL and Citus

settings, such as setting the max_connections, work_mem, enable_binary_protocol and

specific hardware configurations. If the cluster is running, Marlin will initialize processes

that creates a configuration (config.yml) file with all data of the cluster and prepares the

Citus cluster for the monitoring of the benchmarks. At the same time, Marlin initiates a

Driver VM that is responsible for running the benchmarks. Once the VM is created and

configured, Marlin will initiate a client socket locally. It then awaits until the host can

connect to the primary driver VM.

Driver Script

Once the Citus cluster is configured and running, a Driver VM is spin up on Azure by

means of the .bicep templates which are called in Marlin. In one of the bicep templates,

there is a cloud-init script automatically executes and installs necessary dependencies

such as psql, python, java, wget and tmux. Subsequently, YCSB packages are downloaded

and thereafter the YCSB benchmarks starts. In the case of performance monitoring, a

second YCSB client executes 0.01% of the total amount of queries, which are logged. The

driver script for the YCSB benchmarks is benchmark.py and includes methods to automat-

ically execute different YCSB workloads and enables input parameters such as the thread

count, the amount of iterations, records, operations. CSV files are automatically generated

on the driver VM after every iteration by the generate-csv.py script. Both scripts make

use of the Python package Fire, created by Google, which enables the parsing of argu-

ments in python while executing the python script in terminal. This enables a modular

approach, i.e. if something breaks during the benchmark it is easy to manually resume the

benchmarks by running a straightforward script.
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Sampling

Attempting to avoid introducing significant overhead due to logging in PostgreSQL, we

make use of adaptive sampling and sample 1
1000 (i.e. 0.1%) of the executed queries. The

0.1% sampling frequency is based on the findings from the Dapper paper provided by

Sigelman et al. (45), who found that a sampling frequency of one out of thousand provides

sufficient information to obtain an accurate profile of a request. PostgreSQL provides a

sampling option (log_transaction_sample_rate) that enables to specify a sampling rate.

However, this option randomly samples any transaction on a worker node. Since queries

in Citus are distributed across multiple nodes, this means that we cannot control whether

we sample two transactions that correspond to each other. As a result, it is likely that

we are not able to detect e.g. slow running distributed queries. To overcome this issue

we run a parallel workload by means of a second YCSB client which utilizes a different

user in PostgreSQL which we call Monitor. This user is initialized in Marlin before the

configuring of the cluster by means of putting 5.1 in the YCSB benchmark specification

(ycsb_spec.rb) file.

Mediators::FormationRole::Upserter.run(

formation: f,

name: "monitor",

password: "A*3a" + OpenSSL::Random.random_bytes(32).unpack1("H*"),

)

f.sem.incr(:role_sync)

The downside however is that the queries are executed sequentially in a relatively short

time span. To run a second YCSB client in parallel that performs inserts, we specify the

starting index (insertstart) and the amount of records to be inserted (insertcount)

which are included in the YCSB benchmark tooling. For the Monitor user, the settings

alter user monitor set log_duration = on;

alter user monitor set log_min_messages = ‘debug1’;

alter user monitor set log_statement to ‘all’;

are enabled. A minor addition has been made into the citus source code to enable logging

on DEBUG1 level. These settings produce log messages stored in the pg_log folder on every
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node in a Citus cluster (/dat/14/data/pg_log). The logs give insight in the time dura-

tion of work executed on the CPU at both the coordinator and worker nodes when a query

is executed. When taking these times into account, we can calculate the total average

compute time of a remote and internal query executed on a Citus cluster and herewith

estimate the throughput and time spent on different resources (CPU, network and disk).

Metadata

The Host monitors the Citus cluster during benchmarks and orchestrates the benchmark

process. After the Citus cluster is up and running, the build script generates a config.yml

file which entails metadata about the cluster as well as cluster specific PostgreSQL data

such as the Citus host DNS. In addition, it stores cluster-specific passwords necessary

to connect and initiate psql. Non-sensitive metadata is directly pushed to a PostgreSQL

database such that the metadata about this benchmark run is kept if the system crashes.

Preparation

The host prepares the cluster with the prepare script. This process gives the PostgreSQL

user Monitor permissions on the coordinator and worker nodes and it creates a temporary

file structure. It then waits until the Driver VM is ready to perform a specific benchmark

workload that we want to monitor. If the Driver VM is ready, it sends a message to the host

which then makes sure that the monitoring processes on the worker nodes are initiated.

Once the host initiated these processes and thus is ready, it sends updates the state-array

on its second index to 1, and lets the Driver VM know by sending the updated array. This

way, the Driver knows it can start with the benchmark run. When the benchmark run

is finished, the driver VM sends a message to the host which then makes sure that all

gathered data is collected. Once the host collected and removed temporary data files on

worker nodes, it notices the Driver VM and further processes and analyzes this gathered

data asynchronously.

Communication

The driver and host communicate through a socket which is initiated in a separate process

by tmux on the driver VM. This server process initiates at least two different threads. The

first thread is monitoring for new connections and that want to connect and spawns a

separate client thread for every new connection. This new client thread then handles the

communication between the server and that particular client.
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State Monitor

The host (client) attempts to communicate with the driver once the Driver VM is config-

ured. Both the benchmark driver and host keep track of the current state of the benchmark.

The state monitor runs as a separate thread on the host and driver(s) to not interfere with

the benchmark runs. The current states of the benchmark is stored as an array. Initially

the array contains four zeros (i.e. [0, 0, 0, 0]) which each represent a different state:

(1) ready to benchmark, (2) monitoring prepared, (3) benchmark run finished, and (4) data

collection finished. If a state is set to 1, it means that the state is true. Since we keep track

of the states, both benchmarks know where to resume once a connection is re-established.

Moreover, by means of communication trough a socket, the host can asynchronously pro-

cess data while new benchmarks are running on the driver. Once all states are set (i.e.

[1, 1, 1, 1]) the driver resets the states to all zero’s and starts the preparation of a new

benchmark run. Since the amount of states is dependent on the amount of driver VM’s,

we each update the current state of the benchmarks by a bitwise OR operator between two

lists. Since Python lacks support for working with bits directly (i.e. without casting a list

to a matrix using the numpy package), we calculate the next state of the benchmark by

means of equation 5.1

(a|b)i = ai + bi − (ai × bi) (5.1)

Heartbeat

The connection between the driver and host needs to remain open while waiting until a

benchmark run is finished. However, during large benchmark runs no message is send for a

relatively long time. Therefore, we attempted to set socket.SO_KEEPALIVE such that after

5 minutes of inactivity, every 3 minutes a keep alive is send to the server. This solution

however did not work as expected. To account for this we implemented a heartbeat. This

heartbeat keeps the connection alive and ensures that all connected clients contain the

most up-to-date states. This heartbeat runs as a separate thread on all the drivers and

hosts and sends its current benchmark state to the server.

Telemetry Data

There are different options for monitoring specific statistics, such as dstat (43), htop, or

iostat. These profiling tools are extensively discussed in 3.2.1. Similarly as in (17), we

make use of standard linux utility iostat to monitor CPU usage and disk I/O during
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different runs. Iostat exposes all processes we are interested in. Specifically CPU usage

(calculated by 100 - %idle) and await are interesting. Await represents the average waiting

time for a request to be processed. This average waiting time includes time in the queue

and processing time. However, there is a trade-off between accuracy and overhead (47)

caused by iostat. A high sampling frequency, i.e. granularity, could introduce significant

overhead while executing benchmarks, so we set the sampling frequency to 1 Hz. Since our

benchmarks runs are overall quite long, this frequency should be high enough to capture

the behavior of a Citus cluster.

Monitoring

Once the a specific workload run is initiated on the Driver VM, the host acts as a Tracing

Worker as mentioned in Pi et al. (58). When the host acknowledges that the driver(s) are

ready to benchmark, it spawns up multiple threads which truncate the pg_log files on each

worker node to reduce the file size and to throw away unnecessary data. Furthermore, a

background process is started on every worker node in a Citus cluster. This process makes

snapshots of iostat statistics using nohup and stores the gathered data in nohup.out. Once

the specific benchmark run has ended, the host will kill the tmux processes on all worker

nodes and gathers the generated iostat and pg_log data for further analysis.

Benchmarking with multiple drivers

To make sure that the driver itself is not a bottleneck for INSERTS, we shard the YCSB

workload by range partitioning across two different drivers and divide the amount of con-

nections among them in a round-robin fashion. Since there are two drivers, we manually

add the reported throughput by YCSB from both drivers to obtain the total throughput

for a particular run. We shard the workload by range as depicted in algorithm 2 and 3 and

set the INSERTSTART and INSERTCOUNT parameters from YCSB accordingly. The amount

of connections is then calculated by means of algorithm 4

Communication with multiple drivers

The communication between the two drivers and the host differs slightly from the com-

munication between the driver VM and host with a single driver. The second driver VM

needs also to be taken into account when the benchmark states are updated. This is

solved by using an array of length 6 to include to states of the second driver VM. The host

now waits until both VM’s are ready to benchmark until it starts the monitoring processes.
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Algorithm 2 Pseudocode for calculating the Insertstart, Insertcount for Parallel runs
Require: drivers ≥ 1

shardsize = records // drivers
insertcount = driverid ∗ shardsize
if driver VM is the last driver VM then

insertcount = shardsize+ (records mod shardsize)

else
insertcount = shardsize

end if

Algorithm 3 Calculating the Insertstart, Insertcount for Parallel runs for Monitor

insertstart = (1− sampling_frequency) ∗ shard_size
insertcount_monitor = shardsize− insertcount

insertstart_monitor = insertstart+ insertcount

Algorithm 4 Calculating the amount of connections for Parallel runs
Require: drivers ≥ 1

Require: connections ≥ 1

connections = threads // drivers
if driver VM is the last driver VM then

connections = connections+ (threads mod connections)

end if
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Data collector

The data collector is a separate thread on the host and functions as a background writer.

It writes data from the benchmark drivers to the host continuously, such that the host

can asynchronously monitor the executed benchmarks. This speeds up the benchmarking

process as there is no need to wait until all data is transferred from the driver to the

host. Since the drivers often maintain a large number of connections to the Citus cluster,

connecting with the driver to gather data is sometimes leads to a connection timeout.

As a consequence, the whole benchmark process is then stalled if we wait for the data on

the driver to be transferred to the host. The data collected by the data collector is the

raw data that is produced by YCSB along with the csv file containing the relevant results

of the benchmark. The data that is produced on the Citus cluster itself are collected after

every benchmark run is finished.

File Structure

In order to distinguish data from different workers, iterations and drivers, the structure of

the gathered file is composed such that each worker and iteration could be identified in the

filename. For example, for a postgresql log the structure is

$RESOURCE/pglogs/PGLOG-${WORKER_NUM}-${ITERATION}.log and for resource metrics

the output file path and structure is

$RESOURCE/general/worker-${WORKER_NUM}-${ITERATION}.out. In addition, the gath-

ered data is deleted on the worker nodes to avoid contention due to a full memory which

could reduce the performance of a Citus worker node.

Data storage

After a benchmark run is finished, the host collects all produced PostgreSQL logs by con-

necting to every worker node and gathering all produced data. It stores data in a temporary

file structure and from there parses and subsequently pushes the data into AWS S3 and a

PostgreSQL database. The file structure of the S3 blob storage folder is depicted below.

resourcegroup/YCSH

-- resourcegroup/YCSB/raw

-- resourcegroup/YCSB/results

resourcegroup/pglog

resourcegroup/general
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The raw folder contains all raw YCSB logs output generated on the driver, the pglog folder

contains PostgreSQL specific log data produced by the user Monitor. Lastly, the general

folder contains the monitoring data produced by iostat. The initial parsing of YCSB

logs happens on the Driver VM. From every run, each filename is parsed as such that the

current iteration, thread count (i.e. client connections), records, workload type, workload

name operations and amount of worker nodes along with the measured throughput by

YCSB are extracted. In addition, similarly as in the PEEL framework (43) we construct

a temporary file system which stores all files gathered from the Driver VM and all nodes

in a Citus cluster. Since the size of these files are often large, particularly pg_log files,

the temporary files are deleted after every configuration once all data is securely stored in

AWS S3 and PostgreSQL.

Storing parsed data

Before pushing the data into the PostgreSQL database, results are thus stored in a local

temporary file structure. In order to derive meaningful data of the initially unstructured

files, we parse the pg_log, YCSB output and iostat files. Part of extracting YCSB logs

already happens on the Driver VM that executes the benchmark itself, where after every

benchmark iteration a CSV file is updated with the results of that particular iteration.

When the benchmarks crash for some reason, this way partial results are collected in a

CSV. Moreover, if the benchmark resumes after a crash the CSV is updated accordingly.

After all iterations are finished, the host gathers the results file from the Driver VM, parses

it locally and pushes the results into a PostgreSQL database by using the python package

psycopg. For runs that are monitored, the results are pushed into a table called ‘parallel’

to keep track of potential performance penalties caused by interference of the monitoring

processes. By using a SQL database, results can be easily retrieved and analyzed by per-

forming simple SQL queries.
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5.2 Experiments

We perform various experiments with the constructed framework. At first, we investigate

whether there is overhead introduced by the framework or the sampling mechanisms. We

do this specifically by

• Evaluating whether the monitoring itself introduces any overhead

• Evaluating how much the logging rate influences the total execution time

• Investigating whether the unequal load balancing influences CPU usage

Subsequently, we construct profiles derived from information in the PostgreSQL logs. Since

multiple queries use the same connection sequentially, it is hard to find the trace of a single

query in the pg_logs while only using the GPID. If we would match queries on GPID only,

the main challenge would become dealing with the short execution times in combination

with asynchronous time in a distributed system. To account for this there are roughly

three options.

1. Implementing an ID that distinguishes each query ever executed on the cluster and

include this in the GPID

2. Aggregate all queries executed per connection path

3. Coarse-grained aggregation: aggregating all parent and child queries

2022-06-06 13:00:20.609 UTC [18366][17/74335] : [286616-1]

[app=Citus_internal gpid=120000019449] LOG: duration: 0.028 ms

2022-06-06 13:00:20.609 UTC [18366][17/74335] : [286617-1]

[app=Citus_internal gpid=120000019449] LOG: duration: 0.038 ms

2022-06-06 13:00:20.609 UTC [18366][17/74335] : [286618-1]

[app=Citus_internal gpid=120000019449] LOG: ...

2022-06-06 13:00:20.609 UTC [18366][17/74335] : [286619-1]

[app=Citus_internal gpid=120000019449] LOG: duration: 0.038

Implementing an exclusive GPID for monitoring to identify a distinct distributed query

would involve numerous modifications in the Citus source code, which might be tricky. The

latter two options are more easy to implement, but do not succeed in constructing an exact

profile of a single Citus query. We assume that aggregating all parent and child queries

give a rough indication of the overall behavior of a query on a specific node and therefore
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choose this option. We can trace the execution time of internal queries (i.e. queries on

a child node) in Citus by filtering log lines that include “app=citus_internal", used by

an internal Citus connection. Fragments of queries that are executed on the parent node

can be filtered with “app=JDBC". Moreover, it is important to note that by default Citus

uses the binary protocol aiming to compress rows. As a consequence, three consecutive

messages are spawn in the PostgreSQL logs as opposed to one single log containing the

total execution time of that query.

The above chunk of logs represents the output of an ‘internal’ Citus query. We derive the

following execution times from these logs, along with their log-line identifier (28661*). The

exact explanation of the logging structure is explained in Appendix 7.2.

Parse: 286616-1 (0.028 ms)
Bind: 286617-1 (0.038 ms)

Execute: 286619-1 (0.038 ms)

In the parser stage, a query is parsed by the PostgreSQL parser. This entails checking

whether the syntax of the query is valid and if so, a parse tree is build using fixed rules

about the SQL syntax. In the binding stage a query is evaluated on whether the semantics

are correct. This entails validating whether the objects, columns, tables exist and whether

the user has the right permissions to access them. Lastly, in the execution phase the hash

of the shard is calculated on which the relevant tuple for the transaction resides. The

query is then forwarded to this node and shard respectively by the distributed executor.

Once a query arrives at the child node, the PostgreSQL parser and executor finish the

computation on the child node.

Profiling Experiments

We construct a profile of queries fired at two different workloads, 100% READ and 100%

INSERT queries. A summary of the main experiments we performed:

• Initial experiments with binary protocol enabled

• Experiments for both READ and INSERT workload without binary protocol to obtain

a profile of the execution of a CRUD transaction

• Experiments with a higher sampling frequency for INSERT queries

71



5. PROFILING

• Experiments to map the different bottlenecks for smaller clusters with larger nodes,

and larger clusters with smaller nodes

• Experiments to determine the maximum amount of connections that a Citus cluster

is able to handle

• Running perf while executing READ workloads

Calculation of spans

The calculation of the length monotasks or spans is done by taking the mean of values

reported in the pg_logs. For every sampled query, we derive the total execution time from

the parent (coordinator) node directly from the logs. Furthermore, the total time of the

waiting for the remote transaction that is executed is also reported in the logs. Lastly, the

compute on the child note itself is reported. Using these values, we aggregate the pg_log

values into four different execution times:

• Total avg execution time T is the total average execution time of a completed

transaction from the point a query is received from the Postgres client on the parent

node until the moment the query is forwarded back to the client after its execution is

completed. This thus entails all operations from PostgreSQL and Citus on the parent

node and all operations on the child node including latency between the parent and

child nodes.

• Parent compute Pc is the total time a query resides on the parent or coordinator

node of a distributed transaction.

• Child compute Cc is the time that is used for compute by parsing, binding and

executing the query on the child node. This excludes waiting for I/O on the child

node when the binary protocol is enabled.

• WaitForChild Wc is time that is depicted in pg_log which reports how long the

query on the shard took. This entails the Child compute and the latency from the

parent to child node and vice versa.

• Latency L is calculated by WaitForChild - Child compute. It shows the average

amount of time that the query is stalled and no compute on the parent nor child

node is performed.
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Since the total average execution time T is reported in the PostgreSQL logs, we can cal-

culate the Parent Compute Pc by Pc = T −Wc. Similarly, Wait-for-child Wc is reported

along with the Child Compute Cc. With these two values we can compute the approximate

latency L involved in a transaction by L =Wc − Cc.

Calculating the average

For both the child and parent compute filtered rows, we calculate the amount of rows and

divide this amount by 3 as the binary protocol spawns three different messages for each

executed query. These messages entail parse, bind and execute. For analysis we are (1)

aggregating the execution times derived from the pg_logs and (2) plotting the utilization

of the CPU and disk I/O. For the aggregation from the pg_logs we skip the first k trans-

actions in every log to exclude the transaction involve establishing connections and loading

data into cache. This is done by means of algorithm 5

Algorithm 5 Skip K first transactions
Require: pg_log file
Require: lines to be skipped k
Require: filetype f ∈ {0, 1, 2}

if not f then
k = 2k

elsef < 2

k = 3k

end if
skip_index = 0
for index, line in pg_log do

while k > 0 do
try: float(line)
k -= 1

end while
skip_index = index

end for
return: pg_log[index:]

By means of this algorithm, we succeed to exclude the first few long-executing queries that

typically involve loading data pages in main memory and evaluating query plans. The

multiplication factor of k is depending on whether a transaction consists of either 2 and 3
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distinct execution times for parent-queries and queries on the shard respectively. There-

fore, we multiply the k with the amount of pg_log messages corresponding to whether

we are filtering on total execution times (parent queries) or execution times for queries on

shards (child queries). After we skipped the first k transactions, we aggregate the values by

iterating through the PostgreSQL logs of all different Citus nodes and storing all execution

times corresponding to either parent or child queries in a python list. To obtain the mean

execution time, we sum all values in this list and divide this value by the the amount of

values in the list divided by 2 and 3 respectively. Lastly, we parse and aggregate all queries

on the shard to get an indication of how long the parent had to wait to finish a computation.

Experiment set-up

If not stated otherwise, we experiment on 32-node clusters that each consist of 16 vCpu’s.

We specifically investigate the limits of Citus and thus choose this configuration since Citus

clusters do not scale well beyond 32 worker nodes. In addition, provisioning clusters larger

then 32 worker nodes consisting of 16 vCpus seemed challenging as the cluster becomes

more prone to the failure of a single node. The regeneration or failure stalls the whole

cluster configuring process. The bottlenecks at 32 worker nodes thus seem interesting to

investigate since they might explain why Citus does not scale well. The worker nodes are

Standard_E16ds_v5, E_ds_v5 machines on Azure containing the 3rd Generation Intel Xeon

Platinum 8370C processors which reach a clock speed of 3.5 GHz. Each node has 128GB

of RAM and a 2TB disk. The driver VM consist of 64 vCores and is a Standard_D64s_v3

machine. This machine contains 256GB RAM and 512GB storage. We use YCSB workload

a for 100 Million INSERT queries and workload c for 1 Billion SELECT queries, if not stated

otherwise. Note that all data fits in RAM. We insert 100 Million records and every record

in YCSB corresponds to roughly 1 kb. This means that all records together comprise

100GB. 100GB < 128GB RAM per worker node. Assuming that records will be sharded

in a round-robin fashion across multiple worker nodes, the amount of GB per worker node

that is filled by records is even less. Since all data fits in RAM, disk I/O is avoided for

SELECT queries. The JDBC loadbalancer is used to loadbalance the connections across

different workers in the Citus cluster. First, we investigate the profile of INSERT queries,

followed by SELECT queries.

Cluster configuration

The Citus coordinator and worker nodes are configured with the values depicted in table
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5.2.

Table 5.2: Coordinator and Worker nodes cluster configuration

Parameter Value

work_mem 16MB
max_connections 10000

superuser_reserved_connections 3
citus.max_shared_pool_size 10000
max_prepared_transactions 11500
pg_stat_statements.track none

citus.stat_statements_track none
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5.3 Results

In this subsection we depict and discuss the results of the experiments done with Citus

cluster to expose underlying bottlenecks. First, we briefly test the overhead we introduce

by logging and profiling on the Citus clusters. Then we perform various experiments where

we test whether the disabling of binary protocol leads to a reduce in performance, what

the current (hardware) limitations are and where in which fragment of a transaction the

transaction can best be optimized.

Monitoring Overhead

At first we compare the overhead introduced by the monitoring framework to see how

much the benchmarking infrastructure influences the throughput. We did 2 separate runs

consisting of 4 iterations each on 5-node (Standard_E32ds_v5) Citus clusters with 100

million inserts. The results (table 5.3) show sthat the monitoring infrastructure does not

influence the overall throughput. In contrary, the throughput in TPS is slightly higher

with monitoring. The standard deviation (σ) however is high, meaning that the difference

in TPS for monitoring is likely the result of randomness and that in general the benchmark

runs are subject to high variance.

Table 5.3: Monitoring overhead for 5-node Citus clusters (Standard_E32ds_v5) with 100
million SELECT queries and 800 connections based on four iterations

Configuration TPS (µ) Std. Dev. (σ)

Non-monitored 311384 47181
Monitored 312909 46931

Sampling Overhead

The overhead introduced by the monitored sampling with increasing sampling rates is

tested. The sampling rate we extensively use is 0.1% and based on the findings of Dapper

(45). Since we are not using Dapper but our own constructed monitoring framework, we

investigate the overhead to see whether this sampling rate is also applicable for our moni-

toring infrastructure.

However, if we set the sampling frequency high the pg_logs will increase in size. Since

these logs need to be transported across the network and stored at a local machine and
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S3 which costs money, we prefer the sampling rate to be relatively low. If we sample 0.1%

of 100 Million queries, we still have data of 100000 samples. Although the sampling rate

does not seem to play a significant role in workloads with 10 Million inserts, this could be

different for 100 Million inserts since a tenfold amount of records will be logged at every

sampling rate.

Unequal load balancing

One of the key advantages of Citus enabling the user to connect with any node in the

cluster, is that one can balance their load across multiple nodes to increase throughput.

However, when the connections are not equally distributed across nodes in the cluster the

influence on throughput and other factors such as memory and CPU usage of a node under

a heavy workload is unclear. We make use of the JDBC driver to loadbalance connections

across multiple nodes. The JDBC driver selects suitable candidates and randomly load

balances connections among these candidates. As a consequence, the distribution of direct

connections from the JDBC client to the worker nodes is often unequal. For example, for

a run with 2 worker nodes the direct connections from the JDBC client are all forwarded

to a single worker node. This means that the resulting worker node only gets internal

Citus connections. To figure whether this unequal distribution of direct connections leads

to a difference in CPU usage we plotted the results. Figure 5.3 exhibits that there is very

little variation between the CPU use of the two worker nodes. The worker node containing

solely internal connections exhibits a slightly lower CPU usage during the benchmark run.

This difference however is not significant and thus negligible. Since all workers in a Citus

cluster ultimately end up with the same amount of connections, we conclude that direct

connections from the YCSB client and internal Citus connections do not have a significant

impact on difference in CPU intensity.

Distribution of execution time

Since the query execution times of a workload differ highly, we try to map these values

and investigate the distribution of the values. This will enable us to identify outliers and

understand how the average query execution time is constructed. For example, when the

distribution is very skewed and we take the average, this could give a wrong indication.

Also, if there are a number of extreme outliers this will also influence the average and we

might need to investigate if there is a bottleneck that produces these outliers.

77



5. PROFILING

Figure 5.1: JDBC connections with unequal load balancing of direct connections. 2 Worker
nodes, 16 vCPUs, 128GB RAM, 2TB disk, 3600 connections.

The left graph in figure 5.2 exhibits that the distribution of the INSERT queries exhibit

one narrow peak around 4-5 ms. Remarkable is the distribution time of SELECT queries

that exhibit a large peak followed by a smaller peak. Since all the data for this benchmark

should fit in RAM, it is unlikely that data pages are fetched from disk. A modern CPU

often has three different levels of cache, where L1, L2 and L3 respectively increase in storage

capacity but decrease in accessing speed. The difference between the first and second peak

of the read workload is around 1 ms, which is too high for accessing a different caching

level of RAM. The longer running queries could include some form of extra computation

or communication however. Both histograms are truncated at 14 and 2 ms respectively,

but there are some influential outliers that reach 300 ms. Explanation for these outliers

are broad. A possible explanation is that Azure hypervisor, the program that deploys and

monitors the VM provided by Microsoft, influences these execution times periodically by

some of its processes. Due to these outliers however taking the mean of the distribution will

give skewed results. Therefore, we can do two things of which (1) is removing the outliers

and (2) taking the 95th or 99th percentile (18) as opposed to the arithmetic mean. We

choose to use the 95th percentile since outliers possibly expose useful information about

requests that perform poorly.
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Figure 5.2: Left: INSERTS, Right: READS. Distribution of average query execution times
from the Postgres client until its forwarded back to the YCSB client. Execution times are
derived for a workload of 100 million INSERT and SELECT queries with 3200 and 800 threads
respectively.

Profile of INSERT queries

To identify straggler causes in INSERT queries, we construct a bar chart containing all

execution times of the fragments of a distributed query. The latency part in figure 5.3

is calculated by L = Wc − Cc, meaning that the latency is calculated by the time a dis-

tributed executor on the parent node waits until it receives a response back from the

child node minus the compute time on the child node. It thus shows the average amount

of time that the query is stalled and no compute on the parent nor child node is performed.

Figure 5.3: Profile of time of INSERT query spent in different monotasks, binary protocol
enabled. fsync() not captured.

The results of the INSERT workload exhibits that most time of an insert is spent waiting
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to receive a SUCCESS from on the child node. This part of the query execution seems to be

the straggler cause for inserts. By decomposing the profile of the insert, we suspect that

fsync() system call is not taken into account on the compute on the child node since the

duration of the execution times on the child node are arguably too short. fsync() is called

to write a chunk of WAL to disk during an insert or update of a query. This method makes

sure that all inserts are physically written to disk. fsync() thus is a very expensive function

since the database needs to wait until the WAL is flushed to disk. Disabling fsync() to

increase performance is possible, but makes it impossible to recover to a consistent state

when a crash occurs. After investigating the PostgreSQL source code, we found that the

finish_xact_command is not always called from a exec_execute_message, but only if it is

an explicit COMMIT query. Therefore, the fsync() duration is not captured when the binary

protocol is enabled. It is surprising that PostgreSQL does not log correct execution times

in its default mode of operation for queries involving a WAL write.

if (is_xact_command || (MyXactFlags & XACT_FLAGS_NEEDIMMEDIATECOMMIT))

{

/*

* If this was a transaction control statement, commit it. We

* will start a new xact command for the next command (if any).

* Likewise if the statement required immediate commit. Without

* this provision, we wouldn’t force commit until Sync is

* received, which creates a hazard if the client tries to

* pipeline immediate-commit statements.

*/

finish_xact_command();

Binary protocol

For inserts we suspect that most time is actually spend at fsync() to flush WAL files to

disk instead of the latency itself being a straggler cause. The sync duration is not captured

by the execute message when the binary protocol is enabled. This gives a distorted view

of where most time is spend within an INSERT transaction. When the binary protocol is

enabled, PostgreSQL sends bytea type fields directly as bytes as opposed to converting

them. This is beneficial if the workloads consist of data that require less storage if con-

verted to byes. To capture the data of the full commit, we disable the binary protocol

by setting citus.enable_binary_protocol to false. This leads to PostgreSQL executing

other code that does not make use of the binary protocol, which does capture the execution
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time of the commit. The downside however is that slightly more overhead is expected when

disabling the binary protocol.

Binary protocol vs no Binary Protocol

To see whether the disabling of the binary protocol influences the throughput, we compared

2 runs with and without the binary protocol enabled. The results show that on average for

inserts with clusters of 2x16vCPu, standard E_16ds_v5 disabling the binary protocol does

not lead to a significant performance decrease. The average for the binary protocol enabled

for YCSB workload c with 10 Million SELECT queries on 10 Million records is 93.519. For bi-

nary protocol disabled this number seems a bit higher, approximately 100000. However, in

this experiment we only executed 2 iterations per protocol on different clusters. A possible

explanation that disabling the binary protocol does not lead to a performance degradation

is that the the values generated by YCSB benchmarks consist of strings of random values. If

these random strings are converted to bytes, the strings are not necessarily more compact.

This leads to a less efficient execution. As an example, a BIGINT with a value could be 1

byte in text but 8 bytes in binary. If this is the case for most data used for the benchmark,

this will result in an amplification of network traffic and ultimately slow down performance.

Profile without binary protocol

Without the binary protocol we get a clear picture of where most time is spend within

an insert. The percentiles of execution times are reported in table (5.4). Note that the

shard in which queries are inserted is calculated by calculating the hash of the primary

key. If clusters are small, for example consisting of two nodes, then the probability is 50%

that the insert will take place on the same node. The record to be inserted is then first

appended to the WAL file, which is subsequently written to disk. As a result, the child

compute is almost equally as long or even longer as the compute on the parent node.
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Figure 5.4: Profile of INSERT query without binary protocol, fsync() captured

Table 5.4: Percentiles query execution times for 100 million INSERT queries without driver-
to-cluster latency, cluster-to-driver latency and YCSB overhead, 3600 threads, 16 vCPUs

Workers 50th pctl. (ms) 95th pctl. (ms) 99th pctl. (ms) YCSB latency

2 33.36 124.34 192.48 56.63
4 14.24 81.83 128.05 32.1
8 10.19 60.88 118.08 20.9
16 5.86 18.57 55.31 13.3
32 4.23 10.61 22.77 11.1

YCSB or driver bottleneck

We are merely interested in the behavior of a transaction executed against a Citus clus-

ter from the point a distributed query arrives at a parent (coordinator) node until the

query is forwarded back to the YCSB client. This is, since Citus itself cannot influence

the application used to perform a workload which in this case YCSB. Ideally, the latency

introduced by YCSB should therefore not be taken into account. However, the YCSB

latency influences the total throughput reported by YCSB to some extent. The difference

in the latency reported by YCSB and the mean execution time of a query is for example

11.1 − 5.5 = 5.6 ms at a 32-node cluster, so we expect that the YCSB itself introduces

a significant amount overhead (> 50% in the example calculation). This could indicate
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that either the latency from the driver to the cluster and vice versa is high, or YCSB itself

incorporates significant overhead by spawning up millions of queries in a short amount of

time. Most likely however it is a combination of both.

Higher sampling frequency

To explain the difference in latency reported by YCSB and the average total execution

time, we increase the sampling frequency to 10% of the total amount of queries to extend

the run time of the monitor inserts. With a 0.1% sampling frequency, the sampling run

time is around 6 seconds for inserts, which is short. Moreover, if we compare the latency

reported by YCSB for the user Citus with the user Monitor, we observe a value of 11.1

ms against 5.9 ms respectively. This could indicate that the profiles of the INSERT queries

are not accurate. To account for this we increase the sampling frequency to 10% of 100

Million. Then we investigate the statistics of 0.1 ∗ 100000000 = 10 Million monitored dis-

tributed transactions. We get the results depicted in table 5.5. The average total execution

time is 8.04 ms, the average execution time on a child node is 7.22 ms and the average

execution time that a parent node waits for the results on the child node is 7.48 ms. The

latency reported by YCSB is 13.78 ms and thus remains high compared to the average

total execution time of 8.04, as there is a difference of > 5 ms.

Table 5.5: 10 percent sampling frequency for a cluster with 32 worker nodes, 16 vCPUs,
128GB RAM and 2TB disk and 100 Million inserts and 3600 connections

Workers 50th pctl. (ms) 95th pctl. (ms) 99th pctl. (ms) YCSB latency (ms)

32 5.25 20.37 59.22 13.78

Multiple Drivers

To exclude that the bottleneck is the driver itself, we performed benchmarks using two sep-

arate drivers. The results with two drivers show that the transactions per second (TPS)

for inserts with 32 workers and 3200 threads increase from 250000 to 275000. This is

roughly an increase of 10%. Since the increase seems non-negligible, we benchmark with

two drivers from this point on.
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Upper bound of connections

Figure 5.5: Y-axis represents throughput. Scalability of Citus for 100 Million INSERTS
(YCSB workload a), varying connections, 16 worker nodes with 32vCPUs (V5_E16_ds), 256GB
RAM, 2TB disk. Data is fitted with Numpy Polyfit function.

One of the potential limitations we want to investigate is whether a large amount of con-

nections becomes a bottleneck at a large Citus cluster. To do so, we aim to find the

maximum throughput for an INSERT workload. We increase the amount of connections for

two drivers and a Citus cluster where each worker node is a Standard_E32ds_v5 (256 GB

RAM) machine (figure 5.5). Table 5.6 shows that the TPS increases with an increasing

amount of connections, though with diminishing returns and a relatively high variance.

Table 5.6: Benchmark results of Citus clusters with Standard_E32ds_v5 (256 GB RAM)
hardware. Coordinator and worker nodes contain 32 vCPUs, 256GB Ram, 2TB disk. Bench-
mark workload is 100 million inserts and 16 worker nodes

Connections (w) TPS (µ) Std. Dev. (σ) Conf. Interval (p=0.95)

4000 245498 1554.87 236206.1866 < X < 254789.8653

5000 264526 2374.32 255767.5434 < X < 273284.46404

6000 260429 7473.57 232189.3626 < X < 288669.94813

7000 270723 3216.34 258209.6226 < X < 283237.4695

The results show that the throughput slowly increases with an increasing amount of con-

nections. However, at 8000 connections YCSB started to report out of memory (OOM)

errors, thus we did not take these results into account. This indicates that the Citus cluster

is memory limited.
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Connection limit per CPU

The memory bound is an interesting finding and to explore its limitations we perform

experiments to map how many connections a node can handle per GB RAM. When bench-

marking a Citus cluster of 16 Standard_E16ds_v5 machines (128GB RAM) we often get

OOM errors when the amount of connections exceeds 3600, and for when we surpass 4000

connections. This could be the result of the random loadbalancing of the JDBC driver.

The JDBC loadbalancing algorithm randomly chooses a suitable candidate node which of-

ten leads to an unequal distribution of connections from the driver to a worker node. Since

the connections from the driver are slighly more CPU intensive as process more request,

this will more quickly lead to CPU saturation. If we upscale the nodes such that they con-

tain machines consisting of 32 vCPUs and 256GB RAM instead of 16 vCPU and 128GB

RAM, the connection limit increases until 8̃000 connections before OOM errors occur. The

amount of connections per vCPU in Standard_E32ds_v5 machines can thus be approached

as 8000
32 = 250 until out of memory errors occur. This means that for example a cluster

with workers that contain 8 vCPUs, the maximum amount of connections is approximately

8 × 250 = 2000. More specifically, when calculating in terms of GBs the connections are

limited to 8000
256 = 31 connections per GB. An increase in amount of connections after

this point does not lead to an increase in average response time reported by YCSB due to

the OOM errors.

Why do more connections lead to better performance for inserts?

The WAL is committed directly through fsync() if synchronous_commit = on . However,

more connections lead to a performance increase since more Write-Ahead logs are commit-

ted simultaneously in a group commit.

Comparing a 32x16vCpu with a 16x32vCpu cluster

An open question is whether it is better to have many nodes but of a small size, or smaller

cluster containing larger nodes (more vCpus). This highly depends on the workload as both

architectures have different limitations. To map the limitations of these two different ar-

chitectures handling a similar workload, we experiment on a 32x16 and 16x32 Citus cluster.

Table 5.7 shows the results of experimenting with different cluster sizes and workers from

Standard_E16ds_v5 machines, containing 16 vCpus. If we compare the results of average

TPS for 32 workers with 16 vCpus and 16 workers with 32 vCpus, the former outperforms
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Table 5.7: Benchmark results of Citus clusters with Standard_E16ds_v5 hardware. Coordi-
nator and worker nodes contain 16 vCPUs, 128GB Ram, 2TB disk. Benchmark workload is
100 million inserts and 3600 connections

Workers (w) TPS (µ) Std. Dev. (σ) Conf. Interval (p=0.95)

2 62479 2374.32 60398.15 < X < 64560.44

4 111322 7473.57 104771.32 < X < 117872.83

8 160498 3216.34 156858.22 < X < 164137.35

16 246396 6253.53 240268.12 < X < 252524.80

32 292447 19700.41 273140.76 < X < 311752.85

the latter under an INSERT only workload. A cluster of 32x16 with a thread count of 3600

has an average throughput of 290k TPS, while a cluster of 16x32 worker nodes with a

thread count of 7000 has a throughput of 270k TPS (table 5.6). The difference in TPS

is likely due to the larger worker nodes (Standard_E32ds_v5) being I/O bound. In other

words, transactions are waiting for a longer amount of time on the WAL to be flushed to

disk. Since disk I/O is possibly saturated, there will form a queue of transactions waiting

for their record to be flushed to disk. A 32-node cluster has twice as much disks, so this

process is quicker for transactions on a 32 node cluster. However, the TPS on a 32 node

cluster is not that much higher. This could indicate that the disk I/O is not fully utilized

and the optimal relation between connections and cluster size is at a smaller Citus cluster.

As also visible in table 5.7, a 16x16vCpu cluster reaches a throughput of 240k, which is

close to the performance of a 16x32vCpu cluster, with machines that consist of half of the

amount of Cpus. The optimal relation with cluster size and connections thus probably lies

somewhere in the middle of 16 and 32 worker nodes. For example, when testing the limit-

ing amount of connections before OOM errors occur, we tried a run with 20 worker nodes

and 32 vCores, 258 GB RAM, 2TB disk and 7600 connections. We performed a workload

of 100 Million INSERT queries executed by two driver VMs and obtained a throughput of

357217 TPS as reported by YCSB. This throughput outperforms the 32x16vCpu cluster,

but at higher costs.

Errors

For inserts, if the cluster exceeds 3600 connections from the driver Out of Memory (OOM)

occur in the YCSB logs. This is, due to the high amount of connection either the driver or

worker nodes lack free memory. Remarkably, the CPU is not busy but this is expected due
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to the wait for flush on disk. In addition, it may occur that ExclusiveLock errors appear

in the pg_logs when processes hold locks for more then 1000ms.

Utilization

The CPU usage for inserts with 800 connections and 3200 connections are exhibited in fig-

ure 5.6. The figures show that the INSERT workload is not CPU bound. This workload only

consumes little CPU, even with a high amount of connections and an intensive workload.

This can be explained due to the transaction being stalled when it is waiting for I/O from

disk. If a transaction is stalled most of the time, no CPU is used and thus CPU usage is low.

Figure 5.6: CPU utilization for Citus cluster of 32 worker nodes, shard count of 64, 100M
inserts, 800 and 3200 threads respectively and a single Driver VM of 64 vCores. Only inserts.
Threads in this case means connections to the entire Citus cluster.

Waiting for I/O

In these plots the await value at dm-0 from iostat for I/O is plotted. await includes the

time in queue and execution time of a thread. This execution time should roughly corre-

spond to the compute on the child node, since the large part of this estimated compute

involves waiting for I/O.

The graphs in figure 5.7 shows that there is a fat peak in waiting for I/O at around 75

seconds into the benchmark run. The most likely cause for this is checkpoints that force

dirty heap pages containing newly inserted data to flush to disk.

Saturation

For the INSERT workload, the CPU nor disk seem saturated at 32 worker nodes with 16

vCpus. However, for smaller clusters the disk is the bottleneck. For larger clusters, the

workload increases with the amount of connections but the amount of connections are
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Figure 5.7: Await reported by iostat during an Insert workload run for Citus cluster of 32
worker nodes, shard count of 64, 100M reads on 100M records, 3200 threads and a single
Driver VM of 64 vCores. 1b is a zoomed version of 1a, truncated at 250 ms waiting time.

memory bound.

Profile of a SELECT query

If we compare the performance of Citus on a read-only workload to the performance of

Aurora (section 4.3), it is evident that there is a lot of room for improvement in Citus with

regards to read-only queries. Therefore, it is interesting to profile the SELECT workload to

identify straggler causes and explore possible optimizations. To investigate the bottlenecks

of the SELECT workload, we performed experiments with 800 connections and varying clus-

ter sizes with Standard_E16ds_v5 worker nodes and binary protocol disabled. The graph

in figure 5.8 exhibits an evident decrease of query execution size with an increase in cluster

size. However, after 16 workers this execution time stagnates and even increases a little bit.

If we decompose the profile of the SELECT queries, we observe that the a query spends

more then 50% of its execution time on the parent node. This means that the latency

to and from the child node, along with the compute on the child node, is less then the

compute on the parent node. There is thus room for optimization for SELECT queries in

the computation(s) on the parent node. On the other hand, the compute times on child

nodes are very short which indicates little room for improvement.

Shortcomings

Table 5.8 shows that the YCSB latency is smaller then the 50 percentile execution times for

clusters with 2, 4 and 8 workers. This is remarkable, since the latency reported by YCSB

includes the YCSB overhead and the latency from the cluster to the YCSB driver and vice

versa. An explanation is thus that the distribution of values is very skewed or corrupted.
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Figure 5.8: Profile of query execution times for 100 million SELECT queries without driver-
to-cluster latency, cluster-to-driver latency and YCSB overhead, 800 threads, 16 vCPUs

Table 5.8: Percentiles query execution times for 100 million SELECT queries without driver-
to-cluster latency, cluster-to-driver latency and YCSB overhead, 800 threads, 16 vCPUs

Workers 50th pctl. (ms) 95th pctl. (ms) 99th pctl. (ms) YCSB latency Citus

2 11.59 17.06 39.67 6.56
4 4.88 15.08 21.69 3.77
8 1.01 7.75 12.95 2.04
16 0.77 0.99 1.35 1.25
32 0.81 1.90 2.97 1.06

However, if we compare the latency reported by YCSB this is significantly lower then the

mean total execution time of a query of 11 ms. Since the YCSB latency is the latency

reported by the Citus user, this could mean that the queries from the Monitor user are

remarkably slower, since the plotted execution time are derived from the PostgreSQL logs

from queries executed by monitor.

Another issue arises when we perform a simple calculation with the depicted execution

times. If we have 11ms times 100 Million, we get
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11 ∗ 100000000
1000

= 11 ∗ 100000 = 1100000 (5.2)

The calculated amount of 1.1 million TPS by no means reflect the reported amount of a

little over 100k TPS reported by YCSB. Part of the ’lost’ throughput can be explained by

the YCSB driver-to-cluster and cluster-to-driver latency, but the difference of 1.1 Million

- 0.1 million is 1 million, which is too large.

Profiling with perf

To investigate the limit of 800 connections for SELECT queries and possible optimizations

for SELECT queries we attempt to profile what happens during its execution. To do so

we profile a PID that refers to a SELECT query using perf. This however is challenging

since 1) a query could be executed in less then 1 ms and 2) Azure VMs disabled some

perf functionalities such as recording the amount of CPU cycles. To account for this we

took eight different samples of a PID that referred to a SELECT query, to obtain an overall

overview of what happens on a Citus Worker node during a heavy workload consisting

of solely SELECT queries. By using perf, we found that finish_task_switch system call

causes most overhead, around 4.17% (table 5.9). This kernel function is called at the end of

a context_switch function by another thread. The high usage of finish_task_switch is

likely due to the large amount of processes (i.e. connections). Therefore, more connections

could incur a lower performance due to the high amount of context switches.

The postgres-specific functions that appear most often are SearchCatCache1, AllocSetAlloc,

hash_search_with_hash_value and hash_seq_search respectively. The first Citus spe-

cific function that appears in all samples occurs always after some postgres-specific func-

tions. The Citus function which introduces most overhead (0.64-0.90%) is ConnectionStateMachine,

often followed by

AfterXactConnectionHandling. Note that the percentages are not very representative on

Azure, but they still could give an indication. The ConnectionStateMachine opens a con-

nection and goes into transaction state machine when finalized. AfterXactConnectionHandling

is a function initiated by the global transaction callback of Citus. It handles both COMMIT

and ABORT paths and manages the connections after a transaction is completed. The Citus-

specific functions seem to be related to the handling of the connections rather then the

execution of the query itself. Moreover, it is noteworthy that all connections use SSL which
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can incur computational overhead.

Table 5.9: Most CPU-consuming methods during a SELECT query across eight samples

Function Name Shared Object CPU overhead (µ)

finish_task_switch [kernel.kallsyms] 4.2 %
__memcpy_ssse3_back libc-2.17.so 2.8 %

_raw_spin_unlock_irqrestore [kernel.kallsyms] 2.6 %
__do_softirq [kernel.kallsyms] 2.1 %

Errors

Since for every cluster size the amount of connections beyond 800 leads to a performance

decrease, we keep the amount of connections at 800. As a result, no OOM errors occur.

The only errors that occurred during YCSB workload c was with two drivers, but this

was likely due to a software fault. Therefore, all benchmarks for the SELECT workload are

performed with a single driver VM.

Utilization

To try and find an explanation for the sudden decrease in performance for a read-only

workload if the amount of connections increases we plotted the CPU usage of two separate

experiments with either 800 and 3200 connections.

Figure 5.9: CPU utilization for Citus cluster of 32 worker nodes, shard count of 64, 100M
reads on 100M records, 800 and 3200 threads respectively and a single Driver VM of 64 vCores.
YCSB workload c.

As evident in figure 5.9, reads are consuming a lot of CPU. The left figure 5.9 shows the

CPU usage of a cluster with 32x16vCpus worker nodes and 800 connections. The CPU
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usage is constantly above 50% and reaches 80%. If we compare this with the figure on the

right where 3200 connections are used, we see that the second figure consumes a lot more

CPU. This is probably due to the increase in connections.

Figure 5.10: Trashing explained in a graph. Image derived from https://www.
studytonight.com/operating-system/thrashing-in-operating-system

Another remarkable fact is that the 3200 connections require almost 75 seconds of warm-up

time in order to even establish the connections, as opposed to a very short warm up time

for 800 connections. The large warm-up time could be subject to trashing (figure 5.10).

Trashing can occur when throughput or CPU usage suddenly drops after a critical load.

This is due to higher loads leading to an increase in page faults since the average partition

size decreases when the memory size is fixed. A page fault occurs when a required page

does not reside in physical memory but is mapped into a virtual address space. On top

of that, the CPU is much faster compared to the paging server. As a result, the waiting

jobs from the CPU queue are moved to the paging server (68). In other words, trashing

occurs for example when the OS is busy with swapping pages in and out of memory which

in its turn lead to less actual CPU usage. Another, maybe more plausible reason for the

warm-up time is that YCSB waits until all connections are established. This takes longer

for 3200 connections than for 800 connections.

Saturation

The system behaves as CPU bound for a large amount of reads although CPU metrics do

not actually reach 100%. With a large amount of connections, at least larger then 800 con-

nections, the CPU usage of a worker node acts as if it becomes saturated and slows down

the whole process. Therefore, one needs to look into how to use less CPU for reads. More

connections require CPU in terms of connection overhead and context switches. This is also

visible if we look at the result of analysis with perf, where finish_task_switch introduces
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most CPU overhead, even with 800 connections. Furthermore, postgres processes that con-

tribute to the high CPU usage are searching in cache (SearchCatCache), allocating memory

and hash value search (hash_search_with_has_value). Citus itself spends most time to

connection management (ConnectionStateMachine and AfterXactConnectionHandling).

If some of these processes can be sped up, CPU utilization will decrease and eventually

TPS will increase.
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5.4 Bottlenecks

In the results section (5.3) we first exposed that the binary protocol does not capture the

duration of fsync(), which is surprising from PostgreSQL. Therefore, all experiments are

performed with the binary protocol disabled. Also it is worthy to note that the JDBC

loadbalancer does not distribute all connections evenly across the Citus cluster. In addi-

tion, the main bottlenecks found differ for SELECT and INSERT workloads and therefore we

summarize the for both workloads findings separately.

INSERT workload

A Citus cluster does not scale well after 32 worker nodes as identified in chapter 4. For

a write-intensive workload, the cluster will become memory bound. The most important

findings are summarized below.

• Citus clusters containing a large amount of nodes are memory limited. For large nodes

with 256 GB RAM, the amount of connections are limited to 8000
256 = 31 connections

per GB. This entails around 8000 connections for worker nodes that contain 256

GB of RAM. An increase in amount of connections after this point does not lead to

an increase in average response time reported by YCSB due to the OOM errors.

• For a lower amount of worker nodes the bottleneck becomes disk I/O since WAL

writes are waiting to be flushed to disk if the WAL size increases.

• The average CPU usage under an insert workload is relatively low due to a large part

of the transaction is spent by waiting for I/O.

SELECT workload

Read-intensive workloads are not dependent on disk I/O if all data fits in RAM. Since

we experimented with clusters large enough to fit their entire workload in RAM, disk I/O

to fetch pages from disk in memory is largely avoided. The most important findings are

summarized below.

• Read-intensive workloads are performing most optimal when no more then 800 con-

nections are used as shown in chapter 4. This is likely due to the system being bound

by the amount of context-switches invoked by connection handling. The overhead

introduced by context-switching if more connections are used negatively outweighs

the benefits of executing more concurrent read-only queries which all make use of a

separate connection.
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• Most time of a SELECT query is spend on the parent node that coordinates a dis-

tributed query. The majority of the time on the parent node is likely spend by

context switches.

• For a read-intensive workloads the system behaves as CPU bound. Even with a

low amount of connections (800) the CPU utilization is high. For example, if we

establish 25 connections from the driver to a worker, the CPU utilization is most of

the time above 60%. This could indicate that the efficiency of a SELECT query is low

and that there are some extensive operations involved in coordinating a ‘simple’ read

query. Profiling with perf however only indicated that few context-switching related

functions that take up most cpu during execution.

• Optimizations for select queries lie in the avoidance of network hopping to a second

worker node or in the compute operations for coordinating the query on the parent

node.

Utilization of resources

A surprising result is that the system behaves as CPU bound, but CPU metrics do not

reach 100%. This phenomenon is also visible in the work of e.g. Dipietro et al. (2) who

researched the behavior of Cassandra. This behavior could be related to virtualization, but

can also be the result of other causes, such as contention or network effects. A node that is

fully utilized would take longer to send new internal queries to other nodes, which would

reduce overall utilization creating an equilibrium. Another cause could be the interrupt

handles (IRQ) that could lead to a bottleneck due to the numerous context switches. As

a consequence of the continuous IRQs the CPU is not fully utilized. However, the exact

reasons are yet unknown and subject to future research.
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Discussion

Experiment with larger clusters

In this thesis we mainly investigated Citus clusters of 32 worker nodes each containing 16

vCpus. While this cluster is larger than the largest cluster in production (32x8 vCpu), it

is smaller then the largest cluster on premises1. A 32x16 cluster is thus not the maximum

size of a running cluster, but scaling beyond this size for experiments remained challenging.

Out of around ten attempts to spin up a 32x32 cluster, zero succeeded and is therefore let

out of scope for this thesis. However, to investigate the true limits of Citus a larger cluster

could be examined along with a larger workload, that runs for a longer time. Instead of a

maximum amount of records in the database, putting a time limit might be more benefi-

cial to simulate a longer run. This will ultimately lead to pages being fetched from disk,

which on its turn will lead to a disk I/O bottleneck for larger workloads and thus different

behavior in general.

Large-scale Profiling and Sampling

Lots of valuable information gets lost if one takes the mean or percentile of execution times

reported in the PostgreSQL logs. To avoid aggregating this information, one should be able

to identify individual transactions on a large scale after these transactions are committed.

The current version of Citus does not enable to analyze the detailed behavior of a transac-

tion after its execution, unless data derived from build-in UDFs such as EXPLAIN ANALYZE

is manually stored by its user. This is due to a GPID only storing data about the current

transaction and nodes it passes with the connections involved. It is inevitable, especially

during a large workload, that there exists transactions that follow the exact same path.

These transactions cannot easily be distinguished after execution. A solution to account
1https://www.citusdata.com/customers/heap
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for this is to analyze the data in the PostgreSQL logs and attempt to manually connect the

GPIDs to each other within a certain timespan. However, since a Citus cluster usually is

a distributed system and execution times of CRUD queries are arguably short, this would

be unreliable due to asynchronous clocks. To account for this, one could investigate the

possibility to implement a persistent unique identifier in the GPID that accompanies each

transaction. This however means that either the existing GPID needs to be expanded in

size, which could introduce overhead. This increase potentially outweighs the costs since

profiling transactions on a large scale could expose valuable information, but this should

be investigated first.

Another option in this extent is to implement a LPID (Logging Process ID), which func-

tions as a GPID but is specifically intended for logging. The LPID should function as a

GPID, but then carries a unique identifier so that after execution query fragments can be

coupled. In other words, if the query is specifically used for logging, it takes a LPID instead

of a GPID. By including this unique identifier one is able to combine different fragments

of a single transaction and construct a complete profile of a single query. In this manner

a more accurate impression of what happens during a workload will be obtained, making

it easier to identify new areas for improvement by using e.g. blocked-time analysis (61).

Instead of the sampling architecture we used to profile Citus by means of a different Post-

greSQL user ‘monitor’, randomly sampling and profiling a fraction of all transactions exe-

cuted in a Citus cluster might be a better option. There exist a sampling setting enabled

by PostgreSQL (log_statement_sample_rate), but this does not work yet for distributed

transactions in Citus. A version of log_statement_sample_rate for distributed transac-

tions would solve this. However, since queries are distributed accross multiple nodes this

is challenging.

Simulating Bottlenecks

We derived potential bottlenecks for large Citus clusters by observing the behavior of Citus

under simple read- and write workloads. To take this one step further, one should attempt

to model this behavior or simulating potential bottlenecks by making use of tooling such

as dm-delay1 to simulate a delay in writes, or netem (69) to simulate package drops on the

network. By simulating the potential bottlenecks, we can state with more certainty that

1https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/delay.html
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the indicated bottlenecks truly are bottlenecks and not just noise.

Load Balancing

The JDBC loadbalancer lists suitable worker nodes and then randomly chooses one to

connect to. As a consequence for Citus, some worker nodes do not end up as coordina-

tors for distributed transactions. This could eventually lead to a performance decrease on

the nodes that function as coordinators, since the coordination of a transaction involves

slightly more overhead. Other disadvantages from the JDBC loadbalancer is that it in-

volves a decent amount of manual work by the user to set it up. In addition, JDBC is a

single point of failure since it does not guarantee high availability and does not provide any

auto-scalability. To account for this, Citus could consider to make its own auto-scalable

loadbalancer with the option to loadbalance in a round-robin fashion across the cluster.

Another solution is to let the user choose to which set of nodes to loadbalance to, mainly

to provide some flexibility. At last Citus could adapt or mimic the JDBC loadbalancer

and randomly distribute the connections to suitable nodes. The suitability should then be

determined e.g. by assessing the memory space available to prevent OOM errors caused

by too many connections. It should also check for average CPU usage of a node since this

is a potential bottlenecks for simple SELECT queries.

Range Partitioning for Inserts

Transactions are committed faster if they are fully executed on only one node. This is,

these transactions do not have to travel across the network and queue for CPU compute

on a second node. An option to force queries to be executed on the parent node is to

enable range partitioning of a pre-defined workload and insert directly into a designated

worker node. This way transfer of data across the network is avoided which is particularly

beneficial since the network always introduces latency and on top of that the network

could be saturated during large workloads. Another way is to look at optimizations that

Aurora and AlloyDB implemented to reduce network I/O. For example only writing WAL

directly to storage without keeping any buffers, while asynchronously issue all the writes

on disk. However, the latter options requires to redesign the whole architecture of Citus

and therefore is infeasible.

Improving the performance of a read-heavy workload

For the 100% SELECT workload Citus can optimize at least on the parent node which func-

tions as a coordinator for a read transaction. These transactions are merely CPU intensive

99



6. DISCUSSION

and more then 800 connections does not improve the performance of a read-heavy work-

load. However, it is evident that the performance of Citus becomes better when network

hops and I/O by swapping pages are minimized. Thus to increase the performance of

reads on Citus, straightforward tuning such as increasing the buffer cache should be exper-

imented with. Since reads on Citus consume lots of CPU, one should research why this is

and how the CPU usage could be reduced. The first findings show that within a connection

or transaction, switching threads (finish_task_switch) causes most overhead during a

saturated CPU. PostgreSQL functions that search in cache or search for hash values are

also relatively expensive. The most overhead from Citus specific functions during a read

workload is caused by connection handling as opposed to the execution of the transaction

itself. Other possible optimizations for a 100% SELECT workload lie in page swapping tech-

niques such as smart prefetching from main memory for Postgres.

Cluster Configuration & Tuning

This thesis exposes that connection management is crucial to obtain a good performance

while using Citus. However, the main challenge is then to manage and adapt the amount of

connections for different workloads. Extensive documentation about this phenomenon or,

perhaps in the far future, automated connection management will be beneficial for users.

Moreover, to improve the scalability of the INSERT workload, the wal_writer_delay and

the wal_writer_flush_after GUC parameters should be experimented with to see if dif-

ferent settings can improve the TPS for INSERTS. In addition, the binary protocol does

not increase the performance significantly with the YCSB workload. Moreover, execution

times are not properly measured on the child (worker) node for a certain transaction. This

should be fixed in any future versions of Citus or PostgreSQL.

Investigating more Workloads

For this thesis, we only extensively investigated the behavior of Citus under workload a and

workload c from YCSB. Considering the performance impact in the different amount of

connections, the optimal amount of connections for other workloads should be determined.

Moreover, YCSB is just one of many available benchmark tooling. Looking at different

workload types to investigate how much impact the connections management has would

therefore be an important goal.
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Conclusion

The aim for this thesis is to find the bottlenecks of Citus 11 when a Citus cluster size in-

creases. The corresponding research question was "what are the bottlenecks of Citus

11 when a Citus cluster size or workload increases?". To compose an answer for

this aim, we first had to instrument and analyze metrics in a distributed system under test

(SUT), without causing significant overhead. This led to research question 1.1:

How can we instrument and analyze metrics in a distributed system under test (SUT),

without causing significant overhead?

To do so, we created a novel infrastructure that runs a simple Create, Read, Update, Delete

workload by means of using YCSB. Instead of monitoring every executed transaction, we

log a fraction of the executed transactions by means of a second PostgreSQL user ‘Moni-

tor ’. By only sampling a fraction of the transactions, the performance is not significantly

impacted and the PostgreSQL logs remain compact. Moreover, we run iostat with a

frequency of 1 Hz in a distinct process on every worker node while executing a benchmark

run. Lastly, we collect the data generated by iostat and all the PostgreSQL logs to analyze

this by aggregating the iostat values and PostgreSQL logs. To test whether bottlenecks

occur we scale out Citus cluster until the performance does not increase significantly and

decreases eventually. We vary different parameters and settings, such as the amount of

connections to the cluster, the amount of nodes, the binary protocol and the workload.

How does Citus perform in comparison with AWS Aurora and Google Spanner?

Another goal of this thesis is to compare the performance of Citus to its two main com-

petitors; AWS Aurora and Google Cloud Spanner. We found that Aurora performs better

on all workloads compared to both Citus and Spanner, except for inserts. Aurora reaches
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around 700k TPS for the 100% SELECT. This is very high considering that Citus does not

reach this TPS of one Aurora instance even with 32x16vCpu worker nodes. Spanner does

not perform well at all on all workloads, but the warm-up time at the benchmarks for

Spanner is not taken into account. Citus however outperforms spanner on every YCSB

workload and greatly outperforms Aurora on the 100% INSERT workload. It remains im-

portant to realize that different database optimizations benefit from one workload at the

expense of others.

Which bottlenecks occur when the Citus cluster size increases?

With this novel infrastructure, we found various answers on which bottlenecks occur when

the Citus cluster size increases. We found that a workload consisting of 100% SELECT

queries, i.e. YCSB workload c, behaves as CPU bound. However, it never reaches a full

100% of CPU usage, indicating that the system is likely bound by context switching over-

head. With more then 800 connections for READS, the performance seems to drop 4. For

this workload there is room for improvement in the code that is executed on the the worker

node that coordinates the query. Moreover, the most optimal amount of connections for

the best performance for 100% SELECT workload is 800 for a large (> 4 worker nodes)

Citus cluster. The 100% INSERT workload is not CPU bound since transactions often are

stalled while waiting until WAL is flushed to disk. More connections tend to improve insert

performance and no limit is found for the Citus cluster itself. Connections are however

memory restricted and the optimal performance is achieved with a right balance between

the amount of nodes and connections. With too few nodes in a Citus cluster, the main

bottleneck becomes disk I/O for INSERTS.

Future Work

Citus introduces overhead to coordinate a distributed query and due to the single-threaded

nature of PostgreSQL it is very much connection dependent. However, if one enables to

directly route a query to the right worker node, network hops will be avoided and a query

can be directly executed on that node. However, to do so, one could consider a ‘smart’

JDBC driver that enables to steer a connection to the shard owner directly. The JDBC

driver has to somehow know in this case which node to steer the connection to. This could

be e.g. by maintaining a lookup table or syncing with metadata that holds information

on where which shard resides. The overhead introduced by coordinating the distributed

query on the parent node could also be decreased in order to efficiently execute SELECT

queries, however, to determine which functions this entails exactly more investigation is
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needed. In particular, currently prepared statements in Citus do not work internally and

implementing this feature should speedup an internal Citus query and herewith the total

TPS. For a 100% INSERT workload the cluster is memory limited. To enable further scaling

for inserts it is thus necessary to work on the efficiency of a single connection in Citus, but

this would be very challenging and requires changes in the PostgreSQL architecture.
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Appendix

7.1 Example YCSB Insert

INSERT INTO usertable (YCSB_KEY,field1,field0,field7,field6,field9,field8,
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2-2+?n>%z=\s/K=;I78G{$Ro*$$(^!$M!27v2’’20T-$Dm",r*A/6#b;’, ’’’K{6[o0Dk2R=’

’8, 0‘0Ja3@w "t7)p(Ds*$l> *$M}2Bc3Bq5O%!L)%U;1’’.&7h:Fc:A#<Ys!7"1&t:@1!E1>

H34>d5S!1U56Q+9’)

7.2 PostgreSQL logs

The structure in the pg_log is determined in the postgresql.conf file. The logging

schema that we use is shown in the code snippet below.

log_line_prefix = ‘%m [%p][%v] : [%l-1] %q[app=%a] ’

This schema consists of the timestamp (%m), process id [3392] (%p), virtual transaction ID
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(backendID/localXID) [11/245] (%v), Number of the log line for each session or process

(%l-1), always starting at [2-1], %q produces no output, but tells non-session processes to

stop at this point in the string, application name (%a) and the duration is printed. An

example of a resulting log is listed below.

2022-05-30 07:35:12.035 UTC [3392][11/248] : [12-1]

[app=%a]: [app=PostgreSQL JDBC Driver] LOG: duration: 0.305 ms

2022-05-30 07:35:12.037 UTC [3392][11/248] : [13-1]

[app=PostgreSQL JDBC Driver] LOG: duration: 1.878 ms

2022-05-30 07:35:12.037 UTC [3392][11/248] : [14-1]

[app=PostgreSQL JDBC Driver]

LOG: execute <unnamed>: INSERT INTO usertable

When applying the log structure to above log snippet, this means that we get the following:

%m: 2022-05-30 07:35:12.035 UTC

[\%p]: [3392]

[%v]: [11/248]

[%l-1]: [12-1]

[app=%a]: [app=PostgreSQL JDBC Driver]

A group of logs for one query can be can be identified by the same loxalXID (e.g. [11/248]

in the example). Using the local id and same process id (id of connection) we can calculate

the total execution time for the query. However, since we are merely interested in the

average or percentiles of execution times we aggregeate all values.
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2022-05-30 07:36:12.314 UTC [8805][11/807] : [36-1]

[app=PostgreSQL JDBC Driver] LOG: duration: 0.046 ms

2022-05-30 07:36:12.315 UTC [8805][11/807] : [37-1]

[app=PostgreSQL JDBC Driver] LOG: duration: 0.076 ms

2022-05-30 07:36:12.315 UTC [8805][11/807] : [38-1]

[app=PostgreSQL JDBC Driver] LOG: execute S_1:

SELECT * FROM usertable WHERE YCSB_KEY = $1

2022-05-30 07:36:12.315 UTC [8805][11/807] : [39-1]

[app=PostgreSQL JDBC Driver] DETAIL: parameters:

$1 = ‘user8008620038384188605’

2022-05-30 07:36:12.316 UTC [8805][11/807] : [40-1]

[app=PostgreSQL JDBC Driver] DEBUG: task execution (0)

for placement (5) on anchor shard (102012) finished

in 757 microseconds on worker node

private-w4.5w32-s-Citus-0-nohup-30-07-21-40.marlin-development.com

:5432 2022-05-30 07:36:12.316 UTC [8805][11/807] : [41-1]

[app=PostgreSQL JDBC Driver] LOG: duration: 0.891 ms

\end{lstlisting}
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