

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Rethinking Vector Embeddings
Search for Analytical Database

Systems

Elena Krippner

Masterarbeit im Elitestudiengang Software Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Rethinking Vector Embeddings Search
for Analytical Database Systems

Verfasserin: Elena Krippner, B. Sc.
Matrikelnummer: 1680792
Beginn der Arbeit: 15. April 2024
Abgabe der Arbeit: 09. Oktober 2024
Erstgutachter: Prof. Dr. Thomas Neumann
Betreuer: Prof. Dr. Peter Boncz

Leonardo Xavier Kuffo Rivero, M. Sc.

ERKLÄRUNG

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich habe dazu keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet.

Augsburg, den 09. Oktober 2024 Elena Krippner

Abstract

Vector embeddings search (VES) is an important component of applications such as pattern recognition,
recommendation systems, and retrieval-augmented generation. This search consists of performing a nearest
neighbor search (NNS) on the numerical representation, called vector embeddings, of unstructured data like
text and audio. Performing an exact NNS on big datasets is not feasible due to the computational demand
that an exhaustive search poses. However, in many applications, having an error in the answers is acceptable.
As such, research on VES has been focusing on computing approximate results. One of the most common
ways to improve the search speed is to compress the vector embeddings in a lossy fashion.

State-of-the-art embedding compression algorithms are quantization-based algorithms that have either
high encoding times or lead to aggressive changes in the values in the vectors. Other compression techniques,
such as downcasting, maintain a high recall but have limited compression capabilities.

We propose Lossily Encoded floating-Points (LEP), a lossy variant of the ALP algorithm [2] that does not
only reduce the size of vector embeddings substantially but also reaches low reconstruction errors and high
recalls in an approximate NNS. Additionally, we propose new compression techniques and explore data
formats reminiscent of the ones used in analytical databases, specially tailored for vector embeddings. In our
experiments, LEP achieves compression ratios comparable to or better than quantization- and downcasting-
based techniques when targeting the same recalls. Furthermore, LEP is able to compress vector embeddings
without aggressively altering their individual values. As a result, the compressed representation of the data
is more accurate in representing the original vectors than quantization-based techniques.

iii

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Outline . 2

2 Background 3
2.1 Nearest Neighbor Search . 3

2.1.1 Exact Nearest Neighbor Search . 3
2.1.2 Approximate Nearest Neighbor Search . 5

2.2 Compression . 6
2.2.1 Compression of Floating-Point Numbers . 7
2.2.2 Compression of Vector Embeddings . 8

3 Analysis of Vector Embedding Datasets 15
3.1 Overview of the Datasets . 15
3.2 Compression of Embedding Datasets using ALP . 18
3.3 Exceptions in the Frame Of Reference . 19
3.4 Data Layouts for Storing the Embeddings . 20
3.5 Frequently Occurring Values . 22
3.6 Correlations between Dimensions . 22

4 Lossily Encoded floating-Points 25
4.1 Compression of Exceptions . 27
4.2 Bitmap-Compression of Frequent Values . 28
4.3 Non-Decimal LEP for Fine-Tuning Compression Ratios and Recalls 28
4.4 Speedup of the Encoding Time . 29

5 Evaluation 31
5.1 Assessment of Data Layouts . 31
5.2 Comparison against Other Algorithms . 34

5.2.1 Considered Algorithms . 34
5.2.2 Compression Ratio and Mean Squared Error . 34

5.3 Evaluation of the Encoding Speeds . 41

6 Conclusion and Future Work 42
6.1 Answers to the Research Questions . 42
6.2 Future Work . 43

Bibliography 45

iv

List of Figures

2.1 Storage of 3 embeddings in the (a) horizontal and (b) vertical layout 4
2.2 Pruning of distance calculations in the BOND algorithm (Figure borrowed from De Vries et al.

work [14]) . 4
2.3 An exemplary search in a graph built by the HNSW algorithm (Figure borrowed fromMalkov

and Yashunin work [47]) . 6
2.4 Process of encoding doubles with the ALP algorithm . 8
2.5 Overview of the different quantization approaches: (a) binary quantization, (b) scalar quanti-

zation, (c) product quantization, (d) additive product quantization, (e) additive quantization,
and (f) vector quantization (Figures (c) and (e) are borrowed from Babenko and Lempitsky
work [6]) . 9

2.6 Mapping of a range of floating-point numbers to integers during a SQ encoding (Figure
borrowed from Qdrant blog [76]) . 11

2.7 Clustering of points (shown in black) in a 2-dimensional subspace into 4 clusters with
centroids shown in orange . 11

2.8 Encoding of an embedding (x) using two codebooks (C1 and C2) in the RVQ algorithm (Figure
borrowed from Chen et al. work [13]) . 13

2.9 The hierarchy of quantization algorithms (Figure borrowed from Douze et al. work [18]) . . 14
2.10 Bitwise representations of floating-point numbers: (a) IEEE single precision and (b) 16 bit . . 14

3.1 The recall of LEP for different LEP exponents and compression ratios on embedding datasets 19
3.2 Heatmaps of the floating-point number distribution within part of the datasets; every square

represents one float in the datasets, and its color hue indicates its value (darker colors belong
to higher values) . 21

3.3 The share of LEP vectors with repeated values (occurring > 300 times in the LEP vector) for
some embedding datasets . 22

4.1 The process of encoding floats using LEP . 25
4.2 An example of compressing a range of numbers containing compressible exceptions in the

PFOR in LEP . 27
4.3 Compressing a LEP vector using the bitmap compression of frequent values 28

5.1 The compression ratio of LEP on data preprocessed into the vertical and horizontal layout . 32
5.2 The compression ratio of LEP on data preprocessed using clustering or no clustering 33
5.3 The compression ratio of LEP compared to other compression algorithms 35
5.4 The mean squared error of LEP compared to other compression algorithms 36
5.5 The compression ratio - MSE curve of LEP and SQ calculated on single dimensions (Dim);

for SQ, parameters were both calculated per dimension and for the whole dataset 38
5.6 The compression ratio - MSE curve of LEP with and without a fixed bit width and SQ

calculated on single dimensions (Dim) . 38
5.7 The compression ratio - recall curve of LEP with the bitmap encoding on all the datasets

where the bitmap encoding is applicable . 39

v

List of Figures

5.8 The compression ratio - recall curve of LEP using non-decimal LEP on some datasets 40

vi

List of Tables

3.1 Overview of the vector embedding datasets . 17
3.2 The compression ratio of ALP on embedding datasets . 18
3.3 The numbers of regular and compressible exceptions in the PFOR in LEP on some embedding

datasets . 20
3.4 The number of pairs of columns in embedding datasets that are correlated with a high

Pearson coefficient . 23
3.5 The compression ratio of LEP using correlated dimensions aggressively on GIST and Fashion-

MNIST . 24
3.6 The compression ratio of LEP using correlated dimensions losslessly on GIST and Fashion-

MNIST . 24

5.1 The compression ratio (CR) and encoding time (ET) of sampling vectors at encoding time in
the LEP algorithm . 41

vii

1 Introduction

In today’s digital age, there is an exponential growth of unstructured data like user-generated texts and
images on social media platforms, sensor data from IoT devices, and songs stored in large databases. A typical
operation on these data is finding similar items to a query item. For instance, songs that resemble those a
user listened to can be searched for to generate recommendations. Vectorization1 of unstructured data is an
approach to making the items machine-processable by representing them as fixed-sized arrays of (usually)
floating-point numbers. These representations are known as vector embeddings, or short, embeddings. Using
these representations, similar items can be identified by performing a nearest neighbor search (NNS).
In order to vectorize a data item, features are identified and represented as a numerical vector with the

same size for all items. One option to get such features is to define them manually. For example, a vector for
a song could be represented by its overall loudness in dB, its tempo in BPM, its duration in seconds, and its
danceability, which is calculated by another algorithm [7]. An alternative to the manual feature definition is
using a machine learning model that learns features from the unstructured data, like the word2vec model
that vectorizes words based on the context in which they appear [54]. On most features of this embedding
representation, a human can no longer interpret what they represent. However, the model is trained so that
similar items have similar vectorized representations when compared using a predefined similarity metric.

Typical applications of NNS include pattern recognition (e.g., recognizing numbers in images that represent
hand-written digits [42]), recommendation systems (e.g., pointing readers of a digital newspaper to articles
similar to ones they read before using the word2vec model [54]), and retrieval-augmented generation (e.g., by
supplying large language models with factual information fitting to a prompt [70]). In addition to the typical
applications mentioned earlier, it is possible to apply vectorization to data of any domain (e.g., molecule
structures [50] and rentable appartements [30]) and perform NNS on it.

Computing the results of an exact NNS [14, 22, 37] requires a high number of floating-point computations.
The latter makes it unfeasible on a large-scale because of the high query throughput required by modern
applications. However, many applications can tolerate approximate answers, which led to an interest in
developing algorithms for approximate NNS [21, 39, 47]. For example, in the aforementioned use-case of
song recommendations, any song similar enough to the songs a user listened to can be of interest. This
is because the vectorization of a song is an approximation by itself. An advantage of approximate NNS is
that the query time can be sped up (sometimes even by orders of magnitudes [5, 72]), for example, by using
approximate indices.

Reducing the size of the vectors has also been utilized to improve approximate NNS runtimes further. By
applying the compression to the embeddings, less bytes need to be transferred in the memory hierarchy,
and computations become cheaper (e.g., by fitting more values into a SIMD lane [52]). State-of-the-art
compression approaches for vector embeddings are quantization [18, 26, 39] and downcasting [18]. Quanti-
zation consists of reducing the size of the vectors by mapping them onto another vector of integers. The
most frequently used quantization technique is Product Quantization (PQ) [39]. PQ divides each vector into
equally sized subvectors and maps each subvector to the index of its nearest neighbor in a list of subvectors
computed by a clustering algorithm. PQ and most other quantization techniques can fail to achieve high
recalls in some datasets because they aggressively change the values in the vectors and thus compromise
their reconstruction error [25]. On the other hand, downcasting reduces the size of floating-point numbers

1Here, vectorization denotes the creation of vector embeddings. In the context of analytical database systems, this term is usually
used for the processing of multiple values at a time, which often leverages SIMD instructions. Thus, those terms are not related.

1

1 Introduction

by using a smaller float representation that requires less bits. Despite having a smaller reconstruction error,
downcasting is limited by the compression ratios it can get. A common datatype used in downcasting is a
16-bit float [18], which means that the compression ratio is only 2.00 (as embeddings are usually represented
by 32-bit floats).
We introduce Lossily Encoded floating-Points (LEP), an algorithm to compress vector embeddings that

minimizes the reconstruction error of vectors while simultaneously achieving high compression ratios.
LEP is the lossy version of ALP [2]. ALP is a recently proposed algorithm to compress floating-point data
that converts these numbers losslessly to integers and applies the integer compression algorithm Frame Of
Reference on them.
Furthermore, we propose to rethink vector embeddings storage from an analytical database perspective.

We leverage changing the data layout using a column-based storage to improve compression ratios. In
addition to this, future research projects on NNS can exploit this layout to perform a faster search.

1.1 Research Questions
The topics of this research can be divided into four research questions that this thesis will answer.

Q1: Compressing Embeddings Lossily Based on the ALP Algorithm Which compression ratios can
be reached when compressing embeddings losslessly using ALP? How is the recall of the nearest
neighbor search affected by making ALP lossy?

Q2: Improving the Compression Ratio on LEP Can the compression ratio be improved by exploit-
ing a data layout for vector embeddings that shares ideas with data layouts in analytical database
systems? Which other characteristics do embedding datasets have that can be exploited to amplify the
compression? Can we control the compression ratio reached by the lossy algorithm?

Q3: Using Correlated Dimensions Do the embedding datasets contain correlated dimensions? How
can they be used to improve the compression ratio?

Q4: Comparing LEP to Other Embedding Compression Algorithms How does LEP perform con-
cerning compression ratio and mean squared error compared to other embedding compression algo-
rithms?

1.2 Outline
The rest of this thesis is organized as follows. In chapter 2, we give an overview of algorithms for nearest
neighbor search and compression of floating-point numbers and vector embeddings. An in-depth analysis of
often-used vector embedding datasets and their compressibility potential is given in chapter 3. Here, we
uncover compression opportunities that have not been explored before on this type of data. In chapter 4,
we present the Lossily Encoded floating-Points compression algorithm and a sampling scheme to speed up
the encoding time of the algorithm. Results on the compression ratio and recall reached by LEP and the
encoding speed when using the sampling scheme can be found in chapter 5. Finally, chapter 6 summarizes
the work done in this thesis by answering the research questions formulated in section 1.1 and suggests
improvements and future work.

2

2 Background

2.1 Nearest Neighbor Search
We define the NNS problem as follows. The set of embeddings searched to find the nearest neighbor of a
query embedding is the database, and vector embeddings in it are called database vectors. A query vector or
query is the embedding for which the algorithm must find its nearest neighbors in the database. A nearest
neighbor is an embedding within the database whose distance to the query is not bigger than the distance
of any other embedding to the query within the database. The distance between embeddings is measured
using a similarity metric. Similarity metrics are, for example, Hamming distance, inner product, Euclidean
distance, and cosine similarity. A variant of NNS is the 𝑘-nearest neighbor search. Here, the result consists
of 𝑘 embeddings closest to the query. Algorithms for NNS are classified into exact and approximate search.
While the exact search does not allow false negative or positive results, it is computationally more expensive.

2.1.1 Exact Nearest Neighbor Search
The algorithmically easiest solution for getting exact results is computing the distance from the query to
every database vector. Thus, the whole dataset needs to be scanned for each query. However, as distance
computations are expensive, many optimization techniques have been proposed. These include tree-based
methods that use tree data structures as indices that guide the search process. Examples are KD-Trees
by Friedman et al. [22], R-Trees by Guttman [31], and Cover Trees by Beygelzimer et al. [9]. All of these
require backtracking on the tree to guarantee correct results. While these data structures work well for low
dimensional spaces (up to about 10 dimensions), they end up visiting almost all database vectors in high
dimensional spaces (more than about 10 dimensions) [8, 57]. As modern vector embeddings usually have
many dimensions, these techniques cannot find improvements over the linear scan.

Another approach is reducing the number of computations by computing bounds on the distance metric.
During a search, algorithms can use such bounds to prune vectors after calculating the distance only on a
few dimensions if the bound guarantees they cannot be in the result. Different bounds for the Euclidean
distance were introduced by Jeong et al. [37], Hwang et al. [32] and Zhang et al. [73].

De Vries et al. [14] propose storing and processing vectors in a vertical layout. The idea behind this vertical
layout and the difference from a horizontal layout is illustrated in figure 2.1. In the horizontal layout (figure
2.1 (a)), the vectors are stored sequentially in memory. Here, the horizontal layout stores the embeddings 𝑒1,
𝑒2, and 𝑒3 one after the other. On the other hand, in the vertical layout (figure 2.1 (b)), the dimensions of
each vector are stored together. In this example, the values of the first dimension of each embedding are
placed after each other, followed by the values of the second dimension, and so on.
This vertical layout is used in the Branch-and-bound ON Decomposed data (BOND) algorithm by De

Vries et al. [14]. The idea of BOND is to calculate the exact distance on only a few dimensions for all vectors.
In the following steps, it computes bounds on the rest of the distance for all vectors, which enables BOND to
exclude some vectors from further computations as they are guaranteed not to be in the NNS result. BOND
then updates the distances of the vectors that are still candidates and repeats these steps until it has found
the 𝑘 results to the NNS query.

Figure 2.2 illustrates the idea behind the BOND search. The whole box represents the stored values. Here,
the embeddings are stored using the vertical layout. First, the algorithm calculates the distance on the first

3

2 Background

Figure 2.1: Storage of 3 embeddings in the (a) horizontal and (b) vertical layout

𝑚 = 8 dimensions of each embedding. Then, it calculates an upper and lower bound for the rest of the
distance for each embedding using a formula less computationally expensive than the actual Euclidean
distance. With these bounds, BOND can find the 𝑘 − 𝑡ℎ best worst-case distance and use it as a threshold.
All vectors whose best-case distance is greater than this threshold cannot be in the final result anymore,
and the rest of the distance calculations on these vectors can be skipped. The light grey boxes in the figure
contain the first dimensions of the embeddings that are still candidates after each step. The white boxes
show the embeddings that can be pruned after each step. The dark grey embeddings are the ones that were
pruned in the previous step. Therefore, the distance computations are avoided here. BOND repeats the steps
of updating the distances and pruning computations until it reaches the last dimension, at which point it
knows the exact distances and can obtain the best 𝑘 vectors.

Figure 2.2: Pruning of distance calculations in the BOND algorithm (Figure borrowed from De Vries et al.
work [14])

Using the vertical layout is required for this algorithm to be fast because it accesses the values per
dimension sequentially when updating the distances. These values are stored sequentially in memory, and
this leads to less random access. Parameters that affect the number of calculations pruned are the ordering of

4

2 Background

the dimensions and the number of newly considered dimensions between two pruning phases (the parameter
𝑚).

2.1.2 Approximate Nearest Neighbor Search
Exact NNS is computationally expensive because it needs to guarantee that skipped computations do
not change the result. However, some applications can tolerate approximate results. The latter opened
opportunities to improve the speed of NNS by factors. An often-used metric to measure the quality of the
answer to a query is "𝑛-recall@𝑚." To calculate this metric on a query, the search algorithm obtains the 𝑚
nearest neighbors to the query. Furthermore, a ground truth containing the 𝑛 nearest neighbors needs to be
provided. The recall is then the share of the 𝑛 ground truth values within the 𝑚 search results. If 𝑛 = 𝑚, this
equals the set intersection of both result sets.

Approximate NNS algorithms are commonly categorized as table- [39, 35], tree- [56, 21], and graph-based
[17, 23, 47] algorithms. All of these build index structures that aid the search.

Table-based algorithms divide the database vectors into buckets containing similar vectors. At search time,
these algorithms determine if a bucket has a low probability of containing the results of a query. They exclude
the vectors within these buckets from the distance evaluation. Ignoring buckets makes these algorithms
approximate, as buckets they skip might contain embeddings that are true positive values. A commonly used
algorithm to bucket database vectors is the Inverted File Index (IVF) [64]. On IVF, a clustering algorithm
(usually k-means) partitions the vectors into buckets. Then, each vector is assigned to the bucket whose
centroid is closest to it. Locality-Sensitive Hashing (LSH) is an alternative to using a clustering algorithm.
LSH uses hash functions that map similar embeddings to the same bucket with a high probability [35].

Trees for approximate nearest neighbor search repeatedly split the remaining space that would have been
searched. State-of-the-art algorithms for this include the Fast Library for ANN (FLANN) by Muja and Lowe
[56] that chooses between different approximate tree-based algorithms based on the dataset or ANN Oh
Yeah (ANNOY) by Bernhardsson that has been used at Spotify [21].

Graph-based indices represent each database vector as a node; for some, the distance between them is
included as an edge. In k-nearest neighbor graphs, edges connect each node to the nodes representing its
k-nearest or approximately nearest neighbors. Examples of k-nearest neighbor graphs are NN-Descent by
Dong et al. [17] and EFANNA by Fu and Cai [23].
One of the most used graph-based algorithms in vector database systems is Hierarchical Navigatable

Smallest Worlds (HNSW) by Malkov and Yashunin [47]. HNSW has a logarithmic search time in best-case
scenarios. Figure 2.3 illustrates the idea of the algorithm. HNSW builds a hierarchy of graphs. When
searching, the algorithm performs a greedy search starting at a fixed node on the topmost layer. In the
figure, the starting node is the orange one in layer 2. Its closest neighbor is the blue node. Once the greedy
search cannot find a closer neighbor to the query in its current layer, it traverses to the next layer, where it
performs the greedy search again until it finds the closest node in the bottom layer (layer 0). In the figure,
this is the green node in the lowest layer.

Complementary to these index-based algorithms, Gao and Long propose ADSampling in [24]. They noticed
that distance computations play a significant role in the execution time of most of these algorithms. Similar
to the exact algorithms mentioned in section 2.1.1, they try only to calculate part of the Euclidean distance.
Unlike these exact algorithms, however, ADSampling performs a hypothesis test every 32 dimensions to
prune embeddings when it is unlikely that the embeddings can still be candidates. As such, it can only yield
approximate results.

5

2 Background

Figure 2.3: An exemplary search in a graph built by the HNSW algorithm (Figure borrowed from Malkov
and Yashunin work [47])

2.2 Compression
In many applications like database queries [1] and approximate nearest neighbor search [39], compression is
used to reduce storage usage and achieve faster data access. Compressed representations can fit more data
higher in the memory hierarchy. As a result, answers to queries can be faster as less bits of data have to be
fetched.

Compression methods are classified into general-purpose compression (GPC) and lightweight compression
(LWC) methods. The first ones do not require information on the type of data they will compress. Instead,
they analyze large chunks of bytes and leverage repeating patterns to achieve compression. For example,
the GPC algorithm Zstandard [51], also called Zstd, finds recurring patterns to build a dictionary that maps
these patterns into smaller codes. More frequent occurring patterns are assigned smaller codes using a
variation of a Huffman coder. However, to find sequences leading to high compression ratios, these kinds of
compressors need to work on large data blocks. Moreover, random access to compressed values is difficult
since they must decompress the whole block in which the value is.
On the other hand, LWC algorithms are tailored to only work on specific datatypes. This enables them

to exploit characteristics within the data domain that are not visible to GPC algorithms. Therefore, they
are magnitudes of speed faster [2, 75] and allow decompressing single values faster than GPC algorithms.
Among the most famous LWC compression techniques we have Frame Of Reference (FOR) by Goldstein et al.
[29] and Tuple Differential Coding, also known as DELTA by Raman and Swart [63] for integers, Fast Static
Symbol Table (FSST) by Boncz et al. [11] for strings and Adaptive Lossless floating-Point Compression (ALP)
by Afroozeh et al. [2] and Chimp by Liakos et al. [44] for floating-point numbers.
While this thesis focuses on compressing floating-point numbers (as vector embeddings usually consist

of floats), we explain the FOR algorithm in more detail as it is a building block of the ALP algorithm that
is used for floating-point compression. FOR works well on data that can be stored within a smaller range
than the integer datatype offers. By subtracting the minimum value of the original range, the compressed
values are shifted to zero and can then be bitpacked. Bitpacking is the process of determining and using the
minimum number of bits required to store a range of values. Take, for example, the binary values 0001 and
0010. While the first one only requires one bit (1) to be stored, the second one needs two (10). For bitpacking,
two is the bit-width with which both numbers will be stored. Then, the values are concatenated using this
bit-width. In the example, 0110 would be the result of storing both 0001 and 0010 with a bit-width of 2.
A variant of FOR is the Patched Frame Of Reference (PFOR) from Zukowski et al. [75]. PFOR exploits

6

2 Background

the fact that datasets usually contain outliers. Outliers are values that require a bigger bit-width than most
of the values in the data range. PFOR tries to store the dataset using a bit-width that fits the values of the
dataset excluding outliers. Consequently, the outliers in the data cannot be stored in the bitpacked array. To
solve this, the authors propose treating them as exceptions kept in another array. To remember which values
are exceptions, PFOR stores the index of the first exception separately. Within the bitpacked array, the bits
at the position where there is an exception are used to remember the offset to the following exception. To
patch the exceptions for decompression, the algorithm finds the exceptions by following the positions that
form a linked list. To figure out which values should be outliers, PFOR calculates a FOR base that leads to
a minimal number of exceptions for each bit-width. Out of those, it chooses the bit-width and FOR base
leading to the highest compression ratio.

All the algorithmsmentioned above, both for GPC and LWC, are lossless. Thismeans that the decompressed
values are identical to the values that the algorithm had to compress. In some applications, this is not required.
For instance, sometimes scientific sensor data do not need to be stored using the full floating-point precision
as they contain noise [71]. Similarly, in the context of NNS, exactness is not required, as returning "close-
enough" neighbors can be acceptable. Therefore, a lossy compression algorithm can be used.

2.2.1 Compression of Floating-Point Numbers
Single-precision (32-bit) floating-point numbers (figure 2.10 (a)), which are also known as floats, are defined
in the IEEE 754 standard [34]. Floats contain a sign bit, 8 exponent bits, and 23 mantissa bits. Let 𝑆 be −1 if
the sign bit is 0 and 1 otherwise. 𝐹 are the mantissa bits, and 𝐸 is the decimal number the exponent bits
represent. The number can then be reconstructed as 𝑆 ∗ 1.𝐹 ∗ 2

𝐸−127 where 1.𝐹 is a binary number.
Lossless compression algorithms for floating-point numbers can be grouped into three main categories:

predictive, XOR, and decimal-based schemes. Predictive schemes like Delta Predictive Coding (FSD) by
Engelson et al. [20] and FPC by Burtscher and Ratanaworabhan [12] use a function that predicts a value
close to the value to compress based on the data seen before. Then, the original value is compressed by
using the deviation from the prediction.

On the other hand, XOR schemes use the XOR operator on two numbers that are stored close to each other.
If the numbers are similar, the result of the XOR will contain many 0s, which these algorithms leverage to
represent the value with less bits. Examples of XOR schemes include the algorithms Gorilla by Pelkonen et al.
[60], Chimp by Liakos et al. [44], Patas developed by DuckDB Labs [19] or Elf by Li et al. [43].
On floating-point numbers, lightweight compression algorithms like FOR or DELTA cannot be used

because they can introduce arithmetical errors on floats, which would lead to a lossy compression. However,
decimal-based schemes represent floats as integers losslessly to enable the usage of integer compression
schemes. Examples of these schemes include the algorithms BoUnded Fast Floats compression (BUFF) by
Liu et al. [45], PseudoDecimals (PDE) by Kuschewski et al. [41] and ALP by Afroozeh et al. [2].
The idea behind the ALP algorithm is that, in real-world datasets, many floating-point numbers have a

fixed precision. Therefore, it is possible to represent them as integers by performing a multiplication with
a power of 10 and, in a second step, use integer lightweight compression algorithms on them. Figure 2.4
shows the process of encoding a vector [𝑛0, 𝑛1, 𝑛2,… , 𝑛1023] of 1024 values using ALP.

To represent the floating-point numbers as integers, ALP multiplies each value 𝑛𝑖 by a power of 10, whose
inverse does not introduce an error when decompressing. Because of floating-point arithmetic errors, this
number might be bigger than the mathematically required value. Thus, the algorithm removes possible
trailing zeros by doing another multiplication with a power of 10 with a negative exponent. In the figure,
this is the step between the 𝑛𝑖 and 𝑑𝑖 values. ALP uses the same parameters per ALP vector of 1024 values.
With this, it is possible that the chosen parameters do not work losslessly on all values. As a solution, the
algorithm saves these values as exceptions by storing their positions and values in two arrays separated
from the compressed data. The resulting integers are still of the same size as the doubles. To compress these
integers, ALP uses the FOR to get the sequence [𝑑’0, 𝑑’1, 𝑑’2,… , 𝑑’1023].

7

2 Background

For data that do not have a fixed precision, ALP uses ALP for Real Doubles (ALPrd). Here, the algorithm
leverages the fact that the first bits of the doubles in a dataset usually show little variance because data often
have the same exponent and sign. Therefore, ALPrd replaces this left part of the binary representation with
a dictionary encoding while the rest is bitpacked.

Compared to the XOR-based compression algorithms mentioned above and PDE, ALP is superior in terms
of compression and decompression speed. The authors report a speedup of factor 8𝑥 to 251𝑥 for compression
and a factor of 7𝑥 to 215𝑥 for decompression on 30 real-world datasets. While ALP did not achieve the best
compression factor in all of them, the average number of bits per value over all datasets was between 1.4

and 20.5 bits smaller compared to the other encodings.

Figure 2.4: Process of encoding doubles with the ALP algorithm

Complementary to the lossless floating-point compression algorithms mentioned above, there has been
research on lossy compression algorithms [16]. However, to the best of our knowledge, apart from quanti-
zation, they have not been used on compressing vectors. We attribute the latter to these algorithms being
relatively slow in both compression and decompression for the throughput needed on NNS applications.
However, the speed benchmarks reported by ALP [2] open the possibility of using it in an NNS context.

The algorithms Digit Rounding [15] and Bit Grooming by Zender [71] use the idea of pruning the precision
of floating-point numbers after a fixed number of digits. They prune the precision on the bit representation.
The algorithms calculate how many bits of the mantissa are required to keep the requested precision. The
rest of the bits are then either set to 0 or 1. After pruning, the algorithms use a general-purpose compression
algorithm.

2.2.2 Compression of Vector Embeddings
Vector embeddings are usually comprised of high-precision floating-point numbers. This makes them
hard to compress losslessly. In the ALP paper [2], the authors compare Gorilla, Chimp, Patas, and ALP on
high-precision machine learning data. While ALP reached a reduction of the size of floats to 28.1 bits per
value (compression ratio 1.14), all other algorithms needed at least 33.4 bits per value (compression ratio 0.96)
and thus had a negative compression. As such, lossy approaches like quantization are the de facto standard
to reduce the size of the vectors. In the context of quantization, decompression is called reconstruction.

Depending on the chosen quantization algorithm and the chosen parameters for it, the values of the vectors
can drastically change in order to reduce their size. However, to reach high recalls, the raw vectors must
additionally be maintained in storage to be able to perform a re-ranking. As a result, the real compression
ratio is negative, as both the raw and compressed values are kept.

8

2 Background

Figure 2.5: Overview of the different quantization approaches: (a) binary quantization, (b) scalar quantization,
(c) product quantization, (d) additive product quantization, (e) additive quantization, and (f) vector
quantization (Figures (c) and (e) are borrowed from Babenko and Lempitsky work [6])

9

2 Background

Quantization

Quantization consists of mapping a sequence of floating-point numbers to a finite set of integers called
codes with a usually smaller cardinality. A smaller cardinality is desired on this set of codes to be able to
represent the original floating-point numbers with fewer bits to save space. As it might be impossible to map
the floating-point numbers onto this smaller range of values, quantization is generally lossy. Quantization
was first used in the context of compressing signals before transmission [27]. Jégou et al. proposed to use
quantization in the context of ANNS [39]. Since then, it has been used as the de-facto technique to reduce
the size of vector embeddings, and many vector database systems adopted it, including Pinecone [61], Milvus
[55], and Weaviate [68].

Different types of quantization techniques exist that trade off higher query speeds, smaller data sizes, and
higher recalls. Among the most popular ones, we have binary quantization, scalar quantization, product
quantization, additive quantization, product additive quantization, and vector quantization.
Binary Quantization. Binary quantization (BQ), also called hashing, quantizes every value to one bit.

Figure 2.5 (a) presents an example of BQ. The algorithm maps every single value in the vector to either 0
or 1, reducing the size of 32-bit floats by a factor of 32. The latter alleviates the storage requirements to
maintain the vectors in-memory. Furthermore, the distance calculation, which is now the Hamming distance
[67], can be sped up using the XOR operator on 64-bit values and the popcount instruction. However, this
quantization technique greatly reduces the recall obtained during an approximate NNS. Therefore, it usually
requires a re-ranking phase.

The RaBitQ algorithm by Gao and Long [25] reaches a sharp error bound using this representation, which
means that it is not possible to reach an asymptotically better bound. However, it still needs re-ranking to
achieve high recalls.

Scalar Quantization. In scalar quantization (SQ), each floating-point value is mapped to an integer called
code defined within a codebook that defines the mapping. The algorithm’s simplest variant trains only one
codebook shared by all dimensions. Figure 2.5 (b) shows an example of scalar quantization applied to a
vector. There is exactly one codebook, out of which SQ chooses a code for each value.

One way to find the codebook is to first normalize the values using the whole dataset’s minimum and
maximum and then divide them into equal-sized ranges gathered into one bucket. Figure 2.6 shows this
process. The graph represents a data distribution within a float32 range of 32-bit floating-point numbers,
which are then mapped to a uint8 range of unsigned 8-bit integers. For this, the values in the continuous
float32 range have to be mapped into buckets that are addressed by a value between 0 and 255.
Ko et al. suggest a SQ algorithm that partially preserves the distance relationship between vectors [40].

The algorithm does so by leveraging the mean and variance of each dimension to construct a codebook. The
authors also emphasize that because of the preservation of the distances, distance calculations on the integer
values are possible and that they can be more efficient than calculations on floating-point numbers.

Aguerrebere et al. present another algorithm called Locally Adaptive Vector Quantization (LVQ) for SQ
[3]. The algorithm leverages the mean of each dimension to compute parameters for the quantization of
each embedding. In addition, Aguerrebere et al. propose a two-level quantization that uses the first part of
the bits to quantize the values and the trailing bits (second part) to quantize the reconstruction error. By
doing so, the algorithm uses the front bits containing the quantized values to obtain the most promising
KNN candidates and the trailing bits containing the quantized reconstruction error to re-rank them. In both
steps, the algorithm first converts the integers to floating-point values before doing the distance calculations.
Therefore, using this quantization in queries has an overhead of having to decompress the values, and
speedups of working on the smaller integer types are not possible since the algorithm transforms them back
into floating-point numbers.
All these scalar quantization algorithms allow the user to choose the number of bits to which they will

compress every value. Common sizes are 8, 6, and 4 bits, leading to compression ratios (without metadata) of
4, 5.33, and 8. While the quantization algorithms we will introduce next can reach higher compression ratios,

10

2 Background

Figure 2.6: Mapping of a range of floating-point numbers to integers during a SQ encoding (Figure borrowed
from Qdrant blog [76])

finding the codebooks can be cheaper in SQ. In the basic version, which normalizes the values using the
minimum and maximum of the dataset, these values can be found by scanning the dataset once. Furthermore,
if the search algorithm is adapted to be aware of this quantization, distance calculations can be done on the
quantized domain as suggested by Ko et al. [40]. This not only saves the decompression time but also makes
speedups possible by working on smaller data types.
Product Quantization. In product quantization (PQ) [39], the 𝐷-dimensional space is split into 𝑀

𝐷

𝑀
-dimensional subspaces. For each subspace, the algorithm trains a codebook using the k-means clustering

algorithm. Figure 2.7 shows how the clustering looks in a 2-dimensional subspace. The vectors, shown as
2-dimensional black points, are clustered into 4 sets. The orange points are the centroids of these sets.

Figure 2.7: Clustering of points (shown in black) in a 2-dimensional subspace into 4 clusters with centroids
shown in orange

When quantizing a vector, PQ splits it into𝑀 subvectors. For each subvector, the algorithm finds the nearest
cluster center in the codebook for this subspace. The encoded vector then consists of the concatenation of
the codes. PQ concatenates the centroids represented by the codes for reconstruction to get a 𝐷-dimensional
vector again. In figure 2.5 (c), the vector with 6 elements is split into 3 subvectors with 2 elements each. For
each of these, a codebook is trained.
Jégou et al. also introduce the concept of asymmetric distance computation (ADC). In ADC, the query

vector does not need to be encoded, but the algorithm uses the distance between the raw query value and the
reconstructed values of the database vectors. To speed up the distance calculations when using Euclidean
distance, ADC precomputes the distances from each subvector in the query to each code in the codebook
for the respective subvector. Then, to get the distance to one database vector, the algorithm looks up the

11

2 Background

precomputed results to get the distances to the centroids in each subspace. As the Euclidean distance is the
sum of the distances for each dimension, the result is the sum of the distances looked up per subspace.

The clustering to preprocess the embeddings is similar to the one used for IVF. Therefore, the algorithms
can be combined without much overhead. For example, PQ with ADC is used within an IVF index in the
algorithm Inverted File with Asymmetric Distance Calculation (IVFADC) [39].

Many optimizations on PQ have been proposed. Ge et al. [26] and Norouzi and Fleet [59] have researched a
more optimized choice of a subspace to perform PQ. They propose rotating and permutating the dimensions
using multiplication with a random orthogonal matrix. Ge et al. reported an improvement in the recall of
their method called Optimized Product Quantization (OPQ) over PQ with randomly ordered dimensions
on all datasets they tested. For example, when using the ADC on the GIST dataset, they improved the
1000-recall@1000 from approximately 0.35 to 0.70. Other research focuses on making the lookups SIMDizable
[4, 10] or performing PQ using GPUs [38, 69].
Like in SQ, users can parameterize PQ to the compression ratio that it should reach. Therefore, the user

must choose the number of subspaces and centroids per subspace. The compression ratio without metadata
for one embedding is the number of subspaces times the number of bits required to represent the index of
each centroid. The latter equals the number of bits required to store the count of centroids. Typical values
for the number of centroids are 8, 12, or 16, while the number of subspaces should be chosen depending on
the number of dimensions of the embeddings. For GIST, Jégou et al. report a compression ratio (without
metadata) of 64 when having a recall over 90% [39]. However, by using OPQ, it was not possible to reach
such high recalls on all datasets [25]. Moreover, storing the codebooks can noticeably affect the compression
ratio when compressing small datasets. PQ can reach high compression ratios at the cost of the increased
encoding time. This time is high because PQ needs to perform the k-means algorithm on every subspace.

Additive Quantization. Similar to PQ, in additive quantization, multiple codebooks are trained. However,
each codebook value represents a D-dimensional vector. To reconstruct a value, AQ sums up codes from
multiple codebooks. The latter helps to minimize reconstruction errors, thus achieving higher recalls. Figure
2.5 (e) shows an example of additive quantization that trains 3 codebooks. Finding an optimal quantization for
each vector is NP-hard. Therefore, Babenko and Lempitsky suggest using beam search as an approximation
[6]. Beam search is a graph search algorithm that continues only with the most promising nodes after each
step. For finding a quantization, this means that the search finds the 𝑁 candidate codes closest to the query
in the first step and proceeds with them as code tuples with one element each. In every subsequent step, the
beam search finds 𝑁 new codes from the remaining codebooks per candidate code tuple. Of the resulting
𝑁

2 tuples, it chooses the best 𝑁 for continuing. For 𝑁 , the authors chose 64 in their experiments. They
show that additive quantization reaches higher recalls than both PQ and OPQ on all datasets they tested. For
example, when compressing SIFT to 32 bits per vector, the probability of finding the nearest neighbor within
5 candidates is approximately 65% using AQ and approximately 40% on PQ and OPQ, where the value is
slightly higher in OPQ.
The authors do not report encoding times; however, they mention that doing the beam search is more

expensive than finding the codes in PQ. Another problem of the algorithm is that distance computations
need more table lookups than in PQ. Martinez et al. [48, 49] suggest improvements using iterated local search.
This algorithm starts with a candidate solution consisting of the required number of codes. The algorithm
alternately updates them using a local search to find codes that minimize the distance to the vector to be
quantized and perturbes to escape local minima. Martinez et al. report that their implementation is 30x - 50x
faster than the beam search implementation.
Chen et al. introduce Residual Vector Quantization (RVQ) in [13]. RVQ quantizes the quantization error

repeatedly using a new codebook. The reconstructed value is again the sum of the reconstruction values
of the codes. For a vector 𝑥 , the algorithm greedily finds a code leading to a reconstructed value 𝑥1 in the
first codebook. As this reconstruction is lossy, there is an error 𝜀1 = 𝑥 − 𝑥1. RVQ quantizes 𝜀1 to 𝑥2 with
error 𝜀2. Figure 2.8 shows an example of this quantization technique using two steps. This process can

12

2 Background

be repeated more often to minimize the reconstruction error. The authors show that RVQ reaches higher
compression ratios than PQ (e.g., 0.65% versus 0.60% for finding the nearest neighbor within 10 candidates)
when repeating this process 8 times on the SIFT dataset.

Figure 2.8: Encoding of an embedding (x) using two codebooks (C1 and C2) in the RVQ algorithm (Figure
borrowed from Chen et al. work [13])

As in PQ, the user has to choose the codebook sizes and the number of codebooks. The mentioned AQ
algorithms can all reach higher compression ratios than those of PQ when having the same recall. The
problems with these approaches are the higher encoding and distance computation times, which is why
vector databases use PQ more often.

Product Additive Quantization. Product additive quantization (PAQ) combines the product and additive
quantization algorithms. The first PAQ algorithm was proposed by Babenko and Lempitsky in [6]. As in
product quantization, PAQ splits the vectors into subspaces. However, it trains multiple codebooks that use
additive quantization for each subspace instead of one. In the example in figure 2.5 (d), two codebooks were
trained for each subspace, and each subvector is then reconstructed as a sum of 2 values of codes. As the
complexity of the beam search for finding quantizations grows cubically with the number of codebooks,
the encoding speed can be improved by having less codebooks per subspace. Furthermore, experiments
of Babenko et al. show that the recall of PAQ is slightly higher than that of AQ. More recent research by
Niu et al. [58] also combines the ideas of product and additive quantization. Their algorithm uses residual
vector quantization for the codebooks per subspace. PAQ can be used to find a better balance between the
higher accuracy of AQ over PQ and the higher encoding speed of the latter.
Vector Quantization. Vector quantization maps every vector to exactly one code representing a D-

dimensional value. See figure 2.5 (f): Here, only one value that maps to a single vector in the codebook
is required to represent the embedding. However, this approach is not feasible, as explained in [39]. If a
128-dimensional vector would be encoded using 64-bit codes, one would get 264 centroids, which would
require 128 ⋅ 264 floating-point numbers to store the codebooks. Furthermore, clustering the whole dataset
requires more time than the other quantization algorithms.
The quantization techniques presented before can be represented as a hierarchy (figure 2.9). A binary

quantizer is a scalar quantizer with one bit per value. A scalar quantizer is a product quantizer with one
dimension per subvector. A product quantizer is an additive product quantizer with one codebook per
addition. An additive product quantizer is an additive quantizer where all other dimensions are set to zero.
Finally, an additive quantizer can be represented by a vector quantizer by just enumerating all values the AQ
stores. Every possible AQ code represents exactly one vector. VQ would store all of them separately with
only one code for each.

13

2 Background

Figure 2.9: The hierarchy of quantization algorithms (Figure borrowed from Douze et al. work [18])

Downcasting

Vector embeddings usually are represented using IEEE 754 single-precision floating-point values that consist
of 32 bits [34]. In downcasting, the floats are represented using 16 or fewer bits. Figure 2.10 (b) shows a
half-precision float with 16 bits. The exponent and mantissa only have 5 and 10 bits, respectively. When
calculating the value, 15 is subtracted from the exponent instead of 127. Because of this and the smaller
number of bits used for the exponent, the range of representable exponents is −14 to 15 instead of −126 to
127. Thus, it is possible that an exponent of a single precision float cannot be stored in the exponent bits of a
16-bit float. In those cases, special values for positive and negative infinity are used. Downcasting cuts the
less significant bits of the mantissa and takes the sign bit over. Both cutting the mantissa and reducing the
exponent range result in a loss of precision.

Some processors support the usage of this smaller float datatype [36]; calculations on these types can be
faster than on the bigger data type. Furthermore, there are SIMD instructions supporting these datatypes,
which can further speed up NNS [36]. For example, this compression approach is used in the FAISS library
[53], or the USearch search engine [66].

Figure 2.10: Bitwise representations of floating-point numbers: (a) IEEE single precision and (b) 16 bit

14

3 Analysis of Vector Embedding Datasets

3.1 Overview of the Datasets
In the previous section, we gave an overview of algorithms to compress vector embeddings in a lossy
fashion. In all of these, we identified problems that explain the need for other compression algorithms that
minimize the reconstruction error and avoid aggressive changes to the raw vector values while reaching high
compression ratios and low encoding and decoding times. BQ needs re-ranking for high compression ratios;
therefore, it has negative compression ratios (as the raw vectors are still needed). SQ can have low encoding
and decoding times. However, it cannot reach compression ratios as high as, for instance, PQ. Furthermore,
SQ significantly changes the vectors by replacing them with codes. The other quantization approaches,
PQ, PAQ, and VQ, have a high overhead for encoding by performing a clustering algorithm like k-means
several times. Downcasting is a compression technique that keeps the vectors mostly intact. However, when
downcasting to the commonly used size of 16 bits, the compression ratio is only 2.00. Therefore, we analyzed
datasets often used in the literature on NNS to develop a lossy compression algorithm that keeps the values
mostly unchanged, has low encoding and decoding times, and reaches high compression ratios.
Table 3.1 presents the datasets we used. The first 6 sets are comprised of vectors, which are the output

of machine learning models used to learn a representation of words or images. The embeddings of the
following 4 datasets are the pixels of images flattened into a one-dimensional vector; they can either be
from grayscale images or one channel of a color image. The following 5 datasets contain embeddings with
manually chosen features from different domains. These can be, e.g., brightness for images, loudness for
audio, and sensor output for motion. Finally, the last two entries are datasets with randomly generated data.
For this, we created embeddings whose values follow a Gaussian distribution.

The datasets DEEP-1B, GloVe25, GloVe50, NYTimes256, Fashion-MNIST, MNIST, GIST, SIFT, Random20 and
Random100 are used in the well-known ann-benchmarks repository. This repository contains a framework
for comparing implementations of ANNS algorithms [5]. The other datasets are used in the literature. We
chose Contriever-1M that is used in the FAISS paper [18]. Trevi and STL are used in the context of ANNS in
[33]. In [25], MSong is reported to be a difficult dataset for product quantization, which makes it interesting
for our approach, which is not quantization-based. Moreover, we chose HAR and Arcene to test the algorithm
on datasets from two other domains (motion and medical data). [74] and [73], respectively, use them in
the context of ANN. Arcene is additionally interesting because, with 10, 000 dimensions, it is much higher
dimensional than the others.
Most datasets’ vectors are represented by 32-bit floating-point numbers or (in the case of SIFT) integers

saved as floats. The image data (in Fashion-MNIST, MNIST, STL and Trevi) are saved as 8-bit integers; HAR
and Arcene are integers stored as whitespace-separated text. We cast all these values to float32 because
search algorithms often only support this datatype as input.
The last column of table 3.1 shows kernel density estimation plots of the dataset distributions. Each

line belongs to one dimension. It shows how often each value occurs in the dataset. The plot additionally
smooths the observations with a Gaussian kernel to have a continuous line. Most datasets containing learned
features have a normal distribution, which is similar in all dimensions. Contriever-1M is the only dataset of
learned features with dimensions depicting different distribution centers. For the image pixel and manually
chosen feature datasets, we have different distributions. Fashion-MNIST, MNIST, Arcene, and MSong have
one value often occurring while the rest is distributed approximately equally. STL and SIFT have multimodal

15

3 Analysis of Vector Embedding Datasets

distributions with two peaks each. The distribution of Trevi is normal, and the one of GIST is skewed.
Moreover, on HAR and the random datasets, every dimension has its own distribution.

Name Dimensions
Train Embeddings Kind of Data

Distribution

Test Embeddings Datatype

Learned Features

Contriever-1M ([18]) 768

990, 000 word embeddings

10, 000 float32

DEEP-1B1
96

9, 990, 000 deep image descriptors

10, 000 float32

GloVe252 25

1, 183, 514 word embeddings

10, 000 float32

GloVe502 50

1, 183, 514 word embeddings

10, 000 float32

NYTimes256 ([5]) 256

290, 000 normalized and randomly projected words

10, 000 float32

Image Pixels

Fashion-MNIST3
784

60, 000 grayscale images

10, 000 int8

MNIST4
784

60, 000 grayscale images

10, 000 int8

STL5 9, 216

90, 000 red dimension of color images

10, 000 int8

Trevi6 4, 096

91, 120 grayscale images

10, 000 int8

16

3 Analysis of Vector Embedding Datasets

Manually Chosen Features

Arcene7 10, 000

800 mass-spectrometric data

100 text

GIST8
960

1, 000, 000 gist features of images

1, 000 float32

HAR9
561

9, 299 sensor data of human motion

1, 000 text

MSong10 420

984, 185 features of songs

10, 000 float32

SIFT8
128

1, 000, 000 sift features of images

10, 000 float32

Random Data

Random20 20

9, 000 random

1, 000 float32

Random100 100

90, 000 random

10, 000 float32

Table 3.1: Overview of the vector embedding datasets

1https://sites.skoltech.ru/compvision/noimi/
2http://nlp.stanford.edu/data/glove.twitter.27B.zip
3https://github.com/zalandoresearch/fashion-mnist
4https://yann.lecun.com/exdb/mnist/; in August 2024, the files in the original source are no longer available; therefore, those from
https://www.kaggle.com/datasets/hojjatk/mnist-dataset were used

5https://cs.stanford.edu/ acoates/stl10/
6https://phototour.cs.washington.edu/patches/default.htm
7https://archive.ics.uci.edu/dataset/167/arcene
8http://corpus-texmex.irisa.fr/
9https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
10https://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html

17

3 Analysis of Vector Embedding Datasets

3.2 Compression of Embedding Datasets using ALP
The ALP algorithm described in section 2.2.1 needs the floating-point numbers to have a fixed precision to
reach high compression ratios. Otherwise, it has to use the ALP for Real Floats (ALPrf) option. Therefore,
this algorithm is, by design, not optimal for compressing embeddings. Table 3.2 shows the compression
ratios of ALP on some of the embedding datasets. On Contriever-1M, DEEP-1B, and GloVe25, ALP can only
reach a compression ratio of at most 1.25. This is because of the nature of these floating-point numbers
having a high precision. On Fashion-MNIST and SIFT, ALP reaches compression ratios of about 4. This is
because these datasets consist of numbers that can be represented as 8-bit integers. In the original version of
Fashion-MNIST, these numbers were stored as integers, and we cast them to floats so that we could use the
ALP algorithm on them. On the other hand, in SIFT, these numbers were saved as floats in the published
version of the dataset. Finally, on GIST, ALP can reach a higher compression than on the other float datasets
because the values in the dataset have a fixed precision of 4 digits. Because of this, ALP does not fall back to
ALPrf, and a compression ratio of 2.032 can be achieved.

Dataset Datatype Compression Ratio Uses ALP for Real Floats

Contriever-1M float32 1.149 ✓

DEEP-1B float32 1.160 ✓

Fashion-MNIST uint8 3.915 ✗

GIST float32 2.032 ✗

GloVe25 float32 1.234 ✓

SIFT float32 4.028 ✗

Table 3.2: The compression ratio of ALP on embedding datasets

However, as some NNS applications tolerate approximate answers, we changed the algorithm of ALP to
be lossy by using smaller LEP exponents than the lossless algorithm would require. Therefore, we allow
some reconstruction error. By converting the floating-point numbers to integers, they are rounded to the
fixed number of decimals determined by the chosen LEP exponent. As such, the chosen LEP exponents
control the recall, as bigger LEP exponents can store the embeddings with a higher precision.

Figure 3.1 (a) shows the approximate nearest neighbor search recall using different LEP exponents in our
lossy version of ALP. All recalls reported in this chapter use a "10-recall@10" as explained in section 2.1.2.
For Fashion-MNIST and SIFT, the recall is always 1 because these are integer datasets. For the other datasets,
different LEP exponents are required to reach the same recall; however, it is possible to reach high recalls of
more than 90% on all datasets with a LEP exponent of at most 4. Mind that a recall of 100% on datasets that
are not actually integers does not necessarily mean that every query would return a correct result. This is
because recall is a metric averaged over many queries (for these results, we averaged the recall over 1000
queries).
Using these small LEP exponents means that the second multiplication step of ALP, which cuts trailing

zeros, can be skipped in both compression and decompression.
With figure 3.1 (b), we show how using small LEP exponents actually leads to high compression ratios.

For the recalls above 90%, we reach compression ratios between 4 and 7 on all datasets. In this plot, the
curves are mirrored to the ones comparing LEP exponents to recalls because smaller exponents lead to
higher compression ratios that we plotted on the x-axis.

18

3 Analysis of Vector Embedding Datasets

0 1 2 3 4
LEP Exponent

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

(a)

5 10 15 20
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

(b)

Dataset
Contriever-1M
DEEP-1B

Fashion-MNIST
GIST

GloVe25
SIFT

Figure 3.1: The recall of LEP for different LEP exponents and compression ratios on embedding datasets

3.3 Exceptions in the Frame Of Reference
In LWC approaches like FOR, exceptions can be used as suggested by Zukowski et al. [75]. Exceptions are
values that cannot be reconstructed losslessly with the parameters chosen by the algorithm. In fact, ALP also
uses exceptions after the step of converting the floating-point numbers to their integer representation. As it
uses one ALP exponent and factor for every 1024 values, it might happen that some of those values cannot
be losslessly reconstructed. Hence, they are stored as exceptions. However, there are no such exceptions
in LEP due to its lossy nature. Despite this, we did experiments to achieve higher compression ratios by
incorporating exceptions on the FOR component of our lossy version of ALP. We classified the exceptions
into two types: Regular exceptions and ones that require only one bit more than the chosen bit-width.
Take, for example, the positive values (0000 0011)2, (0000 0010)2, (0000 0100)2 and (0000 1000)2 and let us
assume that the FOR base was already subtracted of them and that we want to use 2 as the bit-width. Then,
(0000 0011)2 and (0000 0010)2 can be bitpacked to (11)2 and (10)2. (0000 0100)2 can only be bitpacked to
(100)2 and therefore requires 1 bit too much while (0000 1000)2 requires 4 bits when being bitpacked to
(1000)2. For values that are negative after subtracting the FOR base, by "requiring one bit more," we mean
that we could represent its absolute value using the chosen bit-width.
When looking at the distributions of the datasets shown in table 3.1, one can see that there are many

datasets with a normal distribution. For example, this is the case for all datasets with learned features. When
we bitpack the data using PFOR, most of the exceptions are still close to the range of representable values
due to the nature of their distribution and, therefore, are the type of exceptions that require only one bit
more to be encoded. Table 3.3 shows for each dataset the number of exceptions of values that would need
one and more than one bit more than the rest of the values after subtracting the FOR base and bitpacking
them. We counted the number of exceptions per LEP vector, which contains 1024 values. Fashion-MNIST
and SIFT are the only datasets containing regular exceptions (which need more than 1 bit more), and the

19

3 Analysis of Vector Embedding Datasets

number of these exceptions is still low. Table 3.3 also shows the improvement in the compression ratio that
we can reach if we exploit that some exceptions only need one bit more. Details on the algorithm used to
compress the exceptions can be found in section 4.1. The compression ratio improvement by compressing
exceptions is between 0.034 and 0.220, and the new compression ratio is between 1% and 5% higher. Even
on Fashion-MNIST and SIFT, where not all exceptions could be compressed, the compression ratio was
increased by 0.101 and 0.220, respectively.

Dataset (LEP Exponent)
Number of Exceptions Number of Exceptions Compression Ratio Compression Ratio
Requiring More Than Requiring Exactly by Incorporating Uncom- by Further Compressing
One Bit More One Bit More pressed Exceptions in the FOR Exceptions in the FOR

Contriever-1M (3) 0 3 3.670 3.831

DEEP-1B (3) 0 12 3.496 3.530

Fashion-MNIST (0) 6 8 5.953 6.054

GIST (3) 0 21 4.012 4.158

GloVe25 (2) 0 25 3.456 3.567

SIFT (0) 2 20 4.620 4.840

Table 3.3: The numbers of regular and compressible exceptions in the PFOR in LEP on some embedding
datasets

3.4 Data Layouts for Storing the Embeddings
Historically, vector embeddings have been stored using the horizontal layout as described in section 2.1.1.
Many modern data formats for analytical database systems like the storage in DuckDB [62] or the file formats
Parquet [65] and FastLanes [1] store data in a columnar fashion. The latter not only increases analytical
processing speed [2] but also allows for opportunities for higher compression by applying LWC techniques
to data in the same column that tend to have similar values [1, 41].
An ongoing project at the Centrum Wiskunde & Informatica in Amsterdam is exploring opportunities

to use the vertical layout for nearest neighbor search. This research has been inspired by the work of De
Vries et al. [14] that uses the vertical layout in the BOND algorithm. Therefore, we believe that using this
data ordering could improve compression ratios while at the same time benefitting the search itself.

Figure 3.2 shows heatmaps of the first 50 dimensions and the first 100, 000 embeddings on some datasets.
Each row of squares per plot corresponds to the values in one embedding; each square is one individual value,
and the colors indicate which value the dataset contains here. A darker color indicates a higher absolute
numeric value on the embedding. If one row in a plot has a similar color hue in almost all of the cells, the
values are easy to compress because they are close to each other in the numerical range. Consequently, a
small bit-width can be chosen for bitpacking. Similarly, columns with a similar color hue would lead to a
high compression ratio when using the vertical layout. Then, the values in that column would lay next to
each other in storage and would be compressed in the same LEP vector.
The plots show the desired similar color hues per column in some of the columns in Fashion-MNIST,

GloVe25, and SIFT. On these datasets, using the vertical layout could lead to a higher compression ratio
than the horizontal layout. On the other hand, on GIST, there are also rows that are easier to compress in
the horizontal layout. Moreover, less apparent color hue patterns are observable on Contriever-1M and
DEEP-1B.

Another possibility for changing the way in which the embeddings are stored is the order in which they
are saved. The latter is possible because the result of the exact search does not change if a search algorithm
processes the embeddings in a different order. One way of reordering the embeddings is to cluster them
using an algorithm like k-means. This preprocessing is similar to the one required when using an IVF index.
Therefore, a compression algorithm can benefit from this layout if an IVF index is already created. Clustering

20

3 Analysis of Vector Embedding Datasets

Figure 3.2: Heatmaps of the floating-point number distribution within part of the datasets; every square
represents one float in the datasets, and its color hue indicates its value (darker colors belong to
higher values)

21

3 Analysis of Vector Embedding Datasets

algorithms build buckets based on a similarity metric over all dimensions of the embeddings. Values close
to each other might also have similar values per dimension. Therefore, this might open opportunities to
achieve higher compression ratios if embeddings are also stored using the vertical layout.

3.5 Frequently Occurring Values
Within the datasets we analyzed to design LEP, there are some datasets where one value occurs very often
(see the data distributions column of table 3.1). This is the case, for example, for the value 0 in Arcene or
SIFT. Figure 3.3 shows all datasets in which we found LEP vectors containing one often repeated value. For
each of these datasets, the figure presents the share of LEP vectors with this characteristic. Especially on
Arcene and MNIST, this share is close to 1, which means that higher compression ratios can be reached
using an encoding that leverages repeated values.

Arcene MNIST Fashion-MNIST SIFT HAR MSong STL Trevi
Dataset

0.00

0.25

0.50

0.75

1.00

Sh
ar
e
of

Fr
eq
ue
nt

Va
lu
es

Figure 3.3: The share of LEP vectors with repeated values (occurring > 300 times in the LEP vector) for some
embedding datasets

3.6 Correlations between Dimensions
Recently, there has been interest in increasing compression ratios in analytical database systems by leveraging
correlations between dimensions [28, 46]. For vector embeddings, two dimensions, which are stored as two
columns in the horizontal layout, can be correlated if they represent similar features. While this should
not be the case in vector embeddings, as that would imply that features are redundant, it could still be a
possibility that we could exploit.

One metric for measuring linear correlations between two columns is the Pearson coefficient. The Pearson
coefficient has values between −1 and 1. A higher absolute value indicates a higher correlation. Let’s assume
we have two columns 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛] and 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑛] with 𝑛 elements each. Let us define the
following values:

mean of 𝑋 ∶ 𝑋 =

1

𝑛

𝑛

∑

𝑖=1

𝑥𝑖

mean of 𝑌 ∶ 𝑌 =

1

𝑛

𝑛

∑

𝑖=1

𝑦𝑖

Pearson numerator ∶ 𝑃𝑛 =

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑋)(𝑦𝑖 − 𝑌)

22

3 Analysis of Vector Embedding Datasets

Pearson denominator of 𝑋 ∶ 𝑃𝑑𝑥 =

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑋)

2

Pearson denominator of 𝑌 ∶ 𝑃𝑑𝑦 =

𝑛

∑

𝑖=1

(𝑦𝑖 − 𝑌)

2

We then define the Pearson coefficient as

𝑃𝑐 =

𝑃𝑛
√

𝑃𝑑𝑥 ⋅ 𝑃𝑑𝑦

Table 3.4 shows how many pairs of columns with a high Pearson coefficient exist in some datasets. We
tested this on all datasets with less than 1000 dimensions, as the number of pairs to test grows quadratically
with the number of dimensions. Apart from Fashion-MNIST and MNIST, all the datasets showing correlated
columns contain manually chosen features. On the other hand, datasets with learned features or random
data did not exhibit correlations between dimensions.

Dataset Number of Column Pairs With a

(LEP Exponent)
Pearson Coefficient Higher Than. . .

0.7 0.8 0.9

Fashion-MNIST (0) 5, 959 2, 005 246

MNIST (0) 902 289 70

GIST (3) 1, 440 238 0

HAR (3) 37, 431 23, 044 8, 226

MSong (2) 791 340 233

SIFT (2) 47 10 0

Table 3.4: The number of pairs of columns in embedding datasets that are correlated with a high Pearson
coefficient

If the Pearson coefficient between two columns is −1 or 1, one column can be reconstructed from another
one by applying a linear function to the second one.

𝑏1 = 𝑃𝑛/𝑃𝑑𝑥

𝑏0 = 𝑌 − 𝑏1 ⋅ 𝑋

∀𝑖 ∈ {1,… , 𝑛} ∶ 𝑦𝑖 = 𝑏0 + 𝑏1 ⋅ 𝑥𝑖

The values in column 𝑌 can, therefore, be obtained by just knowing the values of column 𝑋 , 𝑏0, and 𝑏1.
We tested leveraging columns with a Pearson coefficient higher than 0.8 on GIST and Fashion-MNIST.

We first tried reconstructing target columns using only the formula above and called this an aggressive
correlated-columns compression. The results of using this compression technique are compared with the
LEP algorithm that does not leverage correlated columns in table 3.5. We applied the LEP algorithm to
the data in the vertical layout clustered with an IVF index and compressed the exceptions. The aggressive
correlated-columns compression reaches higher compression ratios on both datasets. However, it also
influences the recall negatively and even reaches a recall of only 0.531 on Fashion-MNIST. Therefore, we
switched to a less aggressive compression approach, which stores the errors between the result of the linear
function and the original values. Contrary to the aggressive correlated-columns compression, this approach
is lossless.

23

3 Analysis of Vector Embedding Datasets

Aggressive Correlated-Columns Compression PFOR

Dataset (LEP Exponent) Compression Ratio Recall Compression Ratio Recall

GIST (3) 4.280 0.870 4.153 0.941

Fashion-MNIST (0) 7.062 0.531 6.054 1.000

Table 3.5: The compression ratio of LEP using correlated dimensions aggressively on GIST and Fashion-
MNIST

For this lossless correlation approach, we first checked for each pair of dimensions if the Pearson coefficient
between them is high enough and if the column chosen as a source is not already being compressed using
another column. Then, we calculated 𝑏0 and 𝑏1 from the equations above. From those, we calculated the
value that would be reconstructed by using the linear function. As this is not the same as the value we want
to compress, we calculate the error between these reconstructed and original values. We finally saved these
errors compressed with PFOR. For the other columns, we used the normal LEP compression. To keep this
experiment simple, we did not try to further compress exceptions on the reconstruction errors as described
in section 3.3.

The results of this approach are shown in table 3.6. As one can see, there is always an improvement in the
compression ratios on GIST. The improvement is bigger if 0.7 is chosen for the Pearson coefficient threshold
because we found more correlated columns. Nevertheless, on Fashion-MNIST, the compression ratio is lower
for any Pearson coefficient threshold, and it gets higher for higher Pearson coefficient thresholds. This
is because we always compressed one column using another one when the Pearson coefficient was high
enough, independent of whether the compression ratio on the reconstruction errors was actually higher
than on the raw values per LEP vector. Therefore, improvements on the compression ratio are possible if
both compression ratios are calculated per LEP vector and the best is chosen.

Min. Pearson Coefficient
Compression Ratio Compression Ratio
Without Correlations With Correlations

GIST (LEP Exponent 3)
0.7 3.840 3.905

0.8 3.840 3.872

Fashion-MNIST (LEP Exponent 0)
0.7 4.450 4.210

0.8 4.450 4.244

0.9 4.450 4.378

Table 3.6: The compression ratio of LEP using correlated dimensions losslessly on GIST and Fashion-MNIST

Despite the slight improvement in compression ratios in GIST, the complexity of finding correlations
on embedding datasets is high, as every pair of columns must be evaluated. Moreover, the decompression
becomes more expensive, and two columns need to be loaded into memory to decompress the correlated
columns. Ultimately, we believe that despite vector embedding features being correlated in some datasets,
algorithms that leverage linear correlations are not effective on the majority of embedding datasets. Nonethe-
less, we only focused on linear correlations. Hence, it might be possible to achieve higher improvements
using other types of functions for reconstruction, like polynomials.

24

4 Lossily Encoded floating-Points

Based on our experiments and observations presented before, we present LEP: Lossily Encoded floating-
Points, a new compression algorithm for vector embeddings.
Figure 4.1 shows the process of compressing a dataset using the algorithm on a high level. First, the

algorithm reorders the data in such a way that similar vectors are placed close-by in storage. For this, it
applies clustering using the Inverted File Index implemented in the FAISS library [18] with 100 clusters,
independent of the dataset size. The clustering is represented in the figure by the 2-dimensional coordinate
system, where the orange points are the cluster centers. Once the algorithm reordered the embeddings so
that all embeddings from one IVF cluster are laying after each other, LEP transposes them to the vertical
layout as described in section 3.4. In the figure, the values are shown as written to consecutive memory,
where each box represents one cluster, and each row in it is one dimension. As in figure 2.1, we use different
colors to indicate that the values within one row come from different embeddings.

Next, LEP processes each 1024 consecutive values 𝑛0, 𝑛1,… , 𝑛1023 together in one LEP vector. It multiplies
each value with a power of 10. We take the LEP exponent for multiplication as an input parameter because it
influences both compression ratio and recall. Therefore, the user needs to decide about its value depending on
the desired result. The algorithm then converts the values to integers 𝑑0, 𝑑1,… , 𝑑1023. Like the ALP algorithm,
we use the same fast rounding trick for this1.

Figure 4.1: The process of encoding floats using LEP

LEP compresses these integers using the Patched Frame Of Reference. We use the algorithm described
in [75] on every LEP vector to find the bit-width and FOR base. Algorithm 1 shows how the parameters
bit-width and FOR base are calculated for the PFOR. Lines 7 to 16 are taken from the PFOR algorithm. This
algorithm works on a sorted LEP vector (line 5). The PFOR algorithm uses two pointers, lo and hi, to define a
candidate range of values that are no exceptions. min and len save a range of values that was chosen before
as an intermediate result. If the range of values between lo and hi requires a bigger bit-width than the one to

1Due to the IEEE float representation, they cannot store exact integers of more than 22 bits. In the range between 2
22 and 2

23, floats
do not have a decimal part. Thus, by adding and subtracting 222 + 2

23 to a float, it is automatically rounded to the float representing
the next integer. The number can then be cast to a 32-bit integer.

25

4 Lossily Encoded floating-Points

test, then the values between them, including lo and excluding hi, are the maximal number of elements that
fit into the chosen bit-width and start from lo. If the number of these candidates is bigger than the last len,
taking them is a better choice (as it leads to a higher compression ratio), and the algorithm updates len and
min. With this, min gets the value that guarantees a maximal number of elements that are no exceptions for
a given bit-width.

We use the part from the PFOR algorithm in the context of embedding compression in the following way.
The bit-width to start testing with is 1 smaller than the one required for having no exceptions (lines 2 - 4). It
is unnecessary to try bigger bit-widths, as all of them will have no exceptions and, therefore, result in higher
compression ratios. Then, the FOR base is found for each bit-width, and the compression size is calculated
using the FOR base and bit-width (line 17). After that, the parameters bestCompressionSize, bestBitWidth,
and bestForBase are updated, if required (lines 17 to 21).

Algorithm 1: Finding the bit-width and FOR base to use for the PFOR
1 Function FIND_PARAMETERS(vector):
2 bestBitWidth, bestForBase ← FIND_PARAMETERS_WO_EXC(vector);
3 bestCompressionSize ← bestBitWidth ⋅ 1024;
4 bitWidthToTest ← bestBitWidth − 1;
5 SORT(vector);
6 while bitWidthToTest > 0 do
7 len ← 0;
8 min ← MAX_INT ;
9 range ← (1 << bitWidthToTest) − 1;

10 for lo ← 0, hi← 0; hi < 1024; hi++ do
11 if ABS(vector[hi] − vector[lo]) > range then
12 if hi − lo > len then
13 min ← vector[lo];
14 len ← hi − lo;
15 while ABS(vector[hi] − vector[lo]) > range do
16 lo++;

17 compressionSize ← GET_COMPRESSION_SIZE(vector, bitWidthToTest, min);
18 if compressionSize < bestCompressionSize then
19 bestCompressionSize ← compressionSize;
20 bestBitWidth ← bitWidthToTest;
21 bestForBase ← min;
22 bitWidthToTest- -;
23 return bestBitWidth, bestForBase;

As the LEP algorithm compresses the PFOR exceptions after they have been found, algorithm 1 will only
lead to the optimal compression ratio in some cases. If different FOR bases that lead to the same number
of exceptions can be chosen, they may have a different number of compressible exceptions and, therefore,
different compression ratios. It can also happen that choosing more exceptions leads to a higher compression
ratio if those additional exceptions are compressible and replace less regular exceptions that cannot be
compressed. However, we chose not to adapt the algorithm for finding the bit-width and FOR base to take
compressible exceptions into account as this encoding is already computationally expensive, and we do not
expect high improvements in the compression ratio by this change.

26

4 Lossily Encoded floating-Points

The differences between our lossy to the lossless version of ALP are: (1) preprocessing the data by
clustering the embeddings and reordering them to the vertical layout; (2) doing only one multiplication for
getting the integers representing the values; (3) having no exceptions when converting the floats to integers;
(4) adding two types of exceptions in the Frame Of Reference.

4.1 Compression of Exceptions
For each exception, we test if it needs only one bit more than the other values after subtracting the FOR
base. See figure 4.2 for an example. The upper part is the distribution of the values, and below is an array
of 8 integers in binary representation to be encoded. Let us assume that the bit-width to use is 1 and that
the FOR base has already been subtracted. Then, we say that (1111)𝑏 and (0010)𝑏 only need one bit more
than the bit-width to use. (0010)𝑏 can be represented with 2 bits as (10)𝑏 and (1111)𝑏 is the two complement
representation of −1; 1 could be represented with 1 bit in binary, but we need more bits to signal that it is
negative.

Figure 4.2: An example of compressing a range of numbers containing compressible exceptions in the PFOR
in LEP

For (0010)𝑏, we know that we need precisely 2 bits to represent it. Therefore, the most significant bit
needs to be 1. So we can save the rest of the bits (10)𝑏, which is (0)𝑏, in the array of compressed values and
mark the position as a positive compressed exception.

For (1111)𝑏, we can multiply it with −1 and get (0001)𝑏, which also fits into the array of compressed values.
Therefore, we save (1)𝑏 and mark the position as a negative compressed exception.

We mark positions by storing the indices in two separate lists using 16 bits for the index as the index is
between 0 and 1023.
The regular exceptions that cannot be compressed in this way, which are (1110)𝑏 and (0110)𝑏 in the

example, are saved by storing their positions with 16 bits each in a list and their values as regular exceptions

27

4 Lossily Encoded floating-Points

in another one with 32 bits each.
Therefore, the compression size for line 17 in the algorithm is calculated with the following formula:

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 = 𝑏𝑖𝑡_𝑤𝑖𝑑𝑡ℎ_𝑡𝑜_𝑡𝑒𝑠𝑡
+ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑟𝑒𝑔𝑢𝑙𝑎𝑟_𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 ⋅ (16 + 32)

+ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑙𝑒_𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 ⋅ 16

4.2 Bitmap-Compression of Frequent Values
As described in section 3.5, there are some datasets where a single value occurs often. If a value is frequent
in a LEP vector, we propose not storing any of the numbers with this value at all. A bitmap of 1024 values,
which correspond to the indices in the LEP vector, marks which positions within the LEP vector contain the
frequently occurring value.

See the values in figure 4.3 as an example for this compression scheme. Here, 3 is the frequently occurring
value. A 1 in the bitmap means that the value at that index is 3. For the other values, an array only containing
those in the order they were in the original array is used. These values are then further compressed using
the PFOR and compressed exceptions. However, here, the number of values that share a bit-width and FOR
base is less than 1024.

Figure 4.3: Compressing a LEP vector using the bitmap compression of frequent values

Because the bitmap requires 1024 bits of additional space, the number of frequent values needs to be high
enough for using a bitmap to be beneficial. The number of bits that can be saved with this depends both
on how often the frequent value occurred and the bit-width that each value is compressed to. For recalls
above 90%, LEP reach a compression ratio of 5.124 in average, which corresponds to 6.245 bits per value. We
want to have a threshold independent of the dataset and reach a noticable effect on the compression ratio.
Therefore we chose 300 as a threshold, which means that at least 3.413 bits per frequent value need to be
saved (the 1024 additional bits are amortized by 300 frequent values). We want a noticable effect because
this scheme increases the encoding time as the frequent value needs to be found. Furthermore, LEP vectors
have a size of 1024 values to enable auto-vectorization of the code for the FOR. Despite not measuring the
decoding time of the algorithm, working with vectors of arbitrary size might increase decoding time in case
the FOR algorithm can not be auto-vectorized efficiently.

4.3 Non-Decimal LEP for Fine-Tuning Compression Ratios and
Recalls

LEP can only reach a limited number of different compression ratios and recalls. This is because the only
parameter influencing these metrics is the LEP exponent used to obtain the integer representations. In
our experiments, we were also only using LEP exponents smaller than 5 as they were already reaching

28

4 Lossily Encoded floating-Points

recalls close to 1. However, this leads to large gaps between the reachable recalls, as figure 3.1 (a) shows.
For example, for Contriever-1M, the recall improves from less than 0.1 to about 0.9 when choosing a LEP
exponent of 2 instead of 1. Likewise, there are also big gaps between the compression ratios, for example, in
the case of Contriever-1M. Here, the compression ratio drops from 15 to 7 when using LEP exponents 1 and
2 (see figure 3.1 (b)).

Lossless ALP exploits the fact that floating-point values often have a fixed precision in real-world datasets.
While this works well on the datasets the algorithmwas designed for, this is often not the case for embeddings
(as we showed in section 3.2). In fact, within our embedding datasets, only the integer datasets, SIFT, and GIST
had this characteristic. Therefore, our lossy version of ALP does not require multiplying the floating-point
numbers by a power of 10. We can use any floating-point number 𝑓 . The algorithm only changes at the step
𝑑 = 𝑛 ⋅ 10

𝑒 in figure 4.1 to 𝑑 = 𝑛 ⋅ 𝑓 . We can use the integers that are the output of this for the Patched Frame
Of Reference as before. By doing so, the compression ratio and recall can be tuned to any value, and the
large gaps in the plots are reduced.

4.4 Speedup of the Encoding Time
In the PFOR work [75], the authors suggest sampling some values over the whole dataset and calculating
their optimal parameters. However, using the same parameters for all dimensions might negatively affect
the compression ratio as the dimensions can have different distributions (as can be seen, for example, in the
distribution plot of Contriever-1M in table 3.1).

On the other hand, the lossless version of ALP samples some values every 100 vectors to determine a set of
candidate parameters (ALP exponent, ALP factor) that would achieve high compression performance on the
taken samples. At compression time, the algorithm performs a second sampling by taking samples for each
LEP vector that will be compressed, and it probes every candidate parameter on the samples. Finally, ALP
chooses the most promising parameters for compression. For the PFOR, parameters (bit-width, FOR base)
can be tested by scanning each LEP vector once and checking which of these values would be exceptions.
We propose to also use a sampling in LEP to speed up the encoding time. Algorithm 2 presents how we

can use sampling to find parameters for the PFOR algorithm. Here, we first sample 5 vectors of 1024 values
equally distributed every 100 vectors (lines 2 - 8). We then find the bit-width and FOR base for each of these
5 vectors using the procedure presented in algorithm 1 (here referred to as FIND_PARAMETERS in line 9).
If we obtain the same bit-width several times, we take the mean of the FOR bases as the candidate FOR base
for this bit-width (lines 11 - 12).

At compression time, we evaluate the compression ratio obtained using each candidate parameter pair on
the vector to compress. Here, one can iterate over the vector to check which values become which kind of
exception.

29

4 Lossily Encoded floating-Points

Algorithm 2: Find parameters using sampling
1 Function FIND_COMBINATIONS(values, valuesCount):
2 stepSize ← valuesCount / 5;
3 for i← 0 to 5 − 1 do
4 offsets[i] ← i ⋅ stepSize;
5 stepSize ← stepSize / 1024;
6 for offset in offsets do
7 for j ← 0 to 1024 − 1 do
8 inputVector[j] ← values[offset + stepSize ⋅ j];
9 bestBitWidth, bestForBase ← FIND_PARAMETERS(inputVector);

10 combinations[bestBitWidth].PUSH_BACK(bestForBase);
11 for bitWidth in combintations.KEYS() do
12 combinations[bitWidth] ← MEAN(combinations[bitWidth]);
13 return combinations;

30

5 Evaluation

After presenting the LEP algorithm in chapter 4, we now focus on measuring its performance using two
metrics: Its compression ratio and the mean squared error of the values after reconstruction. We measure
these at different recall levels using the data layouts we presented in the previous chapter. Furthermore, we
compare LEP with other compression algorithms (SQ, LVQ, PQ, and downcasting). Finally, we show the
impact of sampling values to increase the encoding speed on the compression ratio. All recalls reported in
this chapter use the metric "10-recall@10" introduced in section 2.1.2 and are the average over 1000 queries.

5.1 Assessment of Data Layouts
In this section, we present the results of using the LEP algorithm to compress embeddings stored using the
different data layouts described in section 3.4.

Figure 5.1 shows the compression ratio for different LEP exponents when using the vertical and horizontal
layout. Here, the embeddings were reordered in clusters given by the IVF index. As one can see, the
compression ratio on the vertical layout (solid line) is higher on almost all datasets than on the horizontal
layout (dashed line). This effect is more prominent for LEP exponents that reach higher compression ratios.
For example, on DEEP-1B for LEP exponent 1, the compression ratio improves from 10.257 on the horizontal
layout to 13.031 on the vertical layout. We used bar plots to showcase the results on the integer datasets
to make the difference between the compression ratios more visible. Thus, both bars belong to the same
LEP exponent (in this case, 0, as the data are integers). Only on STL and Trevi the compression ratio on the
horizontal layout is slightly higher (0.026 and 0.250, respectively).

Based on these results, using the vertical layout is better if one has no prior knowledge of the dataset. It
is important to note that this vertical layout not only improves compression ratios but also works well on
search algorithms that prune vectors by bounds as multiple vectors can be processed at a time. This is one
of the aspects in which our compression algorithm contributes to rethinking vector embeddings search in
analytical database systems.
We also explored the effect of reordering the embeddings in terms of their clusters assigned by an IVF

index. The plots in figure 5.2 show the compression ratio with and without reordering the embeddings
regarding their IVF clustering. Here, we used the IVF clustering from the FAISS library [53] with 100 clusters
as a fixed parameter. Similar to using the vertical layout, reordering the embeddings using the IVF clusters
improves the compression ratio on almost all datasets. Here, the improvement is also higher for smaller LEP
exponents. Only on Arcene the compression ratio is negatively affected. The latter is due to Arcene having
less than 1024 embeddings. In this case, a LEP vector (which always contains 1024 values) needs to include
values from the following dimension. Moreover, as we were clustering the 800 embeddings of Arcene to 100
clusters, every cluster only contains a few values.

Furthermore, the effect on the compression ratio could be increasable by using different parameters in the
IVF algorithm, depending on, for example, the size of the dataset. Maintaining metadata about the clusters
in the stored data can also be exploited by search algorithms. However, one has to keep in mind that this
preprocessing prolongs the encoding time.

31

5 Evaluation

1 2 3 4

5

10

15

Co
m
pr
es
si
on

Ra
tio

Contriever-1M

1 2 3 4

5

10

DEEP-1B

1 2 3

3

4

5

GloVe25

1 2 3

3

4

5

6
GloVe50

1 2 3 4

5

10

Co
m
pr
es
si
on

Ra
tio

NYtimes256

0 0
0

2

4

6
fashion-MNIST

0 0
0.0

2.5

5.0

7.5

10.0

MNIST

0 0
0

1

2

3

4
STL

0 0
0

1

2

3

4

Co
m
pr
es
si
on

Ra
tio

Trevi

0 0
0

1

2

3

Arcene

1 2 3 4

5

10

15

20
GIST

1 2 3 4
2

4

6

8

HAR

1 2 3
LEP Exponent

3

4

5

Co
m
pr
es
si
on

Ra
tio

MSong

0 0
LEP Exponent

0

2

4

SIFT

1 2 3 4
LEP Exponent

2.0

2.5

3.0

3.5

4.0
Random20

1 2 3 4
LEP Exponent

2.0

2.5

3.0

3.5

4.0
Random100

Layout
Vertical
Horizontal

Vertical
Horizontal

Figure 5.1: The compression ratio of LEP on data preprocessed into the vertical and horizontal layout

32

5 Evaluation

1 2 3 4

5

10

15

Co
m
pr
es
si
on

Ra
tio

Contriever-1M

1 2 3 4

5

10

DEEP-1B

1 2 3

3

4

5

GloVe25

1 2 3

3

4

5

6
GloVe50

1 2 3 4

5

10

Co
m
pr
es
si
on

Ra
tio

NYtimes256

0 0
0

2

4

6
fashion-MNIST

0 0
0.0

2.5

5.0

7.5

10.0

MNIST

0 0
0

1

2

3

4
STL

0 0
0

1

2

3

4

Co
m
pr
es
si
on

Ra
tio

Trevi

0 0
0

1

2

3

4
Arcene

1 2 3 4

5

10

15

20
GIST

1 2 3 4

4

6

8

HAR

1 2 3
LEP Exponent

3

4

5

Co
m
pr
es
si
on

Ra
tio

MSong

0 0
LEP Exponent

0

2

4

SIFT

1 2 3 4
LEP Exponent

2.0

2.5

3.0

3.5

4.0
Random20

1 2 3 4
LEP Exponent

2.0

2.5

3.0

3.5

4.0
Random100

Clustering
Clustered
Not Clustered

Clustered
Not Clustered

Figure 5.2: The compression ratio of LEP on data preprocessed using clustering or no clustering

33

5 Evaluation

5.2 Comparison against Other Algorithms

5.2.1 Considered Algorithms
We compared LEP to 5 other algorithms: ALP, downcasting, standard SQ, LVQ, and PQ. For LEP, we used
data preprocessed in the vertical layout and reordered in terms of the IVF clustering with 100 clusters. To
see the improvement in the compression ratio when using a lossy lightweight compression algorithm, we
compared it to the lossless version of ALP. Based on the dataset, the algorithm chose to use ALP or ALP for
Real Floats.

For downcasting, we chose the downcasting to 16 bits implemented in the FAISS library [53]. It behaves
as the downcasting described in section 2.2.2. As our algorithm compresses single values, it can best be
compared to scalar quantization. As implementations for this, we chose the implementation of scalar
quantization in the FAISS library and LVQ [3]. The FAISS implementation divides the data range into
uniform buckets using the minimum and maximum of the dataset as parameters. As sizes of the compressed
values, we used all values offered by the implementation, which are 8, 6, and 4 bits. LVQ works as described
in section 2.2.2. This algorithm lets one choose two parameters, the sum of which is the number of bits
needed to represent a single value. The authors note this as 𝑎x𝑏, where a is the number of bits in the first
phase of the algorithm and b is the one in the second. We chose to compare to 8 bits as 8x0 and 4x4, 6 bits as
4x2 and 4 bits as 4x0.

Because PQ is widely used, we also compared LEP to the implementation of PQ in the FAISS library. We
tried to use parameters that lead to comparable compression ratios as LEP. Therefore, per dataset, we trained
two quantizers where each subvector consists of one dimension, one of them where each value is represented
with 8 bits and the other one with 4 bits. To take advantage of the fact that PQ is intended to be used on
larger subvector sizes, we also trained one quantizer with a subvector size of 2 and 8 bits per value. For this
to work, the number of dimensions needs to be dividable by 2. This was not the case for GloVe25 with 25

dimensions and HAR with 561 dimensions. For GloVe25, the only possibility of splitting the dimensions
in less than 25 and more than 1 subspaces is having 5 elements per subvector. For HAR, we divided the
dimensions by 3.

5.2.2 Compression Ratio and Mean Squared Error
Figure 5.3 shows the compression ratio - recall curve of LEP compared to the compression algorithms
mentioned above. Values to the upper right of the plot have a higher compression ratio and recall and are,
therefore, better. The plots only show one data point for the lossless ALP algorithm and the downcasting
to float16 because there are no parameters for tuning the compression ratio. This is also the case for the
integer datasets for LEP.

Overall, there is no dataset in which LEP has a recall of less than 90% on all compression ratios comparable
with the compression ratios of the other algorithms. This is not the case for all of the other compression
algorithms. For instance, on NYTimes256, all of the other algorithms had compression ratios below 75%, and
on MSong, only product quantization was comparable to LEP .
On the integer datasets, LEP can always reach a recall of 100%. It also reaches the same or even higher

compression ratios compared to the other algorithms on Fashion-MNIST, MNIST, and SIFT. In STL and
Arcene, LEP is beaten by the other algorithms. However, in these datasets, the bitmap compression technique
described in section 4.2 increases the compression ratio on all of them. On the other datasets (mainly
containing learned features), LEP achieves compression ratios comparable to those of the competitors. For
some datasets (e.g., Contriever-1M), the plots also show compression ratios with low recalls of less than 0.2.
This is because we have a high difference in both the compression ratio and the recall between this value and
the last one, and these plots are limited to integer exponents. With non-decimal LEP, better compromises
between the compression ratio and the recall can be reached.

34

5 Evaluation

5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Contriever-1M

5 10

DEEP-1B

10 20

GloVe25

2 4 6 8

GloVe50

5 10
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

NYTimes256

2 4 6 8

fashion-MNIST

2.5 5.0 7.5 10.0

MNIST

2 4 6 8

STL

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Trevi

2 4 6 8

Arcene

5 10 15 20

GIST

2.5 5.0 7.5

HAR

2 4 6 8
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

MSong

2 4 6 8
Compression Ratio

SIFT

2 4 6 8
Compression Ratio

Random20

2 4 6 8
Compression Ratio

Random100

Algorithm
ALP LEP float16 Scalar Quantization Product Quantization LVQ

Figure 5.3: The compression ratio of LEP compared to other compression algorithms

35

5 Evaluation

5 10 15
0

10
−10

10
−8

10
−6

10
−4

M
SE

Contriever-1M

5 10
0

10
−9

10
−6

10
−3

DEEP-1B

10 20
0

10
−9

10
−6

10
−3

GloVe25

2.5 5.0 7.5
0

10
−9

10
−6

10
−3

GloVe50

5 10
0

10
−10

10
−8

10
−6

10
−4

M
SE

NYTimes

2.5 5.0 7.5
0

10
−2

10
0

10
2

fashion-MNIST

5 10
0

10
−2

10
0

10
2

MNIST

2.5 5.0 7.5
0

10
−2

10
−1

10
0

10
1

STL

2.5 5.0 7.5
0

10
−2

10
−1

10
0

10
1

M
SE

Trevi

2.5 5.0 7.5
0

10
−2

10
0

10
2

Arcene

10 20
0

10
−18

10
−13

10
−8

10
−3

GIST

2.5 5.0 7.5
0

10
−10

10
−7

10
−4

HAR

2.5 5.0 7.5
Compression Ratio

0

10
−8

10
−4

10
0

M
SE

MSong

2.5 5.0 7.5
Compression Ratio

0

10
−2

10
−1

10
0

10
1

SIFT

2.5 5.0 7.5
Compression Ratio

0

10
−9

10
−6

10
−3

10
0

Random20

2.5 5.0 7.5
Compression Ratio

0

10
−9

10
−6

10
−3

10
0

Random100

Algorithm
ALP LEP float16 Scalar Quantization Product Quantization LVQ

Figure 5.4: The mean squared error of LEP compared to other compression algorithms

36

5 Evaluation

We also measured the mean squared error (MSE) of every encoding algorithm. The MSE is a metric that
shows how much information is lost between the original values of the vectors and their reconstruction
values. A lower MSE means that the reconstructed values are closer to the original ones. The MSE between
a vector of raw values 𝑢 = [𝑢1, 𝑢2,… , 𝑢𝑛] and a vector of decompressed values 𝑑 = [𝑑1, 𝑑2,… , 𝑑𝑛] that were
obtained after compressing 𝑢 and decompressing, is defined as follows:

𝑀𝑆𝐸(𝑢, 𝑑) =

1

𝑛

⋅

𝑛

∑

𝑖=1

(𝑢𝑖 − 𝑑𝑖)
2

Figure 5.4 shows the MSE for different compression ratios on all datasets. In these plots, values to the
lower right are better as they have a higher compression ratio and smaller MSE.
In this metric, LEP lies below the other curves for almost all computed compression ratios. The curves

clearly demonstrate that LEP is superior in, e.g., Fashion-MNIST, MNIST, and MSong. Additionally, we can
provide fixed error bounds for a chosen level of compression thanks to the nature of our algorithm. For a
chosen LEP exponent, we know at which digit pruning starts, and, therefore, LEP has an upper bound for
the distance between the reconstructed and original values.

Differences to Scalar Quantization

The transformation of the data performed by LEP is similar to that of SQ. Both algorithms map intervals of
floating-point numbers onto buckets. In the case of LEP, the values that are the same after the multiplication
with the exponent or factor and casting it to an integer are mapped to the same values representing one
bucket. For instance, if exponent 1 is used, then 12.10 and 12.11 are both transformed to 121. On the other
hand, SQ calculates buckets of equal size based on the minimum and maximum of the dataset. Data next
to each other are then mapped to the same bucket or two adjacent buckets. This similarity between the
algorithms can also be seen in figure 5.4. The line for SQ is usually close to the one for LEP.
However, on most datasets, the MSE of LEP is lower than that of SQ. The major differences between

the two algorithms are that LEP compresses clustered data in the vertical layout, chooses the bit-width
depending on the data, and uses compressed exceptions in the FOR. The parameters bit-width and FOR
base are calculated on data stored in consecutive memory, which usually come from one cluster and one
dimension. To justify that these differences are the reason why LEP usually has a lower MSE than SQ, we
performed the following experiment. We calculated the compression ratio and MSE of LEP and SQ only
on one dimension from one cluster at a time. Because of this, SQ chose its parameters only for that one
dimension and cluster. Furthermore, we compressed whole datasets using SQ and calculated the MSE for
each dimension separately. This enables us to compare SQ using parameters per dimension to SQ using
parameters calculated for the whole dataset.

Figure 5.5 shows the results of this experiment on the first clusters of GloVe25 and HAR. In all plots, the
results of SQ with parameters calculated for the chosen dimension are better than when using parameters
calculated for the whole dataset. The effect is especially prominent on HAR, as in this dataset every dimension
has a different distribution (see the data distribution plot in table 3.1). Moreover, while the dimensions in
GloVe25 are more similar to each other, they are not identical, so having different parameters per dimension
can better use the bits provided per value. In almost all plots, LEP is better than both SQ variants. We
attribute this to the fact that LEP has compressed exceptions in the FOR and can choose the bit-width
depending on each LEP vector. In the last plot, the MSE of SQ with parameters calculated per dimension
is slightly better than that of LEP. However, LEP is still better than SQ with parameters calculated for the
whole dataset.

To show the positive impact of letting LEP choose the bit-width adaptively per LEP vector, we compared
LEP and SQ with parameters chosen per dimension to LEP with a fixed bit-width. To control the different
MSEs we got for LEP with a fixed bit-width, we chose different factors as in non-decimal LEP. The results on

37

5 Evaluation

the first clusters of GloVe25 and HAR are shown in figure 5.6. For each fixed bit-width, the best compression
ratio LEP can reach is slightly smaller than the one of SQ. This is because LEP has more metadata. In the
cases when the factor is already so small that there are no exceptions, choosing a smaller factor leads to a
higher MSE because then more of the precision of the floating-point numbers is pruned. However, the MSE
of LEP is lower than the one of SQ as LEP has compressed exceptions. When choosing bigger factors, both
the compression ratio and MSE of LEP get smaller. We also compared LEP with a fixed bit-width to LEP that
chooses the bit-width depending on the data. Here, one can see that for some factors, the algorithm is able
to choose a bit-width that leads to a much higher compression ratio as this parameter is chosen locally per
LEP vector. Therefore, letting LEP choose this parameter depending on the data also leads to lower MSEs for
compression ratios that are the same as SQ.

2.5 5.0 7.5

10
−7

10
−4

10
−1

M
SE

GloVe25 (Dim 1)

2.5 5.0 7.5

10
−7

10
−4

10
−1

M
SE

GloVe25 (Dim 12)

10 20
Compression Ratio

10
−8

10
−6

10
−4

M
SE

HAR (Dim 1)

5 10
Compression Ratio

10
−8

10
−6

10
−4

M
SE

HAR (Dim 281)

Algorithm
LEP SQ on One Dimension SQ on the Whole Dataset

Figure 5.5: The compression ratio - MSE curve of LEP and SQ calculated on single dimensions (Dim); for SQ,
parameters were both calculated per dimension and for the whole dataset

5 10
Compression Ratio

10
−7

10
−6

10
−5

10
−4

M
SE

HAR (Dim 1)

5.0 7.5
Compression Ratio

10
−5

10
−4

10
−3

10
−2

M
SE

GloVe25 (Dim 1)

Algorithm
LEP LEP With Fixed Bit-Width SQ on One Dimension

Figure 5.6: The compression ratio - MSE curve of LEP with and without a fixed bit width and SQ calculated
on single dimensions (Dim)

38

5 Evaluation

Bitmap-Compression of Frequent Values

In section 3.5, we identified datasets that contain a single value so frequently that a bitmap encoding would
increase the compression ratio. Figure 5.7 shows the compression ratio - recall curves similar to figure 5.3
but also contains the compression ratios using the bitmap encoding.
While the compression ratio improved a lot on Arcene, Fashion-MNIST, MNIST, and SIFT (by 50%, 11%,

14%, and 10%, respectively), the improvement was less pronounced for HAR, MSong, STL, and Trevi (3%, 6%,
3%, and 1%, respectively). This is because, on the latter datasets, a frequent value only exists in less than
30% of the LEP vectors. Despite this, incorporating a bitmap-based compression to this type of dataset is a
valuable improvement because the recall does not suffer from it.

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

fashion-MNIST

5 10

MNIST

2 4 6 8

STL

2 4 6 8

Trevi

2 4 6 8
Compression Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

Arcene

2.5 5.0 7.5
Compression Ratio

HAR

2 4 6 8
Compression Ratio

MSong

2 4 6 8
Compression Ratio

SIFT

Algorithm
ALP
LEP

LEP Bitmap
float16

Scalar Quantization
Product Quantization

LVQ

Figure 5.7: The compression ratio - recall curve of LEP with the bitmap encoding on all the datasets where
the bitmap encoding is applicable

39

5 Evaluation

Non-decimal LEP

For figure 5.8, we calculated the compression ratios and recalls on 4 datasets when using factors that are not
powers of 10. We marked the new datapoints with bigger crosses. Recall that the latter was proposed in
subsection 4.3 as a way to further tune the compression ratio and recall in LEP. The latter is usable to avoid
big gaps in the compression ratio - recall curves.
On Arcene and STL, we multiplied the values by factors between 0 and 1 as they are integer datasets.

While this approach can achieve higher compression ratios, the recall changes significantly when it becomes
lossy between factors 1 and 0.9. The original plot of HAR in figure 5.3 shows a large gap between the two
highest compression ratios. The non-decimal LEP can, therefore, be used to have smaller steps between the
different compression ratios. Meanwhile, the recall values all lay on one curve. For MSong, we can see a
similar curve. However, we used factors between 1 and 10 on this dataset to get more compression ratios in
the range of higher recalls.

While it would also be possible to use factors between 0 and 1 on the float datasets, the recall was already
small when using 10

1 on them. Therefore, this would only be relevant for applications that do not need a
high recall.

2.5 5.0 7.5
0.80

0.85

0.90

0.95

1.00

Re
ca
ll

STL

2.5 5.0 7.5

0.4

0.6

0.8

1.0
Arcene

2.5 5.0 7.5
Compression Ratio

0.6

0.8

1.0

Re
ca
ll

HAR

2.5 5.0 7.5
Compression Ratio

0.00

0.25

0.50

0.75

1.00
MSong

Algorithm
ALP
LEP

non-decimal LEP
float16

Scalar Quantization
Product Quantization

LVQ

Figure 5.8: The compression ratio - recall curve of LEP using non-decimal LEP on some datasets

40

5 Evaluation

5.3 Evaluation of the Encoding Speeds
Table 5.1 shows the runtime and the reached compression ratio for each dataset when doing the sampling
proposed in section 4.4 to increase the encoding speed of PFOR. The recall is unaffected because the PFOR is
still lossless even when sampling the values.
On all datasets but Fashion-MNIST, MNIST and HAR, at least 97% of the previous compression ratio

using no sampling can be reached. Fashion-MNIST and MNIST are datasets with frequently occurring
values. Therefore, the decreased compression ratio can be explained by having sampled this value too often,
which makes the algorithm choose a bit-width that is too small, leading to a higher number of exceptions.
Nevertheless, we can still reach high compression ratios on these datasets with the bitmap encoding. HAR
has a highly skewed data distribution, as seen in table 3.1. Therefore, the sampling over 100 LEP vectors
might have fallen short of correctly capturing the distribution of the data. The runtime improvement is
between 3.117x and 8.647x, being 5.593x faster on average.

Dataset CR CRWithout Share of the ET [ms] ET [ms] Improvement
(LEP Exponent) Using Sam- Sampling Original CR Using Sam- Without On the ET

pling Achieved pling Sampling Achieved
Using Sam- Using Sam-
pling pling

Contriever-1M (3) 3.775 3.831 0.982 68, 207 273, 310 4.007

DEEP-1B (3) 3.500 3.530 0.992 104, 228 324, 926 3.117

GloVe25 (2) 3.460 3.567 0.970 2, 334 20, 181 8.647

GloVe50 (2) 3.573 3.684 0.970 4, 405 18, 531 4.207

NYTimes256 (2) 6.044 6.106 0.990 4, 216 36, 089 8.560

Fashion-MNIST (0) 4.681 6.054 0.773 4, 157 15, 876 3.819

MNIST (0) 7.641 10.751 0.711 3, 244 12, 001 3.699

STL (0) 3.935 4.000 0.984 76, 850 509, 002 6.623

Trevi (0) 4.088 4.137 0.988 32, 219 197, 210 6.121

Arcene (0) 3.417 3.428 0.998 695 4, 455 6.410

GIST (3) 4.129 4.158 0.993 94, 839 448, 340 4.727

HAR (3) 2.926 3.348 0.874 468 2, 267 5.058

MSong (2) 3.557 3.593 0.990 41, 696 208, 316 4.996

SIFT (0) 4.716 4.840 0.974 10, 655 46, 954 4.407

Random20 (3) 2.111 2.133 0.990 18 151 8.389

Random100 (3) 2.114 2.125 0.995 766 5, 140 6.710

Table 5.1: The compression ratio (CR) and encoding time (ET) of sampling vectors at encoding time in the
LEP algorithm

41

6 Conclusion and Future Work
In this thesis, we explored possibilities of compressing vector embeddings lossily with an algorithm we called
LEP based on the lossless lightweight floating-point number compression algorithm ALP. We identified
often-used datasets for NNS in the literature to develop the algorithm and analyzed them to adapt the ALP
algorithm to work lossily on real-world data. The key findings below answer the main research questions
formulated in section 1.1.

6.1 Answers to the Research Questions
Q1: Compressing Embeddings Lossily Based on the ALP Algorithm Which compression ratios can be

reached when compressing embeddings losslessly using ALP? How is the recall of the nearest neighbor
search affected by making ALP lossy?

Compressing embeddings losslessly using the ALP algorithm does not lead to high compression ratios; it
can save less than 25% of the space on the datasets with learned features. On the image datasets containing
pixels that were originally stored as 8-bit integers, ALP also chooses to bitpack them to 8 bits in most LEP
vectors, meaning it only saves a little space.

On the other hand, LEP can reach high recalls of over 90% when having compression ratios of at least 3.4
on all datasets. When we choose the smallest exponents leading to these recalls of over 90%, the average
compression ratio is 5.124, and the average recall is 0.956. When sacrificing a bit more recall, much higher
compression ratios are achievable. For example, on Contriever-1M, for a recall of 0.947, the compression
ratio is 3.831. When allowing a lower recall of 0.890, LEP reaches the compression ratio of 6.186.

Q2: Improving the Compression Ratio on LEP Can the compression ratio be improved by exploiting a
data layout for vector embeddings that shares ideas with data layouts in analytical database systems?
Which other characteristics do embedding datasets have that can be exploited to amplify the compression?
Can we control the compression ratio reached by the lossy algorithm?

To improve the compression ratio on LEP, we tested horizontal and vertical layouts and reordered them in
terms of the clusters of an IVF index. On almost all datasets, using the vertical layout and reordering the
embeddings in terms of their IVF clusters leads to higher compression ratios than using the horizontal layout
and not clustering the data. The amount of improvement depends on the compression ratio before changing
the layout and is higher for high compression ratios. For example, on DEEP-1B using LEP exponent 1 and
clustering the data, the value of this compression metric improved from 10.257 to 13.031 when using the
vertical instead of the horizontal layout.

Incorporating PFOR, as proposed by Zukowski et al. in [75], also leads to higher compression ratios on
embedding datasets. Many of the embedding datasets, especially those containing learned features, have
a normal distribution. On these sets, opportunities to compress the exceptions further exist because the
distance from most exceptions to the rest of the data is small. We propose a scheme that requires only 16

additional bits per most of the exceptions and is lossless. Another characteristic we found in some datasets
is that they contain one value very often. This is the case, for example, for the value 0 in Arcene and some
image datasets. The bitmap compression described in section 4.2 can exploit these frequently occurring
values. For example, on MNIST, the compression ratio improved from 10.751 to 12.308 when leveraging
these values.

42

6 Conclusion and Future Work

When using different LEP exponents to influence the compression ratio and recall of LEP, only a limited
number of different ratios is reachable. However, unlike the lossless ALP algorithm, LEP does not need to
work on the decimal representation of the floating-point numbers as it can tolerate reconstruction errors.
Because of this, we can use other factors than powers of 10. This leads to a much higher range of possible
factors and, therefore, reachable compression ratios. How to best find a factor for a given compression ratio
remains an open question.

Q3: Using Correlated Dimensions Do the embedding datasets contain correlated dimensions? How can
they be used to improve the compression ratio?

Some of the embedding datasets contain correlated dimensions, which is the case mostly on datasets with
manually chosen features. We used linear regression based on the Pearson coefficient to compress these
columns losslessly. This compression led to a slightly improved compression ratio in some datasets but also
increased the required computations and transferred data when decompressing. Thus, we did not include
this compression technique in the algorithm.

Q4: Comparing LEP toOther EmbeddingCompressionAlgorithms How does LEP perform concerning
compression ratio and mean squared error compared to other embedding compression algorithms?

When targeting similar recalls, LEP reaches compression ratios similar to or higher than those of the
algorithms we compared it to. While quantization approaches fail to reach recalls above 75% on some
datasets like NYTimes256 on the compression ratios we were testing, this does not happen with LEP on all
datasets we tested. Furthermore, LEP reaches a recall of 100% on integer datasets. For LEP, we can specify the
maximal error reached on each value before executing the algorithm. We also can give an upper bound for
the MSE. On real-world datasets, this error is usually even lower. Compared to other compression algorithms,
LEP has an MSE that is almost always smaller. This is because the values are not changed aggressively.

6.2 Future Work
This thesis answers the research questions defined in section 1.1. These questions focus mainly on the
compression ratio reached by LEP. Therefore, questions remain open concerning the LEP algorithm and
supplementary work on vector embeddings search.

Using Correlated Dimensions In section 3.6, we only look for linear relationships between dimensions.
One could try to use other relationships, like other polynomials on the dimension pairs. These relationships
might increase the compression ratio more, making using them more interesting despite the decompression
overhead.
Choosing the Bitmap Compression In section 4.2, we propose a second compression scheme that

leverages frequently occurring values in a LEP vector. So that the scheme has a noticeable effect, we chose
to use it on vectors where a value is repeated at least 300 times. To find an optimal solution, we counted
how often every value in the LEP vector occurred. This is computationally expensive. Better solutions that
can be tried include counting occurrences on sampled values per LEP vector or only on some LEP vectors.
Suppose the latter solution finds no frequently occurring values on all tested LEP vectors, and the dataset has
a comparable distribution in all dimensions. In that case, the bitmap compression scheme can be discarded
for all LEP vectors.

Measuring Encoding and Decoding Speed This thesis focuses on finding high compression ratios on
vector embeddings. Concerning the encoding speed, we propose a sampling scheme that can reach almost
the same compression ratios as the exhaustive search for the parameters bit-width and FOR base. However,
we only tested this scheme in micro-benchmarks. Furthermore, we think that the runtime for encoding can
be improved more by optimizing the code, for example, by using SIMD instructions.

43

6 Conclusion and Future Work

This thesis does not include benchmarks on the decoding speed due to time constraints and the limited
scope of the thesis project. The speed is interesting in both micro-benchmarks and search algorithms.
When incorporated into a search algorithm, one can see if the compression leads to an overhead because
of decompression time or if working on smaller integers resulting from the compression can induce an
improvement to the overall search speed.
Using the Compressed Embeddings in a Search Algorithm As mentioned before, when designing

the compression algorithm, we kept in mind that the embeddings would eventually be used in a search
algorithm. The search can leverage the fact that the data are stored in the vertical layout and clustered.
Nonetheless, some changes to the search algorithm would be required. Most embedding searches work on
32-bit floating-point numbers. To save part of the decoding time, we suggest using the integer representation
that is obtained after undoing the bitpacking of the compressed data. However, these un-bitpacked values
can have different sizes between different LEP vectors. An algorithm would then need different cases dealing
with, for example, 8-bit and 16-bit integers. As LEP compresses blocks of 1024 values, accessing single values
within them is harder than random access on uncompressed data. Solutions for this can be using a hybrid
layout that stores part of the data in the vertical and the rest in the horizontal layout as required by the
algorithm. One can also try to work on smaller vectors to have to decompress less data.

Bringing the Compression Algorithm to Production Readiness In the algorithm we propose in this
thesis, the LEP exponent or factor influencing the compression ratio and recall are parameters that the user
has to choose. However, making this choice is unintuitive, as the actual compression ratio depends on the
dataset and cannot be predicted precisely from the chosen parameter. Therefore, letting the user choose the
compression ratio would be better. The algorithm can then sample a few values and do a binary search on
different factors to find one that leads to approximately the required compression ratio. For users, it can
also be interesting to request a recall. Parameters for this could be found by sampling some vectors and
executing an exact nearest neighbor search on these vectors, both compressed with different factors and
uncompressed. Still, this is computationally expensive, and it is an open question whether there are more
efficient algorithms for estimating the recall.

Finally, we did not include LEP into a database management system like DuckDB. Open questions when
doing this inclusion are how to store embeddings in the vertical layout in a database table, which datatype
can be used for bitpacked values, and what the interface for the user should look like. As mentioned earlier,
the user needs options for choosing the LEP exponent, factor, compression ratio, or recall. A new SQL
statement could do this.

44

Bibliography

[1] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout: Decoding > 100 Billion
Integers per Second with Scalar Code. Proceedings of the VLDB Endowment 16, 9 (May 2023), 2132–2144.
https://doi.org/10.14778/3598581.3598587

[2] Azim Afroozeh, Leonardo X. Kuffo, and Peter Boncz. 2023. ALP: Adaptive Lossless floating-Point
Compression. Proceedings of the ACM on Management of Data 1, 4 (Dec. 2023), 230:1–230:26. https:
//doi.org/10.1145/3626717

[3] Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and Theodore Willke. 2023.
Similarity Search in the Blink of an Eye with Compressed Indices. Proceedings of the VLDB Endowment
16, 11 (July 2023), 3433–3446. https://doi.org/10.14778/3611479.3611537

[4] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2017. Accelerated Nearest Neighbor
Search with Quick ADC. In Proceedings of the 2017 ACM on International Conference on Multimedia
Retrieval (ICMR ’17). Association for Computing Machinery, New York, NY, USA, 159–166. https:
//doi.org/10.1145/3078971.3078992

[5] Martin Aumüller, Erik Bernhardsson, andAlexander Faithfull. 2020. ANN-Benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems 87 (Jan. 2020), 101374. https:
//doi.org/10.1016/j.is.2019.02.006

[6] Artem Babenko and Victor Lempitsky. 2014. Additive Quantization for Extreme Vector Compression. In
2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Columbus, OH, USA, 931–938.
https://doi.org/10.1109/CVPR.2014.124

[7] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. 2011. The Million Song
Dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011).
University of Miami, Miami, FL, USA, 591–596.

[8] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999. When Is “Nearest Neighbor”
Meaningful?. In Database Theory — ICDT’99, Catriel Beeri and Peter Buneman (Eds.). Springer, Berlin,
Heidelberg, Germany, 217–235. https://doi.org/10.1007/3-540-49257-7_15

[9] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd international conference on Machine learning (ICML ’06). Association for Computing
Machinery, New York, NY, USA, 97–104. https://doi.org/10.1145/1143844.1143857

[10] DavisW. Blalock and John V. Guttag. 2017. Bolt: Accelerated Data Mining with Fast Vector Compression.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’17). Association for Computing Machinery, New York, NY, USA, 727–735. https:
//doi.org/10.1145/3097983.3098195

[11] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access string compression.
Proceedings of the VLDB Endowment 13, 12 (July 2020), 2649–2661. https://doi.org/10.
14778/3407790.3407851

45

https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3626717
https://doi.org/10.1145/3626717
https://doi.org/10.14778/3611479.3611537
https://doi.org/10.1145/3078971.3078992
https://doi.org/10.1145/3078971.3078992
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1109/CVPR.2014.124
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/3097983.3098195
https://doi.org/10.1145/3097983.3098195
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.14778/3407790.3407851

Bibliography

[12] Martin Burtscher and Paruj Ratanaworabhan. 2009. FPC: A High-Speed Compressor for Double-
Precision Floating-Point Data. IEEE Trans. Comput. 58, 1 (Jan. 2009), 18–31. https://doi.org/
10.1109/TC.2008.131

[13] Yongjian Chen, Tao Guan, and Cheng Wang. 2010. Approximate Nearest Neighbor Search by Residual
Vector Quantization. Sensors 10, 12 (Dec. 2010), 11259–11273. https://doi.org/10.3390/
s101211259

[14] Arjen P. De Vries, Nikos Mamoulis, Niels Nes, and Martin Kersten. 2002. Efficient k-NN search
on vertically decomposed data. In Proceedings of the 2002 ACM SIGMOD international conference
on Management of data. ACM, Madison, WI, USA, 322–333. https://doi.org/10.1145/
564691.564729

[15] Xavier Delaunay, Aurélie Courtois, and Flavien Gouillon. 2019. Evaluation of lossless and lossy algo-
rithms for the compression of scientific datasets in netCDF-4 or HDF5 files. Geoscientific Model Devel-
opment 12, 9 (Sept. 2019), 4099–4113. https://doi.org/10.5194/gmd-12-4099-2019

[16] Sheng Di, Jinyang Liu, Kai Zhao, Xin Liang, Robert Underwood, Zhaorui Zhang, Milan Shah, Yafan
Huang, Jiajun Huang, Xiaodong Yu, Congrong Ren, Hanqi Guo, Grant Wilkins, Dingwen Tao, Jiannan
Tian, Sian Jin, Zizhe Jian, DaoceWang, MDHasanur Rahman, Boyuan Zhang, Jon C. Calhoun, Guanpeng
Li, Kazutomo Yoshii, Khalid AyedAlharthi, and Franck Cappello. 2024. A Survey on Error-Bounded Lossy
Compression for Scientific Datasets. https://doi.org/10.48550/arXiv.2404.02840

[17] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on World wide web. ACM,
Hyderabad, India, 577–586. https://doi.org/10.1145/1963405.1963487

[18] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024. The Faiss library. https://doi.
org/10.48550/arXiv.2401.08281

[19] DuckDB Labs 2022. Patas Compression (float/double) (variation on Chimp). Retrieved 2024-08-20
from https://github.com/duckdb/duckdb/pull/5044

[20] Vadim Engelson, Peter Fritzson, and Dag Fritzson. 2000. Lossless compression of high-volume numerical
data from simulations. In Proceedings DCC 2000. Data Compression Conference. IEEE, Snowbird, UT,
USA, 574. https://doi.org/10.1109/DCC.2000.838221

[21] Erik Bernhardsson. [n.d.]. Annoy. Retrieved 2024-07-31 from https://github.com/
spotify/annoy

[22] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An Algorithm for Finding
Best Matches in Logarithmic Expected Time. ACM Trans. Math. Software 3, 3 (Sept. 1977), 209–226.
https://doi.org/10.1145/355744.355745

[23] Cong Fu and Deng Cai. 2016. EFANNA : An Extremely Fast Approximate Nearest Neighbor Search
Algorithm Based on kNN Graph. https://doi.org/10.48550/arXiv.1609.07228

[24] Jianyang Gao and Cheng Long. 2023. High-Dimensional Approximate Nearest Neighbor Search: with
Reliable and Efficient Distance Comparison Operations. Proceedings of the ACM on Management of
Data 1, 2 (June 2023), 137:1–137:27. https://doi.org/10.1145/3589282

46

https://doi.org/10.1109/TC.2008.131
https://doi.org/10.1109/TC.2008.131
https://doi.org/10.3390/s101211259
https://doi.org/10.3390/s101211259
https://doi.org/10.1145/564691.564729
https://doi.org/10.1145/564691.564729
https://doi.org/10.5194/gmd-12-4099-2019
https://doi.org/10.48550/arXiv.2404.02840
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.48550/arXiv.2401.08281
https://github.com/duckdb/duckdb/pull/5044
https://doi.org/10.1109/DCC.2000.838221
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://doi.org/10.1145/355744.355745
https://doi.org/10.48550/arXiv.1609.07228
https://doi.org/10.1145/3589282

Bibliography

[25] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical
Error Bound for Approximate Nearest Neighbor Search. Proceedings of the ACM on Management of
Data 2, 3 (May 2024), 167:1–167:27. https://doi.org/10.1145/3654970

[26] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product Quantization. IEEE
Transactions on Pattern Analysis and Machine Intelligence 36, 4 (April 2014), 744–755. https://
doi.org/10.1109/TPAMI.2013.240

[27] Allen Gersho and Robert M. Gray. 2012. Vector Quantization and Signal Compression. Springer Science
& Business Media, New York, NY, USA.

[28] Thomas Glas. 2023. Exploiting Column Correlations for Compression. Master’s thesis. Technische
Universität München, München, Germany.

[29] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing relations and indexes. In
Proceedings 14th International Conference on Data Engineering. IEEE Comput. Soc, Orlando, FL, USA,
370–379. https://doi.org/10.1109/ICDE.1998.655800

[30] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time Personalization using Embeddings for Search
Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’18). Association for Computing Machinery, New York, NY, USA,
311–320. https://doi.org/10.1145/3219819.3219885

[31] Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14, 2
(June 1984), 47–57. https://doi.org/10.1145/971697.602266

[32] Yoonho Hwang, Bohyung Han, and Hee-Kap Ahn. 2012. A fast nearest neighbor search algorithm
by nonlinear embedding. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
Providence, RI, USA, 3053–3060. https://doi.org/10.1109/CVPR.2012.6248036

[33] Ville Hyvönen, Teemu Pitkänen, Sotirios Tasoulis, Elias Jääsaari, Risto Tuomainen, Liang Wang,
Jukka Ilmari Corander, and Teemu Roos. 2016. Fast Nearest Neighbor Search through Sparse Random
Projections and Voting. In Proceedings of the 2016 IEEE Conference on Big Data. IEEE, New York, NY,
USA, 881–888. https://doi.org/10.1109/BigData.2016.7840682

[34] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008) (July
2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229

[35] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing - STOC
’98. ACM Press, Dallas, TX, USA, 604–613. https://doi.org/10.1145/276698.276876

[36] Intel Corporation 2021. Intel AVX512-FP16 Architecture Specification. Retrieved 2024-08-21 from
https://cdrdv2-public.intel.com/678970/intel-avx512-fp16.pdf

[37] Seungdo Jeong, Sang-Wook Kim, Kidong Kim, and Byung-Uk Choi. 2006. An Effective Method for
Approximating the Euclidean Distance in High-Dimensional Space. In Database and Expert Systems
Applications, Stéphane Bressan, Josef Küng, and Roland Wagner (Eds.). Springer, Berlin, Heidelberg,
Germany, 863–872. https://doi.org/10.1007/11827405_84

[38] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity Search with GPUs. IEEE
Transactions on Big Data 7, 3 (July 2021), 535–547. https://doi.org/10.1109/TBDATA.
2019.2921572

47

https://doi.org/10.1145/3654970
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1109/ICDE.1998.655800
https://doi.org/10.1145/3219819.3219885
https://doi.org/10.1145/971697.602266
https://doi.org/10.1109/CVPR.2012.6248036
https://doi.org/10.1109/BigData.2016.7840682
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/276698.276876
https://cdrdv2-public.intel.com/678970/intel-avx512-fp16.pdf
https://doi.org/10.1007/11827405_84
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572

Bibliography

[39] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization for Nearest Neighbor
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1 (Jan. 2011), 117–128.
https://doi.org/10.1109/TPAMI.2010.57

[40] Anthony Ko, Iman Keivanloo, Vihan Lakshman, and Eric Schkufza. 2021. Low-Precision Quantization
for Efficient Nearest Neighbor Search. http://arxiv.org/abs/2110.08919

[41] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis. 2023. BtrBlocks: Efficient
Columnar Compression for Data Lakes. Proceedings of the ACM on Management of Data 1, 2 (June 2023),
118:1–118:26. https://doi.org/10.1145/3589263

[42] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 11 (Nov. 1998), 2278–2324. https://doi.org/10.1109/
5.726791

[43] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. 2023. Elf: Erasing-Based Lossless Floating-
Point Compression. Proceedings of the VLDB Endowment 16, 7 (March 2023), 1763–1776. https:
//doi.org/10.14778/3587136.3587149

[44] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022. Chimp: efficient lossless
floating point compression for time series databases. Proceedings of the VLDB Endowment 15, 11 (July
2022), 3058–3070. https://doi.org/10.14778/3551793.3551852

[45] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J. Elmore. 2021. Decomposed bounded floats
for fast compression and queries. Proceedings of the VLDB Endowment 14, 11 (July 2021), 2586–2598.
https://doi.org/10.14778/3476249.3476305

[46] Hanwen Liu, Mihail Stoian, Alexander van Renen, and Andreas Kipf. 2024. Corra: Correlation-Aware
Column Compression. https://doi.org/10.48550/arXiv.2403.17229

[47] Yury A. Malkov and Dmitry A. Yashunin. 2018. Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World graphs. https://doi.org/10.48550/
arXiv.1603.09320

[48] Julieta Martinez, Joris Clement, Holger H. Hoos, and James J. Little. 2016. Revisiting Additive Quantiza-
tion. In Computer Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.).
Springer International Publishing, Cham, Germany, 137–153. https://doi.org/10.1007/
978-3-319-46475-6_9

[49] JulietaMartinez, Shobhit Zakhmi, HolgerH. Hoos, and James J. Little. 2018. LSQ++: Lower Running Time
and Higher Recall in Multi-codebook Quantization. In Computer Vision – ECCV 2018, Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Vol. 11220. Springer International Publish-
ing, Cham, Germany, 508–523. https://doi.org/10.1007/978-3-030-01270-0_30

[50] Adam C. Mater and Michelle L. Coote. 2019. Deep Learning in Chemistry. Journal of Chemical
Information and Modeling 59, 6 (June 2019), 2545–2559. https://doi.org/10.1021/acs.
jcim.9b00266

[51] Meta [n.d.]. ZStandard. Retrieved 2024-08-20 from https://github.com/facebook/zstd

[52] Meta 2017. Faiss: A library for efficient similarity search. Retrieved 2024-09-
04 from https://engineering.fb.com/2017/03/29/data-infrastructure/
faiss-a-library-for-efficient-similarity-search/

48

https://doi.org/10.1109/TPAMI.2010.57
http://arxiv.org/abs/2110.08919
https://doi.org/10.1145/3589263
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.14778/3587136.3587149
https://doi.org/10.14778/3587136.3587149
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3476249.3476305
https://doi.org/10.48550/arXiv.2403.17229
https://doi.org/10.48550/arXiv.1603.09320
https://doi.org/10.48550/arXiv.1603.09320
https://doi.org/10.1007/978-3-319-46475-6_9
https://doi.org/10.1007/978-3-319-46475-6_9
https://doi.org/10.1007/978-3-030-01270-0_30
https://doi.org/10.1021/acs.jcim.9b00266
https://doi.org/10.1021/acs.jcim.9b00266
https://github.com/facebook/zstd
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

Bibliography

[53] Meta Research [n.d.]. Faiss. Retrieved 2024-08-26 from https://github.com/
facebookresearch/faiss

[54] Tomàs Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In 1st International Conference on Learning Representations, (ICLR). Scottsdale,
AZ, USA. https://doi.org/10.48550/arXiv.1301.3781

[55] Milvus [n.d.]. What is Milvus. Retrieved 2024-08-26 from https://milvus.io/docs/
overview.md

[56] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms for High Dimensional
Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 11 (Nov. 2014), 2227–2240.
https://doi.org/10.1109/TPAMI.2014.2321376

[57] Gonzalo Navarro. 1999. Searching in metric spaces by spatial approximation. In 6th International
Symposium on String Processing and Information Retrieval. 5th International Workshop on Groupware
(Cat. No.PR00268). IEEE, Cancun, Mexico, 141–148. https://doi.org/10.1109/SPIRE.
1999.796589

[58] Lushuai Niu, Zhi Xu, Longyang Zhao, Daojing He, Jianqiu Ji, Xiaoli Yuan, and Mian Xue. 2023. Residual
Vector Product Quantization for approximate nearest neighbor search. Expert Systems with Applications
232 (Dec. 2023), 120832. https://doi.org/10.1016/j.eswa.2023.120832

[59] Mohammad Norouzi and David J. Fleet. 2013. Cartesian K-Means. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, Portland, OR, USA, 3017–3024. https://doi.org/10.
1109/CVPR.2013.388

[60] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza, and Kaushik
Veeraraghavan. 2015. Gorilla: a fast, scalable, in-memory time series database. Proceedings of the
VLDB Endowment 8, 12 (Aug. 2015), 1816–1827. https://doi.org/10.14778/2824032.
2824078

[61] Pinecone Systems [n.d.]. Product Quantization: Compressing high-dimensional vectors by
97%. Retrieved 2024-08-26 from https://www.pinecone.io/learn/series/faiss/
product-quantization/

[62] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical Database. In
Proceedings of the 2019 International Conference on Management of Data (SIGMOD ’19). Association
for Computing Machinery, New York, NY, USA, 1981–1984. https://doi.org/10.1145/
3299869.3320212

[63] Vijayshankar Raman and Garret Swart. 2006. How to wring a table dry: entropy compression of
relations and querying of compressed relations. In Proceedings of the 32nd international conference on
Very large data bases (VLDB ’06). VLDB Endowment, Seoul, Korea, 858–869.

[64] Josef Sivic and Andrew Zisserman. 2003. Video Google: a text retrieval approach to object matching
in videos. In Proceedings Ninth IEEE International Conference on Computer Vision. IEEE, Nice, France,
1470–1477 vol.2. https://doi.org/10.1109/ICCV.2003.1238663

[65] The Apache Software Foundation [n.d.]. Parquet. Retrieved 2024-08-21 from https://parquet.
apache.org/

[66] Ash Vardanian. 2023. USearch by Unum Cloud. https://doi.org/10.5281/zenodo.
7949416

49

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://doi.org/10.48550/arXiv.1301.3781
https://milvus.io/docs/overview.md
https://milvus.io/docs/overview.md
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1109/SPIRE.1999.796589
https://doi.org/10.1109/SPIRE.1999.796589
https://doi.org/10.1016/j.eswa.2023.120832
https://doi.org/10.1109/CVPR.2013.388
https://doi.org/10.1109/CVPR.2013.388
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://www.pinecone.io/learn/series/faiss/product-quantization/
https://www.pinecone.io/learn/series/faiss/product-quantization/
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/ICCV.2003.1238663
https://parquet.apache.org/
https://parquet.apache.org/
https://doi.org/10.5281/zenodo.7949416
https://doi.org/10.5281/zenodo.7949416

Bibliography

[67] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2016. Learning to Hash for Indexing Big Data—A
Survey. Proc. IEEE 104, 1 (Jan. 2016), 34–57. https://doi.org/10.1109/JPROC.2015.
2487976

[68] Weaviate 2023. How to Reduce Memory Requirements by up to 90%+ using Product Quantization.
Retrieved 2024-08-26 from https://weaviate.io/blog/pq-rescoring

[69] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik P. A. Lensch. 2016.
Efficient Large-scale Approximate Nearest Neighbor Search on the GPU. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, 2027–2035. https:
//doi.org/10.1109/CVPR.2016.223

[70] Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue Liu,
Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. 2024. Retrieval-Augmented Generation for Natural
Language Processing: A Survey. https://doi.org/10.48550/arXiv.2407.13193

[71] Charles S. Zender. 2016. Bit Grooming: statistically accurate precision-preserving quantization with
compression, evaluated in the netCDF Operators (NCO, v4.4.8+). Geoscientific Model Development 9, 9
(Sept. 2016), 3199–3211. https://doi.org/10.5194/gmd-9-3199-2016

[72] Xianzhi Zeng, Zhuoyan Wu, Xinjing Hu, Xuanhua Shi, Shixuan Sun, and Shuhao Zhang. 2024. CANDY:
A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion.
https://doi.org/10.48550/arXiv.2406.19651

[73] Haowen Zhang, Yabo Dong, and Duanqing Xu. 2021. Accelerating exact nearest neighbor search in
high dimensional Euclidean space via block vectors. International Journal of Intelligent Systems 37, 2
(Oct. 2021), 1697–1722. https://doi.org/10.1002/int.22692

[74] Haowen Zhang, Jing Li, Junru Zhang, and Yabo Dong. 2023. Speeding Up K-Means Clustering in High
Dimensions by Pruning Unnecessary Distance Computations. https://doi.org/10.2139/
ssrn.4573970

[75] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-Scalar RAM-CPU Cache
Compression. In 22nd International Conference on Data Engineering (ICDE’06). IEEE, Atlanta, GA, USA,
59–59. https://doi.org/10.1109/ICDE.2006.150

[76] Kacper Łukawski. 2023. Scalar Quantization: Background, Practices & More. Retrieved 2024-07-31
from https://qdrant.tech/articles/scalar-quantization/

50

https://doi.org/10.1109/JPROC.2015.2487976
https://doi.org/10.1109/JPROC.2015.2487976
https://weaviate.io/blog/pq-rescoring
https://doi.org/10.1109/CVPR.2016.223
https://doi.org/10.1109/CVPR.2016.223
https://doi.org/10.48550/arXiv.2407.13193
https://doi.org/10.5194/gmd-9-3199-2016
https://doi.org/10.48550/arXiv.2406.19651
https://doi.org/10.1002/int.22692
https://doi.org/10.2139/ssrn.4573970
https://doi.org/10.2139/ssrn.4573970
https://doi.org/10.1109/ICDE.2006.150
https://qdrant.tech/articles/scalar-quantization/

	Introduction
	Research Questions
	Outline

	Background
	Nearest Neighbor Search
	Exact Nearest Neighbor Search
	Approximate Nearest Neighbor Search

	Compression
	Compression of Floating-Point Numbers
	Compression of Vector Embeddings

	Analysis of Vector Embedding Datasets
	Overview of the Datasets
	Compression of Embedding Datasets using ALP
	Exceptions in the Frame Of Reference
	Data Layouts for Storing the Embeddings
	Frequently Occurring Values
	Correlations between Dimensions

	Lossily Encoded floating-Points
	Compression of Exceptions
	Bitmap-Compression of Frequent Values
	Non-Decimal LEP for Fine-Tuning Compression Ratios and Recalls
	Speedup of the Encoding Time

	Evaluation
	Assessment of Data Layouts
	Comparison against Other Algorithms
	Considered Algorithms
	Compression Ratio and Mean Squared Error

	Evaluation of the Encoding Speeds

	Conclusion and Future Work
	Answers to the Research Questions
	Future Work

	Bibliography

