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“Luck is what happens when preparation meets opportunity.”

by Seneca
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Abstract

DuckPGQ is an extension of the DuckDB relational database management

system that introduces SQL/PGQ support. This support empowers the

definition of graph views over relational tables, facilitating the execution of

read-only queries on these views. Notably, DuckPGQ offers a suite of graph

analysis capabilities, including graph pattern matching and shortest path

finding.

Despite its capabilities, DuckPGQ currently lacks compatibility with graph

neural network (GNN) methods for analyzing graphs stored within the

DuckDB/DuckPGQ system. In response, this project focuses on establishing

seamless and efficient integration between DuckDB/DuckPGQ and two GNN

libraries: PyTorch Geometric and Deep Graph Library. The twin objectives

of efficiency entail minimizing memory copies whenever feasible, while

seamlessness aims to enable the execution of user-defined functions (UDFs)

on Python objects akin to UDFs run on DuckDB tables. This integration is

executed with minimal user effort.

To achieve this, a set of user-defined functions is developed, serving as a

bridge to fetch a DuckPGQ graph as a GNN graph. This GNN graph

becomes amenable to downstream training and inference with GNN models.

Furthermore, a zero-copy mechanism is implemented to enable direct access to

the compressed sparse row (CSR) arrays, pivotal to describing the connectivity

structure of a DuckPGQ graph, from within the GNN libraries. An

accompanying Python helper library is introduced to facilitate the seamless

integration process.

We conducted a series of experiments using the Linked Data Benchmark

Council’s social network benchmark datasets. These experiments showcase the

functional viability of our integration and the effectiveness of our optimization

strategies. Moreover, our implementation suggests potential avenues for future

research, such as executing inferential tasks with SQL and enabling the training



of GNN models on graphs larger than a single machine’s memory capacity.

We plan to enhance our project along these lines to achieve more seamless

integration between DuckDB/DuckPGQ and GNN libraries.
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1

Introduction

1.1 Context

Graphs are fundamental data structures representing a set of nodes interconnected

by edges (1). They find diverse applications in modeling relationships within social

networks (2), protein-protein interactions (3), and knowledge representations (4). The

processing of graphs, such as calculating sparse edge representations (5) or finding the

shortest path (6), is ubiquitous in both theoretical research and practical applications.

Recent times have witnessed a surge in the use of machine learning methods for

graph analysis (7). These methods have demonstrated powerful capabilities in various

application scenarios, such as social spammer detection (8), dynamical physical systems (9),

protein interactions (10), and power system computations (11). Several graph neural

networks, such as graph convolutional networks (12), graph attention networks (13),

GraphSAGE (14), and gated graph sequence neural networks (15), have been proposed

to handle diverse graph-structured datasets.

To facilitate the development and deployment of graph neural network models, software

packages like PyTorch Geometric (16) and Deep Graph Library (DGL) (17) have been

introduced. These libraries offer functions to read data from various sources, such as

comma-separated value (CSV) files, and represent it using their internal graph classes,

typically built on top of PyTorch Tensors (18). This representation enables model training

and prediction based on the graph data, utilizing the functionalities provided by the

packages.

In addition to the internal graph data structures in PyTorch Geometric or DGL, another

approach to representing graphs is the property graph model (19). Property graphs allow

vertices and edges to have labels and multiple properties expressed as key-value pairs.

1



1. INTRODUCTION

Several graph database management systems (GDBMS) support the property graph model,

with examples like KÙZU (20).

Property graphs can also be defined over tables in relational database management

systems (RDBMS) (21). The SQL:2023 standard introduces a sub-language named

property graph queries (PGQ). This extension to the SQL standard enables the creation

of graph views over relational tables and supports read-only queries on these views.

DuckPGQ (22), an extension module for the online analytical RDBMS DuckDB (23),

adds support for the SQL/PGQ sub-language. It accomplishes this by translating graph

queries into SQL statements with user-defined function (UDF) calls.

Property graph databases provide an optimized mechanism for graph storage and efficient

graph query execution (20). On the other hand, GNN libraries provide the ability to build

predictive models for analyzing graphs and performing inferences. However, due to the

gap between the two different models, it is currently inconvenient to leverage the strengths

of both systems simultaneously. Integrating one system with the other could prove highly

valuable.

In this project, our main objective is to explore the possibility of seamlessly integrating

DuckPGQ/DuckDB with two GNN libraries, PyTorch Geometric and DGL. This

integration aims to bridge the gap between property graph databases and GNN frameworks,

unlocking new opportunities for data modeling and analysis.

This thesis makes several contributions. Firstly, by implementing an integration between

DuckPGQ and GNN libraries, we enable the loading of data, GNN model training, and

inference from the property graph database. Leveraging the relational nature of DuckDB,

this integration opens up opportunities to represent and process relational data as graphs,

potentially leading to the discovery of valuable insights, such as capturing the relationships

between training samples.

Secondly, our integration allows the execution of graph queries over PyTorch Tensor-

based GNN graphs, enhancing the flexibility of querying and analyzing graph-structured

data. Additionally, we enable DuckPGQ/DuckDB to store GNN graphs as relational

tables, providing users with the capability to utilize both relational and graph-based

representations for their data.

Our integration is open-sourced 1, and part of the implementation has been merged in

the DuckPGQ extension 2.

1https://github.com/vlowingkloude/pyduckpgq
2https://github.com/cwida/duckpgq-extension
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1.2 Research Questions

1.2 Research Questions

1.2.1 Research Goals and Challenges

The primary objective of this project is to establish seamless and efficient integration

between DuckDB and graph analysis pipelines within the Python environment. Our

goal for efficiency is to minimize the necessity for memory copies wherever feasible,

as duplicating data is time-consuming and can result in significantly elevated memory

consumption. In terms of seamlessness, we anticipate enabling the execution of user-

defined functions on Python objects in a manner akin to their execution on DuckDB

tables, thereby demanding no additional effort from users. To achieve this goal, we have

identified several key challenges:

1. The schema of a property graph is not directly accessible from outside DuckPGQ,

making it challenging to retrieve related data from DuckDB tables using standard

SELECT queries.

2. The graph connectivity structure of a DuckPGQ property graph is an internal C++

native object, which is not visible or easily accessible from outside clients.

3. Ensuring efficiency in the integration requires minimizing memory copies. However,

when DuckDB executes SELECT queries, memory copies become necessary.

4. While DuckDB Python APIs offer the capability to run queries over recognized

objects, including Pandas DataFrames, PyArrow Tables, Polars DataFrames and

Numpy arrays, directly, certain functionalities provided by DuckPGQ rely on the

existence of a special rowid column, which is not present in these Python objects.

5. PyTorch Geometric employs a different format to represent the connectivity

structures of a graph, creating a disparity that needs to be addressed during the

integration.

1.2.2 Research Questions

Given the above challenges, we have formulated the following research questions to guide

our efforts:

1. What information is required to retrieve a DuckPGQ property graph from Python

clients?

3



1. INTRODUCTION

2. With the required information, what steps are needed to retrieve a DuckPGQ

property graph from Python clients?

3. Among these needed steps, is it possible to avoid data copies with memory-sharing?

4. How to construct a PyTorch Geometric graph from CSR representation of

connectivity structures?

5. How to run UDFs in DuckPGQ directly over Python objects?

6. How to simplify the process of fetching a property graph as a GNN graph and the

use of user-defined functions in DuckPGQ?

1.3 Thesis Structure

The rest of the thesis is structured as follows. In Chapter 2, we present background

information on graphs and their representations, graph neural networks, property graphs,

SQL/PGQ, DuckDB, and the DuckPGQ extension. Chapter 3 provides a literature study

of research projects related to our work, including a discussion of the interactions between

database systems and machine learning pipelines from an engineering perspective. In

Chapter 4, we describe the design and implementation details of our projects. The

experimental results are presented in Chapter 5, where we showcase the findings. Chapter 6

discusses the limitations and future work of this project. Finally, Chapter 7 concludes the

thesis.

4



2

Background

In this section, we concisely present the background information that this project is built

on.

2.1 Graphs

Graphs are mathematical structures that depict relationships between objects. They

consist of nodes (also known as vertices) and edges (also known as links). Nodes

represent entities or data points, while edges represent connections or relationships between

them. The edges can be either directed (indicating a one-way relationship) or undirected

(indicating a two-way relationship). Additionally, each edge can have an associated weight,

which may signify a numerical value or some other relevant information.

Graphs serve as a natural and versatile way to model groups of objects and their

interconnections. They find applications in various domains, such as computer networks,

social networks, logistics, and more.

In Figure 2.1, we have an illustrative example of a directed graph with six nodes and

five edges. This graph demonstrates the money transfer relationships between a group of

individuals and companies. Each node represents a unique entity, and each directed edge

signifies a money transfer from the source node to the destination node. For instance, the

edge connecting Olivia and AWS denotes that Olivia made a money transfer to AWS.

2.2 Graph connectivity representations

Consider a graph G with |n| nodes and |e| edges. Each node in the graph is uniquely

identified by a number within the range [0, |n|). The edges are represented as pairs of node

5



2. BACKGROUND

Parker

Netflix AWS

Olivia

Daniel

Yiming

Figure 2.1: Money transfers between a group of entities

IDs. Traditionally, the connectivity of a graph is represented using an adjacency matrix,

which is a square matrix of size |n| × |n|. However, for large sparse graphs, employing an

adjacency matrix for storage can be inefficient and result in poor data locality.

To address this issue, two alternatives for representing the connectivity of a sparse graph

are the Coordinate List (COO) and Compressed Sparse Row (CSR) formats.

The COO representation utilizes two vectors of the same length to store the source and

destination nodes for edges, respectively.

On the other hand, the CSR representation also employs two vectors. The first vector,

called v, consists of |n| + 1 elements and maintains the cumulative degree of all vertices,

starting from node 0. The last element is the number of edges in a graph. The second

vector, named e, stores the out-neighbors for each edge.

Additionally, both the CSR and COO representations can include a third vector, denoted

as w or as a weight array, of the same length as e to hold the weight for each edge.

As presented in Table 2.1, an ID is assigned to each entity involved in Figure 2.1. We

can represent the connectivity using the COO and CSR formats, as shown in Figure 2.2.

Name ID
Parker 0
Netflix 1
Olivia 2
AWS 3

Yiming 4
Daniel 5

Table 2.1: Node ID

6



2.3 Property Graphs

Source Destination
0 1
1 3
2 3
4 5
5 3

Table 2.2: COO representation

v e

0

5

1

2

3

3

4

1

3

3

5

3

Destination

1

3

3

5

3

Source

0

1

2

4

5

a). COO b). CSR

Figure 2.2: COO and CSR Representation

2.3 Property Graphs

While the graph structure is capable of showing relationships or connectivity between a

collection of nodes and is useful in applications such as finding shortest paths, it does

not inherently allow for storing properties that provide additional information about the

entities and relationships they represent.

To address this limitation, the labeled property graph (LPG) (19) model can be

employed. In an LPG, each node can have one or more labels associated with it,

representing the node’s type or category. Similarly, relationships (edges) in an LPG can

be assigned labels to describe the type of connection between two nodes. Furthermore,

both nodes and edges can have key-value pairs called properties, which characterize their

features or attributes.

For example, to enhance the presentation of the money transfer relationships between

entities in Figure 2.1, we can label each node and edge and assign attributes to them, as

demonstrated in Figure 2.3. Each node is labeled as Person or Company, while each edge

is labeled as TransferTo. Additionally, we can attach properties to each node, such as

account and name, providing specific information about individual entities. Similarly, each

edge can have a property such as isRecurring, which helps identify whether a particular

7



2. BACKGROUND

Person
name: Parker
account: 123

Company
name: Netflix
account: 234

Company
name: AWS
account: 456

Person
name: Olivia
account: 345

Company
name: Daniel
account: 678

Person
name: Yiming
account: 567

TransferTo TransferTo TransferTo

TransferTo TransferTo

isRecurring: false isRecurring: false

isRecurring: true isRecurring: true

isRecurring: true

Figure 2.3: Labeled Property Graph of money transfer relationship between a group of
entities

money transfer occurs on a recurring basis or not.

2.4 SQL/PGQ

2.4.1 Tabular Representation of an LPG

In some cases, tables stored in a Relational Database Management System (RDBMS)

can effectively represent a Labeled Property Graph (LPG) (21). In such situations, each

table may correspond to either a node or an edge, and the fields within a table represent

attributes for nodes and relationships. The table names themselves serve as labels.

For instance, the nodes depicted in Figure 2.3 can be represented using the table structure

shown in Table 2.3 and Table 2.4, while the relationships (edges) can be described using

the table structure presented in Table 2.5.

name account
Parker 123
Olivia 345
Yiming 567
Daniel 678

Table 2.3: Person table

8



2.4 SQL/PGQ

name account
Netflix 234
AWS 456

Table 2.4: Company table

Source Destination isOptional
Parker Netflix true
Olivia AWS false
Netflix AWS true
Yiming Daniel false
Daniel AWS true

Table 2.5: TransferTo table

2.4.2 Property Graph Queries

SQL/Property Graph Queries (SQL/PGQ) (21) is an extension of the SQL language

that enables the creation of graph views, known as property graphs (PGs), over existing

relational tables, facilitating the querying and manipulation of PGs within an RDBMS.

As an illustrative example, the script in Listing 2.1 demonstrates the creation of a

property graph named transferrelationship using data from Table 2.3, Table 2.4, and

Table 2.5. In this scenario, the person and company tables serve as vertex tables, housing

properties such as name and account. On the other hand, the TransferTo table functions

as an edge table, incorporating the isRecurring property.

1 CREATE PROPERTY GRAPH transferrelationship
2 VERTEX TABLES (
3 person PROPERTIES ( name , account ) LABEL Person ,
4 company PROPERTIES ( name , account ) LABEL Company
5 )
6 EDGE TABLES (
7 TransferTo SOURCE KEY ( Source ) REFERENCES person ( name )
8 DESTINATION KEY ( Destination ) REFERENCES person ( name

)
9 PROPERTIES ( isRecurring ) LABEL TransferTo

10 )

Listing 2.1: Creating a property graph in SQL/PGQ

9



2. BACKGROUND

2.5 Graph Neural Network

2.5.1 Overview

A Graph Neural Network (GNN) (24) is a specialized type of neural network designed

to analyze and process data organized in the form of graphs. Unlike traditional neural

networks that work on sequential or matrix-like data (e.g., texts or images), GNNs are

adept at handling complex relationships and dependencies inherent in graph structures.

The fundamental concept behind GNNs is to learn embeddings for each node in a

graph. An embedding is a mathematical representation of a node as a dense vector in

a continuous vector space. This process involves aggregating information from neighboring

nodes through a series of message-passing steps, where nodes exchange and combine

information with their connected neighbors. Through iterative updates based on local

neighborhoods, GNNs can effectively capture both local and global structural patterns

within the graph (25).

GNNs have demonstrated remarkable success across various tasks. Depending on the

level of prediction target, these tasks can be broadly categorized into three group (7)s:

• Node Property Prediction: This group includes tasks like node classification and

regression, where the GNN aims to predict specific properties or labels associated

with individual nodes in the graph.

• Link Property Prediction: This category involves edge classification and regression,

as well as link prediction. The GNN focuses on predicting properties related to the

edges between nodes or forecasting potential new connections in the graph.

• Graph Property Prediction: This group encompasses tasks such as graph

classification, where the GNN’s objective is to predict high-level properties or

characteristics of the entire graph.

More specifically, common GNN tasks are as follows:

• Node Classification: Inferring a categorical target for a node. For instance, given the

features of a node, we can predict if this node is a Company or a Person.

• Node Regression: Inferring a numerical variable for a node. For example, given the

features of a node, we can predict the importance of this node based on the number

of transfers that this node is involved in.

10



2.5 Graph Neural Network

• Edge Classification: Inferring a categorical target for an edge.

• Edge Regression: Inferring a numerical target for an edge. For example, we can

predict the weight or strength of a particular edge in a graph.

• Link Prediction: Inferring the likelihood of the existence of an edge. For example,

we can predict if Yiming is likely to transfer money to Olivia.

2.5.2 GNN libraries

To foster research and application of Graph Neural Network (GNN) models, several

libraries have been developed, two of which are PyTorch Geometric (16) and Deep Graph

Library (DGL) (17).

Both PyTorch Geometric and DGL focus on efficient processing and analysis of graph

data, providing a wide range of GNN implementations, message-passing functions, and

utilities for handling graph datasets. Although they serve similar purposes, they differ in

their design philosophies.

PyTorch Geometric is built on top of PyTorch and tightly integrated with the PyTorch

ecosystem. DGL, on the other hand, supports various backend frameworks, including

PyTorch, MXNet, and TensorFlow, thereby allowing users to choose their preferred deep

learning framework. DGL and PyTorch Geometric also diverge in their approaches to

representing a graph and defining a GNN model.

In DGL, a high-level class called DGLGraph is implemented to store a graph. To define

a graph, the function dgl.graph or dgl.heterograph should be called, with the data

parameter set as the graph structure in COO, CSR, or other supported formats for

homogeneous or heterogeneous graphs, respectively. Node features and edge features are

then filled in the ndata and edata fields of the DGLGraph object, respectively.

An example of how to define a homogeneous graph in DGL using PyTorch as the backend,

based on the diagram provided in Figure 2.1, is shown in Listing 2.2.

In contrast to DGL, PyTorch Geometric implements the Data class for graphs, where

users need to provide the features and edges to create a graph. By default, PyTorch

Geometric only recognizes the COO format during initialization. Listing 2.3 shows how to

define a homogeneous graph in PyG based on the diagram provided in Figure 2.1.

As shown in Listing 2.2 and Listing 2.3, it is worth noting the difference in how DGL and

PyTorch Geometric store node and edge features. In DGL, features are stored separately

as 1-dimensional vectors, while in PyTorch Geometric, features are stored as 2-dimensional

matrices.
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1 import dgl
2 import torch
3

4 coo_src = torch.Tensor ([0,1,2,4,5])
5 coo_dst = torch.Tensor ([1,3,3,5,3])
6

7 # Construct a DGLGraph with COO
8 g = dgl.graph ((coo_src , coo_dst))
9

10 # Set node features
11 g.ndata['name'] = ...
12 g.ndata['account '] = ...
13

14 # Set edge features
15 g.edata['isOptional '] = ...

Listing 2.2: Creating the DGLGraph for Figure 2.1

1 from torch_geometric.data import Data
2 import torch
3

4 # First create a matrix for COO arrays
5 coo = torch.Tensor ([[0,1,2,4,5],
6 [1,3,3,5,3]])
7

8 # Stack all node features as a matrix
9 node_features = ...

10

11 # Stack all edge features as a matric
12 edge_features = ...
13

14 # Construct a graph
15 g = Data(x = node_features , edge_index = coo , edge_attr = edge_features)

Listing 2.3: Creating the PyG graph using Data for Figure 2.1
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Additionally, PyTorch Geometric introduces two essential classes: FeatureStore and

GraphStore (26). These classes enable the utilization of graph database systems as the

backend storage for data. FeatureStore defines interfaces for fetching features for nodes

and edges from the graph database. On the other hand, GraphStore holds the connectivity

structure of graphs and facilitates efficient sub-graph sampling. Both feature values and

sub-graphs are retrieved from the graph database only when needed, allowing GNN models

to be trained on graph data larger than the machine’s memory. It’s important to note that

this functionality is still under development, and the APIs are not yet stable. Furthermore,

fetching edge features is currently not supported.

2.6 DuckDB

DuckDB (23) is an in-process analytical RDBMS designed for efficient query execution

and analysis of structured data. It offers a C++ API, as well as interfaces for Python

and other programming languages. In DuckDB, the engine utilizes the DataChunk class as

an intermediary representation to execute queries. A DataChunk comprises a collection of

vectors and represents a subset of a relation.

2.6.1 Replacement Scan

The DuckDB Python package provides a useful functionality known as replacement scan,

which allows users to run SQL queries directly over a collection of recognized Python

objects. This feature operates as follows: when attempting to read a non-existent table, a

pre-registered callback is invoked. This callback generates the table dynamically and then

proceeds to execute the SQL queries. The DuckDB Python package currently supports

several popular Python data structures, including: Pandas DataFrames, PyArrow Tables,

Polars DataFrames, and NumPy ndarrays.

2.6.2 Extension and User-Defined Functions

DuckDB offers developers the flexibility to enhance its functionalities without the need to

modify its core codebase.

Within an extension module, developers can implement and register user-defined

functions (UDFs). These UDFs can take the form of scalar functions or table functions.

Scalar functions are designed to carry out computations and return a single value for each

record. They are commonly employed within a SELECT statement. For example, in the

query SELECT plusone(2);, the scalar function plusone is invoked with the parameter
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2 and produces a return value of 3. At the implementation level, any user-defined scalar

function requires three parameters: args, which represents a DataChunk holding a set of

input vectors for the UDF; expr, providing information about the query’s expression state;

and result, a vector used to store the resulting values.

On the other hand, table functions are functions that return tables and are triggered when

a non-existent relation is accessed. They are typically utilized in the FROM clause of a query.

For instance, executing SELECT * FROM generate_data(100) invokes the generate_data

table function to generate 100 records. At the implementation level, any user-defined table

function would also require three parameters: the client context, which maintains the state

of DuckDB and its extensions; a pointer to the input of the invoked table function; and a

result, which is a DataChunk used to store the table generated by the table function.

2.7 DuckPGQ

DuckPGQ (22) is an extension module for DuckDB that adds support for the SQL/PGQ

sub-language (21). It enables property graph queries to be translated into standard

relational queries, with the possibility of using UDF calls for certain queries like path-

finding, which helps find the path between a set of nodes. The property graph

representation in DuckPGQ, as shown in Figure 2.4, utilizes existing DuckDB tables as

vertex or edge tables and allows the use of only a subset of columns in these tables as

properties of edges and nodes. This schema information is stored in C++ native structures.

DuckPGQ provides two UDFs, namely CREATE_CSR_EDGE and CREATE_CSR_VERTEX, for

CSR (Compressed Sparse Row) creation. An example of this is given in Listing A.1. All

the created CSR objects are stored in an ID-to-CSR mapping, where each ID is a 32-bit

integer serving as a key to index a specific CSR object. The representation of a CSR object

in DuckPGQ is illustrated in Figure 2.5, and it consists of several member variables. The v

array is stored as a C-array of 64-bit atomic integers, while the e array is stored as a vector

of 64-bit integers. The weight array can be either a vector of 64-bit integers or double

floating-point numbers, depending on the type of weight used. To conveniently determine

the number of elements in the v array, the vsize variable is employed.

2.8 LDBC

The Linked Data Benchmark Council (LDBC) (27) is an industry consortium dedicated

to the development of standardized benchmarks for graph and RDF (Resource Description
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Property Graph

Col1 Col2 Col3 Col4 Col5

Col1 Col2 Col3 Col4 Col5

Belongs to

Refers to
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CSR

Figure 2.4: DuckPGQ’s representation of a property graph
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Figure 2.5: DuckPGQ’s representation of a CSR object
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Figure 2.6: An example of LDBC SNB data

Framework) database systems (28). The primary objective of LDBC is to address the lack

of widely accepted benchmarks for evaluating the performance and scalability of graph

database technologies.

One of LDBC’s notable achievements is the creation of several benchmark suites, among

which is the Social Network Benchmark (SNB) (29). Designed specifically for evaluating

the performance of graph database systems in the context of social network applications,

SNB provides simulated social network scenarios with realistic data and workloads.

In this project, we utilize the LDBC SNB data. An example of the data schema is

illustrated in Figure 2.6. The node data contains a single column representing the unique

ID for each node, while the edges data consists of three columns: the source and destination

columns, both referring to the node IDs and a weight column. The LDBC SNB datasets

vary in size and are quantified by a scale factor, where a larger scale factor indicates larger

datasets.
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Related Work

Retrieving data from database systems has always been a crucial aspect of machine learning

pipelines (30). This significance arises because while most machine learning libraries

offer built-in structures to handle inputs and outputs (31), the majority of data is not

readily available in such formats. Companies and organizations tend to store their data

in database systems (32). As a result, transforming the data into a format recognizable

by downstream machine learning libraries and models becomes necessary for training and

performing inference tasks (33). To bridge the gap between databases and machine learning

pipelines, several methods have been developed (30).

In this section, we provide an engineering perspective on the interactions between

databases and machine learning pipelines. Firstly, we discuss general approaches for

retrieving data from database systems for machine learning pipelines. Next, we focus

on the specific interactions between graph neural network pipelines and database systems.

3.1 Interactions between database systems and machine
learning pipelines

3.1.1 Transfer data from database to machine learning pipelines

Most database systems, including popular ones like MySQL and PostgreSQL, offer APIs

that enable querying and fetching data from Python clients (34). To simplify the data

loading process from databases and streamline the conversion from query results to data

frames, various data analysis libraries provide procedures that return objects ready for

downstream machine learning pipelines. A prominent example is the read_sql function

in Pandas (35).
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3. execute query
4. serialization

1. call read_sql
6. deserialization

7. conversion

Client

Database
server

5. response 2. request

Figure 3.1: read_sql requires several steps to retrieve data as DataFrame

Figure 3.1 illustrates how the read_sql function operates. First, the client program

sends requests to the database server. Upon receiving the request, the server executes

the query, fetches the related data, serializes it, and sends the result back to the client.

The client then deserializes the response and performs necessary conversions. Finally, the

read_sql function returns a Pandas DataFrame object to the user (36).

There are several advantages to transferring data from database systems to machine

learning pipelines:

1. Versatility: This approach is highly versatile and can be applied in most scenarios.

For instance, Pandas read_sql provides support for reading data from various

databases, such as MySQL, PostgreSQL, and Oracle (37).

2. Tight Integration: It provides seamless integration with data analysis libraries,

enabling the retrieved data to effortlessly enter the machine learning pipeline (35),

without the need for cumbersome data conversion operations.

However, this method also has certain disadvantages, primarily related to

performance (33).
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1. Data Transfer Overhead: The data transfer between the database server and the

client is unavoidable, even when they are on the same machine and have similar

in-memory layout (38), leading to potential time-consuming delays.

2. Conversion Overhead: The conversion from the query result received by the client to

data frames consumes significant time and memory resources (30).

3. Additional Overheads: Other substantial overheads include the database connection,

serialization, and deserialization processes (39).

To enhance the process of transferring data from database systems to machine learning

pipelines, Wang et al. introduced ConnectorX (30). They conducted a performance

analysis for each step of the Pandas read_sql function when retrieving data from a

database system, drawing the following conclusions:

1. Client-Side Time: A significant portion (>85%) of the overall time is spent on the

client side.

2. Memory Usage: The peak memory usage is approximately four times larger than the

final size of the data frame, as all intermediate results, including raw bytes, temporary

Python objects, and data frames, are kept in memory during the execution of the

read_sql function.

To improve performance and reduce memory usage in read_sql, the authors employed

several techniques:

1. Metadata Query: They first query the metadata of the query result to determine the

size of the final Pandas DataFrame. Using this information, they pre-allocate the

required memory.

2. Parallel Execution: A large query is partitioned into smaller queries, each fetching

records within a user-specified range. The union of the query results from the smaller

queries forms the same result set as the original query, leveraging parallel execution.

3. Efficient Worker Threads: In each worker thread, only a small batch of the query

result is fetched and processed. The values are directly written to the pre-allocated

memory.

By implementing these optimizations, ConnectorX achieved a runtime reduction of a

factor of 13 and a memory usage reduction of three times when compared to the Pandas

read_sql implementation.
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Variable: foo
Array<Int64>

Length: 5

Name: bar
Type: list

ElementSize: 8
Size: 5

123 7 21 90 10

Object header
of System A

Passes
&foo

Underlying data memory

Object header
of System B

Figure 3.2: An example of zero-copy data sharing between two systems

3.1.2 Zero-copy of data between databases and machine learning
pipeline

Another approach to utilizing data stored in databases within a machine learning pipeline

involves sharing memory between the two systems, eliminating the need for memory copy

operations.

In theory, achieving zero-copy is possible when both systems have the same memory

layout for the underlying data of objects. This involves initializing the object headers,

which contain metadata and memory references of objects, in both systems and setting

the data pointer to the same memory location (40). In practice, C-style arrays, which are

essentially pointers to continuous memory sections that store values of native types like

integers or doubles, are widely used in various systems, including Numpy arrays and C++

vectors (41). For illustrative purposes, Figure 3.2 provides an example where two systems

share part of the memory holding five 64-bit integers.

Even though system A and system B have different object headers, they both use the

same C-style array memory layout to store the underlying data. To facilitate system B’s

access to the array, system A only needs to pass the starting address of the underlying
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Binary
Association

Table

head

tail 123 7 21 90 10

0 1 2 3 4

Figure 3.3: Binary Association Table structure of MonetDB

header 123 7 21 90 10

Figure 3.4: INTSXP structure of R

data. Upon receiving the address, system B constructs its object header. As a result,

the same section of memory becomes shared between system A and system B. Instead of

copying the five 64-bit integers, only the address is transferred. This sharing of memory

enables efficient data exchange without unnecessary duplication.

Numerous research projects and prototypes have been developed in this field. For

instance, Lajus et al. (41) successfully implemented a zero-copy integration between

MonetDB (42), a column-oriented RDBMS that can be embedded into other applications,

and R, a software package for statistics and machine learning.

In MonetDB (42), a relation is represented as a set of Binary Association Tables

(BATs) (41). Each BAT comprises two arrays: the head array stores the row indices, while

the tail array contains the corresponding values. The structure is depicted in Figure 3.3.

On the other hand, R uses a single data type called Symbolic Expression for all

values, with various subtypes supported, such as INTSXP for integer vectors and REALSXP

for floating-point number vectors. The structure of an INTSXP vector is illustrated in

Figure 3.4. Upon comparing Figure 3.3 and Figure 3.4, it becomes evident that a zero-

copy integration between MonetDB and R is feasible, as shown in Figure 3.5.

This memory-sharing mechanism allows for deep integration between MonetDB and R,

facilitating convenient, efficient, and expressive data analysis functionality using statistical

analysis tools (41).

The benefits of memory-sharing between database systems and machine learning

pipelines include reducing data transfer and memory duplication (43). However, there

are also several limitations. First, data inside different systems may not always have
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Figure 3.5: Zero-copy between MonetDB and R

identical representations, making zero-copy data sharing impossible in such cases and

limiting its applicability. Additionally, both sides of integration can access the shared

data, necessitating extra efforts to manage memory and control concurrent accesses. In

some systems, like MonetDB and R, only one side is allowed to write data (41).

3.1.3 In-database machine learning

Unlike transferring or memory-sharing data from database systems to machine learning

pipelines, in-database machine learning does not export data outside the database systems.

Instead, it runs machine learning algorithms and analytics inside the database itself.

Several database systems support in-database machine learning nowadays, such as Oracle

database (44) and PostgreSQL with Apache MADlib (45).

One way to perform in-database machine learning is to write SQL commands directly

or to convert an analysis algorithm implemented in another procedural language into SQL

code.

One of the early works on in-database data analysis was conducted by Agrawal et al. (46).

In their study, they argued that bringing data from the database to an external analysis

environment results in performance degradation due to data copying and context switching.

To illustrate this point, they provided an example of implementing the Apriori algorithm,

used for mining frequent item sets, in pure SQL. To assess the performance, they compared

the SQL version of Apriori with the approach that extracts data from the database first.

Their findings showed that the SQL version is more than two times faster, supporting their

argument that in-database data analysis generally offers better performance.

To meet the computational power requirements for processing large-scale datasets and

enhance the speed of model training and prediction, researchers have explored methods

to enable in-database machine learning on distributed systems and GPUs. For instance,
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Sandha et al. (47) presented a prototype for training a linear regression model within

the Teradata SQL engine. Teradata is a parallel and distributed engine with a share-

nothing architecture. On a similar note, Schüle et al. (48) developed a complete in-database

machine learning pipeline using the Umbra database system (49). Their implementation

supports automatic differentiation and gradient descent operations and is designed to

leverage GPUs for computational tasks.

Expressing complex machine learning tasks in SQL manually can be challenging due to

the iterative nature of many data analysis algorithms, which is difficult to express in SQL,

as pointed out by Passing et al. (50). As a result, researchers have explored methods to

convert procedural programs, such as Python or R data analysis programs, into a series of

SQL commands. Blacher et al. (51) discussed how to perform such conversions for concepts

common in procedural languages, including variables (translated as relations or values in

relations in SQL), branch statements (translated as CASE statements), loops (expressed as

recursive queries), etc. Additionally, due to the power and popularity of the Pandas library,

Hagedorn et al. (52) presented an implementation that translates operations on Pandas

DataFrames into SQL queries, while Marten et al. (53) translated the Hidden Markov

model expressed in R into SQL statements.

One benefit of using a SQL-only approach to express a machine learning pipeline is that

the data analysis pipeline is represented as a series of SQL commands, eliminating the

need for any changes to the database system itself. This approach provides a convenient

way to work with the existing database infrastructure for data analysis tasks.

Raasveldt et al. (54) proposed an alternative approach for in-database machine learning

by integrating an external machine learning library with MonetDB. They leveraged

MonetDB’s capability to invoke Python code through User-Defined Functions (UDFs) and

utilized the scikit-learn machine learning library (55) to train models and make predictions.

In their approach, machine learning models are treated as Binary Large Objects (BLOBs),

enabling efficient storage and retrieval within the database.

This method showcased the possibility of performing in-database data analysis with

machine learning models implemented in Python. However, the applicability of this

approach is contingent upon the support provided by the database system. The availability

of such integration features in the database system will dictate the feasibility of using

external machine-learning libraries in conjunction with the database.

In conclusion, in-database machine learning offers the significant advantage of conducting

data analysis, model training, and future data prediction directly within the database

system. By eliminating the need for data exporting, this approach improves performance
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and reduces memory usage. Moreover, the tight integration between SQL and machine

learning models facilitates a unified interface for seamless interactions. However, it is worth

noting that expressing a machine learning pipeline purely in SQL can be challenging, as

pointed out by Passing et al. (50). Additionally, the effectiveness of in-database machine

learning heavily relies on the level of support provided by the database vendors. The

availability of specific features and capabilities within the database system will impact the

feasibility and extent of in-database machine-learning implementations.

3.2 GNN-aware graph database systems

In the previous sections, we explored general research work related to training machine

learning models and conducting analysis using data stored in database systems. However,

when it comes to fetching graph data from database systems for graph neural networks

(GNNs), the approach is somewhat different. In traditional machine learning pipelines,

a model is trained using a matrix representation of the training data, where each row

represents a data point, and each column corresponds to a feature that quantifies the data

point. This matrix is conceptually similar to a table in relational database systems.

However, training a GNN model requires not only the features of nodes and edges but also

the graph’s connectivity structure (56). This introduces a new dimension of complexity in

data representation for GNNs. In this section, we conduct a literature study that focuses

on how GNN pipelines interact with databases, addressing the unique requirements for

graph-based machine learning tasks.

3.2.1 Neo4j

Neo4j (57) is a graph database management system implemented in Java. It is designed to

handle and store graph-structured data efficiently, making it well-suited for applications

that involve highly interconnected data and complex relationships between entities. Neo4j

uses the Cypher query language (58), which is specifically designed for querying and

manipulating graph data. Cypher provides an expressive and intuitive way to interact

with the graph, allowing users to create complex queries to traverse, filter, and analyze the

graph.

It has several built-in algorithms for graph analysis, including path finding, similarity

computation, and community detection (59). Furthermore, it has many algorithms for

learning node embeddings and performing link predictions, although not all of them
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are production-ready, making it capable of running in-database machine learning on

graphs (60).

3.2.2 Kùzu

Kùzu (20) is an in-process property graph database system that utilizes Cypher for querying

graphs. It offers a command-line interface and supports language bindings to C++, Java,

and Python.

In the Python environment, Kùzu supports exporting a property graph to PyTorch

Geometric, leveraging the FeatureStore and GraphStore mechanisms discussed in

Chapter 2. This functionality makes Kùzu a valuable backend graph storage option for

GNN model training (61). PyTorch Geometric fetches sub-graphs and feature values from

Kùzu, which efficiently stores data on disk, enabling model training on datasets that exceed

the machine’s memory capacity.

In conclusion, Kùzu provides seamless integration with PyTorch Geometric. However,

as detailed in Section 4.4, our approach differs from that of Kùzu.

3.2.3 TigerGraph

TigerGraph (62) is a graph database and analytics platform. It features GSQL (63), its own

expressive query language specially designed for querying and manipulating graph data.

GSQL offers support for both transactional and analytical queries, making it versatile for

various applications. TigerGraph incorporates a module called ML-Workbench (64), which

facilitates the exporting of graph data via HTTP, similar to Pandas’ read_sql function,

to different GNN libraries and pipelines, including DGL and PyTorch Geometric. The

enterprise edition of TigerGraph further provides support for exporting data via Kafka, an

open-source distributed event streaming platform used for data pipelines.

3.2.4 Amazon Neptune

Amazon Neptune (65) is a managed graph database service provided by Amazon Web

Services (AWS).

Amazon Neptune supports data loading from CSV files and allows querying a graph

using Gremlin (66), which is the graph traversal language for the Apache TinkerPop graph

computing framework (67).

The platform offers a module called Neptune ML (68) designed for graph machine

learning tasks, including node/edge level classification/regression and link prediction. The
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Neptune DatabaseSource data

Amazon S3 Bucket DGL

Figure 3.6: How Neptune ML works

model computations are powered by DGL. Figure 3.6 presents an example illustrating the

process of training a GNN model and performing inferences using Amazon Neptune.

First, the data needs to be exported from a Neptune cluster to an Amazon S3 storage.

This step enables DGL to access the input data. A configuration is required to specify

the output path, feature, and target descriptions, along with other parameters. Once the

data is exported, the pre-processing and model training can start, which also requires user-

specified arguments. After model training and endpoint creation, users can run inferences

with Gremlin. Listing 3.1 shows an example of predicting a given name Parker is whether

a human name or an organization name.

1 g.with("Neptune#ml.endpoint", '${endpoint}').V()
2 .has('name', 'Parker ').properties("type")
3 .with("Neptune#ml.classification").value ()

Listing 3.1: An example of performing classification with Gremlin
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Design & Implementation

The aim of this project is to establish an efficient integration between DuckDB/DuckPGQ

and GNN libraries. This integration is intended to enable the smooth retrieval of a property

graph into GNN pipelines within a Python client. Our central focus is the optimization

of memory usage through the reduction of unnecessary data copying. Moreover, we’re

committed to ensuring a seamless experience, where the execution of a UDF from

DuckPGQ on Python objects demands no additional effort. This chapter delves into the

significant design details of our implementation.

The initial part of our work concentrates on strategies to facilitate the retrieval of

property graphs from DuckPGQ. We emphasize the application of optimization techniques

to minimize memory copies, striving for a highly efficient process during this phase.

Transitioning to the subsequent segment, we further enhance our solution to guarantee

seamless integration and user-friendliness. Our objective is to establish an intuitive and

effortlessly usable connection between these two frameworks.

4.1 Retrieving table and column references and CSR arrays
of a property graph

To construct a DGL or PyTorch Geometric graph, it is essential to provide the features of

nodes and edges, along with the connectivity structure of a graph, such as CSR arrays. In

the case of DuckDB/DuckPGQ, node and edge features are stored in tables, which can be

fetched as Numpy arrays or PyTorch Tensors using SQL queries.

However, as illustrated in Figure 2.4, the table reference relationship is an internal state

of DuckPGQ and is invisible to the Python client, making it challenging to discern from

which table we should collect the required data. Additionally, there is a lack of information
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on which columns are utilized in a property graph. Furthermore, the CSR arrays are native

C++ data, which is neither directly accessible nor readily retrievable for use in Python.

As a result, our initial step involves implementing several user-defined table functions

and scalar functions to facilitate the retrieval of this metadata and the CSR arrays, as

demonstrated in Table 4.1.

Name Function Type Description
get_csr_v table function retrieve the v array of a CSR
get_csr_e table function retrieve the e array of a CSR
get_csr_w table function retrieve the weight array of an edge table
csr_get_w_type scalar function get the type of the weight array
get_pg_vtablenames table function obtain the node table names
get_pg_etablenames table function obtain the edge table names
get_pg_vcolnames table function obtain the column names used by a node table
get_pg_ecolnames table function obtain the column names used by an edge table

Table 4.1: Implemented UDFs descriptions

These UDFs can be categorized into two groups. The first group, which includes

get_pg_vtablenames, get_pg_etablenames, get_pg_vcolnames, and get_pg_ecolnames,

is responsible for obtaining table and column references. The implementation for each UDF

in this group is similar. We set the output DataChunks to point to the vectors of string

names of each table and column, without the need for memory copies, thus enhancing the

efficiency of the process. The cardinality is set to the size of corresponding C++ vectors.

The second group of UDFs comprises three table functions: get_csr_v, get_csr_e, and

get_csr_w, along with a scalar function csr_get_w_type. This group handles the retrieval

of CSR arrays. Unlike the reference relationships, each of the three arrays in a CSR exhibits

distinct characteristics, as illustrated in Figure 2.5. The v array is a C-array of atomic

values, the e array is a C++ vector containing 64-bit signed integers, and the weight array

can either be a vector of 64-bit integers or a vector of doubles.

Retrieval of the e array follows a process similar to collecting table and column references

in the first group: we configure the output DataChunk to point to the underlying data of

the vector and set the cardinality to the size of the vector.

For the v array, since the number of elements in a C-array is unknown, we extended

the CSR class definition in DuckPGQ by introducing a new member variable, vsize.

During CSR creation, vsize is initialized to the number of nodes in a graph, and it

is used to accurately set the cardinality of the result. Additionally, a type conversion
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graph

from atomic values to integers is necessary for the Python client to recognize the v array.

As atomic<int64_t> shares the same memory layout as int64_t in C++, we employ

reinterpret_cast. This compile-time directive instructs the compiler to treat a variable

as if it had a user-specified type. Typically, it does not introduce extra overhead during run-

time, as reinterpret_cast does not translate into additional CPU instructions. Finally,

we configure the output DataChunk to be a C-array.

Regarding the array of edge weights, since it can either be a vector of integers or a vector

of doubles, an additional function, get_csr_w_type, is introduced to determine the weight

type. This information is crucial for correctly configuring the type of the result DataChunk.

Subsequently, the DataChunk is configured to point to the underlying data of the weight

vector.

Incorporating these UDFs has facilitated the seamless export of a property graph to the

Python client. The overall process, as illustrated in Figure 4.1, involves a series of steps:

1. Obtaining referred table and column names. This initial step encompasses the first

two stages illustrated in Figure 4.1, focusing on the identification and collection

of relevant table and column names essential for subsequent operations. This step

incorporates SQL commands integrated with function calls to the first group of UDFs.

2. Retrieving CSR arrays. Corresponding to the third stage in Figure 4.1, this phase

entails retrieving CSR arrays as PyTorch Tensors. These tensors serve as the

foundational building blocks for constructing a GNN graph. This step involves SQL

commands combined with function calls to the second group of UDFs.

3. In the subsequent step, aligned with the fourth stage in Figure 4.1, the process

involves retrieving values from related columns within tables. This retrieval is based

on the results obtained in step 1. SQL commands are central to this step.

4. Constructing DGLGraph or PyTorch Geometric Data objects. The final step

encompasses the construction of either a DGLGraph or a PyTorch Geometric Data

object. These objects encapsulate the property graph in a format compatible with

downstream operations. Python code forms the core of this step.

It is noteworthy that our implementation of user-defined table functions circumvents

the need for memory copies, as the output DataChunks are manipulated using pointers.

However, it is important to acknowledge that while retrieving query results as Numpy

arrays or PyTorch Tensors, DuckDB necessitates the materialization of the required data,
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Figure 4.1: Steps to retrieve a property graph from Python clients

which may involve certain memory copies. It is essential to emphasize that once the query

results are transformed into the desired Python objects, no additional memory copies are

required for this conversion process.

4.2 Zero-copy optimization for retrieving CSR arrays

We first observe that the raw data buffer of a Numpy array shares the same underlying

memory layout as a C++ vector (69). Moreover, when constructing PyTorch Tensors from

Numpy arrays, no data copy occurs (70). These discoveries present an opportunity to

facilitate memory sharing between DuckPGQ CSR arrays and GNN libraries, resulting in

reduced memory usage and enhanced overall performance.

However, attaining this zero-copy optimization poses several challenges. Primarily, as an

extension, DuckPGQ lacks direct access to Python clients, save for UDF calls, which can

solely return data adhering to DuckDB-supported types. Additionally, DuckDB’s Python

APIs do not directly interact with extension modules. UDFs implemented in extension

modules remain invisible and inaccessible (by function calls instead of SQL UDF calls) to

Python clients. These challenges render it unfeasible to directly return a Python object
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UDF retuen valuesCall UDF

SELECT  * FROM get_csr_ptr(CSRID); v e wvsize wtype
Returns

Array of int64_t Vector<int64_t> Vector<int64_t>

int64_t * Vector<int64_t> Vector<int64_t>Reconstruct object
references

Figure 4.2: Enable access of CSR arrays from outside DuckPGQ

from UDF calls.

To realize the zero-copy optimization, we introduce a novel user-defined table function

named get_csr_ptr. This function accepts an integer argument and consistently yields

five 64-bit integers: the initiation address of the v array, the object addresses of the e and

weight vectors, the v array’s element count, and the weight vector’s type.

Nonetheless, Python clients still cannot access CSR arrays with integer return values

solely, owing to the absence of type and size information for each array. Furthermore,

manipulating C++ native values proves unwieldy within Python. Consequently, we develop

a separate C++ module that operates within the Python client process. This module

is invoked after calling get_csr_ptr. Leveraging the five return values, it reconstructs

object references to the CSR arrays stored within DuckPGQ, as exemplified in Figure 4.2.

This reconstruction process first treats the returned address integers as pointers, and

subsequently constructs object references of accurate types for each CSR array. This

enables accessing CSR arrays from outside DuckPGQ.

To achieve the zero-copy transfer of CSR arrays to Tensors, we need to construct a

PyTorch Tensor from the shared memory. To simplify this process without compromising

performance, we utilize Numpy arrays as a bridge between the C++ native arrays and

PyTorch tensors.

Firstly, capsules are implemented for each C-array. A capsule in Python serves as

a mechanism for handling and passing C/C++ generic pointers and the data pointed

to. It encapsulates a pointer and the associated destructor for memory deallocation.

Subsequently, a Numpy array is formed by configuring the base pointer and size to

appropriate values, as demonstrated in Figure 4.3. A capsule is provided during array

construction to prevent Numpy from copying our CSR data into the newly formed array.
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Figure 4.3: Memory sharing between Numpy ndarray and C array
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Figure 4.4: Memory sharing between Numpy ndarray and PyTorch tensors

Finally, we create tensors from the Numpy arrays. As depicted in Figure 4.4, both

the tensors and the Numpy arrays share the same underlying memory for data, ensuring

efficient zero-copy transfer.

It is crucial to emphasize that we assume memory management is handled within

DuckPGQ, implying that PyTorch Tensors become invalidated when an explicit call to

the CSR deletion function is made.

We acknowledge that memory sharing can be susceptible to errors, as any slight change

in data by one side will impact the other side. To address this concern, both the original

method and the optimized approach for obtaining the CSR arrays are made available in

the final implementation. This flexibility allows users to choose the approach that best
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Materialize

Figure 4.5: Architectural overview of fetching a property graph as a GNN graph with copying
CSR arrays

aligns with their specific use cases and requirements.

4.3 An overview of the architectural design

In this section, we present an overview of our methods for converting a DuckPGQ property

graph into a GNN graph. We discuss the architecture of our implementation in the

following paragraphs.

Figure 4.5 illustrates the process of extracting a property graph, where CSR arrays

are acquired through user-defined table functions. All components are situated within

the Python environment. The box outlined with a dashed line represents a DuckDB

connection. Within this connection, DuckPGQ is fully loaded and retains the CSR arrays

it generated, along with references to DuckDB tables. Prior to constructing a GNN graph,

the CSR arrays are obtained using our user-defined table functions. The relevant data

from DuckDB tables is retrieved using SQL SELECT commands. After retrieval, the query

results are materialized, necessitating memory copies. Subsequently, PyTorch Tensors are

constructed based on the materialized results. The Python code encompasses the user

program responsible for creating GNN graphs from these acquired Tensors.

Figure 4.6 outlines our optimized approach to property graph retrieval. While several
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Figure 4.6: Architectural overview of fetching a property graph as a GNN graph without
copying CSR arrays

steps resemble those in Figure 4.5, such as fetching DuckDB tables as PyTorch Tensors,

there is a notable distinction in how CSR arrays are obtained. In this approach, we

introduce a C++ module that enables access to CSR arrays within DuckPGQ from outside

DuckDB by reconstructing the array references in the Python environment. No memory

copy is involved in this process.

4.4 Construction of GNN graphs

4.4.1 DGL

The code snippets for building a DGL graph from the retrieved values can be found

in Listing 4.1. In this snippet, we initialize a graph object by providing the CSR

representation of the edge connectivity structure. Then, we proceed to set the node and

edge features of the graph, establishing a complete representation of the property graph

for further analysis and processing.

4.4.2 PyTorch Geometric

Creating a PyTorch Geometric graph involves a different approach. As discussed in a

previous chapter, PyTorch Geometric requires the retrieved 1-dimensional node and edge
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1 import dgl
2 import torch
3 import duckdb
4

5 # Setup DuckPGQ and collect necessary data
6 con = duckdb.connect ()
7 csrv , csre , node_features , edge_features = ...
8 # Initialize a graph object
9 g = dgl.graph (('csr', (csrv , csre , [])))

10 # Set the node features , reshaping is necessary
11 for feature_name , feature in node_features:
12 g.ndata[feature_name] = feature.reshape (( feature.shape [0], 1))
13 # Set the edge features , reshaping is necessary
14 for feature_name , feature in edge_features:
15 g.edata[feature_name] = feature.reshape (( feature.shape [0], 1))

Listing 4.1: Creating a DGLGraph object from retrieved values

features to be stacked as 2-dimensional feature matrices for each type of nodes or edges,

which may involve unavoidable memory copies. Additionally, PyTorch Geometric does not

natively support creating a graph from CSR arrays. We devised two methods to address

these challenges and represent a property graph as a PyTorch Geometric graph.

The first approach involves utilizing the PyTorch Sparse library, an optional dependency

for PyTorch Geometric. This library introduces the SparseTensor class that supports the

CSR format. We provide code snippets for constructing a PyTorch Geometric graph with

SparseTensor in Listing 4.2.

The second approach involves converting the CSR arrays to a COO representation. The

conversion algorithm is detailed in Listing 4.3. This conversion can be efficient, as it

requires constructing only the source array.

Moreover, this algorithm lends itself to straightforward parallelization, which can further

enhance performance. An illustration of the parallelized version of the CSR to COO

conversion is provided in Listing 4.4.

4.5 The helper library duckpgq.py

As shown in Figure 4.1, the process of retrieving a property graph as a GNN graph

involves several crucial steps. However, using only these UDFs for obtaining a property

graph through the optimized zero-copy method is not feasible due to the necessity of

reconstructing object references and creating Numpy arrays.
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1 import torch
2 from torch_geometric.data import Data
3 from torch_geometric.typing import SparseTensor
4 import duckdb
5

6 # Setup DuckPGQ and collect necessary data
7 con = duckdb.connect ()
8 csrv , csre , node_features , edge_features = ...
9 # Construct a SparseTensor object

10 adj_t = SparseTensor(rowptr = csrv , col = csre)
11 # we stack the 1-dimensional node features as a two -dimensional feature

matric
12 datax = torch.stack(list(node_features.values ()), dim = 1)
13 # we stack the 1-dimensional edge features as a two -dimensional feature

matric
14 edge_attr = torch.stack(list(edge_features.values ()), dim = 1)
15 # Construct a PyTorch Geometric graph
16 data = Data(x = datax , edge_attr = edge_attr)
17 # Specify the connectivity structure
18 data.adj_t = adj_t

Listing 4.2: Creating a PyTorch Geometric graph object from retrieved values

1 int64_t* convert_csr_to_coo(int64_t *v, int64_t size) {
2 // v is the vertex array of a CSR , size is the number of nodes plus 1
3 // The last element of the v array is the number of edges
4 // allocate the result source array
5 int64_t* source = (int64_t *) malloc(sizeof(int64_t) * v[size -1]);
6 // indexing variables
7 int64_t i = 0;
8 int64_t z = 0;
9 int64_t c = 0;

10 // Fill the source array
11 for(i = 0; i < size -1; i++) {
12 int64_t num_edges_for_node_i = v[i+1] - v[i];
13 for(z = 0; z < num_edges_for_node_i; z++) {
14 source[c++] = i;
15 }
16 }
17 return source;
18 }

Listing 4.3: Convert CSR to COO
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1 void worker(void *args) {
2 // ... prepare arguments
3 int64_t *source , int64_t i, int64_t start , int64_t end = ...;
4 for(int64_t z = start; z < end; z++) {
5 source[z] = i;
6 }
7 }
8 int64_t* convert_csr_to_coo(int64_t *v, int64_t size) {
9 // v is the vertex array of a CSR , size is the number of nodes plus 1

10 // The last element of the v array is the number of edges
11 // allocate the result source array
12 int64_t* source = (int64_t *) malloc(sizeof(int64_t) * v[size -1]);
13 int64_t i = 0;
14 int64_t start = 0;
15 int64_t end = 0;
16 // ... fill the source array in parallel
17 pthread_t threads[NUM_THREADS ];
18 for(int i = 0; i < NUM_THREADS; i++) {
19 // Prepare the arguments
20 void *args = ...;
21 pthread_create (& threads[i], NULL , worker , args);
22 }
23 // ... other code
24 return source;
25 }

Listing 4.4: Convert CSR to COO with multi-threading
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Additionally, some UDFs in DuckPGQ assume the existence of the pseudo-column rowid.

Consequently, these user-defined functions cannot directly operate on Python objects like

Pandas DataFrames. One possible solution to address this issue is to add the rowid column

during the scan. However, this approach might lead to different results when users query a

Python object without specifying the column names, such as SELECT * FROM DataFrame,

since an unexpected column appears in the query result.

To ensure seamless integration and eliminate the need for additional effort when calling

a UDF on Python objects, as well as to simplify the interface and reduce the amount of

code required for calling a UDF or retrieving a property graph, we have developed the

Python helper library duckpgq.py.

duckpgq.py provides the following functionalities:

1. It sets up the DuckPGQ extension module and ensures its complete loading.

2. A class Connection that mimics the original DuckDB Python API, serving as a

drop-in replacement for DuckDB with additional features.

3. Several high-level functions streamline the process of obtaining CSR arrays, property

graphs, and constructing GNN graphs. A complete list of implemented functions and

their descriptions are presented in Table 4.2.

4. A mechanism based on function decorating that ensures a seamless integration. The

rowid column is automatically added and removed on the fly as needed. Different

Python objects have varying types of the rowid column, as illustrated in Table 4.3.

An example of calling the CSR creation UDFs over Pandas DataFrames, without any

extra effort, is provided in Listing 4.5.

5. Functions to save a GNN graph as DuckDB tables. For node features and edge

features, a table is created for each type of graph element. To store edge information,

the COO representation of the graph connectivity structure is transformed into

DuckDB tables.
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Function Description
get_csr Retrieve a CSR representation from DuckPGQ as PyTorch

Tensors through zero-copy.
get_pyg Fetch a property graph and the CSR arrays as PyTorch

Geometric graph.
get_dgl Fetch a property graph and the CSR arrays as DGLGraph.
create_csr Create a CSR representation of a given graph.
save_dgl Save a DGLGraph as DuckDB tables.

Table 4.2: Functionalities provided by the duckpgq.py Python helper library.

Table 4.3: rowid types for different Python objects

Object Type Rowid Type
Polars DataFrame Polars row count
Numpy arrays Numpy.arange
PyArrow table PyArrow array
Pandas DataFrame Pandas.index

1 # We use the helper library
2 import duckpgq
3 import pandas as pd
4

5 # Connect to an in -memory database
6 con = duckpgq.connect ()
7

8 # Prepare the DataFrames
9 edgedf , nodedf = ...

10 # Prepapre node tables
11 con.sql("CREATE TABLE nodes ...")
12 # Prepapre edge tables
13 con.sql("CREATE TABLE edges ...")
14

15 # Create CSR over DuckDB Tables
16 con.create_csr("edges", "src", "dst", "nodes", "id")
17

18 # Create CSR over Pandas DataFrame
19 con.create_csr(edgedf , "src", "dst", nodedf , "id")

Listing 4.5: CSR creation over DuckDB tables and Pandas DataFrame
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5

Evaluation

In this section, we present a series of experiments conducted to evaluate the performance

of our implementation. We begin by describing the experimental environment, datasets,

and parameter setup. Subsequently, we present and discuss the benchmark tasks and their

results.

5.1 Experimental Setup

In our experiments, we utilized the LDBC Social Network Benchmark (LDBC SNB) data.

LDBC SNB offers datasets with different scale factors, quantifying the size and scale of

each dataset. For our benchmarks, we employed scale factors 1, 3, 10, 40, and 100. The

number of nodes and edges for each dataset is shown in Table 5.1.

Scale factor Number of nodes Number of edges
1 10620 219450
3 25870 668431
10 70800 2304951
30 175950 6880584
100 487700 23116805

Table 5.1: Number of nodes and edges for different scale factors

Each benchmark task was executed within a container environment. The details of

the container and host machine configurations can be found in Table 5.2 and Table 5.3,

respectively. Additionally, Table 5.4 provides insights into the parameter setups used in

the experiments.
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Operating system Fedora Linux 38
CPU Intel Core i7-10710U
Number of cores 6
Number of threads 12
RAM 16GB

Table 5.2: Host machine specification

Container engine Podman
Guest operating system Fedora Linux 38
Compiler GCC 13.1.1 20230426

Table 5.3: Container environment specification

5.2 Evaluation of CSR creation over different Python objects
and DuckDB tables

In this section, we conduct a performance evaluation of CSR creation using various

Python objects, including Pandas DataFrame with Numpy backend, Polars DataFrame,

and Pyarrow Table, while also comparing the results with running the UDFs over DuckDB

tables. The addition of the rowid column to these Python objects has been made to

ensure smooth evaluation. The CSR creation query is generated from Listing 5.1, wherein

template variables, enclosed in curly braces, are replaced with appropriate table, data

frame, or column names. The results for scale factors 1, 3, 10, 30, and 100 are shown in

Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5, respectively.

Based on the above results, we draw the following conclusions:

First, for CSR creation, Pandas DataFrames exhibit similar performance to DuckDB

tables.

Second, when dealing with small-sized datasets, such as when the scale factor is 1 or

3, creating a CSR representation over DuckDB tables or Pandas DataFrames significantly

DuckDB version 0.8.2-dev
Build parameters release_python
In-memory database true
Allow unsigned extensions true

Table 5.4: DuckDB and DuckPGQ specification
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tables

1 SELECT CREATE_CSR_EDGE(
2 {csr_id},
3 (SELECT count(srctable .{ src_ref_col }) FROM {src_ref_table}

srctable),
4 CAST (
5 (SELECT sum(CREATE_CSR_VERTEX(
6 {csr_id},
7 (SELECT count(srctable .{ src_ref_col }) FROM {

src_ref_table} srctable),
8 sub.dense_id ,
9 sub.cnt)

10 )
11 FROM (
12 SELECT srctable.rowid as dense_id , count(edgetable .{

src_key }) as cnt
13 FROM {src_ref_table} srctable
14 LEFT JOIN {edge_table} edgetable ON edgetable .{ src_key}

= srctable .{ src_ref_col}
15 GROUP BY srctable.rowid) sub
16 )
17 AS BIGINT),
18 srctable.rowid ,
19 dsttable.rowid ,
20 edgetable.rowid) as temp
21 FROM {edge_table} edgetable
22 JOIN {src_ref_table} srctable on srctable .{ src_ref_col} = edgetable

.{ src_key}
23 JOIN {dst_ref_table} dsttable on dsttable .{ dst_ref_col} = edgetable

.{ dst_key} ;

Listing 5.1: Template for generating CSR creation code
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Figure 5.1: Execution time of CSR creation over different Python objects and DuckDB
tables, SF = 1
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Figure 5.2: Execution time of CSR creation over different Python objects and DuckDB
tables, SF = 3
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Figure 5.3: Execution time of CSR creation over different Python objects and DuckDB
tables, SF = 10
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Figure 5.4: Execution time of CSR creation over different Python objects and DuckDB
tables, SF = 30
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Figure 5.5: Execution time of CSR creation over different Python objects and DuckDB
tables, SF = 100

outperforms Polars DataFrames. However, as the scale factor increases, the performance

difference becomes less pronounced.

5.3 Evaluation of exporting a DuckPGQ property graph as
a DGL graph

In Figure 5.6, we present the execution time for retrieving property graphs from DuckPGQ

as DGL graphs, considering various scale factors.

To gain deeper insights into the time-consuming steps, we conducted an extensive

performance analysis with a scale factor of 100, as shown in Figure 5.7. As discussed

in Section 4.1, the steps involving the retrieval of table and column names incur negligible

overhead.

The two most time-consuming steps are the retrieval of CSR arrays and the fetching

of edge data. For unweighted edges, the CSR retrieval involves two steps, with each

step responsible for retrieving either the v or e arrays. As highlighted in Figure 5.8, the

collection of the e array constitutes the majority of the time.

As discussed in Section 4.1, DuckDB engages in the process of materialization and the

construction of Numpy arrays before fetching query results as PyTorch Tensors. The

breakdown of execution times for each step can be found in Table 5.5, where it becomes
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Figure 5.6: Execution time of retrieving property graphs as DGL graphs with various scale
factors
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Figure 5.7: Execution time of each step for retrieving property graph as GNN graph
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Figure 5.8: Execution time of getting the v and e array of CSR

evident that the materialization phase consumes the majority of the time. This is shown

in the Total time (ms) column of Table 5.5, which measures the execution time for the

entire task of obtaining the e array or edge features. It’s important to note that this task

encompasses additional steps, including SQL command parsing, which contributes to the

Total time (ms) being larger than the sum of the time required for materialization and

array construction.

Table 5.5: Execution Times for each step to fetch query result as PyTorch tensors

Task Total time (ms) Materialization (ms) Construct Array (ms)
Get CSR e 112.73 44.02 0.083
Get edge features 75.16 48.63 0.087

To enhance the performance of exporting property graphs, as discussed in Section 4.2, we

proposed an approach that involves memory sharing between DuckPGQ and the Python

client for CSR arrays, eliminating the need for data copying. As seen in Figure 5.9, the

evaluation time is significantly improved, and Figure 5.10 demonstrates that the overhead

of fetching a CSR is now negligible.
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Figure 5.9: Execution time of retrieving property graphs as DGL graphs
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Figure 5.11: Execution time of retrieving property graphs as PyTorch geometric graphs
using SparseTensor

5.4 Evaluation of exporting a DuckPGQ property graph as
a PyTorch geometric graph

In this section, we evaluated the performance of retrieving a DuckPGQ property graph

as a PyTorch tensor graph. As discussed in Section 4.4, we devised two methods for

achieving this goal. The first method utilized the SparseTensor class, while the second

method involved converting the CSR arrays to a COO representation. The evaluation

results of both approaches are presented in Figure 5.11 and Figure 5.12, respectively. For

these experiments, we employed the zero-copy implementation to enhance performance.

Additional insights into the performance analysis can be found in Figure 5.13 and

Figure 5.14.

Significantly, the second method, which leveraged an optimized and parallelized

conversion algorithm, demonstrated notably faster execution times compared to the first

method that relied on the SparseTensor class.
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Figure 5.12: Execution time of retrieving property graphs as PyTorch geometric graphs
using COO
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Figure 5.13: Execution time of each step for retrieving property graph as PyTorch geometric
graph using SparseTensor
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6

Future Work

This project enables DuckDB/DuckPGQ to efficiently and seamlessly connect with graph

neural network pipelines. The implemented process is functional, and several optimizations

have been made to enhance performance. However, there remain possibilities for further

improving both performance and functionality. In this chapter, we explore potential areas

for future work and discuss potential improvements that can be made to enhance the

integration even further.

6.1 A tighter integration with GNN libraries

By utilizing the implemented UDFs and the helper library, we can efficiently retrieve

property graphs and seamlessly use them in GNN pipelines. Additionally, we provide

functions to save a GNN graph as DuckPGQ tables. During these processes, several

optimizations are possible to further enhance the integration.

1. Enable appending an existing CSR to the CSR list in DuckPGQ: While the memory

of each CSR array is shared between DuckPGQ and GNN libraries, modifying the

internal ID-to-CSR mapping of DuckPGQ from Python clients is currently not

feasible. Consequently, when storing a GNN graph in DuckPGQ, the edges are

saved as tables, and the CSR arrays are re-created when the related UDFs are

called, even though these sparse representations already exist in our GNN graphs.

Implementing a mechanism to directly utilize the existing CSR arrays in DuckPGQ

would significantly improve efficiency.

2. Add support for COO sparse representation of graphs: Presently, DuckPGQ only

includes CSR creation UDFs. However, incorporating COO arrays instead of CSR
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arrays, as seen in the PyTorch Geometric graph construction, leads to more compact

code and potentially higher performance. Moreover, to store the graph connectivity

structure in DuckDB tables, a COO format is required due to the need for the

cardinality of each column in a table. Therefore, adding COO sparse representation

creation functionality will simplify the conversions between property graphs and GNN

graphs.

3. Interact with GNN models and perform inferences using SQL statements with

potential UDF calls: While our implementation focuses on an efficient export of

DuckPGQ property graphs to GNN graphs, further processes and analysis are outside

our current scope. However, the ability to train models and make predictions based

on provided configurations and data using SQL statements with UDF calls offers

several advantages. Firstly, it unifies the interfaces, as all operations can be expressed

with SQL. Additionally, deeper integration between GNN pipelines and SQL enables

querying and relational analysis over inference results, enhancing the overall usability

and versatility of the solution.

6.2 A more complete helper library

DuckPGQ is a relatively new extension to DuckDB, and it is actively being developed

with a focus on continuously enhancing its graph analysis capabilities. As part of this

ongoing development, new features and UDFs are regularly being added to further enrich

its functionality. Presently, DuckPGQ supports various graph-related operations, such as

finding shortest paths, checking reachability, and graph pattern matching, among others.

However, in our current implementation, only the high-level function for CSR creation is

included in duckpgq.py, which somewhat limits the applicability of our helper library. To

maximize the usefulness and completeness of our library, we aim to provide additional high-

level functions that encompass a broader range of graph analysis tasks. By expanding the

functionality, users will have access to a more comprehensive set of tools and capabilities,

further simplifying and streamlining the process of working with property graphs and GNN

pipelines in the context of DuckDB and DuckPGQ.

6.3 FeatureStore and GraphStore for PyTorch Geometric

As discussed in Chapter 2, PyTorch Geometric introduced two abstract classes,

FeatureStore and GraphStore, starting from version 2.2. These classes enable the
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6.3 FeatureStore and GraphStore for PyTorch Geometric

utilization of graph databases as remote storage backends, facilitating the training of GNN

models on graphs that exceed the main memory capacity of a machine. This presents a

new opportunity for integrating DuckDB/DuckPGQ with PyTorch Geometric.

However, despite the advantages offered by FeatureStore and GraphStore, we opted

for a different approach in implementing our integration. One primary reason is the lack

of support for homogeneous graphs. Additionally, the absence of support for edge features

further limits the suitability of these classes for our specific use case. Furthermore, the

APIs of the two abstract classes are still under development and not yet stable.

As a result, we have decided to postpone enabling DuckDB as PyTorch Geometric remote

backends until this functionality becomes stable and ready for practical use.
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7

Conclusion

In this project, we have successfully developed an efficient and seamless integration between

DuckDB/DuckPGQ and the GNN libraries PyTorch Geometric and Deep Graph Library.

The implementation includes a group of user-defined table functions and scalar functions,

enabling the smooth export of a property graph as GNN graphs. To enhance performance,

several optimizations have been applied, such as memory-sharing of CSR arrays to avoid

unnecessary data copying. Additionally, a conversion from CSR to COO representation

has been implemented to improve the efficiency of constructing PyTorch Geometric graphs.

Furthermore, we have created a helpful companion library to ensure a seamless integration

experience.

Overall, this project has effectively addressed our pre-defined research questions,

achieving our objectives of enabling efficient graph analysis with DuckDB/DuckPGQ and

seamless integration with popular GNN libraries.

7.1 RQ1: What information is required to retrieve a
DuckPGQ property graph from Python clients?

To construct a GNN graph from a property graph, several pieces of information are

required. First, we need the features of each node and edge, which are stored as tables in

DuckDB. Additionally, the connectivity structure, represented as CSR arrays, is a crucial

component and part of the internal state of DuckPGQ. This internal state also includes

essential information about table and column references within the property graph.

However, due to the restricted access of the Python client to the internal data of

DuckPGQ, we require the implementation of several User-Defined Functions (UDFs) to

facilitate the retrieval of the necessary information. These UDFs play a vital role in the
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process, including table functions responsible for collecting the referred table and column

information, as well as functions designed to obtain the CSR arrays needed for constructing

the GNN graph effectively.

7.2 RQ2: With the required information, what steps are
needed to retrieve a DuckPGQ property graph from
Python clients?

Retrieving a DuckPGQ property graph from Python clients involves several essential steps.

First, we initiate the process by calling user-defined table functions with the property graph

name as input. These functions are responsible for acquiring the table names that serve

as edge tables and nodes, respectively, in the property graph. Additionally, we need to

identify which columns of each table are used in the property graph.

Next, we retrieve the node and edge features from the corresponding tables and columns

and obtain the CSR arrays associated with the property graph.

Finally, armed with all the collected data, we construct the GNN graph.

7.3 RQ3: Among these needed steps, is it possible to avoid
data copies with memory-sharing?

When retrieving feature values of edges and nodes from DuckDB tables, it is not feasible to

avoid memory copies. This is primarily because DuckDB tables store their data in vectors

of fixed length, which may not be contiguous in memory. As our performance analysis

demonstrated, a materialization step is required before we can fetch the query result as

Python objects, leading to memory copies and potential performance overhead.

Conversely, each CSR array in DuckPGQ is stored in continuous memory. This layout

allows for sharing data with GNN libraries, as they also utilize a C-array-like memory

structure. To achieve CSR arrays without memory copying, we implemented additional

functions, as discussed in Chapter 4. Through memory sharing, we successfully attained

higher performance levels and reduced memory usage.
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7.4 RQ4: How to construct a PyTorch Geometric graph from CSR
representation of connectivity structures?

7.4 RQ4: How to construct a PyTorch Geometric graph from
CSR representation of connectivity structures?

PyTorch Geometric constructs graphs using COO arrays by default. To utilize the CSR

representation, we transformed the CSR arrays into SparseTensor objects.

Alternatively, we can adopt a different approach by converting the CSR arrays to COO

format. As demonstrated in Chapter 5, implementing a parallel CSR-to-COO algorithm

significantly improves performance.

7.5 RQ5: How to run UDFs in DuckPGQ directly over
Python objects?

DuckDB offers a functionality called replacement scan, which allows SQL queries with UDF

calls to be executed over Python objects. However, some UDFs implemented in DuckPGQ

rely on the existence of the rowid column, which is available in DuckDB tables but not in

Python objects.

To ensure seamless integration, wherein UDFs can be executed over Python objects

without requiring extra effort, and to avoid altering the behavior of the replacement scan,

we adopted a mechanism that dynamically adds and deletes the rowid column to Python

objects as needed. The efficacy of our approach was evaluated in Chapter 5.

7.6 RQ6: How to simplify the process of fetching a property
graph as a GNN graph and the use of user-defined
functions in DuckPGQ?

To enhance the ease of use and provide a more user-friendly interface for our integration,

we have developed the helper library duckpgq.py. This library offers several high-level

functions that simplify the process of retrieving a property graph, as demonstrated in

Appendix A. By utilizing this helper library, the number of lines of code required to

retrieve a property graph from Python clients is significantly reduced.
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A. DUCKPGQ.PY REDUCES THE LINES OF CODE TO PERFORM
VARIOUS OPERATIONS

1 # We use the helper library
2 import duckpgq
3

4 # Connect to a in -memory database
5 con = duckpgq.connect ()
6

7 # Prepapre node tables
8 con.sql("CREATE TABLE nodes ...")
9 # Prepapre edge tables

10 con.sql("CREATE TABLE edges ...")
11

12 # CSR creation with SQL
13 con.sql("""
14 SELECT CREATE_CSR_EDGE(
15 0,
16 (SELECT count(srctable.id) FROM nodes srctable),
17 CAST (
18 (SELECT sum(CREATE_CSR_VERTEX(
19 0,
20 (SELECT count(srctable.id) FROM nodes srctable)

,
21 sub.dense_id ,
22 sub.cnt)
23 )
24 FROM (
25 SELECT srctable.rowid as dense_id , count(edgetable.src)

as cnt
26 FROM nodes srctable
27 LEFT JOIN edges edgetable ON edgetable.src = srctable.

id
28 GROUP BY srctable.rowid) sub
29 )
30 AS BIGINT),
31 srctable.rowid ,
32 dsttable.rowid ,
33 edgetable.rowid) as temp
34 FROM edges edgetable
35 JOIN nodes srctable on srctable.id = edgetable.src
36 JOIN nodes dsttable on dsttable.id = edgetable.dst ;"""
37 )
38

39 # Create CSR with \texttt{duckpgq.py}
40 con.create_csr("edges", "src", "dst", "nodes", "id")

Listing A.1: Comparison of CSR creation with SQL and with duckpgq.py
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1 # We use the helper library
2 import duckpgq
3

4 # Connect to a in -memory database
5 con = duckpgq.connect ()
6

7 # Prepapre node tables
8 con.sql("CREATE TABLE nodes ...")
9 # Prepapre edge tables

10 con.sql("CREATE TABLE edges ...")
11

12 # CSR is required before we can fetch a graph
13 con.create_csr("edges", "src", "dst", "nodes", "id")
14

15 # Fetch a property graph with SQL
16 # Fetch node table names
17 con.sql("SELECT vtables FROM get_pg_vtablenames (...);").fetchall ()
18 # Fetch column names for node tables
19 con.sql("SELECT colnames FROM get_pg_vcolnames (...);").fetchall ()
20 # Fetch node features
21 con.sql("SELECT ... FROM ...").torch()
22

23 # Fteching edge features is similar
24 ....
25

26 # Fetch CSR arrays
27 # Here we have to use the non -zero -copy way , as it's impossible to have a

memory -sharing in pure Python
28 con.sql(" SELECT csrv FROM get_csr_v (...) ;").torch ()
29 con.sql(" SELECT csre FROM get_csr_e (...) ;").torch ()
30 con.sql(" SELECT csrw FROM get_csr_w (...) ;").torch ()
31

32 # Construct GNN graphs
33 ...
34

35 # ----------------------------
36 # Fetch a property graph with \texttt{duckpgq.py}
37 con.get_dgl(graphname , csrid)
38 # or
39 con.get_pyg(graphname , csrid)

Listing A.2: Comparison of fetching a property graph with SQL and with duckpgq.py
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