
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master’s Thesis

Dynamically Exploiting Factorized
Representations

Author: Paul Groß (2776170)

1st supervisor: Prof. Dr. Peter Boncz
daily supervisor: Daniël ten Wolde
2nd reader: Dr. Pedro Holanda

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 17, 2024

Abstract

While factorization and Worst-Case Optimal Join (WCOJ) algorithms promise
significant performance improvements, their widespread adoption lacks behind
because they are complex to implement and still face query optimization chal-
lenges. We aim to address this problem by proposing an adaptive, lightweight
solution. We integrate factorized representations into DuckDB using pointers
to hash table chains of a Linear-Chained hash table. This newly proposed
hash table combines linear probing with chaining to insert a tuple only in a
collision chain when their keys match, enabling collision-free chains. We use
d-representations to (1) efficiently calculate aggregates and (2) perform cyclic
joins in a worst-case optimal manner. By operating on d-representations, we
avoid the explosion of intermediate results and efficiently reuse cached results,
achieving speedups of up to 17.58x for aggregate computations and 16.77x for
cyclic joins. To ensure that the new techniques are only employed when benefi-
cial, we propose adaptive factorization, shifting the decision to use factorization
from the planning stage to runtime. We then can collect statistics, which
allows for accurate decision-making even in sub-queries or quering Parquet
files. The metrics are then used by machine learning models to predict whether
factorization would be beneficial. These models demonstrate an accuracy of
88% in our benchmarks.

Contents

List of Figures v

List of Tables ix

List of Listings xi

Acronyms xv

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 3

2 Background and Related Work 5

2.1 Database Management Systems . 5

2.1.1 Relational Database Systems . 7

2.1.2 Query Processing . 11

2.2 Join Implementations for Relational Databases 14

2.2.1 Nested Loop Join . 15

2.2.2 Sort Merge Join . 16

2.2.3 Hash Joins . 17

2.3 Graph Database Management Systems . 22

2.3.1 Property Graphs and Property Graph Queries 24

2.3.2 Characteristics of Graph Workloads 25

2.3.3 Worst-case Optimal Joins . 26

2.3.4 Factorized Representations . 30

2.4 Optimizations for Read-Heavy Workloads 32

2.5 DuckDB and DuckPGQ . 33

i

CONTENTS

3 Literature Review 35
3.1 Adoption of Worst-case Optimal Joins . 35

3.1.1 GraphflowDB, later Kùzu . 35
3.1.2 Umbra . 36
3.1.3 BiGJoin in Timely Dataflow . 37
3.1.4 LogicBlox . 38
3.1.5 EmptyHeaded . 39

3.2 Adoption of Factorized Representations . 39
3.2.1 FDB System . 39
3.2.2 GraphflowDB, later Kùzu . 41
3.2.3 Umbra . 43
3.2.4 3D Hash Join . 45

3.3 Challenges in Adopting WCOJ Algorithms and Factorized Representations 48

4 Factorization using Linear-Chained Hash Tables 51
4.1 Hash Table Chains as Factors . 51
4.2 Improving Performance With Collision-Free Chains 53
4.3 Approaches for Collision-Free Chains . 55

4.3.1 Nested Chaining . 55
4.3.2 Linear-Chained Hash Tables . 57
4.3.3 Comparison of Nested Chaining and Linear Probing with Chaining . 58

4.4 The DuckDB Hash Join Operator . 58
4.4.1 Sink Phase: Materialization and Hash Calculation 62
4.4.2 Sink Finalize: Building the Hash Table 62
4.4.3 Operator Phase: Probe Phase . 66

4.5 Linear-Chained Hash Table Integration for DuckDB 67
4.5.1 Salted Linear Probing Optimization 67
4.5.2 Changes Made to the Build Phase 68
4.5.3 Changes Made to the Probe Phase 68

4.6 Evaluation of the Linear-Chained Hash Table 69
4.6.1 Experiment Setup . 70
4.6.2 Results & Discussion . 71

4.7 Emission of Factorized Intermediate Results 77
4.8 Factorized Execution . 81

4.8.1 Aggregates . 81

ii

CONTENTS

4.8.2 Cyclic Joins . 85

5 Adaptive Factorization 95
5.1 Adaptivity through Run-time Strategy Switching 96
5.2 Training and Evaluation Dataset . 97
5.3 Metrics for Adaptive Factorization . 99
5.4 Adaptive Factorization with Machine Learning Strategies 104

6 Discussion & Future Work 107

7 Conclusion 111

References 113

iii

List of Figures

2.1 Comparison of a database server and an in-process database 6
2.2 Normalization process for a follows relationship in social media, showing the

initial unnormalized relation, application of 1NF, and 2NF. 8
2.3 Different Types of Relationship Cardinalities 9
2.4 Steps in query execution . 11
2.5 Comparison of an unoptimized and Optimized Logical Plans 12
2.6 Physical Plan of the optimized logical plan in Figure 2.5b 13
2.7 Comparison between two methods of duplicate resolution in hash tables,

linear probing, and chaining . 19
2.8 Illustration of building and probing a hash table using linear to calculate

R = Users onUsers.user_id=Follows.user_id Follows. 21
2.9 Example of a directed graph. Edges are directed: there is no relation from

to (3) to (2), but there is one from (2) to (3) 23
2.10 Example of a simple property graph of a social network according to [49]. . 24
2.11 Physical Plan for querying 3-hop cyclic relationships, annotated with inter-

mediate row counts. We can see that the intermediate has 30 times more
rows than the original relations, but the final result is only one row 27

2.12 Example of two binary join trees (a) and (b), a WCOJ tree (c), and a hybrid
join tree evaluating (d) the diamond-X depicted in Figure 2.13b [65]. Query
optimizers must consider all possible combinations of hybrid query plans. . 28

2.13 Two examples of cyclic queries, the example was taken from [65] 28
2.14 Implementation of binary join and generic join for Q4. The expression S[y]?

queries S using y as a key, proceeding to the next iteration of the outer loop
if no match is found. The binary join processes tuples, while the generic
join processes values based on key intersections. Example taken from Wang
et al. [103]. 29

v

LIST OF FIGURES

2.15 Database with three relations Orders (O), Dish (D), and Items (I) (left)
and the flat representation of the natural join of the three relations containing
redundancy (right), e.g. the tuple 〈Elise〉×〈Monday〉×〈burger〉 is repeated
three times. [33] . 29

2.16 Variable order of a factorization of the join depicted in Figure 2.15b (left)
and the corresponding tree structure (right) according to [33] 31

2.17 D-representations of the f-representation depicted in Figure 2.16: As the
price of the 〈bun〉 and 〈onion〉 tuple are independent of the three above,
they are replaced with their definitions [33] 31

3.1 Challenges when joining two factorized relations according to [15]: We want
to compute R1 onitem, location R2, because of the f-trees, R1 onitem R2 is
simple to compute by intersecting item. For the condition location, it
could be more efficient to rearrange T2 for a faster join computation. 40

3.2 Factorized Representation in Kuzu: The first two list groups are flattened
to single tuples, while the last one represents k2 many tuples [45]. 41

3.3 Transforming a pentagon query into a triangle query allows computing it
with two standard binary joins (red) and two Lookups and one Expand3,
allowing worst-case optimal computation [19]. 44

4.1 Comparison between a hash table with and without chains that contain
hash collisions . 52

4.2 Example of using hash table chains as factors. The first result shows the
logical query result. The second result illustrates errors because of hash
collisions within the chains. The third result shows the correct output when
hash collisions are avoided. 52

4.3 Comparison between the probing effort for hash tables with and without
collision-free chains. 54

4.4 Comparison between default chained hash tables the combination of linear
probing and chaining. 56

4.5 Comparison between default chained hash tables and a combination of
probing and chaining . 57

4.6 Follows relation used in the example query of Listing 4.1 60
4.7 Pipelines and operators for the join in Listing 4.1: The green pipeline (scan

→ hash join build) blocks the purple pipeline (scan → probe → projection).
Therefore, purple can only be executed after the green pipeline is completed. 61

vi

LIST OF FIGURES

4.8 Sink phase for the join of Listing 4.1 . 61

4.9 Insertion process for the first morsel of the example in Figure 4.6 64

4.10 Transaction Processing Performance Council - H (TPC-H) Benchmark:
Absolute and relative total runtime . 71

4.11 Comparison between the new implementation of the hash table against the
table before when building on keys with no duplicates 73

4.12 TPC-H Benchmark: Speedup per query and scale factor 75

4.13 Transaction Processing Performance Council - Decision Support (TPC-DS)
Benchmark: Absolute and relative total runtime 76

4.14 Relations for the factorization example: The User information has informa-
tion on the city of birth of a user, while the follows relations represent a
many-to-many relation between users. 77

4.15 Query plan with intermediate results of the query depicted in Listing 4.4:
The intermediate results grow larger than both the input and output relation 79

4.16 The hash table for the 2nd join of the join plan is depicted in Figure 4.15,
as well as the first two rows of the intermediate result, represent the probe
side on the left . 80

4.17 Different methods of producing flat or factorized join results for the two
probing rows in Figure 4.16 . 80

4.18 Cached COUNT(expr) aggregate per chain: Different probing tuples sharing
this pointer can use the factor definitions’ aggregate, avoiding traversal for
counting. 82

4.19 Runtimes for the microbenchmark in Listing 4.5 showing performance with
and without caching elements in the factor definition 84

4.20 Example for a cycle in the context of social media 86

4.21 Binary query plan with intermediate results and hash tables for the query
in Listing 4.7 . 87

4.22 Factorized query plan with intermediate results and hash tables for the
query in Listing 4.7 . 88

4.23 Detailed illustration of the second join probe and factorized condition check-
ing for the factorized join plan in Figure 4.22 89

4.24 Allocation of micro hash tables for evaluating factorized join predicates . . 90

4.25 Runtimes of different systems and configurations for finding the number of
triangles in WebStan dataset . 92

vii

LIST OF FIGURES

5.1 Correlation Matrix of the Metrics: . 98
5.2 Distribution of the Speedup over different static and runtime metrics: . . . 100
5.3 Features and their importance for the random forest model indicate that

the 2nd join’s mean chain length is the most important, with both dynamic
(chain length) and static (number of unique relations) features being important.105

viii

List of Tables

3.1 Comparison of WCOJ implementations across different systems 46
3.2 Comparison of factorized representation implementations across different

systems . 47

4.1 Comparison of methods to achieve key-unique hash table chains. While
both approaches require similar implementation effort, the linear probing
approach will be more performant than having nested hierarchical chains. . 59

4.2 TPC-H - Total runtime in seconds (lower is better) 72
4.3 TPC-H - Relative runtime over baseline (lower is better) 72
4.4 TPC-DS - Total runtime in seconds (lower is better) 76
4.5 TPC-DS - Relative runtime over baseline (lower is better) 76
4.6 Runtimes and speedups for different configurations of the factorized aggre-

gates microbenchmark . 85
4.7 Runtimes of different systems and configurations for finding the number

of triangles in WebStan dataset. While for the binary join plan, Umbra
is superior, for the factorized join plan and one thread the new DuckDB
factorized join plan is the best . 93

4.8 Parallel Efficiency of the Systems in table Table 4.7 for four and eight threads. 93
4.9 Speedup of WCOJ over Binary Join for Different Systems and Threads . . . 93

5.1 Sample Data from the Collected Dataset used to train and evaluate the
adaptive factorization . 98

5.2 Accuracy and Speedup for various selection methods and classifiers on the
test dataset . 104

ix

List of Listings

2.1 Count of 3-hop cyclic relationships in a traditional SQL query 24
2.2 Count of 3-hop cyclic relationships using the PGQ extension in SQL:2023 . 25

3.1 Example of a Datalog query . 38

4.1 Query returning the friends of friends for all users 59
4.2 Inserting a vector of row pointers to the hash table buffer. Instead of using

a function argument to determine parallel, we use a template. This will
allow the compiler to remove the parallel branch. 65

4.3 TPC-H query 18 . 76
4.4 Query returning the number of 2nd degree followers grouped by place of birth 78
4.5 Query returning the number of parts needed per product for all orders . . . 84
4.6 Query returning all triangles within the follows relation 86
4.7 Query returning all triangles within the relations R, S and T 86
4.8 Count the number of cycles in the WebStan dataset 91

xi

List of Algorithms

1 Nested Loop Join Algorithm . 15
2 Index Nested Loop Join Algorithm . 15
3 Sort Merge Join Algorithm . 16
4 Hash Join Algorithm with Linear Probing 20
5 Binary join . 29
6 Generic Join . 29

xiii

Acronyms

BI Business Intelligence. 37, 46, 48, 49

CSR compressed sparse row. 34

CSV comma-separated values. 33

DBMS database management system. 1, 3, 5, 6, 10, 14, 17, 30, 32, 33, 35, 48

FK foreign key. 9

GDBMS graph database management system. 1, 3, 6, 7, 22, 23, 25, 26, 34–36, 48

GQL Graph Query Language. 24

HJ hash join. 17

HLL HyperLogLog. 102

HT hash table. 17, 54

INLJ index nested loop join. 14, 15

JAO Join Attribute Ordering. 27, 46

JSON JavaScript Object Notation. 33

LP Linear probing. 70

NLJ nested loop join. 15, 17

NUMA non-uniform memory access. 14, 32, 33

OLAP online analytical processing. 1, 6, 10, 50

OLTP online transaction processing. 1, 6

xv

Acronyms

PK primary key. 9

RDBMS relational database management system. 7, 10, 33, 36, 46

SIMD single instruction, multiple data. 32, 39

SMJ sort merge join. 16

SQL Structured Query Language. 7, 10, 11, 24, 25

SQL/PGQ Property Graph Queries. 24, 25, 34

TPC Transaction Processing Performance Council. 70

TPC-DS Transaction Processing Performance Council - Decision Support. vii, ix, 70, 74,
76, 77, 111

TPC-H Transaction Processing Performance Council - H. vii, ix, 70–72, 74, 75, 111

WCOJ Worst-Case Optimal Join. ii, ix, 2, 3, 23, 26–29, 34–39, 42, 46, 48–51, 92–95, 109,
111, 112

xvi

1

Introduction

In the era of big data, efficient data storage, retrieval, and management have become

critical components for the performance of modern applications [51]. Database management

systems (DBMSs) are the backbone for this era by handling vast amounts of structured

and unstructured data across various industries, from finance and healthcare to social

media and e-commerce [85].

While DBMSs traditionally run on their own servers with multiple connected clients,

embedded databases, such as SQLite, can handle data efficiently on an end user’s device.

These systems are widely adopted, with SQLite managing a trillion active databases on

client devices [46]. While in-process systems for online transaction processing (OLTP)

workloads are common, there was a gap for in-process online analytical processing (OLAP)

systems [84], which are optimized for analytical, read-heavy workloads.

In-process OLAP systems like DuckDB [84] have gained large popularity, e.g., with the

python package of DuckDB reaching 3,736,093 downloads in the May of 2024 [83]. This

popularity also stems from the fact that most professionals do not actually deal with big

data. Instead, modern data management is more concerned with efficiently handling smaller,

more practical datasets, where systems running on end users’ devices often outperform big,

complex, distributed systems designed for massive data [95].

A specialized subtype of DBMSs, are graph database management systems (GDBMSs)

like Neo4J [74] and Amazon Neptune [16]. These are explicitly designed for graph workloads,

which differ from default OLAP workloads; for instance, GDBMSs often need to compute

large, complex many-to-many (cyclic) joins. GDBMSs can be used for different (analytical)

applications, including fraud detection and recommendations in finance, e-commerce, and

social networks [89].

1

1. INTRODUCTION

Recent research has introduced two novel techniques for efficiently handling graph
workloads: (1) WCOJ algorithms, which can efficiently find cyclic patterns, and (2)
factorized representations, which are a method of lossless compressing data on relationships,
allowing for more efficient data representation and processing. While both WCOJ algorithms
and factorized representations promise significant performance improvements, only a few
systems have already adopted them. This leads us to the following research questions:

1. What approaches and implementations exist for WCOJ algorithms and factorized
representations?

2. What are the current challenges in adopting WCOJ algorithms and factorized repre-
sentations, especially for general-purpose systems?

3. How can we integrate WCOJ and factorized implementations into these systems?

4. How can we determine when and how to incorporate these technologies into query
plans to ensure they are used only when they provide a clear benefit?

1.1 Contributions

Our main contributions are as follows:

• Literature Review: We perform a literature review to analyze which systems
currently implement factorization and WCOJs and what hinders the widespread
adoption of these technologies.

• Linear-Chained Hash Table: We introduce, implement, and evaluate linear-
chained hash tables that combine linear probing with chaining for collision-free hash
table chains and feature micro bloom filters, which will be part of DuckDB 1.1.

• D-Representations in DuckDB: We introduce factorization to the general-purpose
system DuckDB by using pointers to collision-free hash table chains as factorized
d-representations.

• Factorized Execution: We utilize d-representations to compute aggregations and
cyclic joins more efficiently by reducing data expansion and reusing cached results.

• Adaptive Factorization with Machine Learning: We implement an adaptive
factorization method using machine learning to decide when to apply factorization
based on runtime conditions.

2

1.2 Outline

1.2 Outline

First, we provide the relevant background information for this thesis in Chapter 2. Sec-
tion 2.1 contains an introduction to DBMS, how and in which form these systems store
data, and how this data can then be accessed and modified by the end user. We then
go into the internal database systems and discuss how they execute queries. One of
these operators systems use for this is the Join operator, which will be introduced in
Section 2.2. As this work aims to introduce Factorization and WCOJ into DuckDB, which
are especially relevant in the efficient analysis of graphs, we will give an introduction to
the field of GDBMS in Section 2.3, which also contains background information on the
to-be-implemented techniques. For the implementation, relevant optimization strategies
adopted by analytical DBMSs are listed in Section 2.4. Finally, we conclude our background
introduction with an introduction to DuckDB and DuckPGQ (Section 2.5).

Following the presentation of the necessary background information, Chapter 3 provides
an overview of the current state of research through a literature review. This section covers
the latest developments in the adoption of both WCOJ (Section 3.1) and factorization
techniques (Section 3.2). We then conclude with a summary of our findings and discuss
the insights that can be applied to the current project in Section 3.3.

In Chapter 4, we display our main contributions. The key idea of using hash table
chains for factorized representations can be found in Section 4.1. From this, we propose a
modification of the hash table for hash joins (Section 4.2 & Section 4.3) and implement
it into DuckDB (Section 4.4 & Section 4.5). We then evaluate this new approach in
Section 4.6. Using the modified hash table, we discuss how we can use the hash table
chains as factorized representations (Section 4.7) and how we can compute aggregates
(Section 4.8.1) and cyclic joins (Section 4.8.2) efficiently on these representations.

In Chapter 5, we then propose our concept of adaptive factorization, which uses factor-
ization only when beneficial by run-time strategy switching (Section 5.1). We evaluate
this approach empirically (Section 5.2) and analyze metrics that can be used to make this
runtime switching in Section 5.3. We then propose and evaluate our approach of using
machine learning to make this runtime decision in Section 5.4.

Finally, we conclude this thesis with a discussion and list loose ends and potential
opportunities for future work in Chapter 6. A final conclusion can be found in Chapter 7.

3

2

Background and Related Work

This chapter provides an introduction to database systems, explaining their purpose and
the various types of databases that exist. Furthermore, this chapter will show how data in
DBMSs can be manipulated and queried using query languages and shows how queries
are translated into relational algebra and then into optimized query plans. It also covers
the structure and normalized format of the data stored within these systems to motivate
the importance of Join Operators. In this work, we aim to modify and improve the
Hash Join Operator introduced in section Section 2.2.3 to use it for factorization and
worst-case optimal joins. These two novel techniques will be introduced in Section 2.3.4
and Section 2.3.3. Both are optimization techniques that are primarily targeted for Graph
workloads. We will further list how graphs can be processed by DBMSs and what the
specific characteristics of graph workloads are.

The chapter also addresses optimization techniques for analytical systems’ read-heavy
workloads, such as columnar storage, morsel-driven parallelism, and vectorized execution.
Finally, we introduce DuckDB, this thesis’s primary database system. It will later be used
to implement and evaluate the proposed algorithms of this project.

2.1 Database Management Systems

A DBMS is a software system that stores, retrieves, and manages large sets of interrelated
data efficiently and securely. The core functions of a DBMS include defining data structures,
managing data manipulation, and ensuring data integrity and security against system
failures or unauthorized access [91, p. 1]. An example application of DBMSs is in the
context of banks, which can use the system to store and analyze information on their
customers and their financial transactions. Traditional DBMSs typically run on a separate

5

2. BACKGROUND AND RELATED WORK

Database

Server 1 Server 2

Client 1 Client 2 Client 3

(a) Database Server: standalone process, can
handle multiple connections over a network.

Client

In-Memory DB

(b) In-Process Database: Operates within the
client application.

Figure 2.1: Comparison of a database server and an in-process database

server, handling requests from multiple clients. In contrast, there are embedded databases
which run within the same process as the application. Such systems have gained immense
popularity, with the most popular, SQLite, having over a trillion active databases in
use [46]. These embedded or in-process databases can be used to manage data on the end
user device (See Figure 2.1).

However, while there were in-process solutions for OLTP workloads like SQLite [46]
for a long time, there was a gap for in-process OLAP systems [84]. Such systems are
optimized for analytical, read-heavy workloads by, among other things, implementing a
columnar storage format [1], a pipelined query execution engine [20], and morsel-driven
parallelism [55]. For example, the embedded OLAP system DuckDB [84] has recently
gained significant popularity, with its python package reaching 3,736,093 downloads in the
May of 2024 [83].

Similar to OLTP or OLAP, another dimension to categorize DBMSs is by distinguishing
between relational and non-relational databases. Non-relational databases are designed for
handling unstructured or semi-structured data. They typically do not rely on predefined
schemas and are designed to scale easily, making them suitable for managing large volumes
of diverse data types. These databases typically support a variety of data models, including
key-value or document stores [73]. Examples of such databases include MongoDB (storing
JSON) [70] and Cassandra (a key-value store) [10; 4].

Another type of (typical) non-relational database are GDBMSs. These are optimized for
high-performance graph querying and often feature special operators and a graph query
language for efficient graph manipulation and analysis. These systems will be described in

6

2.1 Database Management Systems

more detail in Section 2.3. Examples for GDBMSs are systems like Neo4J [74], Amazon
Neptune [16], Kùzu [34], and TigerGraph [31].

In contrast, relational databases, such as SQLite and DuckDB, are relational model,
which will be discussed in the next section.

2.1.1 Relational Database Systems

Introduced by Codd’s 1970 paper, ”A Relational Model of Data for Large Shared Data
Banks” [26], relational database management systems (RDBMSs) have become the pre-
dominant type of database system. As of 2024, the top four most widely used databases
are relational [30]. These systems use relational algebra to operate on data organized into
tables (sometimes also called relations). Each table consists of rows (records) and columns
(attributes), where each row represents a unique data item, and each column represents a
data field. The power of relational databases lies in their ability to handle vast amounts
of structured data and complex queries efficiently using the Structured Query Language
(SQL) [91, pp. 12-15].

Normalization, first proposed by Codd as part of his relational model [26], is a design
approach for relational databases to avoid the redundant storage of information, which
can lead to inconsistencies and anomalies. Normalization aims to eliminate undesirable
dependencies during insertion, update, and deletion, reduce the need for restructuring as
new data types are introduced, make the relational model more user-friendly, and ensure
that the database design remains efficient despite changes in query patterns [27].

The importance of normalization can be demonstrated using the example in Figure 2.2b,
which illustrates a following relationship that could represent the underlying data of a
social media application. The completely normalized relation includes both the users who
follow each other and the city each user resides in for every row. However, the city a
user lives in is functionally dependent on the user. For instance, Eve’s city, Amsterdam,
appears repeatedly whenever Eve follows someone. This redundancy can lead to anomalies
during data insertion, update, or deletion: If one needs to update Eve’s city of residence,
it requires modifying all rows where Eve is following another user or being followed.

There are several levels of normalization, each with its own set of guidelines, known as
normal forms [27; 104]:

1. First Normal Form (1NF): A table is in First Normal Form if it contains only
atomic (indivisible) values, and each column contains values of a single type. This
form eliminates repeating groups and ensures that the entries in a column are

7

2. BACKGROUND AND RELATED WORK

(a) Unnormalized relation for a follows relationship in social media. The first tuple
(Eve, Amsterdam, ((Bob, Berlin), (Alice, Paris)) indicates that Eve, living in Amsterdam, follows Bob,
who is based in Berlin and Alice, living in Paris.

(b) First Normal Form (1NF) applied to the follows relationship. The nested tuple in the first row of
the initial data is now expanded into two rows, one row for each user Alice is following. This leads to
Amsterdam being present three times in the table.

(c) Second Normal Form (2NF) applied to the follows relationship. As the city of residence is dependent
on the user (e.g., Eve → Amsterdam), the city relation is created as a new key, where the user_name acts as
a key to connect the two relations.

Figure 2.2: Normalization process for a follows relationship in social media, showing the
initial unnormalized relation, application of 1NF, and 2NF.

8

2.1 Database Management Systems

of the same data type. In the example of Figure 2.2, the nested values of the
follows_user_names_and_cities column are split into two columns, and the list
of two values in the first-row result in respectively two separate rows.

2. Second Normal Form (2NF): A table is in Second Normal Form (2NF) if it is in
1NF and all non-key attributes are fully dependent on the entire primary key. For
composite primary keys, each non-key attribute must depend on all parts of the key.
2NF eliminates partial dependencies, where non-key attributes depend on only part
of a composite key. In the example of Figure 2.2, the primary key is a composite of
user_name and follows_user_name. However, user_city and follows_user_city

depend only on user_name and follows_user_name respectively, not on the entire
composite key. Therefore, they are placed in separate tables.

3. Third Normal Form (3NF): A table is in Third Normal Form if it is in 2NF and
all its attributes are functionally dependent only on the primary key. There should
be no transitive dependencies where non-key attributes depend on other non-key
attributes. 3NF aims to reduce redundancy by ensuring that non-key attributes do
not introduce additional dependencies beyond the primary key.

Normalized relations are then again linked together through primary key (PK) and
foreign key (FK) keys. A PK uniquely identifies a record in a table, ensuring that each
entry is distinct and can be efficiently retrieved. A FK is a field in one table that connects
to a PK in another table, creating a relationship between the two tables [91, p.45]. These
relations are distinguished based on their mapping cardinality as depicted in Figure 2.3.

(a) One-to-One: each student
has one locker

(b) One-to-Many: one teacher
can teach many classes

(c) Many-to-Many: many stu-
dents can be in many classes

Figure 2.3: Different Types of Relationship Cardinalities

In the example in Figure 2.2c, the user_name of the Users relation is the primary key
and the user_name and the follows_user_name of the Follows relation are two foreign

9

2. BACKGROUND AND RELATED WORK

keys linking the users in a many-to-many relationship (Figure 2.3c), as one user can follow
and be followed by many other users.

In a DBMS, linking is achieved through a join operation, which allows data retrieval
from two different (normalized) relations through a cartesian product [28], where tuples
are combined if they satisfy a given join condition [67]. As this operation is frequent and
resource-intensive, it is important to feature highly optimized algorithms for this task to
achieve good performance in DBMS. This is especially important in OLAP systems, where
queries can have many large joins. For details on this can be found Section 2.2.

To read and manipulate the data stored in a RDBMS, users typically use a relational
query language like SQL. It was developed at IBM in the early 1970s by Donald D.
Chamberlin and Raymond F. Boyce [22] after they were introduced to the relational model
by Edgar F. Codd [26].

When an RDBMS receives a relational query language statement, such as an SQL
statement, it parses the statement into a tree of relational algebra operators. Relational
algebra is a set of operations used to manipulate and query relations. It enables relations to
be filtered, linked, aggregated, or otherwise modified to formulate queries to a database [99].
The relations the algebra operates on are homogeneous sets of tuples defined as

S = {(sj1, sj2, . . . , sjn) | j ∈ 1, 2, . . . , m}

where m is interpreted as the number of rows in a relation, and n is the number of columns.
For each column, all tuples have the same type. Different relational algebra operators are
defined to manipulate these homogeneous bags of tuples [91]. Among these operators are:

• Selection σ: Selects rows that satisfy a given predicate. σcondition(R)

Example: σage>30(Employees) selects all employees older than 30.

SQL Equivalent: SELECT * FROM Employees WHERE age > 30

• Projection π: Selects specified columns from a relation. πattributes(R)

Example: πname, age(Employees) only returns the name and age columns.

SQL Equivalent: SELECT name, age FROM Employees

• Cartesian Product ×: Combines tuples from two relations pairwise. R× S

Example: Employees×Departments returns the combinations of all employees with
all departments.

SQL Equivalent: SELECT * FROM Employees CROSS JOIN Departments

10

2.1 Database Management Systems

Parsing &
Binding

Query
Optimizer

Planner
Execution
Engine

SQL Query
Logical Query

Plan

Optimized Logical
Query Plan

Physical Query
Plan

Result

Catalog 
(Tables, ...)

Statistics on

Data

Data

Figure 2.4: Steps in query execution

• Join on: Combines related tuples from two relations based on a condition. R oncond S

Example: Employees onEmployees.dept_id=Departments.dept_id Departments only com-
bines the tuples of both relations where the Employees.dept_id is equal to the
Departments.dept_id.

SQL Equivalent: SELECT * FROM Employees JOIN Departments ON

Employees.dept_id = Departments.dept_id

Translating the SQL syntax tree to the relational operator is an important step in
processing a query, as discussed in the next section.

2.1.2 Query Processing

Query processing refers to the steps necessary to extract data from a database. These
include translating high-level queries (like SQL) into expressions usable at the physical file
system level, applying query optimization transformations, and executing the queries.

An overview of the query processing steps can be found in Figure 2.4. First, the system
translates the SQL query into a parse tree, performing semantic checks by looking up table

11

2. BACKGROUND AND RELATED WORK

and column names in the catalog (“binding”), optimizing the resulting logical query plan,
finally transforming it into a physical query plan, and then executing this plan [91, p. 527].
Typically, the tree is split into operator pipelines for execution that are run one after the
other [42].

Each parsed SQL query can be translated into a logical query plan in multiple ways,
providing different execution strategies for the same outcome. For example, given the query
in Listing 4.4 where the number of followers per city for the user Eve is retrieved, directly
translation the SQL syntax tree to relation algebra results in the tree in Figure 2.5a.

PROJECTION
πuser_city, number_of_followers

AGGREGATE
γuser_city,count_star()

FILTER
σuser_name = ’Eve’

COMPARISON JOIN (INNER)
onfollows_user_name = user_name

SCAN (Follows) SCAN (Users)

(a) Unoptimized Logical Plan

PROJECTION
πuser_city, number_of_followers

AGGREGATE
γuser_city,count_star()

COMPARISON JOIN (INNER)
onuser_name = follows_user_name

SCAN (Users)
FILTER

σuser_name = ’Eve’

SCAN (Follows)

(b) Optimized Logical Plan

Figure 2.5: Comparison of an unoptimized and Optimized Logical Plans

This unoptimized logical plan applies the filtering operation after joining the Follows

and Users tables. This approach is correct but might not be the most efficient because
the join operation, which is usually expensive, is performed on the entire dataset before
filtering for the specific user Eve.

During the query optimization step, the plan is transformed to be more efficient to
execute, resulting in Figure 2.5b. Here, the filter operation for the user Eve is pushed down
before the join operation. This means that only the relevant subset of the Follows table
(those rows where user_name = Eve) is considered during the join operation. Now, the join

12

2.1 Database Management Systems

operation processes a smaller amount of data, which can lead to significant performance
improvements. Furthermore, the position of the incoming relations into the join operator
is swapped. Because of specific join implementations, having the smaller relation on the
right is efficient. Since the number of users Eva follows will be smaller than the total
number of Users in the system, using the filtered follows relation as the right side of the
join is more performant. More details will be provided in Section 2.2.3. After the join,
the aggregate operation is performed to count the followers for each city, and finally, the
projection retrieves only the required columns (user_city and number_of_followers).

An optimized plan can greatly improve query performance, making the optimizer an
important component. For example, using a user relation with 10,000 entries and a follower
relation with 100,000 entries, using DuckDB with one thread results in a runtime of 24
milliseconds for the optimized plan and 134 milliseconds for the unoptimized plan. Through
query optimization, the runtime was therefore reduced by 82.09%.

PROJECTION
#0, #1

HASH GROUP BY
#0, count_star()

PROJECTION
user_city

HASH JOIN (INNER)
follows_user_name = user_name

FILTER
user_name = 'Eve'

INDEX SCAN (Follows)
follows_user_name, user_name

SEQ SCAN (Users)
user_name, user_city

Figure 2.6: Physical Plan of the optimized logical plan in Figure 2.5b

13

2. BACKGROUND AND RELATED WORK

The relational algebra representation of a query only partially specifies how to evaluate
it, leaving room for various execution strategies. These strategies include different join
methods, selection techniques, and indexing approaches, each affecting the efficiency and
performance of query execution [91, p. 528]. The DBMS needs to transform the logical
plan into a physical one that also defines how each logical operator is implemented and
executed.

For the example logical plan in Figure 2.5b, the DuckDB physical plan is depicted
in Figure 2.6. This plan illustrates how the logical operations are executed using specific
physical operators. The projection operation is followed by a HASH GROUP BY operation
to count the number of followers per city. DuckDB utilizes a hash table-based method
known as HASH JOIN to execute the join operation. This is one of several join algorithms
implemented by DuckDB; another example includes the index nested loop join (INLJ),
which will be explained in Section 2.2.1. The condition user_name = 'Eve' is optimized
by pushing the filter down as far as possible within the execution plan. The optimized
results are subsequently joined using a sequential scan of the Users table and an index
scan of the Follows table.

Since join operators will play a central role in this project, the next chapter will introduce
different implementations of these operators.

2.2 Join Implementations for Relational Databases

A join can involve two relations (two-way) or more (multiway), depending on the number
of relations they process at once. Typically, joining n relations involves (n− 1) two-way
join [67], which are the types of joins this section will focus on. However, for cyclic multiway
joins, it can be more efficient to use multiway worst-case optimal join algorithms [78],
which will be discussed in Section 2.3.3.

Joins can be optimized across several aspects: From query optimization, which focuses
on the join order and the decomposition of multiway joins into binary joins, to the use of
parallel join processing that aims to use multiple cores or nodes to speed up execution [67].
For the project on hand, however, the primary focus is on implementing the actual join
algorithm and leveraging optimizations discussed in Section 2.4, such as non-uniform
memory access (NUMA) aware algorithm design and vectorized query execution.

The following sections will introduce three possible join algorithm implementations and
compare them regarding their performance. The running example to explain the algorithms
is to join the relation R on S under the condition r(a) θ s(b), which will result in relation

14

2.2 Join Implementations for Relational Databases

Q = R on r(a) θ s(b) S. S will be the outer table with a size m tuples which are stored on
M memory pages. R will be the inner table with a size n tuples and N pages respectively.

2.2.1 Nested Loop Join

The nested loop join (NLJ) is the easiest way of implementing a join algorithm. In this
method, one of the joined relations is chosen as the inner relation, and the other is chosen
as the outer relation. For each tuple of the outer relation, all tuples of the inner relation are
read and compared with the tuple from the outer relation. The two tuples are combined
and emitted whenever the join condition is satisfied. The algorithm for performing the
join Q = R on r(a) θ s(b) S is defined as follows:

Algorithm 1 Nested Loop Join Algorithm
for each tuple s ∈ S do

for each tuple r ∈ R do
if r(a) θ s(b) then

Q← Q ∪ (r × s)

Here, R and S are the joined relations, r and s are tuples from R and S respectively, and
θ is the join condition. This method, although simple, can be inefficient for large relations
as it involves a quadratic number of comparisons.

The INLJ algorithm improves upon the nested loop join by using an index on the inner
relation to speed up searches, significantly reducing the number of comparison operations
required. This method is particularly effective when an index already exists for the join
attribute of the inner relation [23, 43:21-46:46].

Algorithm 2 Index Nested Loop Join Algorithm
for each tuple s ∈ S do

for each tuple r ∈ Index(r(a) θ s(b)) do
Q← Q ∪ (r × s)

In this method, R is typically chosen as the inner relation and is assumed to have an
index on the joining attribute a. When a tuple s from the outer relation S is examined,
the index on R is used to quickly find all matching tuples r that satisfy the join condition
r(a) θ s(b). This direct access via the index avoids scanning the entire relation R, thus
saving on I/O costs and making the join operation more efficient [91; 43].

The standard NLJ requires n×m comparisons, a comparison of every tuple in S against
every tuple in R. For the index nested loop join, the number of comparisons depends on

15

2. BACKGROUND AND RELATED WORK

the selectivity of the index. It can be approximated as m× avg_matches per tuple, where
avg_matches represents the average number of tuples in R that satisfy the join condition
per tuple in S. Summarized, the cost for comparisons are as follows:

Total Comparisons NLJ : CCMP, NLJ = CCMP, BNLJ = n×m (2.1)

Total Comparisons INLJ : CCMP, NLJ = m× avg_matches (2.2)

2.2.2 Sort Merge Join

The sort merge join (SMJ) key concept is merging two sorted relations. For computing
Q = R on r(a) θ s(b) S, both relations R and S are first sorted on the joining attributes r(a)
and s(b) respectively. Although initially sorting the data can take a lot of effort, it makes
the next step of combining matching entries from both groups much quicker, as only one
pass over the sorted data is necessary:

Algorithm 3 Sort Merge Join Algorithm
sort R on r(a)
sort S on s(b)
i← 1
j ← 1
while i ≤ |R| and j ≤ |S| do

if ri(a) = sj(b) then
Q← Q ∪ (ri × sj)
i← i + 1
j ← j + 1

else if ri(a) < sj(b) then
i← i + 1

else
j ← j + 1

This method involves scanning through the sorted lists of R and S. When matching
tuples are found, they are combined and added to the result set Q. If a tuple from R is less
than a tuple from S based on the join condition, the pointer for R is advanced. Conversely,
if a tuple from R is greater, the pointer for S is advanced. This approach avoids the full
Cartesian product typically required in nested loop joins and is significantly more efficient
in terms of computational and I/O costs when dealing with large datasets. The efficiency

16

2.2 Join Implementations for Relational Databases

of the sort-merge join is especially good when the data is already sorted or indices are
available that can be utilized to speed up the sorting phase [91; 85].

The number of comparisons required in the merge sort algorithm is the sum of the
comparisons needed for sorting the individual lists and the comparisons made while
merging those lists. If quicksort is used for sorting the lists, the number of comparisons
can be calculated as follows:

Comparisons Sort R: CCMP, SORT(R) = m log m (2.3)

Comparisons Sort S: CCMP, SORT(S) = n log n (2.4)

Comparisons Merge S & R: CCMP, MERGE(R, S) = m + n (2.5)

Total Comparisons SMJ: CCMP, SMJ = m(log m + 1) + n(log n + 1) (2.6)

Assuming n = m, the algorithm therefore has a complexity of O(n log n), which is much
better than the NLJ with a complexity of O(n2)

2.2.3 Hash Joins

The last type of join implementation to discuss is the hash join (HJ) algorithm, which uses
a hash table (HT) to perform the join operation. A hash table is a data structure that
stores key-value pairs and enables fast retrieval by using keys to access values [63]. This is
achieved using a hash function that maps keys of arbitrary size to fixed-size values [5].

In the context of DBMS, hash functions focus on efficiency and even hash distribution [23].
Examples of hash functions used in DBMS are xxHash [29], Google CityHash [40], or
Google Farmhash [41].

The first step to create a hash table is to allocate a buffer of size N . A hash function is
then defined to map keys to a hash within the range [0, N]. A common approach is to use
a standard hash function like CityHash and then apply a modulo operation to ensure the
hash falls within the desired range, see Equation (2.8).

h(k) = hash(k) (2.7)

where h(k) ∈ [0, N − 1]

e.g. h(k) = CityHash(k) mod N (2.8)

When inserting a key-value pair, the index into the buffer is calculated using the hash
function, and the value is placed at the calculated index. For lookup operations, the index

17

2. BACKGROUND AND RELATED WORK

is similarly calculated on the lookup key using the hash function, allowing the program to
directly access the value at the buffer location corresponding to the computed index [63].

Typically, hash tables such as the std::unordered_map in the C++ standard library
also allow for the deletion of keys and can be resized [92]. However, in the context of
database management systems, the required size of the hash table is often known in advance
since the sizes of the relations to be joined are known. Additionally, values must only be
inserted into the hash table and not removed.

During insertion, there can be a case in which the buffer slot calculated using the hash
is already filled. Such a collision can occur for two main reasons: duplicate keys or the
hashing of different keys to the same index. For example, in a table where one user follows
many others, and the hash table is constructed using user_id as the key, multiple entries
might hash to the same index. Also, there might be a case where two different user names
map to the same hash. This is called a hash collision [23].

In real-world applications, hash collisions are very common, as their probability follows
the birthday paradox [93]: Given a hash function that produces a hash of b bits, the number
of possible outputs is 2b. However, in the case of hash tables, the number of distinct values
of the hash is limited by the number of slots, which is much smaller than the value range
of the hash. The probability of a hash collision for inserting n values into a hash table of
size Ncan be calculated as.

P = 1−
n−1∏
i=1

(
1− i

N

)
(2.9)

According to Equation (2.9), this means that for a hash table with 1024 slots, already for
a fill rate of 5%, there will be a collision with a chance of 77%. This shows how important
it is to find performant methods of dealing with collisions.

Two common methods to handle such collisions are linear probing and chaining. Both
methods are depicted in Figure 2.7. Linear probing (Figure 2.7a) addresses collisions by
moving sequentially through the buffer slots from the point of collision until an empty slot
is found for the new key-value pair. This method is simple and efficient but can lead to
clustering, where groups of adjacent slots get filled, slowing down the insertion and lookup
process [63]. Clustering can be avoided by quadratic probing, where the interval between
probes is increased quadratically (i.e. 1, 4, 9, 16, etc.), rather than linearly, filling the
slots more randomly. However, this has the drawback of more cache misses in large-scale
applications. While the next bucket is likely already in the cache in linear probing, large
jumps will result in cache misses [88].

18

2.2 Join Implementations for Relational Databases

(a) Duplicate resolution using linear probing

(b) Duplicate resolution using chaining

Figure 2.7: Comparison between two methods of duplicate resolution in hash tables, linear
probing, and chaining

On the other hand, chaining (Figure 2.7b) resolves collisions by storing all entries that
hash to the same index in a linked list attached to each buffer slot [23]. While linear
probing is categorized under open addressing, using linked lists to manage collisions is
known as closed addressing.

Liu et al. [61] show that closed addressing is better for hash tables with high fill rate or
skewed data, as the number of filled slots is smaller and therefore the number of collisions
is reduced. This also leads to hash tables using closed addressing tend to be more stable
in performance [61]. On the other side, open addressing like linear probing reduces the
number of cache misses, as there are no list pointers that need to be followed, making them
more performant for lower fill rates [23].

The hash join algorithm consists of two steps: First, a hash table is constructed on one of
the relations, referred to as the build side. This step involves calculating the keys’ hashes
and inserting the key value parts into the hash table array. After the build, the second

19

2. BACKGROUND AND RELATED WORK

Algorithm 4 Hash Join Algorithm with Linear Probing
Input: Relation R with attribute r(a), Relation S with attribute s(b)
Output: Resulting relation Q containing matching pairs from R and S

H ← an empty hash table of size M . Build Phase
for each ri ∈ R do

index← hash(ri(a)) mod M

while H[index] is not empty do
index← (index + 1) mod M . Linear probing for next empty slot

H[index]← ri

for each sj ∈ S do . Probe Phase
index← hash(sj(b)) mod M

while H[index] is not empty and H[index](a) 6= sj(b) do
index← (index + 1) mod M . Linear probing to handle collision

if H[index](a) = sj(b) then
Q← Q ∪ (H[index]× sj)

relation, the probe side, is used to look up or ”probe” the hash table. For each key in the

probe side, we check if there is a match in the hash table [91]. Typically, the smaller of the

two relations is chosen as the build side because building the hash table is generally more

resource-intensive and time-consuming than the probing operation [24]. A pseudocode

implementation of a join algorithm using linear probing can be found in Algorithm 4

A practical step-by-step process is depicted in Figure 2.8. In this example, the hash

table is first built using the follows relation from Figure 2.2c to join the follows relation

with the users relation similar to the query of Listing 4.4 to compute the join defined as:

R = Users onusers.user_name=follows.user_name Follows (2.10)

In the context of Hash Joins, the convention is to use the right-hand side of the join

operation as the build side. Therefore, the columns that act as a key for the join are the

follows.user_name on the build side and the users.user_name on the probe side. To

build the hash table on the Follows relation as depicted in Figure 2.8a, the hash function is

calculated for each tuple in the key column. Then, the hash table is used to store values of

type (Follows.user_name, Follows.follows_user_name) using the Follows.user_name

column as keys. As the key Eve occurs multiple times in the relation, when inserting the

second Eve, we land at a hash table slot that is already occupied (blue arrow). In the

20

2.2 Join Implementations for Relational Databases

(a) Building the hash table on the Follows relation, using the key user_name

(b) Probing a hash table using the Users relation, using the key user_name

Figure 2.8: Illustration of building and probing a hash table using linear to calculate
R = Users onUsers.user_id=Follows.user_id Follows.

example, linear probing is used for collision management. Therefore, the original index is

incremented. As the following slot is free, the tuple (Eve, Alice) is inserted at index 1.

The hash table is now probed using the Users table using the Users.user_name key. The

look-up starts after again calculating the hash and, therefore, the index into the hash table

for each key. For the first key (green arrows), which is Eve, the corresponding slot with

the index 0 is occupied and contains the tuple (Eve, Bob). Comparing the probe key and

the key within the table results in a match, meaning the tuple (Amsterdam, Eve, Eve, Bob)
can be appended to the join result.

For the second key (Bob, blue arrow), the hash returns the index 1 to start the look-up.

The content of the slot at index 1 is the tuple (Eve, Alice), which does not match with

21

2. BACKGROUND AND RELATED WORK

the lookup key Bob. Therefore, according to linear probing, the next slot is considered.
As this slot is empty, it is now clear that there is no match for this probe key. The third
key in the Users relation is computed similarly to the first one, also resulting in a match.
Therefore, the join result of this query consists of two rows:

R = Users onUsers.user_id=Follows.user_id Follows

= [(Amsterdam, Eve, Eve, Bob),

(Paris, Alice, Alice, Eve)]

In a hash join, comparisons occur when each tuple from S is used to look up matching
tuples in the hash table built for R. If the hash function distributes tuples uniformly, the
expected number of comparisons per probe is proportional to the number of tuples of the
build side m, divided by the size of the hash table HTsize. The comparisons during the
probe phase can be estimated as:

Comparisons Probe S:CCMP, PROBE(R, S) = n · m

HTsize

m = size of build side

n = size of probe side

Assuming n = m and assuming the size of the hash table HTsize is chosen such that
HTsize ≈ m · 1.5, the complexity of the hash join can be approximated as O(n). This is
much better compared to the O(n2) complexity of nested loop joins [24] and the O(n log n)
complexity of sort-merge joins. Therefore, hash joins generally outperform sort-based
joins, but there are scenarios where sort-based joins are better. Examples are cases with
non-uniform data distributions, where the data is already sorted by the join key, or when
the output needs to be in a sorted order. Effective database management systems will
try to use the best join implementation depending on the specific requirements of the
query [24].

2.3 Graph Database Management Systems

A GDBMS is a database system that utilizes graph structures, including nodes, edges,
and properties, to represent and store interconnected data. These systems are designed
for high performance in graph querying featuring special operators and often also provide
a graph query language designed for efficient graph manipulation and analysis. Two of

22

2.3 Graph Database Management Systems

these novel techniques are WCOJ algorithms, which will discussed in Section 2.3.3 and
factorized representations, introduced in Section 2.3.4. Both techniques are fundamental
for understanding the project on hand, as its goal is to implement these into DuckDB. In

Figure 2.9: Example of a directed graph. Edges are directed: there is no relation from to (3)
to (2), but there is one from (2) to (3)

graph theory, a graph is an abstract structure representing a set of objects along with the
connections existing between these objects. Mathematically, a graph G is defined as an
ordered pair G = (V, E) [98, p.57] where:

• V is a set of vertices or nodes, and

• E is s a set of unordered pairs {v1, v2} of vertices, called edges.

A directed graph, or digraph, is similar but consists of a collection of vertices linked by
edges with a specific direction. Here, E is a set of ordered pairs.Figure 2.9 depicts an
example digraph G = (V, E) with V = {v1, v2, v3, v4} and E = {{v1, v2}, {v2, v1}, {v2, v3},
{v3, v1}, {v3, v2}}. A practical example of graph application is in social networks, where
each user is modeled as a node, and one user following another is represented by an edge
connecting the corresponding vertices.

Common use cases for GDBMS include domains where relationship and network analysis
are necessary, e.g., retail, recruitment, search, and knowledge management. In retail,
GDBMS can increase sales by leveraging recommendation engines that suggest products
based on user behavior and preferences. In recruitment, these systems can identify potential
candidates by analyzing connections within professional networks like LinkedIn [44; 87].
Using GDBMS on social network graphs enables the analysis of both direct and indirect
connections among individuals and groups to evaluate and explore each user’s interactions
and interests [87, pp. 106-108].

23

2. BACKGROUND AND RELATED WORK

2.3.1 Property Graphs and Property Graph Queries

Property graphs are extended directed graphs that allow properties to be associated with
nodes and edges [8]. A property graph consists of:

• Nodes (Vertices): Represent entities in the graph. Each node can have a set of
key-value pairs known as properties.

• Edges (Relationships): Represent relationships between nodes which can also
have properties.

• Labels: Nodes and edges can be labeled to categorize them. Multiple labels can be
applied to a single node or edge.

Figure 2.10: Example of a simple property graph of a social network according to [49].

For example, in a social network graph, nodes represent people, and edges represent
relationships such as friendships or follows. Properties on nodes might include attributes
like name, age, or location, while properties on edges might include the date the relationship
was established. An example of such a property graph is depicted in Figure 2.10.

To query property graphs, one can utilize Graph Query Languages (GQLs) such as
Cypher, used by Neo4j [37], or Gremlin, used by Apache TinkerPop [9]. Additionally, the
SQL:2023 standard [47] includes the Property Graph Queries (SQL/PGQ) sub-language,
allowing relational systems to standardize graph queries [105]. Graph query languages
allow an easier definition of graph queries than default SQL.

1 SELECT COUNT(*)
2 FROM Links AS l1
3 JOIN Links AS l2 ON l1.destination = l2.source
4 JOIN Links AS l3 ON l2.destination = l3.source
5 WHERE l3.destination = l1.source;

Listing 2.1: Count of 3-hop cyclic relationships in a traditional SQL query

24

2.3 Graph Database Management Systems

1 FROM GRAPH_TABLE(pg
2 MATCH (a:Page)-[e1:Links]->(b:Page)
3 -[e2:Links]->(c:Page)
4 -[e3:Links]->(a:Page)
5 COLUMNS (Count(*))
6);

Listing 2.2: Count of 3-hop cyclic relationships using the PGQ extension in SQL:2023

A comparison between SQL and SQL/PGQ can be found in Listing 2.1 and Listing 2.2.
The queries return the count of 3-hop cyclic relationships within the graph of a forum
like Wikipedia, where Page a is connected to Page b, which is connected to Page c, which
is again connected to a. Listing 2.1 uses traditional SQL with multiple joins to find
cycles where a page links to another that links back to the original. This approach is
unintuitive due to the explicit join conditions required. Conversely, Listing 2.2, using
the new SQL/PGQ sub-language from SQL:2023, simplifies the expression of the graph
pattern. The parentheses and arrows ((a)-[e]->(b)) of the SQL/PGQ syntax represent
the nodes and edges, making the graph structure easier to visualize and the query easier
to understand.

2.3.2 Characteristics of Graph Workloads

When executing queries on graph workloads like the one of Listing 2.2, the internal execution
of GDBMS is the same as described in Section 2.1.2 on query processing: The SQL/PGQ
query will be parsed and transformed into logical relational operators, optimized and then
executed. One difference is that the physical implementation of these operators is heavily
optimized for graph workloads [34]. According to Mhedhbi et al. [66], these workloads
differ from traditional relational database workloads due to three primary reasons:

1. Many-to-many joins are common due to the extensive number of relationships
inherent in densely connected graph data.

2. Cyclic joins play an important role in applications like social network recommenda-
tion systems and fraud detection, where relationships often loop back on themselves.

3. Long acyclic joins are utilized in path-finding scenarios, which may traverse
significant depths, to analyze connections and relationships over extended paths.

Many-to-many joins as the one in Figure 2.3c are challenging for relational databases
because of two reasons: the explosive nature of such joins, especially when chained, e.g.,

25

2. BACKGROUND AND RELATED WORK

for pathfinding and cyclic joins. Even with a modest number of input tuples, these can
significantly increase the volume of intermediate and final results. As an example, take
the query depicted in Listing 2.2. The physical query plan DuckDB created for this query
can be found in Figure 2.11. Each operator is annotated in this plan with the number of
rows it produces. Here, the initial join connecting the Links relation to itself, which starts
with 7,600,595 rows, results in an intermediate output of 222,498,869 rows, increasing by a
factor of 29.2. This join retrieves all combinations of two connected edges. With its two
conditions, the subsequent join closes the cycle by searching for edges that connect back to
the loose ends of the previous join. Thus, it is far more selective, reducing the number
of rows to 41,421,291. The final node in the tree is the count aggregation, which returns
the number of rows from the preceding join, outputting a single row. GDBMSs must be
optimized to handle these explosive intermediate results.

For cyclic joins, specific multi-way acwcoj algorithms can be much more efficient than the
chained binary hash joins of standard relational database systems. These will be discussed
in the next section.

2.3.3 Worst-case Optimal Joins

Worst-case optimal joins can be more efficient than binary join plans in finding cyclic
patterns inside graphs, which is a common task in graph workloads [89]. Binary joins for
cyclic queries often generate intermediate results that are larger than the maximum number
of rows in the final output. This maximum size of the intermediate result is theoretically
limited by the AGM bound [13]: For the triangle query R(a, b), R(b, c), R(c, a), where
|R| = N , the AGM bound is N

3
2 . However, a binary join plan will first evaluate the open

edge R(x, y), R(y, z) before closing the cycle, which could generate N2 intermediate results,
which is larger than the AGM bound of the total query of N

3
2 .

Figure 2.13 shows two examples of cyclic queries. The most simple is the triangle query
Q4 depicted in Figure 2.13a. Here, we search for triangles where we have a node x which
is connected to both node z and y, and node y has an edge to node z, closing the cycle.
Figure 2.13b shows the more complicated Diamond-X query QX . In this query, we search
for two connected triangles. For QX , there are many ways to compute the query combining
binary joins with potential 3-way or 4-way joins.

Unlike binary joins that process cyclic join tables one at a time, WCOJs evaluate queries
attribute-by-attribute within a single n-way join operator. The fundamental operation
in WCOJs algorithms involves intersecting sets of values, which, in the context of graph
processing, corresponds to intersecting adjacency lists [65].

26

2.3 Graph Database Management Systems

UNGROUPED AGGREGATE
count_star()

1 row

HASH JOIN (INNER)
source = destination
destination = source

41.421.291 rows

HASH JOIN (INNER)
source = destination

222.498.869 rows

SEQ SCAN (Links)
source, destination

7.600.595 rows

SEQ SCAN (Links)
source, destination

7.600.595 rows

SEQ SCAN (Links)
destination, source

7.600.595 rows

Figure 2.11: Physical Plan for querying 3-hop cyclic relationships, annotated with intermediate
row counts. We can see that the intermediate has 30 times more rows than the original relations,
but the final result is only one row

A classical implementation for WCOJ is the Generic Join. It was introduced by Hung

et al [77] and is a WCOJ algorithm that consists of the following three steps: (1) The

algorithm begins by selecting an order for the query variables. This order determines the

sequence in which the attributes will be joined. This step is referred to as Join Attribute

Ordering (JAO). (2) For each variable in the selected order, the algorithm intersects the

sets of values corresponding to that variable from the different relations involved in the

query. (3) After intersecting the sets of values for all variables, the remaining tuples are

combined to form the final join result [77].

To ensure the runtime efficiency for the Generic Join and ensure it remains worst-case

optimal, any implementation of the algorithm must utilize indexes that represent a trie

structure on the input relations [78; 77]. An index is needed for both querying relations

using a specific key (e.g., S[y]? in Figure 2.14 which queries for all tuples in S that fulfill y)

and also to perform the set intersection. The primary contribution to the overall runtime

27

2. BACKGROUND AND RELATED WORK

Figure 2.12: Example of two binary join trees (a) and (b), a WCOJ tree (c), and a hybrid
join tree evaluating (d) the diamond-X depicted in Figure 2.13b [65]. Query optimizers must
consider all possible combinations of hybrid query plans.

x

y

z

(a) Triangle Query Q4

a1

a2

a3

a4

(b) Diamond-X Query QX

Figure 2.13: Two examples of cyclic queries, the example was taken from [65]

of the Generic Join operation comes from the set intersection computation [3]. The most

efficient way of multi-parameter set intersection is trie indexes. Traditional structures such

as B+-trees or simple sorted lists are less expensive to construct but have bad performance

for this task [39]. Figure 2.14 shows a pseudo-code execution for the triangle query Q4

depicted in Figure 2.13a. The figure lists both a binary join and a WCOJ implementation.

Unlike binary joins, where optimizing the sequence of table joins is important, WCOJ

requires determining the order in which attributes are intersected. While all orderings of

attributes satisfy the AGM bound restriction [77], in practice different orders lead to very

different runtimes [65].

One big problem is also how to combine WCOJ with existing binary joins, as many

different combinations can result in very different runtimes. For the Diamond-X Query QX

28

2.3 Graph Database Management Systems

Algorithm 5 Binary join
for (x, y) in R do

s← S[y]?
for (y, z) in s do

t← T [x, z]?
for (x, z) in t do

output(x, y, z)

Algorithm 6 Generic Join
for a in R.x ∩ T.x do

r ← R[a];
t← T [a]
for b in r.y ∩ S.y do

s← S[b]
for c in s.z ∩ t.z do

output(a, b, c)

Figure 2.14: Implementation of binary join and generic join for Q4. The expression S[y]?
queries S using y as a key, proceeding to the next iteration of the outer loop if no match is
found. The binary join processes tuples, while the generic join processes values based on key
intersections. Example taken from Wang et al. [103].

of Figure 2.13b, four of these options are visualized in Figure 2.12. It lists two options for

computing the query only using binary joins. One left-deep plan, where we start by joining

R(a1, a2) and R(a1, a3) and then joining all other relations sequentially. The second binary

join plan is bushy, meaning that we have two main branches that join three relations each

and then join their result with another binary join. As an alternative to these binary

joins, Figure 2.12c shows a plan using only two triangle joins to compute the result. As

a 4th option, Figure 2.12d sows a hybrid approach: We first compute the two triangles

independently using two multiway WCOJ joins and then use a binary join to combine the

two results.

(a) Database with three relations (b) Natural Join

Figure 2.15: Database with three relations Orders (O), Dish (D), and Items (I) (left)
and the flat representation of the natural join of the three relations containing redundancy
(right), e.g. the tuple 〈Elise〉 × 〈Monday〉 × 〈burger〉 is repeated three times. [33]

29

2. BACKGROUND AND RELATED WORK

2.3.4 Factorized Representations

Factorized representations are a method of lossless compressing data on relationships by
using algebraic factorization, allowing for more efficient data representation and process-
ing [65, p. 5]. Factorization is based on relational algebra, especially how the Cartesian
product distributes over union, which is the basis for algebraic factorization.

A good example to explain factorization is from the FDB Research Group of the University
of Zurich [33]: Here, there are three relations Orders (O), Dish (D), and Items (I) which
are depicted in Figure 2.15a. Applying the natural join of the three relations results in 12
rows with five columns as depicted in Figure 2.15b. As depicted, one can notice that a
lot of the before normalized data is now included multiple times, e.g. the tuple (Elise,

Monday, burger) is included three times in this flat representation of the data. Relational
algebra can eliminate this redundancy by expressing the relation through the application
of the union and Cartesian product operators on singleton relations, which are defined
as relations containing a single column and a single row. By utilizing the distributive
property of multiplication over addition, common sub-expressions can be factored out,
thereby simplifying the algebraic expression [79].

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈patty〉 × 〈6〉 ∨

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈onion〉 × 〈2〉 ∨

〈Elise〉 × 〈Monday〉 × 〈burger〉 × 〈bun〉 × 〈2〉

=

〈Elise〉 × 〈Monday〉 × 〈burger〉×

(〈patty〉 × 〈6〉 ∨ 〈patty〉 × 〈6〉 ∨ 〈patty〉 × 〈6〉)

Representing a set of tuples within the DBMS would enable us to have 9 instead of 15
singular tuples in memory. Factorization of tuples can be achieved in many different order
of factors. An alternative order to the one above is depicted in Figure 2.16: The factorized
representation (f-representation) presented on the right is determined by a structure on
the left. This structure is defined by a partial order on the query variables, known as a
variable order. It is also called an f-tree, which stands for factorization tree [15]. In general,
an f-tree T can be used to describe the structure of an f-representation [65].

Initially, all potential dishes are enumerated. In the next step, for each specified dish,
the lists of days on which the dish was ordered and the list of component items of the dish
are considered independently. Beneath each day, an enumerating customer who placed

30

2.3 Graph Database Management Systems

Figure 2.16: Variable order of a factorization of the join depicted in Figure 2.15b (left) and
the corresponding tree structure (right) according to [33]

.

Figure 2.17: D-representations of the f-representation depicted in Figure 2.16: As the price
of the 〈bun〉 and 〈onion〉 tuple are independent of the three above, they are replaced with their
definitions [33]

.

an order for the dish on that particular day is added. Similarly, the price of each item is

positioned below the item itself. [33].

In f-trees, each variable is assumed to depend on all its ancestor variables, resulting in

tree-structured factorizations. However, this assumption is often not true; for example,

the price does not depend on the dish if the item is given. Generally, a variable may only

depend on a subset of its ancestors. D-trees refine f-trees by explicitly associating each

variable with a dependency set, consisting of the ancestor variables on which it or its

descendants depend. This refinement can lead to more compact factorizations, as depicted

in Figure 2.17 [81].

31

2. BACKGROUND AND RELATED WORK

2.4 Optimizations for Read-Heavy Workloads

To increase CPU speeds, modern CPUs feature instruction pipelines, which break down

the execution of a single instruction into multiple simpler stages. For efficient operation,

the CPU tries to predict the next instructions to keep the pipeline full. If it predicts

incorrectly, the pipeline must be cleared and restarted, which causes a loss in performance,

particularly with longer pipelines [20].

In there are conditional branches, the CPU speculatively executes one possible path. If

its prediction is incorrect, a branch misprediction occurs, leading to the pipeline being

emptied and a loss in performance. Additionally, instruction independence is crucial for

pipelines. For example, a = b + c and d = b× c can be processed independently using two

units. However, in a = b + c followed by d = a× c, the computation of d must wait until

a is calculated [20; 108]. This is even more relevant with super-scalar CPUs, which have

multiple pipelines and can execute several independent instructions simultaneously [20].

In database systems, branches dependent on data conditions, such as a filtering operator

with moderate selectivity, are hard to predict, which can notably slow down query execution.

To avoid branch miss predictions and data dependencies, modern DBMS feature a vectorized

query execution engine. Here, operations do not handle single tuples, but large blocks of

thousands of tuples called vectors [20]. In addition, this method decreases the number

of function calls and allows CPUs to use parallel processing, loop unrolling, and the use

of single instruction, multiple data (SIMD) instructions [54]. The latter allows a single

instruction to be applied to multiple data points simultaneously, for example, four parallel

additions.

Modern database systems need to effectively utilize not just a single CPU core but

multiple. For this, systems such as DuckDB and Umbra adopt an approach known as

morsel-driven parallelism [55]. This method involves dividing the query execution into

small, manageable units of work called morsels. The key advantage of this approach is

to ensure an even distribution of work and maximize throughput by implementing a task

scheduling system that is both fine-grained and adaptive. In addition, this scheduling is

NUMA-aware, which enhances performance by maintaining data locality and minimizing

memory access delays in non-uniform memory architectures [55].

32

2.5 DuckDB and DuckPGQ

2.5 DuckDB and DuckPGQ

DuckDB, which is the RDBMS used for implementation and experimentation in this thesis,
is an analytical, relational, in-process database[84]. It is freely available under the MIT
License and open source1[32]. This database management system is feature-rich, offering a
“friendly” SQL dialect [69] and integrations with different file formats like comma-separated
values (CSV), Parquet, and JavaScript Object Notation (JSON).

As an analytical system, DuckDB implements many of the optimizations for read-heavy
workloads of modern DBMS [14]:

• Columnar storage: DuckDB uses skippable columnar storage using MinMax
statistics and a variety of lightweight compression schemes, see.

• Indexing: Supports primary and foreign keys backed by the ART index [56],
optimizing data retrieval.

• Push-based Vectorized Query Execution: DuckDB has a vectorized execution
engine that operates directly on compressed data and a push-based operator execution
driven by a morsel-driven pipeline scheduler.

• Robust Out-of-Core Operations: The operations for join, aggregation, and
sorting in DuckDB are designed to run efficiently out-of-core, with a gradual decline
in performance as memory becomes limited [52].

• Join Optimizations: Uses HyperLogLog for enhanced statistics and cardinality
estimations.

• Morsel-driven Parallelism: DuckDB supports NUMA-aware multi-threaded exe-
cution.

As a vectorized query execution engine, DuckDB’s operators work primarily on groups
of vectors that contain 2048 tuples. These groups of vectors are called DataChunk and
contain one vector for each column they represent. More complicated data types like lists
or structs can be represented as nested vectors. For example, to represent a list, DuckDB
uses one vector of size 2048 which contains indexes to another, variable-sized vector, which
contains the elements of the lists. For filter-like operations on a Vector, DuckDB uses
SelectionVectors which contain the indices of the “active” tuples in the Vector.

1https://github.com/duckdb/duckdb

33

https://github.com/duckdb/duckdb

2. BACKGROUND AND RELATED WORK

DuckDB can be extended with extensions, which can add new data types, functions, file
formats, and SQL syntax enhancements. One of these extensions is DuckPGQ2, built to
support graph workloads and the SQL/PGQ standard [105]. It is freely available under
the MIT-License and open source. DuckPGQ builds on the optimizations of DuckDB
but also incorporates additional optimizations like fast on the fly compressed sparse row
(CSR) generation and custom operators for path finding [106; 86]. Because of these
optimizations, DuckPGQ can outperform the popular GDBMS Neo4j in pattern-matching
and path-finding queries [106]. To further optimize DuckPGQ and DuckDB for graph
workloads, this project aims to experimentally implement factorization and WCOJ in
DuckDB and DuckPGQ.

2https://github.com/cwida/duckpgq-extension

34

https://github.com/cwida/duckpgq-extension

3

Literature Review

The following chapter will review current literature concerning the adoption of WCOJ and
factorized representations in DBMSs. In Section 3.1, we will list the systems that currently
implement WCOJ algorithms. In Section 3.2, we will do the same for factorized represen-
tations. We will then summarize our findings and list the elements from the literature that
can be applied to our approach. This can be found in Section 3.3. Background information
on factorization and WCOJ is provided in Table 3.2 and Section 2.3.3 respectively.

3.1 Adoption of Worst-case Optimal Joins

This section will list which systems feature Worst-case Optimal Joins and which challenges
they faced when implementing them. Note that we will not include the Dovetail WCOJ of
RelationalAI [18], as we did not find any academic source describing the specific algorithm
in detail.

3.1.1 GraphflowDB, later Kùzu

GraphflowDB is an in-memory, non-transactional graph database used as a research
prototype. Kùzu [34] is the follow-up system developed by the Data Systems Group at the
University of Waterloo. Unlike GraphflowDB, Kùzu is designed to be a fully functional,
user-facing, and highly scalable production-ready GDBMS. Kùzu is a disk-based system
that scales beyond memory and offers more robust and scalable join capabilities than
GraphflowDB [34].

GraphflowDB [65] uses the Generic Join algorithm [77] as their WCOJ algorithm [65]. For
binary joins, Graphflow users both Index Nested Loop Joins or Hash Joins. The Index
Multiway Join implements the Generic Join algorithm discussed in Section 2.3.3. For list

35

3. LITERATURE REVIEW

intersection, GrapflowDB assumes that all binary relations used for the join have an index
that allows fast retrieving of tuples in this relation that satisfy a certain condition [65].

The system allows the optimization of hybrid query plans containing both WCOJ and
binary joins. Each attribute ordering for the WCOJ is considered a separate plan. These
plans are then optimized through a metric called intersection cost. It estimates the
intersection workload in intersecting adjacency lists during query execution and uses this
assessment to rank the performance of different query plans based on this heuristic.

The system also incorporates the cost of binary joins when ranking hybrid query plans.
This holistic approach considers the intersection cost and the costs associated with binary
joins. The optimizer can adapt to the characteristics of the input graph. It considers
variations in the sizes of forward and backward neighborhoods and the expected output
sizes of subqueries. Therefore, Grapflow will provide different query plans for the same
query on different data [65].

However, this cost-based method depends on statistics from subsets of the base ta-
bles [65], which can result in cardinality estimation errors during query planning, leading
to suboptimal plan choices. These inaccuracies tend to increase with more downstream
operations, particularly filtering, which can significantly alter the data properties of the
filtered subsample. Therefore, planning operators above the filter can be very difficult.

GraphflowDB handles parallel query execution through work-stealing-based, morsel-
driven parallelization [55]. Each worker or thread in the system is provided with the
physical plan. Workers operate independently by fetching tasks from a common queue.
Threads can execute extensions in the Index Nested Loop Joins and Index Multiway

Join operators independently, without needing to coordinate with one another.

3.1.2 Umbra

Umbra [76] is disk-based RDBMS using code generation for query execution. The system
features an implementation of WCOJ for general-purpose RDBMS, which might not have
only binary, easy-to-index relations like typically GDBMS. This is done with a hash-based
worst-case optimal join algorithm, utilizing a hash trie structure constructed during query
execution [39].

This Hash Trie Join Algorithm is divided into two distinct stages: the build and probe
phases. During the build phase, input relations are materialized, and hash tries are
constructed. Following this, in the probe phase, the worst-case optimal hash trie join
algorithm uses these index structures to generate the join results [39].

36

3.1 Adoption of Worst-case Optimal Joins

Many systems like GraphflowDB or EmptyHeaded assume that input data is sorted or
indexed, which can be costly to maintain in practical scenarios. For example, GraphflowDB
only computes joins on binary relations and therefore only requires indexing these relations
twice [65]. For more complex n-ary relationships, we must maintain up to n! different
indices to support all possible attribute orderings. As this is very costly, it is hard to justify,
especially if the system should also support updates of the data [39]. For example, Freitag
et al. measured that the EmptyHeaded system needs up to two orders of magnitude more
time to precompute the index than the actual join processing [39].

Umbra introduces a multiway join operator that dynamically computes the trie indexes
needed for its WCOJ algorithms during query execution. These indexes are structured as
nested hash tables, where each level represents a join key attribute, and the leaf nodes are
organized using a linked list [39].

Freitag et al. note that despite the advancements in WCOJ algorithms, these often
do not match the performance of traditional binary joins on queries without growing
joins [38]. For example, the highly optimized LevelHeaded system [2] is outperformed by
HyPer [50] by a factor of up to two on certain TPC-H Business Intelligence (BI) queries,
even when precomputation costs are excluded [39]. Furthermore, benchmarks show that
Umbra surpasses a commercial system utilizing worst-case optimal joins by up to four
orders of magnitude on TPCH and JOB benchmarks using binary joins [39].

Therefore, Umbra applies a heuristic method that enhances optimized binary join plans
by substituting cascades of potentially growing joins with worst-case optimal joins. These
plans prevent the growth of intermediate results, improving upon the original binary plans.
Growing joins are identified using the same cardinality estimates applied in regular join
order optimization [39].

3.1.3 BiGJoin in Timely Dataflow

Timely Dataflow is a distributed system designed for executing data-parallel, cyclic dataflow
programs [71]. Ammar et al. [7] developed a variant of the GenericJoin algorithm, named
BiGJoin, which they implemented on the Timely Dataflow platform. With BiGJoin, the
authors developed a distributed operator that ensures cumulative worst-case optimality,
effective workload balance, and low memory usage per worker across real-world datasets
and queries [7].

As BiGJoin implements the WCOJ algorithm GenericJoin for a distributed system, there
are challenges regarding the cooperation of different nodes. A key challenge in this setting
is managing memory requirements and computational load on individual machines while

37

3. LITERATURE REVIEW

minimizing communication. This gets more complicated as the number of workers increases
or if the data is skewed. Ammar et al. tackle this with a batching technique for memory
control and an intersection planning method that prioritizes shuffling smaller adjacency
lists to reduce communication [7].

3.1.4 LogicBlox

The LogicBlox system is a commercial [101] tool that uses a logic programming language
and a deductive database. The language is inspired by Datalog to handle data in a
declarative and incremental way [11]. Datalog is a declarative logic programming language
and a syntactic subset of Prolog. It allows for deriving additional facts by applying rules
to the existing facts stored within its database [21]. Listing 3.1 shows an example that
defines the ancestor relationship and queries for all ancestors of ’john’ using Datalog.

1 ancestor(X, Y) :- parent(X, Y).
2 ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
3

4 % Example query: Find all ancestors of 'john'
5 ancestor(X, john).

Listing 3.1: Example of a Datalog query

The LogicBlox System uses a WCOJ algorithm called Leapfrog TrieJoin [102]. It is
optimized for evaluating joins across general relations. Like the GenericJoin, this algorithm
relies on multiway intersections to perform the joins [102]. The process starts by placing an
iterator at the beginning of each predicate. Then, it follows the following rules: (1) If either
iterator reaches the end, the process stops. (2) If both iterators are at the same key, that
key is emitted, and one of the iterators is advanced. (3) If the iterators are on different keys,
the one at the smaller key is moved forward to match the position of the other iterator.
This process repeats until the join is complete [101]. To perform this sort of intersection,
all predicates need to be sorted. Therefore, the algorithm assumes that the input data
is indexed according to a global attribute ordering and selects a join attribute order that
aligns with this global attribute sequence [65]. The LogicBlox query optimizer uses small
samples of predicates to compare variable orderings for Leapfrog TrieJoin evaluation, also
used for automatic index creation [11].

The LogicBlox system does not use binary join operators, focusing exclusively on
generating and executing plans featuring the Leapfrog TrieJoin [65].

Incremental maintenance is a key feature of the LogicBlox applications [11]. Incremental
maintenance of derived predicates is handled by extending the LFTJ algorithm using trace

38

3.2 Adoption of Factorized Representations

maintenance. In this approach, queries are represented as a computational graph. For

example, the equation r = (a + b) ∗ c would result in a graph where the nodes represent

the variables a, b, and c, and the edges represent the operations between them. In this

computational graph, changes to the inputs automatically propagate through the graph,

updating the result. If c is updated now, only a subpart of the graph has to be recomputed

- the result of the addition a + b stays the same. To use this approach for the Leapfrog

Triejoin, LogicBlox maintains traces on an operation of the individual iterators of the join

algorithm [101].

3.1.5 EmptyHeaded

EmptyHeaded [3] is a relation system designed to evaluate graph workloads. The system

focuses on using SIMD parallelism in their WCOJ algorithms. Like GraphflowDB, it

uses the Generic Join algorithm but implements it in a SIMD friendly way. For instance,

EmptyHeaded improved the set intersection for two sorted unsigned integer lists by

optimizing for SIMD and reducing branch mispredictions. Building on the LogicBlox

system’s merge-based approach, it compares multiple elements from two input arrays

simultaneously (step (2) of LogicBlox), enhancing efficiency by reducing unpredictable

conditional branches as they can now step the iterators more than only once [48].

3.2 Adoption of Factorized Representations

While certain industrial-strength systems have already adopted WCOJ algorithms, the

adoption of factorization is less widespread. To our knowledge, only two systems broadly

support factorized representations: The FDB system [15] developed at the University of

Oxford and GraphflowDB [65], which became Kùzu [34], developed by researches at the

University of Waterloo. Beyond that, there are approaches to integrate factorization in

relational systems by using special (temporary) structures built during query processing.

These include the 3D-Hash Join paper [35] and Umbra with the Robust Join Processing

paper [19].

3.2.1 FDB System

The FDB system [15] was the first to introduce factorized query processing. It is an

in-memory engine designed for handling select-project-join queries.

39

3. LITERATURE REVIEW

item

oid location

dispatcher

(a) T1: Relation R1

item

supplier

location

(b) T2: Relation R2

item

oid
location

dispatcher

supplier

location∧

(c) T3: R1 onitem R2

item

oid location

dispatcher supplier

(d) T4: R1 onitem,location R2

Figure 3.1: Challenges when joining two factorized relations according to [15]: We want to
compute R1 onitem, location R2, because of the f-trees, R1 onitem R2 is simple to compute by
intersecting item. For the condition location, it could be more efficient to rearrange T2 for a
faster join computation.

FDB uses f-representations and works on trie structures. It indexes all input relations as
tries, and its execution plans consist of a linear sequence of operators that transform and
produce tries, starting from the ones that represent the input data [15].

Bakibayev et al. aim to find f-trees that provide the most succinct representations of
query (intermediate) results for databases, whether the input is flat or factorized. The
query and the schema determine these f-trees. The query optimizer focuses on two main
metrics: reducing the computing cost of the factorized query result and minimizing the
size of the output [15].

The search for an effective query and factorization plan (f-plan) additionally requires
considering operators beyond the standard selection, projection, and product. These
operators are concerned about reordering an f-tree to speed up the following query operators.
The FDB system has two of these operators. The swap operator exchanges a child with
its parent in an f-tree, and the push-up operator moves up an entire subtree within the
f-tree. This example can be seen in Figure 3.1. Bakibayev et al. illustrate this with the
following example: We want to compute the join R1 onitem, location R2. The f-tree T1 of
R1 is depicted in Figure 3.1a, the one of R2 is depicted in Figure 3.1b. For these f-trees,
joining on the item column is very efficient, as both T1 and T2 have this column as their
first variable. Therefore, the item column is on the first hierarchical level of the try, which
makes it easy to intersect. The resulting f-tree of this join R1 onitem, location R2 is T3 and
depicted in Figure 3.1a. If we want to check for the second join condition, location on
T3, we would need to iterate each of the suppliers and then access all the locations in the
orange subpart of the tree. The join could be much easier to compute if the location and
supplier nodes of T2 were swapped, as indicated by the black arrows. This would allow an

40

3.2 Adoption of Factorized Representations

Figure 3.2: Factorized Representation in Kuzu: The first two list groups are flattened to
single tuples, while the last one represents k2 many tuples [45].

easy computation of the full join, resulting in T4 depicted in Figure 3.1b. However, also
this swapping is computationally expensive. The query optimizer must be able to evaluate
both options to get an optimal plan1.

3.2.2 GraphflowDB, later Kùzu

GraphflowDB uses multiple groups of vectors, referred to as list groups, to represent
intermediate data. Each list group possesses a field named curIdx and can exist in one of
two states:

• Flat: The list group is considered flattened if curIdx ≥ 0. This state represents a
single tuple consisting of the curIdx-th values from the blocks.

• Unflat list of tuples: The list group is represented as an unflat list of tuples if
curIdx = −1. This state allows the list group to represent as many tuples as the
number of elements within its blocks.

Additionally, in its unflat state, the vector lengths of a tuple can exceed the default
fixed-length vector size, such as 1024, extending up to the lengths of adjacency lists
in the database. This approach eliminates the need to materialize adjacency lists into
blocks. Figure 3.2 depicts an intermediate chunk composed of three list groups [45].
The first two groups are in a flattened state, whereas the last one is in an unflat state.
In this state, the intermediate chunk embodies k2 intermediate tuples, represented as
(a1, 51)× (b2)× ((c1, d1) ∪ . . . ∪ (c2, d2)). In the factorization theory, this representation is
known as the f-representation [34; 79].

Contrary to using a single Join operator, such as Neo4j’s Expand, which utilizes the
adjacency list indices to implement the index nested loop join algorithm, two joins are
employed.

1Empirical evaluation shows

41

3. LITERATURE REVIEW

Factorized Vectors are obtained by joins over 1-n or n-n edges e by a ListExtend operator.
Consider nodes a connected through 1-n or n-m edges e to nodes b. The input list group
LGa, containing vectors of values corresponding to a, may be presented in a flat or unflat
format. If LGa is unflat, it is first flattened by setting the curIdx field of the list group to
0. Each a value, denoted as al, is processed in a loop, where it is extended to a set of b and
e values using its adjacency list Adjal. These b and e values are then placed into a new list
group, LGb, which segregates a list of b and e values for an individual a value. The block
lengths in LGb, for both b and e values, have the same length as Adjal, differentiating from
the fixed block sizes seen in traditional block-based processors [45]

The second join operator, ColumnExtend, is used for 1-1 or n-1 joins. Instead of adding
a new list group to obtain a factorized representation, the input list group is extended with
new column vectors. This can be done as the maximum cardinality of the result will stay
the same. [45]

Furthermore, GraphflowDB also features implementations for d-representation using
nested hash tables. Therefore, GraphflowDB adds a blocking operator called DGroup-by

that builds progressively these nested hash tables by appending multiple DGroup-by(s) to a
WCOJ subplan [65]. The second key component is directed, acyclic graph-style plans, where
Index Nested Loop Joins or Index Multiway Join operators share d-representations
produced by DGroup-by operations. These operators can skip parts of the plan if a sub-
relation for a specific key has already been computed, moving directly to the child of
the last DGroup-by used. If the sub-relation has not been calculated, the computation
continues with the next child of the Index Nested Loop Joins or Index Multiway Join

operator.
In existing block-based processors, binary expressions typically process two blocks of

values. However, the list-based processing of GraphflowDB demands a more capable filter
operator that can handle three potential value combinations: two flat values, two lists, or
a combination of one list and one flat value. However, it can benefit from the factorized
format by not needing to process as many tuples [65].

GraphflowDB computes GROUP BY and aggregations based on their factorized representa-
tions. This is highly efficient, as the computation of count(*) is possible by multiplying
the sizes of list groups, thereby determining the tuple count represented by each received
intermediate chunk.

Real-world graph data with n-n relationships often show power-law degree distribu-
tions [59], leading to many short adjacency lists. For example, FLICKR and WIKI graphs
have average degrees of 14 and 41, respectively, while the commonly used Twitter dataset

42

3.2 Adoption of Factorized Representations

has a degree of 35 [53; 45]. When processing queries with multiple joins, reading these lists
from memory involves iteratively reading short lists and performing random accesses to
get the node information. For the storage layer, compression techniques that decompress
data blocks of a few KBs to read a single vertex property or short adjacency list can
be expensive [45]. Furthermore, this skew in the factor length could lead to workload
distribution issues, which can be problematic for parallel computation.

3.2.3 Umbra

Birler et al. incorporate factorized representations implicitly into Umbra in the diamond-
hardened join framework [19]. In traditional in-memory binary hash joins, a hash table is
built on one relation and probed with another to produce all matching pairs. This process,
while common, can be resource-intensive when dealing with n:m joins that often result in
duplicate values. Most existing systems miss out on these potential optimizations because
they immediately materialize the join result, flattening the factorization and increasing the
computational load. The authors propose to exploit this natural factorization by splitting
up joins in a Lookup and Expand phase [19]. This is similar to deferred unnesing of the 3D
hash join proposed by Flachs at al. [35].

An SQL query optimizer must handle inner joins, outer joins, semi-joins, and anti-joins.
Unlike inner joins, which can be freely reordered, outer joins are more complicated because
they produce null values and are not commutative or associative. This makes reordering
difficult. Birler et al. suggest using the Lookup and Expand decomposition for outer joins.
By making Lookup the operator that produces nulls, the optimizer can push Expand up
the join tree more easily. This approach increases flexibility in query planning, allowing
the optimizer to explore more ordering options for Expands, even though full reorderability
is not always possible [19].

Furthermore, Birler et al. propose to extend the Lookup and Expand principle to handle
cyclic queries worst-case optimally. The authors introduce the Expand3 operator. This
operator can expand two iterators conditional. Combining this operator with Lookup and
Expand is sufficient to achieve worst-case optimality in almost all queries [19]. This ternary
operator is based on Algorithm 2 from Ngo et al. [77], using intersections implemented
through hashing.

With the Expand3 operator, Umbra can compute ternary cycles worst-case optimal as
shown by the following example: Consider the cyclic query R(a, b) on S(b, c) on T (c, a). This
query’s Lookup and Expand plan could be represented as eT (eS(R→ S)→ T). Therefore,
the expansion happens before the second lookup, as R and S share predicates with T . If

43

3. LITERATURE REVIEW

R1

R2

R3R4

R5

on on
⇒

R1

R2,3R4,5

Figure 3.3: Transforming a pentagon query into a triangle query allows computing it with
two standard binary joins (red) and two Lookups and one Expand3, allowing worst-case optimal
computation [19].

the inner expansion (R→ S)→ T is avoided, the intermediate result retains R with two
iterators, one for S and one for T . The Expand3 operator then takes these two iterators and
computes their intersection on the predicate S.c = T.c. The resulting plan is represented
as e3S,T ((R→ S)→ T) [19]. For this plan to be worst-case optimal, the intersection must
be computed in time proportional to the length of the shortest iterator [77]. Therefore,
the Expand3 operator selects the iterator with the smallest number of tuples and performs
hash-lookups into the tuples referenced by the other iterator [19].

The authors argue that only having the Expand3 operator is enough to compute most
classes of cyclic joins worst-case optionally. This is done by decomposing n-ary cycles into
binary joins followed by a Expand3 operation [19]. For a pentagon query, this is shown
in Figure 3.3, where the binary joins used to transform the query in a triangle query are
depicted in red. The triangle can then be computed using Expand3.

Birler et al. argue that it is not necessary to implement aggregation functions that
directly operate on unexpanded intermediates. Instead, they suggest that join and aggregate
queries, which produce intermediate results with duplicate values, can benefit from eager
aggregation [19]. Eager aggregation involves calculating partial aggregates before some
joins are executed, thereby reducing the cost of the subsequent joins. It is achieved using
transformation rules that push the group-by operation down the join tree [107]. For
instance, consider the query Γb;sum(c) (R(a, b) on S(b, c)). This query can be optimized by
performing eager aggregation on S first:

Q = Γb;sum(c) (R(a, b) on S(b, c)) (3.1)

= Γb;sum(c′)
(
R on Γb;sum(c):c′(S)

)
(3.2)

The Lookup operator finds the first match in the hash table for each probing tuple. The
subsequent Expand operator then iterates over any additional matches. This separation

44

3.2 Adoption of Factorized Representations

allows the query to remain factorized until the Expand operator is executed, thereby
avoiding unnecessary computations. The Umbra optimizer aims to order operators based
on their impact on data size: shrinking operators like Lookup are pushed down the execution
plan as they reduce the amount of data early on, while growing operators like Expand are
pushed up. However, errors in the optimizer’s cost estimates can still lead to poor plan
choices, sometimes slowing performance by up to 21 times [19].

3.2.4 3D Hash Join

The 3D Hash Join Paper by Flachs et al. proposes a new hash table layout for hash joins
that features hierarchical chains for hash collision handling [35].

Non-unique join attributes in the build phase typically result in long collision chains
in traditional hash tables that use chaining for duplicate resolution, leading to increased
memory accesses and expensive join predicate evaluations. To address this, a 3D hash table
organizes each bucket hierarchically. Instead of a linked list for each bucket, Flachs et al.
propose main collision chains and sub-chains. Each distinct key is associated with a main
node that stores both the key and its initial value, while subsequent values for the same
key are stored in sub-nodes linked to the main node. This hierarchical structuring reduces
the complexity and number of memory accesses during the probe phase by separating the
storage of keys and values between main nodes and sub-nodes, respectively. During the
probe phase, if the main node corresponding to a key is found, the sub-chain linked to this
node can be traversed without needing further comparisons [35].

The sub-chains of the hash table are free from collisions, enabling an optimization the
authors call deferred unnesting. This method emits pointers to the sub-chain when probing
a key rather than producing a flattened result. Therefore, the authors split the default
join into a join and a Unnest operator. This optimization is used when the predicate
of a secondary join solely depends on attributes from the probe side, enabling unnesting
further up in the operator tree. An example of this case is the two consecutive joins(
R on3D

R.a=S.a S
)
onR.b=T.b T , where the second join only depends on the probe side key R.b.

Deferred unnesting improves the performance as the second join processes significantly
fewer tuples and even may filter out nested tuples [35].

While the 3D Hash Paper does not use terms like factorized representations, the emission
of pointers to collision-free hash table chains technically qualifies as d-representations.
However, the proposed delayed unnesting only allows for operations on the first hierarchical
layer of the d-representation, not on the definitions themselves.

45

3. LITERATURE REVIEW

Table 3.1: Comparison of WCOJ implementations across different systems

Category Umbra [76] Kùzu [34] BiGJoin [7] LogicBlox [11]
Algorithm Hash Trie Join

& Expand3
Generic Join Generic Join Leapfrog

TrieJoin
Data
Structures for
WCOJ

Hash Trie for
Hash Trie Join,
Hash Table for
Expand3

Graphflow:
static index on
binary relations,
Kùzu: Runtime
index using
hash tables

? Global attribute
order assumed,
JAO must be
an element of
this order.

Data Structure
Creation

Runtime Ahead of
Runtime

Ahead of
Runtime

Ahead of
Runtime

Join Attribute
Ordering
(JAO)

Heuristic using
cardinality
estimates to
detect growing
intermediates

(adaptive)
dynamic
programming
cost-based
optimizer

Arbitrary Sampling-based

Hybrid Query
Plans

Same as for
JAO above

Cost-based,
dependent on
the data and
the query

Not supported Not supported

Parallelization Morsel-driven
Parallism

Morsel-driven
Parallism

Distributed over
n-workers

Operators are
parallized

Challenges
Noted by the
Authors

Integrate
WCOJ into
RDBMS
without less BI
performance,
optimizing
hybrid plans,
party solved by
Expand3.

Optimizing
hybrid plans

Workload
splitting with
skewed data

Extended
Leapfrog
TrieJoin
algorithm for
Incremental
View
Maintainance

46

3.2 Adoption of Factorized Representations

Table 3.2: Comparison of factorized representation implementations across different systems

Category Umbra [76] Kùzu [34] FDB [15] 3D Hash
Join [35]

f-
Representation
Support

Not supported Implemented
using variable
sized vectors

Implemented
using tries,
heuristic f-tree
optimization

Not supported

d-
Representation
Support

Supported as
iterators
emitted from
the Lookup
operator

Implemented
using nested
hash tables
materialized by
DGroup-by
operator

Not supported Supported as
pointers to
sub-chain in the
3D Hash Table

Supported
Factorized
Algorithms

Sequential and
cyclic Joins.

Selections,
Projections,
(Multiway)-
Joins, Filters,
Aggregates,

Selections,
Projections,
Joins,
Restructurings
of the f-tree like
Swaps and
Reorder

Sequential Joins
on attributes
not contained in
the definitions.

Challenges
Noted by the
Authors

Query
optimization is
difficult because
of errors in the
cardinality
estimation

Skew in the
data leading to
big factors,
Cost based
optimization
can lead to
suboptimal
plans

Finding good
f-trees,
Reordering
f-trees during
query execution

Creating hash
table chains
that can be
used for d-
representations
by mitigating
hash collisions

47

3. LITERATURE REVIEW

3.3 Challenges in Adopting WCOJ Algorithms and Factor-
ized Representations

In this section, we summarize the different approaches to integrating the new techniques of
Factorization and WCOJs. The list of systems reviewed contains both very specialized
systems like Kùzu [34], but also general-purpose systems like Umbra [76]. We aim to
answer the question of how these techniques were implemented in specialized systems to
find out how we can implement them in more general-purpose systems without overhead.
The final goal is to find implementation approaches that we can use for our interaction of
WCOJs and Factorization in DuckDB

In our literature review, we analyzed five systems that implement WCOJ joins and
four systems that support factorized representations. A summary of these findings is
provided in Table 3.1 for the WCOJ implementations and in Table 3.2 for the factorized
implementations. We found out that both techniques are complex to integrate into modern
analytical DBMSs, especially if these feature optimizations like pipelined and vector-based
query execution or morsel-driven parallelism [65].

Adopting the WCOJ, algorithms are complex for general purpose DBMS as they require
infrastructure for efficient computation of list intersections along columns. GDBMS like
GraphflowDB and EmptyHeaded feature relations that only have two columns (source and
destionation), so it is easy for these systems to maintain an index on these columns. For
more general-purpose systems, relations can have many columns; therefore, maintaining an
index is not feasible. Thus, such systems must rely on runtime-created data structures like
the implementation of Umbra, which degrades the performance of WCOJ algorithms for
these systems.

The BiGJoin implementation in Timely Dataflow showed that it is hard to parallelize their
WCOJ implementation on multiple machines, especially if there is skew in the data, like in
graph workloads [89]. This is also important for non-distributed systems which achieve
parallelism through multithreading. If there is skew in the data, some list intersections
might be less selective or feature more data than expected and, therefore, might be more
expensive to calculate, leading to one thread having more work than the others.

In addition, general-purpose analytical queries must also support workloads that do not
feature explosive joins, like the usual BI workload. In these cases, WCOJ are inferior to
binary joins [39], so the query planner must carefully select between WCOJ and binary
joins. Both Umbra and GraphflowDB approached hybrid join plan optimization using
heuristic query optimizers.

48

3.3 Challenges in Adopting WCOJ Algorithms and Factorized
Representations

We argue that the main challenges for adopting WCOJ algorithms in general-purpose
systems are (1) creating and maintaining data structures for fast list intersection under
changing data and (2) optimizing query plans to combine binary- and worst-case optimal
joins effectively2. Achieving good parallelism with skewed data is not a problem specific to
adopting WCOJ.

We identified two main approaches to integrating factorization. Special-purpose systems
like Kùzu and FDB feature custom data structures to maintain f-representations of tuples.
In the case of Kùzu, these are sizeable vectors, while FDB uses tries. Systems that also
aim to perform well on default relational workloads tend to adopt d-representations by
repurposing existing temporary structures created during query execution. Umbra and the
3D Hash Join use pointers to hash table chains as their d-representation. These temporary
structures require (little) extra effort to support factorization, such as the hierarchical
chains of the 3D-Hash Join.

The FDB system shows the benefits and challenges of finding good f-trees. Not only is it
difficult to find the f-tree that gives the best compression rate, but the query that needs to
be computed must also be considered when choosing an f-tree. For example, if T2 of the
example in Figure 3.1 would already have the structure item→ location→ supplier the
costly swap in from T3 to T4 would be obsolete. Systems that integrate d-representations
via temporary structures do not feature such operations.

Even without f-tree reorderings, planning query execution on factorized intermediates is
challenging, particularly for general-purpose systems receiving many default BI queries
without duplicates, which gain little from factorization. Consequently, the query optimizer
must determine if and how to utilize factorized representations.

We find two main challenges for integrating factorized representations in general-purpose
systems: (1) maintaining data structures representing factorized representations and (2)
query optimization with factorized representations. Notably, these are similar challenges
as in the adoption of WCOJ algorithms.

While specialized systems like Kùzu already profit from factorized representations and
WCOJ [65; 34], most general-purpose systems still lack these new technologies. This
is because the specialized systems can assume that because of the workload they are
designed for, the new technologies will be beneficial in most cases. Therefore, the respective
implementations can also be quite resource-heavy, like maintaining a constant index on the
relations or processing factorization-tailored data structures like ties or lists.

2In our evaluation, for a simple triangle query, both Kùzu and Umbra did not choose the optimal plan.
See Section 4.8.2 for more information

49

3. LITERATURE REVIEW

However, recent research shows that factorization and WCOJ do not have to be imple-
mented explicitly as in the FDB but can be integrated more implicitly. By reusing existing
structures not originally planned out to be used as factors like the chains of hash tables,
general-purpose systems can adopt the new technologies. First and foremost, the team
behind Umbra shows how such a more lightweight [39] and implicit implementation [19]
could look, paving the way for widespread adoption.

We aim to integrate factorized representations and WCOJ into DuckDB, a general-purpose
OLAP system designed for diverse workloads. Our approach will focus on lightweight
implementation strategies, like the 3D Hash Join technique [35] and the Diamond Hardened
Join [19].

50

4

Factorization using Linear-Chained
Hash Tables

This chapter will discuss introducing WCOJ algorithms and factorized representations in
DuckDB. Therefore, we present enhancements to the Hash Join Operator to enable the
emission of factorized tuples. We aim to leverage hash table chains to represent factors,
which will be discussed in Section 4.1. Therefore, the chapter will also introduce techniques
to create collision-free chains within hash tables, as homogeneity in keys within a chain is
necessary to utilize them as factors. This approach should significantly reduce the number
of comparisons required during the probe phase of many-to-many joins, which will be
discussed inSection 4.2. Then, we will show how we can use these factors to efficiently
compute aggregates (Section 4.8.1). In addition, we propose a method to compute cyclic
joins on factorized representations in WCOJ-like manner (Section 2.3.3).

The necessary background on factorized representations and WCOJ algorithms can be
found in Section 2.3.4 and Section 2.3.3, respectively.

4.1 Hash Table Chains as Factors

The key idea of the project on hand is to use the hash table chains as factors for the
factorized representations discussed above. Instead of flattening the list when emitting
tuples from the join operator, this approach returns pointers to these lists, using the
existing structure of chain-based hash joins to factorize join results without requiring
additional resources.

However, to repurpose the chains for factorization, all elements in a chain must have
the same join key. This might not be the case naturally due to hash collisions, where as

51

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

k₁ k₁

k₃ k₃

k₂ k₁Chain C₀

Chain C₃

...

Hash Table 1

0x0

0x1

0x2

0x3

(a) Hash table without key unique chains because of a
hash collision: k1 and k2 share a chain.

k₁ k₁

k₃ k₃

k₂

k₁Chain C₀

Chain C₃

...

Hash Table 2

0x0

0x1

0x2

0x3

(b) Hash table with key unique chains leading
to k1 and k2 being in distinct chains.

Figure 4.1: Comparison between a hash table with and without chains that contain hash
collisions

x

x

x

x

x

x

k₁ k₁ k₁

k₁

k₁

k₁ k₁ k₁ k₁

k₁

k₁

k₁

k₁ k₁

k₁ k₁

k₁ k₃

k₂

k₃ k₃

k₃ k₃ k₃

k₃

k₃

k₃

k₃ k₃ k₃

k₁

k₁

k₁

k₃

k₃

k₃

k₃

k₂ k₁

k₁

Build Relation Probe Relation Result (Flat) Result (Factorized, Logical)

Result (Factorized, Hash Table 1)

Result (Factorized, Hash Table 2)

[
[],

, ,]

Figure 4.2: Example of using hash table chains as factors. The first result shows the logical
query result. The second result illustrates errors because of hash collisions within the chains.
The third result shows the correct output when hash collisions are avoided.

52

4.2 Improving Performance With Collision-Free Chains

discussed in Section 2.2.3 two distinct keys have the same hash value, mapping to the same
chain. This is depicted in Figure 4.1a: Both k1 and k2 share the same chain. In contrast,
the hash table in Figure 4.1b features a special handling strategy for collisions to ensure
no collisions within a chain. This results in two distinct chains for items of k1 and k2.

Figure 4.2 illustrates what would happen if we used chains containing collisions using an
example. Here, the goal is to join the relation B = {k1, k1, k2, k3, k3, k1} on the relation
P = {k1.k2}. For the sake of the example, B will be used as the build side, although it is
the larger relation. The normal, user-facing flat result is listed in Equation (4.1), but it
could also internally be represented in factorized as in Equation (4.2). This can be achieved
by instead of emitting a tuple kprobe × kbuild i for every key kbuild i found in the hash table,
we collect them in a list L. The result would then be the multiplication of this list with the
probing key but would remain in this compressed factorized form for further processing.
This factorized logical version of the result is depicted in the top right corner of Figure 4.2.

Flat: R = (k1 × k1) ∨ (k1 × k1) ∨ (k1 × k1) ∨ (k2 × k2) ∨ (k2 × k2) (4.1)

Factorized: R = k1 × (k1 ∨ k1 ∨ k1) ∨ k2 × (k2 ∨ k2) (4.2)

Assuming a hash operator would build a typical chaining hash table and assuming there
is a hash collision between k1 and k2, resulting in hash(k1) = hash(k2) = 0, the hash
table of the operator would be similar to the one depicted in Figure 4.3a. The problem
is that the first slot of the hash table has tuples with both k1 and k2. Using hash table
chains as lists for the factorization does not work in this case, as the chain corresponding
to k1 and k2 can not be used as a factor without being first filtered only to contain k1 or
k2. This is depicted in the right center of Equation (4.2), where the factor for k1 would
result in a wrong query result, as the tuple k1 × k2 should not be in the query output.

The second hash table solves this problem depicted in Figure 4.3b, which guarantees
collision-free hashes. Here, the chains can directly be used as factors. Therefore, it is
necessary to design a hash table to guarantee these collision-free chains.

4.2 Improving Performance With Collision-Free Chains

Ensuring that there are no hash collisions within a chain of the hash table can improve the
performance of joins where there are duplicate join keys within the relation the hash table
is built on. This is typical for many-to-many joins. Assuming a chain contains multiple
keys, to scan for matches for a certain probe key, it must be compared against all the keys
in the chain as every chain key, as each could be unequal to the one before due to a hash

53

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

k₁ k₁

k₃ k₃

k₂ k₁

k₁

Chain C₀

Chain C₃

...

Probe Key

Hash Table 1

0x0

0x1

0x2

0x3

(a) Without collision-free chains, to probe k1, four com-
parisons are necessary

k₁ k₁

k₃ k₃

k₂

k₁

k₁

Chain C₀

Chain C₃

...

Probe Key

Hash Table 2

0x0

0x1

0x2

0x3

(b) With collision-free chains, comparing only
the first element of a chain is enough

Figure 4.3: Comparison between the probing effort for hash tables with and without collision-
free chains.

collision. If it could be ensured that all the keys in the chain are the same, an incoming
probing key would only need to be compared once against the first elements of the chain.
In this case, all chain keys after the first list can be considered matched without additional
comparisons.

This process is depicted in Figure 4.3, calculating the join result R = P onP.k=B.k B,
building on relation B and probing with relation P : The first hash table is built on
B = {k1, k1, k2, k1, k3, k3}.Figure 4.3a shows a hash table that uses chaining as a duplicate
handling strategy but without collision-free chains. As visualized, there is a hash collision
between k1 and k2, meaning that hash(k1) mod B = hash(k2) mod B, with B being the
amount of buckets of the hash table. Therefore, when k2 is inserted, it also gets appended
to the slot with index 0. Thus, the chain in index 0 now consists of tuples with k1 and k2.
To probe k1, calculating its hash will lead to slot 0 with a chain C0 = {k1, k1, k2, k1}. To
get the join result Rk1 ⊆ R for probing key k1, all elements within chain C0 must fulfill the
join condition P.k = B.k. Therefore the result is Rk1 = {ki ∈ C0 | ki = k1} = {k1, k1, k1},
where each tuple t in the result set matches the probing key k1 based on the condition
that P.k = B.k., This means comparing each key within the chain against the incoming
probing key.

Figure 4.3b shows a collision-free approach, which features an algorithm that guarantees
that all keys within a chain are equal. How such a HT can be designed will be discussed
in Section 4.3. In this case, if a chain is found where the first element matches with the

54

4.3 Approaches for Collision-Free Chains

key that is probed for, it can be guaranteed that all keys in the chain match. Therefore, as
depicted in Figure 4.3b, only one comparison (green arrow) is needed to probe the key k1

compared to the four comparisons of the previous approach.
This would mean that for many-to-many joins, the number of needed comparisons could

be reduced, and therefore, the performance of the join algorithm improved. Such an
improvement would especially benefit graph workloads, as many-to-many joins are common
in this domain, as discussed in Section 2.3.2.

4.3 Approaches for Collision-Free Chains

The following section will discuss two methods for achieving collision-free chains. These
chains are necessary for their use as factors in factorized representations, as discussed in the
section above, but also for enhancing performance when handling skewed data, particularly
in many-to-many joins. After presenting the two approaches, they will be compared to
decide which implementation to use for this project.

4.3.1 Nested Chaining

Flachs et al. [35] propose the “3D hash table” design which aims to reduce the length of
collision chains by organizing each bucket hierarchically, with main nodes and sub-nodes,
which also leads to collision-free sub-chains: Each main node is responsible for storing a
distinct key and its associated value, while sub-nodes branching from a main node store only
values related to that main key. This structure allows for shorter collision chains, resulting
in fewer main memory accesses and less computational overhead during searches. While
Memarzia et al. [64] proposed a similar approach, the following should mainly describe the
approach from Flachs et al. [35].

During the insert operation, the algorithm checks if the key is already present in the
chain of the main nodes. If it is, the value is added to the sub-chain of the existing main
node. If the key is not present, a new main node is created. For lookups, the system checks
the main nodes and their sub-chains to find the key, offering the option to either fully
traverse the sub-chain for all associated values or return a nested tuple representing the
packed search result. The authors showed that this hierarchical design manages collisions
more efficiently and speeds up search operations.

Figure 4.4 illustrates a comparison between the traditional chaining method (Figure 4.4a)
and the 3D hash table technique (Figure 4.4b). Each approach is represented by two hash
table buckets constructed from the same dataset containing five rows. Each row contains a

55

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

0

3

2

1

h(x) ke
y

tu
pl
e

li
st
 p
tr

A T1 LPtr A T2 LPtr

B T3 LPtr

C T4 null

B T5 null

(a) Default chaining with only one hierarchy of nodes (dark
gray).

0

3

2

1

h(x) ke
y

tuple

li
st
 p
tr

tuple ptr
main ptr

A

T1

LPtr null

null

LPtr LPtr

LPtr

T2

B

T3

T3

C

T4

(b) 3D chaining with main nodes (green)
and sub-nodes (light gray).

Figure 4.4: Comparison between default chained hash tables the combination of linear probing
and chaining.

key (A, B, or C) and a set of column values T1 to T5. For instance, row 1 features the
key A and the column set T1. In a dataset on customers, the key A might represent a
unique identifier, such as the customer’s email address, with the tuple T1 including further
information like the customer’s address and birthdate. To illustrate how the two approaches
handle hash collisions, there are only four slots in the hash table, and the distinct keys A

and C, A 6= C collide in the first slot, as in this example hash(A) = hash(C) = 0.
The structure of a traditional node in the standard chain is depicted in the first top-left

element of the chain: Each node has a key which was used for the insertion. This payload
tuple contains the other column values of the tuple, and a pointer to the next node. The
hash collision is not handled as a special case but is just appended to the list of the first
hash table. Therefore, the chain of slot zero now contains both nodes with key A and key
C. If one wants to look up all matches for key C, it is necessary to traverse all elements of
the chain of slot 0.

The 3D hash table handles these approaches differently: Using the chains of main nodes
for distinct keys and the chain of sub-nodes for the tuples, there are now distinct chains for
tuples of key A and tuples for key C. If the key C is probed now, only the main chain of
nodes must be traversed until one finds a match (green). All sub-nodes (light gray) from
this node will then be matched. This is especially important if, e.g., key A has a very long

56

4.3 Approaches for Collision-Free Chains

0

2

1

h(x) ke
y

tu
pl
e

li
st
 p
tr

A T1 LPtr A T2 LPtr C T4 null

3 B T3 LPtr B T5 null

(a) Default chaining with only one hierarchy of nodes (dark
gray).

0

2

1

h(x) ke
y

tu
pl
e

li
st
 p
tr

A T1 LPtr A T2 LPtr

3 B T3 LPtr B T5 null

C T4 null

(b) Chaining with one hierarchy of nodes
(dark gray) and linear probing.

Figure 4.5: Comparison between default chained hash tables and a combination of probing
and chaining

chain, as compared to the previous approach, not all nodes of A must be scanned to reach
the ones of C.

Flachs et at. [35] showed that the additional costs during the build and for the unnesting
operation can be worth it due to a faster probe phase in many instances, especially when
dealing with duplicate on the build side due to data skew. For a single key/foreign key
join, the speedup factor of this method reaches up to 3.53 but also was slower in some
scenarios. For many-to-many joins, the speedup factor was up to 5.67, with the 3D hash
method always matching or exceeding the performance of the standard hash join.

4.3.2 Linear-Chained Hash Tables

Our new approach to guarantee chains with unique keys is to use a combination of linear
probing and chaining. Here, the new key is compared to the appended first element of
the chain. The new key will be appended to the chain if both are equal. If not, following
the principle of linear probing, the next hash table slot is considered. If this is empty, the
new value is appended to it; if not, it is again compared. We will refer to this approach as
Linear-Chained hash tables.

This process is depicted in Figure 4.5 with the values equal to the experiment described
in the above section. The linear-chained approach is depicted in Figure 4.5b: Here, when
inserting the tuple T4 using key C, calculating the hash of C leads to the hash table slot
at the index 0. However, before inserting the key, it is compared against the first key in
the chain, A. As A 6= C, following linear probing, the next slot of the following index is

57

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

considered. As slot 1 is still empty, a new chain with tuples of key C is created. When
probing for this key in a later stage, first, following linear probing, the first chain with a
list of elements with key C is searched. If found, all its elements can be considered matches
for key C. This, similar to the approach above, means a more complex build phase for the
benefits of a more efficient probe phase.

4.3.3 Comparison of Nested Chaining and Linear Probing with Chaining

This section compares the nested chains approach proposed by Flachs et al. [35] with our
Linear-Chained approach. The comparison focuses on two aspects: implementation effort
and performance during both the hash table construction and probing phases. The results
are summarized in Table 4.1.

Given that the implementation effort for integrating both approaches into DuckDB’s
Hash Join Operator is comparable, we decided to use the Linear-Chained approach over the
nested chains approach. This choice was made due to the potentially higher performance in
both the build and probe phases. This method more effectively reduces the number of chain
traversals, which are costly because of cache misses resulting from nonlinear memory access.
Additionally, linear probing can be further optimized by adding parts of the inserted key’s
hash as a salt to the hash table’s slot, a technique discussed in Section 4.5.1.

However, the performance comparisons above are only theoretical. Implementing and
benchmarking both approaches in practice would be an interesting direction for future
work, but it is outside the scope of this project.

4.4 The DuckDB Hash Join Operator

The following section will introduce the implementation of the DuckDB Hash Join Operator.
As part of DuckDB’s push-based execution engine, the Hash Join Operator is both a Sink
and an operator: First, the complete hash table must be built on the right-hand side (sink,
blocking), which then allows the probing with the left-hand side [25]. For more details,
refer to Section 2.4. The sink phase is then again split into a materialization, which is then
followed by the actual hash table population. To illustrate the existing implementation
and the implementation proposed in the thesis on hand, the two approaches should be
discussed using a simple example query in Listing 4.1. This query returns the followers of
followers for all users in a social network for a given follows relation similar to one of a
social network. Figure 4.6 shows both the follows table as well as a graph representation
of the follows table, where each node is a user with its id and each row in the table

58

4.4 The DuckDB Hash Join Operator

Category Nested Chains HT Linear-Chained HT
Implementation
Effort - Building

Higher due to the need for a
dual-chain hierarchy and dynamic
memory allocation for main node
chains. Complex to traverse and
compare elements within chains
of different hierarchies.

Lower, involves changes to the in-
sertion algorithm using familiar
linear probing techniques but can
reuse existing chain structures.

Implementation
Effort - Probing

Lower as the relevant sub-chain
can be found using existing tech-
niques. The sub-chain can then
be easily traversed

Higher, add new linear probing
algorithm, but this has to be im-
plemented for building the hash
table as well, so no big extra ef-
fort. When a matching chain is
found, existing infrastructure can
be used to produce the result.

Performance -
Building

Lower due to potential memory
allocation and cache misses from
building and traversing main and
sub-node chains.

Higher, can use existing hash ta-
ble memory, with linear prob-
ing having fewer cache misses
than traversing the chain of main
nodes, as memory is accessed con-
secutively.

Performance -
Probing

Lower, potential for cache misses
when traversing main chains,
lower table population due to
unique chain heads outside the
hash table, which reduces the
number of hash collisions.

Higher, linear memory access pat-
terns with linear probing may re-
duce cache misses, but hash col-
lisions could occur more often as
more slots will be occupied.

Table 4.1: Comparison of methods to achieve key-unique hash table chains. While both
approaches require similar implementation effort, the linear probing approach will be more
performant than having nested hierarchical chains.

1 SELECT
2 f1.user_id AS 'User ID',
3 f1.follows_id AS 'Friend of User ID',
4 f2.follows_id AS 'Friend of Friend ID'
5 FROM follows f1
6 JOIN follows f2 ON f1.follows_id = f2.user_id;

Listing 4.1: Query returning the friends of friends for all users

59

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

1

1

2

2

3

3

2

3

1

3

1

3

user_id follows_id

Follows Table

(a) Follows relation as table

1 2

3

Graph Representation

(b) Follows relation as graph

Figure 4.6: Follows relation used in the example query of Listing 4.1

represents a directed edge in the graph. Therefore, because of the first row (1, 2), there is
an arrow from node 1 to node 2, while because of the third row (2, 1), there is also the
arrow back. In the example join, the second follows relation (f2) relation will be used as
the build side, leading to user_id being the build key. The result of the join R is therefore:

R = Follows as f1 onf1.follows_id=f2.user_id Follows as f2 (4.3)

This example will furthermore use the very naive hash function

hash(x) = x mod 2 (4.4)

mapping each key either to 0 or 1 to illustrate how the join implementation handles hash
collisions.

The join plan for this query is split into two pipelines that need to be executed sequentially,
as shown in Figure 4.7. The first pipeline is represented in green. It starts with a table
scan as the data source and ends with a hash sink. Once the sink has consumed all data
from the source, the hash table is built during the sink finalization step.

The second pipeline, shown in purple, is dependent on the completion of the first pipeline
since it requires the fully constructed hash table for probing. Once the first pipeline is
complete, the second pipeline begins, starting again with a table scan as the source. In this
pipeline, the hash join functions as an operator, processing incoming data. The projection
also operates as an operator. The final component in this pipeline is a sink, which returns
the results to the user. As pipeline one blocks pipeline two, both pipelines cannot run
concurrently. However, each pipeline can be executed concurrently with multiple threads.

60

4.4 The DuckDB Hash Join Operator

HASH JOIN 

uesr_id = follows_id

SCAN 

follows.user_id 

follows.follows_id

SCAN 

follows.user_id 

follows.follows_id

HASH JOIN 

uesr_id = follows_id

PROJECTION 

User ID 

Friend of User ID

Friend of Friend ID

SourceSource

Sink

Sink

Figure 4.7: Pipelines and operators for the join in Listing 4.1: The green pipeline (scan →
hash join build) blocks the purple pipeline (scan → probe → projection). Therefore, purple
can only be executed after the green pipeline is completed.

1 1

2

1

0

1 1

3

1

1

2 2

3

0

1

2

3

3

2 2

3

3 3

1

1 1

3

3

1

3

user_id key(user_id)

key(user_id)

hash(user_id)

hash(user_id)

follows_id follows_id

follows_id

Follows Table

M
or

se
l 2

M
or

se
l 1

Ha
sh

 c
ol

li
si

on
Row Layout

Thread 1

Thread 2

Figure 4.8: Sink phase for the join of Listing 4.1

61

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

4.4.1 Sink Phase: Materialization and Hash Calculation

During this phase, the build-side data chunks initially formatted in columns are converted
to a row layout. The entire process is shown in Figure 4.8. Initially, the data is divided
into morsels as described in Section 2.4 on morsel-driven parallelism. Separate threads
then handle these morsels to achieve parallelism. For each incoming data row in column
format, a new row is allocated within a temporary row store. The row format is organized
as follows: firstly, the build keys are placed, which, for the example query, consists of only
one key, f2.user_id. Following the key, the payload comprises columns to be emitted with
the build key during probing. In this example, the payload contains only f2.follows_id,
which will later be referred to as the “Friend of Friend ID”.

Additionally, in each row, the key’s hash value is computed and stored at the end of the
row. The example defines the hash function as hash(x) = x mod 2. In the example, the
hash value for the first row is hash(1) = 1, while for the third row, with f2.user_id = 2,
the hash is 0. A hash collision occurs in the last row, contained in morsel 2, where
f2.user_id = 3 also results in a hash of 1, as hash(1) = hash(3) = 1. Thus, the first two
rows and the last two rows share the same hash value despite having unique keys.

4.4.2 Sink Finalize: Building the Hash Table

The build phase starts after the whole build side has been materialized into the Row layout.
In the pipelined execution model of DuckDB, it is triggered in the finalization step of the
Sink. As this layout now contains all the rows, the number of rows the hash table needs
to be built on is known. Therefore, the needed hash table buffer size can be determined
ahead of build, so no costly resize of the hash table will be needed.

NextPowerOfTwo(x) =2dlog2(x)e, (4.5)

Capacity(n, α) = max (NextPowerOfTwo(α× n), 1024) . (4.6)

with load factor α, number of rows n

The needed capacity is calculated according to Equation (4.6): The load factor α balances
the number of hash collisions with the memory usage of the hash table. With hash tables
using chaining for duplicate resolution achieving good performance with a load factor
1 ≤ α ≤ 3 [62], DuckDB empirically chose a load factor of α = 2. For the product of load
factor and number of elements, the next larger power of two is then calculated. This makes
sure that the capacity will be power of two, which enables an optimized hash table index
calculating for a given hash using a bitmask:

62

4.4 The DuckDB Hash Join Operator

mask = capacity− 1, e.g.

0 1 0 0 0 0 0 02 capacity = 6410
− 0 0 0 0 0 0 0 12 dec = 110

0 0 1 1 1 1 1 12 mask = 6310

(4.7)

index = hash ∧ mask, e.g.

1 0 1 1 0 1 1 02 hash = 18210
∧ 0 0 1 1 1 1 1 12 mask = 6310

0 0 1 1 0 1 1 02 index = 5410

(4.8)

The binary representation of a power of two uniquely features a single active bit. Similarly,
in base 10, a number that is a power of 10 is composed of a leading one followed by zeros.
Subtracting one from these powers results in a number where all lower-order bits or digits
become the maximum possible value for their position, and all higher-order bits or digits
remain zero. For instance, subtracting one from 104(10,000) results in 9,999. In binary,
subtracting 1 from 2n(represented as 100 . . . 0 with n zeros) results in 11 . . . 1(with n ones).
This process is also depicted in Equation (4.7).

This mask can now be used to compute the index into a hash table of a given capacity:
The slot index in the hash table can be calculated by a bitwise AND operation between the
generated hash code and the mask. This approach ensures that the hash code is mapped
within the capacity of the hash table. For instance, consider a hash table with a capacity
of 64(which is 26), where the corresponding mask is 63(since 64 − 1 = 63). Equation
Equation (4.8) shows this for a hash value of 18210. Directly using the hash value 182
to index the hash table would lead to an out-of-bounds error, as the table’s array only
extends to 63. However, by applying the mask with a bitwise AND operation, we compute
an index of 5410, which is within the range of the hash table.

Alternatively, one could use a modulo operation to align the hash value to the range
of the hash table. While this would work, a classic modulo calculation implementation
involves a division, which is considerably more expensive than multiplications. A single
32-bit division on a modern x64 processor has a throughput of one instruction every
six cycles and a latency of 26 cycles. In comparison, multiplication has a throughput
of one instruction per cycle and a latency of just three cycles [57]. Further alternatives
for calculating the modulo efficiently involve a combination of multiplication and shift
operation, which performs worse than the bit-mask but allows for arbitrary hash table
sizes [88; 58].

Reducing the hash values to indices within the hash table capacity, however, reduces
its value range and power to distinct unique values, leading to more hash collisions that
will lead to costly key comparisons. For example, while the hash in the example above

63

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

1 0 (1)

1 1

2 0

2

3

1

key(user_id) hash(user_id)follows_id

Row Layout

0

P₁

0

0

Hash Table

(a) Insertion of the first row in the empty slot with index 1

1 0 (1)

1 P₁ (1)

2 0

2

3

1

key(user_id) hash(user_id)follows_id0

P₂

0

0

(b) Insertion of the second row in occupied slot 1, resolved by chaining

1 0 (1)

1 P₁ (1)

2 0 (0)

2

3

1

key(user_id) hash(user_id)follows_idP₃

P₂

0

0

(c) Insertion of the third row in the empty slot 0

Figure 4.9: Insertion process for the first morsel of the example in Figure 4.6

originally has a value of a range of eight bits, which can represent 256 distinct values, now

the index only has six “active” bits, resulting in 64 unique values. This leaves room for an

optimization discussed in Section 4.5.1.

After allocating the hash table buffer and the index mask, the buffer must be populated.

The chaining is implemented by storing pointers in the hash table buffer. Therefore, the

buffer elements have a size of 64-bit. The insertion is depicted in figure Figure 4.9: For the

first row, using the hash of 1 and applying the bitmask results in the slot s1 at index 1.

Therefore, a pointer to row 1 (P1) which points to the beginning of row 1 is stored in slot

1. This step is depicted in Figure 4.9a. Figure 4.9b shows the insertion of the next row.

As this also has the same join key, this row must somehow be stored to s1. To chain the

two rows, the pointer P1, which was currently in the hash table buffer, is now stored in the

64

4.4 The DuckDB Hash Join Operator

place where the hash of row 2 was. This is possible, as both the pointers and the hash are
64-bit numbers, and after insertion, the row’s hash is no longer needed. Then, the pointer
to row two P2 is stored in the slot s1 instead.

1 template <bool PARALLEL>
2 static inline void InsertHashesLoop(
3 atomic<data_ptr_t > ht_buffer[], const data_ptr_t row_pointers[],
4 const hash_t indices[], const idx_t count
5) {
6 for (idx_t i = 0; i < count; i++) {
7 const auto index = indices[i];
8 if (PARALLEL) {
9 data_ptr_t head;

10 bool success;
11 do {
12 head = ht_buffer[index];
13 Store<data_ptr_t >(head, row_pointers[i] + pointer_offset);
14 success = std::atomic_compare_exchange_weak(
15 &ht_buffer[index],
16 &head,
17 row_pointers[i]
18);
19 } while (!success);
20 } else {
21 data_ptr_t head = ht_buffer[index];
22 Store<data_ptr_t >(head, row_pointers[i] + pointer_offset);
23 ht_buffer[index] = row_pointers[i];
24 }
25 }
26 }

Listing 4.2: Inserting a vector of row pointers to the hash table buffer. Instead of using a
function argument to determine parallel, we use a template. This will allow the compiler to
remove the parallel branch.

As the hash of a row is now used as the next pointer, it is also important to make it a
null pointer if the row is the last row of a chain. As new elements are always added to the
front of the chain, when starting a new chain by inserting the first element and adding a
pointer to the buffer, the hash value of this element is overwritten with 0. In Figure 4.9,
the hash values that have been overwritten are still visible in parentheses. As the hash
table buffer is initialized with zeros, the insertions are the same for both empty and full
slots: (1) Write the value of the current slot to the hash of the element to insert, which
can be either zero or a pointer to another chain. (2) Write the pointer to the row to the
hash table slot. The instructions are depicted in lines 24 to 27 of Listing 4.2.

This listing also shows how the implementation handles parallel insertion using a loop

65

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

combined with an atomic_compare_exchange operation, ensuring the insertion is thread-
safe. This technique prevents multiple threads from simultaneously writing to the same
hash table slot. By using atomic_compare_exchange, only one thread can successfully
write its value if the current slot matches the expected old value [12]. If the compare-and-
exchange is successful, the element is correctly linked in the chain; if not, the operation is
retried until it can be completed successfully.

In addition, Listing 4.2 is an example of the implementation of vectorized execution.
Instead of only inserting one element at a time, a vector of count elements is inserted.
Furthermore, the code is further optimized to reduce branching within loops: The bool
PARALLEL is not a function parameter but a template parameter, allowing the compiler
to optimize out the branch when the parallel mode is not enabled and vice versa. This
reduces the runtime overhead and simplifies the code paths.

4.4.3 Operator Phase: Probe Phase

The probing phase of the hash table is implemented following DuckDB’s framework for
push-based execution: During this phase, in the Execute function, an operator is given a
DataChunk to process. The first step is computing the hash for these keys and the index into
the hash table. For the latter, the bitmask discussed above is used. The values of the slots at
the indices are retrieved using these indices. These values can either be zero, indicating no
matching key exists, or a pointer to a corresponding row based on the previously discussed
row layout. The result of this operation is stored in a PointerVector. Simultaneously, a
SelectionVector is constructed. It contains all entries in the PointerVector that contain
a row pointer, signalling a match.

For the rows where a row pointer was found, the keys of the build and probe side first
need to be compared to be sure that the match does not originate from a hash collision.
For the matches, the build side tuples need to be concatenated with the probe side, again
transforming the row format into a column format. This is done again in a vectorized
manner: First, using the pointers to the matching rows, the probe side keys are compared
against the keys in the row layout, retrievable using the row pointers. For each matching
row, the elements for the build side are copied from the row layout into a result DataChunk.

Therefore, for each row of the probing DataChunk, the first row of the matching row
layout is computed. However, as shown in Figure 4.9, these rows can be chained together if
there is a key duplicate or a hash collision. Thus, for all the rows pointed in the Pointer

Vector, the next element in the chain is loaded using the next pointer at the end of the
row. The pointers are, therefore, advanced to the next pointer of the chain, which might

66

4.5 Linear-Chained Hash Table Integration for DuckDB

be a null pointer if there is no next element. If there is at least one row where the pointer
to the next element is not null, the process of matching and gathering needs to be repeated.
This is done by returning “has more output” as a result of the Execute function, which
leads to this function being called again with the same input. If there are no more elements
to step to, the operator returns “need more import”, leading to it being called again with
a new DataChunk.

4.5 Linear-Chained Hash Table Integration for DuckDB

With the functionality of the DuckDB Hash Join Operator outlined in the previous section,
this chapter aims to describe the adaptations necessary to integrate collision-free chains
into the DuckDB Hash Join Operator. The changes described here have been merged into
DuckDB1 and will become publicly available with DuckDB 1.1. As outlined in Section 4.3.3,
this should be achieved using a combination of linear probing and chaining. The changes
needed to implement collision-free chains only affect the hash table insertion and probing,
but not the overall functionality of the Hash Join Operator, and will be outlined in the
following.

4.5.1 Salted Linear Probing Optimization

While utilizing linear probing, due to the range of (nested) types that can be potential
join keys, they are not stored directly in the hash table. As outlined in Section 4.4.2, the
hash table stores pointers to the rows rather than the rows themselves. This reduces the
memory area exposed to random access and decreases overall memory consumption [52].
Here, we can apply an optimization: On 64-bit CPU architectures, pointers are stored in
64 bits; however, typically, only the lower 48 bits are actively utilized, already addressing
up to approximately 281 terabytes. This enables repurposing the upper 16 bits of each
pointer to store the salt, which consists of the upper bits of the hash associated with the
tuple.

The initial position within the hash table is determined by the lower bits of the hash. If
a collision check is necessary, before a pointer is dereferenced to compare the rows’ join
keys, the salt stored in the pointer is checked. A matching salt significantly reduces the
likelihood of unnecessary comparisons of join keys—by a factor of 216 = 65, 536. Thus, if
the salts do not match, the keys also must not match, and the search proceeds to the next

1https://github.com/duckdb/duckdb/pull/11472

67

https://github.com/duckdb/duckdb/pull/11472

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

slot in the hash table. However, if the salt matches, further comparison of the keys is still
required.

4.5.2 Changes Made to the Build Phase

As before, the index of an element is retrieved using a bit-mask in combination with the
hash. In the previous implementation, a row was added to a chain of a hash table slot, no
matter whether the slot already had a chain or whether the slot was empty. These two
cases now need to be handled differently than before:

If a slot is empty, the pointer to the new chain head and the salt are inserted into the
slot. the salt is calculated using s bitwise AND operation with the hash and a mask for
the upper 16-bit, further referred to as SALT_MASK and defined as 0xFFFF000000000000.
The salt is then combined with the row pointer.

SALT = HASH ∧ SALT_MASK (4.9)

SLOT_VALUE = POINTER ∨ (SALT ∧ SALT_MASK) (4.10)

POINTER = SLOT_VALUE ∧ POINTER_MASK (4.11)

SALT = SLOT_VALUE ∧ SALT_MASK (4.12)

If a slot is already occupied, the new element can only be appended if the keys of
the element to insert and the elements in the existing chain match. First, the salts are
compared. If those are equal, the keys are compared by following the pointer in the slot.
Retrieving the pointer from a hash table entry is done by masking the stored value with
POINTER_MASK (defined as 0x0000FFFFFFFFFFFF), which extracts the lower 48 bits.

In the case of multi-threaded insertion, ensuring key unique chains requires additional
checks. For example, if the compare and swap operation described in Listing 4.2, line 23,
fails when trying to insert into a previously empty slot, now before trying to insert the
element again, the keys need to be compared. This is because it could be that the other
chain that was concurrently added might not share the same key as the other element. If
the insertion fails while adding an element to an existing chain, it can just be repeated, as
it was already ensured previously that the keys match.

4.5.3 Changes Made to the Probe Phase

To probe the hash table with a DataChunk, for each row in the vector, the hash and the
index are calculated to match a slot to each index. If the entry is empty, then there is no

68

4.6 Evaluation of the Linear-Chained Hash Table

match. For all keys that result in a hit, and if the salt comparison is enabled, the salt is
calculated using their hash. Then, for each key to be probed, the salt of the respective slot
is checked. If the salt does not match, the search continues to the next slot until either an
empty slot is found or one where the salt does match. In the case of finding an empty slot,
there is no match and the key is not processed any further. If a salt match is found, the
probe key is compared against the key of the first element in the list of the hash table slot.
Should the comparison be successful, a pointer to the list of the entries is returned, and
the probe key is added to the return SelectionVector. If there is no match, the next slot
is checked, and the loop starts again. We could further optimze this by using one bit in
the salt to mark if there was a hash collision during the build process. If this is not the
case and the salt does not match, we could immediately stop the probing, making selective
joins more efficient.

The probing can operate in two modes: using salt or not using salt. This was added
because for smaller hash tables, the likelihood of both hash collisions for keys and cache
misses while comparing the incoming keys with the rows inside the hash table is lower. For
instance, in a hash table with only five distinct keys but a million probe tuples, the salt
comparison will always be correct. The current criterion for not using salt is if the hash
table size is 8192 entries or smaller.

As the overall logic of the Probing is now more complex than in the previous implemen-
tation (calculating and comparing salt, comparing keys), one big optimization was to hide
this logic from keys where there are no matches in the hash table. This is why, first, the
incoming DataChunk is filtered for all keys that have a match in the hash table. Only for
rows where there are matches, the salt is calculated.

The probing phase of the join hash table returns a vector with pointers to matching
chains. Now, where the previous implementation had to walk the chains for each row and
compare all the entries, in the new implementation it is known that all elements will match
the row. For illustration, see again Figure 4.3.

Another optimization is that the new implementation tracks whether there are chains
with more than one element. If there are no chains with more than one element, the pointer
advancement described in Section 4.4.3 is not needed.

4.6 Evaluation of the Linear-Chained Hash Table

The modifications and changes to the hash table discussed will now be assessed using
benchmarks that simulate real-world workloads. The setup of these benchmarks, as well as

69

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

the hardware used, will be introduced in Section 4.6.1, while the actual benchmark results
will be presented in Section 4.6.2.

4.6.1 Experiment Setup

As DuckDB is mainly used on high-end end-user devices, the evaluation was performed on
a MacBook Pro with an M1 chip using 6 threads.

As evaluation workload, the TPC-H and the TPC-DS benchmark were used. The
Transaction Processing Performance Council (TPC) is a non-profit organization that
develops performance benchmarks for various data processing systems [90]. Among its
benchmarks, TPC-H and TPC-DS are designed for evaluating decision support systems.
TPC-H [97] assesses the capability of a system to manage complex queries and data
modifications typical of business environments, while TPC-DS [96] offers a more detailed
evaluation environment by modeling decision support systems with different queries and
data maintenance operations.

TPC-D, along with its successors TPC-H and TPC-R, originally utilized a 3rd Normal
Form (3NF) schema which was discussed in Section 2.1.1. However, over time, the industry
trend has shifted toward adopting star schema approaches. In response to these changes,
TPC-DS was developed using a multiple snowflake schema, which represents a hybrid
approach that combines elements of both 3NF and a pure star schema [72].

For DuckDB as well as for the project on hand, it is important to add that the benchmark
results discussed here are not official TPC benchmark results; they utilize datasets and
certain queries from the TPC-H and the TPC-DS benchmark but do not include complete
workloads such as updates to the data [17]. The benchmarks can be run using predefined
database sizes called ”scale factors.” Each scale factor represents the raw data size of the
data warehouse, meaning that a scale factor of 1 means 1GB of uncompressed data. To
give a reference for how much data this is, this corresponds to 1,500,000 rows in the orders

table for the TPC-H benchmark For the project on hand, the benchmarks were run using
the scale factors 1, 3, 10, 30, and 100.

For both the TPC-H and TPC-DS benchmark, we compare three different versions of
DuckDB: The first is the baseline version, which is the state of DuckDB before the changes
to the hash table. The second version features the new hash table, which combines both
chaining and probing. This version will be referred to as Linear probing (LP) Join version.
To analyze the effectiveness of the salt optimization for cash misses, the third version is
based on the LP Join version but does not feature the salt optimization.

70

4.6 Evaluation of the Linear-Chained Hash Table

100 101 102

Scale Factor

100

101

102

103

To
ta

l R
un

tim
e

(s
)

Baseline
LP Join (no salt)
LP Join

(a) Absolute total runtime (lower is better)

100 101 102

Scale Factor

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

To
ta

l R
un

tim
e

Baseline
LP Join (no salt)
LP Join

(b) Runtime relative to the baseline (lower is better)

Figure 4.10: TPC-H Benchmark: Absolute and relative total runtime

Random variances, such as background tasks slowing execution speed or effects of pre-
cached data, can influence benchmark results during query execution. To mitigate these
influences, each query in the benchmark is run five times. The final runtime of the query
is then determined by the median of these five runtimes. We chose the median over the
mean is it is less responsive to outliers.

4.6.2 Results & Discussion

The results for the total runtime of all queries of the TPC-H queries can be seen in
Figure 4.10. The figure shows both the relative and absolute runtime of the whole
benchmark to complete. Both the runtime on the y-axis and the scale factor are in the log
scale. Looking at the absolute runtime, it becomes apparent that all versions are similar in
performance, as the lines are close together. However, we can see that the LP Join has a
lower runtime than the baseline, especially towards higher scale factors.

The absolute runtimes per scale factor are also listed in Table 4.2: We can see that for
both versions the runtime increases with the scale factor, but the difference between the
runtime gets larger: While the baseline takes 0.93 seconds to complete the whole benchmark,
the new implementation without salt took 0.91 seconds, and with salt, the runtime was
reduced to 0.89 seconds. With higher scale factors we see the runtime difference between
the versions getting larger: While the optimized version of the new join takes only 147.91
seconds to compute all TPC-H queries, the baseline version needs 165.39 seconds, therefore
being 14.48 seconds slower.

The relative runtime offers a better understanding of the improvements of the three

71

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

System SF 1 SF 3 SF 10 SF 30 SF 100

Baseline 0.93 2.33 8.00 28.06 165.39
LP Join (no salt) 0.91 2.30 7.82 28.09 153.12
LP Join 0.89 2.22 7.39 26.08 147.91

Table 4.2: TPC-H - Total runtime in seconds (lower is better)

System SF 1 SF 3 SF 10 SF 30 SF 100

LP Join (no salt) 97.73% 98.66% 97.81% 100.13% 92.58%
LP Join 95.82% 95.11% 92.39% 92.96% 89.43%

Table 4.3: TPC-H - Relative runtime over baseline (lower is better)

versions: in Figure 4.10b we can see the relative runtime over the baseline per version. The
relative runtime rrel is computed as

rrel,i = ri

r0
(4.13)

where r0 is the absolute total duration the baseline version took to complete and ri is the
duration the version to compare took to complete. For example, if the baseline version
took 2 seconds to complete and the new version manages to run the same workload to
compute in 1 second, the relative runtime will be rrel,i = 1

2 = 0.5. Therefore, a lower
relative runtime indicates a better-performing system.

Figure 4.10b compares the relative runtime of the new join implementation with and
without the salt optimization against the baseline. We can see that for the relative runtime
of the two new implementations decreases with the scale factor. This means that the
new implementations become more effective the larger the data size is. As the new join
implementation strength is handling a lot of duplicates of the same key, assuming larger
scale factors add more data for the same domain like adding more buy records for the same
customer instead of new customers, the new algorithm becomes more effective.

Analyzing the orders table of the TPC-H benchmark proves this assumption to be false:
There are 1,500,000 orders on scale factor one from 99,996 distinct customers, and the
number of average orders per customer is around 15. This is the same for scale factors 10
and 100, with 100 having 9999832 distinct customers in 150000000 orders, again resulting
in an average of 15 customers per order. Unlike in this benchmark, in a real-world scenario,
more data could also mean more data of the same scope, which could make the new

72

4.6 Evaluation of the Linear-Chained Hash Table

k₁ k₃k₂Chain C₁

...

Hash Table 1

0x0

0x1

0x2

0x3

comparisons: 
k₁: 3

k₂: 3

k₃: 3

(a) For each probe key all elements have to be
scanned.

k₁

k₃

k₂

Chain C₁

Chain C₂

Chain C₃

...

Hash Table 2

0x0

0x1

0x2

0x3

comparisons: 
k₁: 1

k₂: 2

k₃: 3

(b) For each probe key we need to scan only until
a matching chain key is found

Figure 4.11: Comparison between the new implementation of the hash table against the
table before when building on keys with no duplicates

implementation more performant. However, this is not the explanation for the relation of
speedup and scale factor in this case.

An alternative reason for the performance gains could be that the linear probing enables
a faster probing for the hash table without having duplicates by better-separating hash
collisions. In the version before, one chain could contain hash collisions at every point in
the chain. This means that for an incoming tuple, all elements of the chain had to be
scanned, even when joining on a key with no real duplicates. In the new implementation,
when joining with a key with no duplicates, the new implementation can still be more
performant when being probed. The reason for this is depicted in Figure 4.11. Assuming
we build the hash table on keys k1, k2, k3 with the three keys being distinct but colliding
on the same hash. With only chaining, all three keys will end up in the same chain. When
we now probe for k2, we have to compare our probing key against all keys in the chain, as
all of the keys in the chain can either be hash collisions or actual matches. The same holds
for the other two keys (see Figure 4.11b). Therefore we need nine comparisons in total.

With the new implementation, the keys get split into separate chains. This is depicted
in Figure 4.11b. If we now probe for k2, we first arrive at the chain of k1, so we need to
compare the two keys. As they do not match the next bucket is considered, following the
principles of linear probing. Comparing the probing key with the first element of the chain
of this bucket, we find that the keys match, therefore we can stop the search and consider
all elements of this chain matches. For k1, we even only need one comparison as the first
chain already matches, while for k3 still three comparisons are necessary. In total now only
6 instead of 9 comparisons are necessary.

However, the new implementation requires comparisons during the build phase. In the
example of Figure 4.11b, we would need three comparisons during the build phase: When

73

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

inserting k1, the hash table is still empty, so no comparisons are necessary. If we then
insert k2, we first end up at k1, so after comparing the keys we step to the next. Therefore
we need one comparison. For k3 we need two comparisons following the same principle, so
the total amount of comparisons for the build phase is three for the new implementation
and zero for the old.

Summing the probe phase and the build phase comparisons together, we end up with 9
comparisons for both implementations. However, it must be noted that usually, the probe
side is much larger than the build side, which justifies additional work during the build.
For example, assuming the probe side is ten times larger than the build side, we would end
up with 90 vs 63 comparisons, so this would make the new implementation more efficient.

Looking at the salt optimization, the yellow line in Figure 4.10b shows that the version
using salt optimization has a lower relative runtime compared to the baseline as the scale
factor increases. This indicates that the new implementation becomes more efficient with
larger data sets. This behavior is expected because salt optimization primarily addresses
cache misses, which become more problematic as data sizes increase beyond the cache’s
capacity. Table 4.3 shows that already with a scale factor of 1, the relative runtime is
only at 95.82%. The performance gains increase to a relative runtime of 89.43%, which
translates into a speedup of 12%.

Figure Figure 4.12 provides a more detailed on of the relative runtime over the baseline
per query and a scale factor: for each of the 22 queries of the TPC-H, benchmark Q1 . . . Q2
the speedup over the base implementation per scale factor is plotted. The runtime per
scale factor is indicated by the color of the bar, with purple corresponding to a scale factor
of 1 and yellow to a scale factor of 100. As the figure shows the speedup rather than the
relative runtime, higher numbers are more favorable. The baseline speedup of 1 is indicated
with the red dotted line, so a bar left of this line indicates a decline in performance, while
a bar right of it indicates an improvement.

The plot shows that for Q18 we get performance increases for both the version not
using and using salt. These get higher the higher the scale factor is. Analyzing Q18’s (see
Listing 4.3) query plan, we can see a larger join. This originates from the o_orderkey =

l_orderkey joining the orders table with the lineitem table, which accounts for 40%
of the runtime. The probing side here is ten times larger than the build side. While
the hash table for this join is built on a primary key, as previously mentioned, the new
implementation remains superior due to the offload of work to the (smaller) build side.

The second experiment compared the performance of the different versions for the
TPC-DS benchmark. The results of the absolute and relative runtime of all queries are

74

4.6 Evaluation of the Linear-Chained Hash Table

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
Speedup

Q22

Q21

Q20

Q19

Q18

Q17

Q16

Q15

Q14

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Qu
er

y

Baseline
SF 1
SF 3
SF 10
SF 30
SF 100

(a) Linear Probing, no salt (higher is better)

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
Speedup

Q22

Q21

Q20

Q19

Q18

Q17

Q16

Q15

Q14

Q13

Q12

Q11

Q10

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Qu
er

y

Baseline
SF 1
SF 3
SF 10
SF 30
SF 100

(b) Linear Probing (higher is better)

Figure 4.12: TPC-H Benchmark: Speedup per query and scale factor

75

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

1 SELECT c_name, c_custkey , o_orderkey , o_orderdate , o_totalprice , SUM(l_quantity
)

2 FROM customer, orders, lineitem
3 WHERE o_orderkey IN (
4 SELECT l_orderkey FROM lineitem GROUP BY l_orderkey HAVING SUM(l_quantity)

> 300
5) AND c_custkey = o_custkey AND o_orderkey = l_orderkey
6 GROUP BY c_name, c_custkey , o_orderkey , o_orderdate , o_totalprice
7 ORDER BY o_totalprice DESC, o_orderdate
8 LIMIT 100;

Listing 4.3: TPC-H query 18

100 101 102

Scale Factor

101

102

103

To
ta

l R
un

tim
e

(s
)

Baseline
LP Join (no salt)
LP Join

(a) Absolute total runtime (lower is better)

100 101 102

Scale Factor

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Re
la

tiv
e

To
ta

l R
un

tim
e

Baseline
LP Join (no salt)
LP Join

(b) Runtime relative to the baseline (lower is better)

Figure 4.13: TPC-DS Benchmark: Absolute and relative total runtime

System SF 1 SF 3 SF 10 SF 30 SF 100

Baseline 4.19 10.23 31.18 111.71 467.10
LP Join (no salt) 4.17 10.65 32.07 116.10 477.66
LP Join 4.18 10.63 31.85 114.04 353.19

Table 4.4: TPC-DS - Total runtime in seconds (lower is better)

System SF 1 SF 3 SF 10 SF 30 SF 100

LP Join (no salt) 99.49% 104.09% 102.84% 103.93% 102.26%
LP Join 99.73% 103.95% 102.13% 102.08% 75.61%

Table 4.5: TPC-DS - Relative runtime over baseline (lower is better)

76

4.7 Emission of Factorized Intermediate Results

depicted in Figure 4.13. Here we can see, that for most of the scale factors, the baseline
implementation is better than the new version. The linear probing joined with the salt
optimization has its worst performance at scale-factor 3, with a performance overhead of
3.95% leading to an additional absolute runtime of 400ms. However, for scale-factor 100
the new implementation is drastically better, featuring a relative runtime of only 75.61%,
which saves 113.91 seconds of the total query runtime (see Table 4.4 and Table 4.5). This
proves the point that salt optimization is reducing the number of cash misses, which occur
more often on larger scale factors, as intermediate structures like the hash table array do
not fit into the CPU cache anymore.

Additionally, it becomes apparent, that the version not using the salt is slower for all
cases. This is because of the star schema of the TPC-DS benchmark, with no joins having
a lot of duplicates on the build side.

4.7 Emission of Factorized Intermediate Results

This section will cover how we can use the linear-chained hash table in our intermediate
results. The creation of these chains has been discussed in Section 4.1.

Figure 4.14: Relations for the factorization example: The User information has information
on the city of birth of a user, while the follows relations represent a many-to-many relation
between users.

To illustrate the explanation, the query depicted in Listing 4.4 will be used: It describes
a query on a social network-like database schema featuring one users relation containing a
user’s name and place of birth as well as a follows relation representing a many-to-many
relation between users. The two tables are depicted in Figure 4.14. The query returns the
number of 2nd-degree followers of all users grouped by the city.

Analyzing the query plan and the cardinality of its intermediate results shows that this
query has an intermediate result that is larger than both the normalized input relations

77

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

1 SELECT
2 users.city AS 'City',
3 COUNT(users.name) AS 'Count'
4 FROM
5 Follows as F1
6 JOIN
7 Follows as F2 ON F1.dest = F2.source
8 JOIN
9 Users ON F2.dest = Users.name

10 GROUP BY
11 Users.city;

Listing 4.4: Query returning the number of 2nd degree followers grouped by place of birth

and the final query result. The query plan and its intermediates are depicted in Figure 4.15.

It is executed by joining the follows table on the users table using the users table as

the build side and the follows table as the probe side for the hash join operator. This

intermediate is already larger in terms of columns but not in terms of rows, as for each

user the corresponding city is now included. Therefore this intermediate result has more

duplicates than its normalized origins. It will further be referred to as intermediate 1.

In this case, the hash table is built on the primary key of users, the user name. Therefore

there are no duplicates in the keys of the build side, so all the chains in the hash table will

be of length 1. Therefore, in this join, there is no potential for factorization.

The second operator is another comparison join which joins the follower relation with

intermediate 1. Here, the Follows relation is chosen as the build side of the hash join,

and the intermediate 1 is used as the probing side. In this case, the hash table is built

on follows.dest, a foreign key. Therefore, there are duplicates in the build keys which

leads to chains being longer than one. This also becomes apparent when looking at the

cardinality of the result of the second join, intermediate 2. While both the probe side

and the build side have a row count of 7, the intermediate result now has a row count of

13. This is because there are multiple matches for some probing keys. For example, as

there are two matches for the probe key Bob (the first and the last row of the follows

relation), for the 4th probing row there will be two matches in the hash table, leading to

two rows in the intermediate result.

The last operator of the query plan is an aggregate, grouping all tuples of the intermediate

2 by the city. Therefore, the result cardinality is three, as there are only three distinct

cities in the dataset.

78

4.7 Emission of Factorized Intermediate Results

Figure 4.15: Query plan with intermediate results of the query depicted in Listing 4.4: The
intermediate results grow larger than both the input and output relation

A part of the hash table that is built during the sink phase of the 2nd hash join operation
is depicted in Figure 4.16: We can see that for the build key Eve of the follows relation
there is a chain containing two elements. These two correspond to the 3rd and 4th row
in the follows relation. Additionally, the figure shows the first two rows of the probing
relation, intermediate 1.

In a standard join implementation, for each of the two probing rows of Figure 4.16, a new
tuple would have been created. The result of this is shown in Figure 4.16a, which shows the
four resulting rows. This approach is the reason for the explosiveness of intermediate results
for many-to-many joins, especially in graph use cases: Assume Eve would be followed by
100 persons. This would mean that for each match on the probe side, 100 rows need to be
added. Creating these rows means duplicates for the probe side for each build match as
well as duplicates of the build side tuples for each probe hit. In Figure 4.16a this becomes
apparent: Both probing tuples and building tuples had to be copied, resulting in four rows.

The alternative to this approach is to not create one new row for each element of the
hash table but to transfer the hits of the build side to a list and use these lists as a
factor for a factorized representation. This is depicted in Figure 4.16b and enables us
to not create duplicates of the probing side and also keeps the number of rows smaller
or equal to the probing side. In the theory of factorization, this would correspond to an

79

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

Figure 4.16: The hash table for the 2nd join of the join plan is depicted in Figure 4.15, as
well as the first two rows of the intermediate result, represent the probe side on the left

(a) Flat result consisting of four rows and having duplicates on both the probing and build side

(b) Factorized emission using materialized lists as factors, which corresponds to an f-representation. Only
the build side chains need to be duplicated for every hit.

(c) Factorized emission using pointers to the hash table chains, which corresponds to a d-representation.
Neither the probe nor the build side tuples need to be copied.

Figure 4.17: Different methods of producing flat or factorized join results for the two probing
rows in Figure 4.16

f-representation [80]. However, in this approach, we still need to materialize one chain

for each probing match: For the hash table chain, we still make two copies of the list

[Alice, Bob]. While this approach manages to ensure that the cardinality of the join result

is never bigger than the cardinality of the probe side, materializing all the lists is still

expensive. Additionally, it is a question of how to maintain these lists efficiently in a

vectorized execution engine. In DuckDB, this would be feasible by using a ListVector,

which was already discussed in Section 2.5, consisting of one flexible-sized vector for all the

80

4.8 Factorized Execution

list elements and one VECTOR_SIZE vector providing the index per element of the vector
for its corresponding chain. However, due to the next suggested emission strategy, this
option was disregarded.

An improvement to the second alternative is to not materialize the hash table chains into
a list but to append a pointer to the probe column instead, which is shown in Figure 4.16c.
This pointer points to the head of the hash table chain. Upstream operators can access
the tuples of the chain by following the pointers. In this case, it is not necessary anymore
to copy the build side. Additionally, the cardinality of the join results remains lower
or equal to the probe side cardinality. This would correspond with a d-representation
in factorization theory [81], replacing the reoccurring subexpressions as the factor of a
repeatedly probed hash table chain with its corresponding definition. This definition is the
“physical” hash table chain, with different expressions (=probing rows) referring to it via
the chain pointer. These definitions can lead to very efficient computing, as transformations
like aggregations must only be computed once per definition, instead of for all expressions
referring to it. How exactly we can operate on these will be introduced in the following
section,

4.8 Factorized Execution

For the section on hand, we will focus on how we can use the d-representation discussed
in the section above and depicted in Figure 4.16c to speed up the query execution time.
While the 3D-Hash Join Paper [35] focuses on postponing the flattening of the result
of a join after a selective second upstream join, we focus on computing aggregations on
many-to-many joins and cyclic hash joins. In these cases, the flattening of the factorized
intermediate can be avoided, which makes factorized processing very efficient.

4.8.1 Aggregates

When computing aggregates, there can be two cases. First, it could be that the aggregates
do not involve the columns that are behind the hash table pointer and, therefore, in
the definition of the factor. For example, for the query in Listing 4.4, the aggregation
COUNT(users.name) · · · GROUP BY Users.city only groups by the Users.city. With
the factor depicted in Figure 4.16c only consisting of the source columns, the aggregation
does not need to access the elements in the factor. The second option is that the aggregates
will be dependent on the factor’s columns.

81

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

For the first case, aggregates like MIN(expr), MAX(expr), SUM(expr), COUNT(expr), do
not need to be expanded to compute the aggregate. For MIN(expr) and MAX(expr), the fac-
tor can be disregarded completely. For the other aggregates SUM(expr) and COUNT(expr),
we still need to multiply the aggregate of the flat tuple with the length of its chain. For
example, if we compute the count aggregate for the row

r1 = 〈Eve〉 × 〈Bob〉 × 〈Berlin〉 ×
−→
D(〈Alice〉 × 〈Bob〉) (4.14)

with
−→
D(x) being the definition of x, we need to get the number of elements in the definition.

This can be computed as COUNT
−→
D(x)) which is 2. Therefore, COUNT(r1) = 2 as there are

two elements in
−→
D .

To construct an example for SUM(expr), we replace the 2nd column, which is Bob at the
moment, with the number of habitats of Berlin. If we now want to compute the aggregate
SUM(users.habitats) · · · GROUP BY Users.city, we have to multiply the aggregate of
the row with the length of the definition. So for

r1 = 〈Eve〉 × 〈3, 640, 000〉 × 〈Berlin〉 ×
−→
D(〈Alice〉 × 〈Bob〉) (4.15)

we need to compute 3, 640, 000× COUNT(−→D(x)) = 3, 640, 000× 2 = 7, 280, 000.
So for the aggregates SUM(expr) and COUNT(expr) we still need the length of the

definition. We can compute this length by first dereferencing the pointer of the definition,
which might be a cache miss. Then we need to transverse the chain of the hash table, which
can consist of hundreds of elements, each next pointer of the chain being another potential
cache miss. So computing the length of the definition many times is a performance issue.

Hash TableFactor Definitions
ptr(k₁)ptr(k₁)Count=2

ptr(k₂)
ptr(k₂)

Count=1
0x00x0

0x1

0x2

0x1

v₁ v₂k₁ k₁

v₃k₂

Figure 4.18: Cached COUNT(expr) aggregate per chain: Different probing tuples sharing this
pointer can use the factor definitions’ aggregate, avoiding traversal for counting.

We aim to solve this issue by instead of emitting pointers to the chains in the hash table
directly, we emit pointers to so-called factor definitions. These themselves contain
pointers to the actual chain head, but also space for aggregates of this factor like the count.
Figure Figure 4.18 illustrates these factors. The array of factor definitions is allocated after
the hash table build is completed. After this step, we know the number of unique chains in
the hash table, so we know how many factor definitions we need. We then traverse the

82

4.8 Factorized Execution

hash table buckets. If a bucket is empty, we simply skip it. If it is full, we save its pointer
to a hash table chain to a factor definition and then the pointer to the factor definition in
the bucket. Therefore, if this bucket later is probed, we will get a pointer to the factor
definition.

If we then want to compute the aggregate of this chain for a probed row, we first
dereference the pointer to retrieve the factor definition. We then check whether there
is already an aggregate computed. If not, we traverse the chain using the chain pointer
within the definition and count the number of elements. After this, we store the count in
the cache field of the definition. If a second row now needs to compute the count, it only
needs to dereference the definition pointer and retrieve the count from the cache.

While the hash table array size is the next power of two of the number of elements of the
build side times two, the array of factor definitions is significantly smaller, only having the
length of the number of unique keys in the build side. In our example of Figure 4.14 and
Listing 4.4, the follows relation is built on the dest columns. As the following relation
has 7 rows, the hash table array allocated by DuckDB is nextPowerOfTwo(2 × 7) = 16.
The number of unique elements of the dest column however is only 4. Therefore, the
definitions array is four times smaller than the hash table array. This means, that there
are much higher chances that the definitions array will fit into the CPU cache, making
dereferencing pointers to their corresponding definition much faster than dereferencing
pointers to the hash table array.

For some aggregates, it can also be that the aggregate is computed on columns within
the chain. Similar to the count aggregate of the first case, we still can use the factor
definitions to compute these aggregates. For example, if we want to compute the aggregate
string_agg(follows.source, ", ") · · · GROUP BY Users.city to get a list of the fol-
lowers per city. This aggregate now needs to retrieve the follows.source columns which
are in the definition. For the example

r1 = 〈Eve〉 × 〈Bob〉 × 〈Berlin〉 ×
−→
D(〈Alice〉 × 〈Bob〉) (4.16)

this would be the string_agg(−→D(〈Alice〉 × 〈Bob〉), ”, ”) = ”Alice, Bob”. Again, instead of
computing this aggregate over and over again, we can cache it in the factor definition.

To benchmark our factorized aggregate implementation2, we created a micro-benchmark.
We executed the benchmark on a MacBook Pro with an M1 chip using 1 thread, running the
query five times and taking the median runtime. The query used is depicted in Listing 4.5.

2https://github.com/gropaul/duckdb/tree/factorized-aggr

83

https://github.com/gropaul/duckdb/tree/factorized-aggr

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

1 SELECT o.ProductID , COUNT(p.PartID)
2 FROM OrderItems o
3 JOIN ProductParts p ON o.ProductID = p.ProductID
4 GROUP BY o.ProductID;

Listing 4.5: Query returning the number of parts needed per product for all orders

The OrderItems table contains 500,000 rows with 10,000 different ProductIDs. This results

in an average of 50 duplicates per distinct ProductID. The ProductParts table contains

1,000,000 rows with 50,000 different PartIDs and 10,000 different ProductIDs. This results

in an average of 100 duplicates per distinct ProductID and 20 duplicates per distinct

PartID.

For the query in Listing 4.5, the OrderItems table is the build side as it is smaller. Since

we build on ProductIDs, the hash table will have an average chain length of 50 elements.

This means the intermediate result would be 50 times larger than the probing relation,

assuming every key has a hit. By not expanding the result and instead returning chain

pointers, the factorized intermediate result is only 2% the size of the expanded intermediate

result.

We then probe for each ProductID on average 100 times. As we cache the length of one

chain, we only need to traverse the whole chain 1% of the time. Therefore, we only need

to calculate the length of the fact vector 1% of the time.

Baseline Factorized
(no caching)

Factorized
(with caching)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

R
u

nt
im

e
[s

]

0.576

0.460

0.033

Figure 4.19: Runtimes for the microbenchmark in Listing 4.5 showing performance with and
without caching elements in the factor definition

84

4.8 Factorized Execution

Configuration Average Runtime [s] Speedup
Baseline 0.576 -
Factorized (no caching) 0.460 1.25x faster
Factorized (with caching) 0.033 17.58x faster

Table 4.6: Runtimes and speedups for different configurations of the factorized aggregates
microbenchmark

Figure 4.19 and Table 4.6 show the runtimes for the microbenchmark with three different

configurations: baseline, factorized without caching, and factorized with caching. The

baseline configuration has an average runtime of 0.576 seconds. When factorization is

applied without caching, the runtime improves to 0.460 seconds, achieving a speedup of

1.25×. The most significant improvement is observed with factorization combined with

caching, reducing the runtime dramatically to 0.033 seconds, resulting in a speedup of

17.58×.

From these results, we can conclude that only not expanding the intermediate result

is not enough to get very sustainable performance increases. The problem is that if we

only have the pointers referencing the chains, what we save on not having the intermediate

result we have to give back by costly traversing the chains multiple times with costly cache

misses. Only if we can avoid these traversals we get very good speedups.

While this micro-benchmark demonstrates the potential of factorization, such a query

could also be computed with a group join [68], as both the aggregate and the join share

the same key. This example is a simple illustration of computing aggregates in a factorized

manner. However, many real-world scenarios could involve e.g. group-by clauses that

depend on columns within the factor. This aspect is not within the scope of this thesis but

presents an opportunity for future research.

4.8.2 Cyclic Joins

Cyclic joins provide another example where the intermediate result of the join operation is

much larger than the final result. Figure 4.20 shows such a cyclic in a social media-like

graph: the goal is to identify a pattern where a follows relationship forms a cycle, for

example, among three users. In the case of a cycle involving three nodes, this is referred to

as a triangle join.

85

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

1 SELECT *
2 FROM follows R, follows S, follows T
3 WHERE R.dst = S.src
4 AND S.dst = T.src
5 AND T.dst = R.src

Listing 4.6: Query returning all triangles within the follows relation

Alice 

Paris

Carol 

Berlin

Bob 

Berlin

Eve 

A’dam

follows

Figure 4.20: Example for a cycle in the context of social media

The SQL query in Listing 4.6 returns all triangles within the follows relation. It
achieves this by joining the follows table three times, using aliases R, S, and T. Each
alias represents a distinct instance of the follows relationship. The query identifies cycles
(triangles) by ensuring that the destination of R matches the source of S, the destination of
S matches the source of T, and finally the destination of T matches the source of R, closing
the triangle.

The intermediate result is much larger because the condition T.dst = R.src closes the
triangle. Before this condition, the intermediate result from the first join contained all
candidates that had edges between the first two sides of the triangle. Only with the final
selective join are the candidates reduced to those that include an edge between T and S,
which are the edges that form triangles.

1 SELECT *
2 FROM R, S, T
3 WHERE R.a = S.a
4 AND S.b = T.b
5 AND T.a = R.b

Listing 4.7: Query returning all triangles within the relations R, S and T

As a running example to explain the binary join plan in detail and compare it against a
factorized one, we chose the query in Listing 4.7. Note that here, the conditions are not

86

4.8 Factorized Execution

0

0

0

1

2

0

1

2

0

0

a b
R

0

0

0

1

2

0

1

2

0

0

a b
T

0

0

0

1

2

0

1

2

0

0

a b
S

0

0

0

1

...

0

1

2

0

...

2

0

0

2

...

S.a S.b/T.b T.a
Intermediate Result (Expanded)

Hash Join

S.b=T.b

Hash Join

S.a=R.a

T.a=R.b

Build on T.b,  
Probe with S.b

-

2

0

-

1

[0]

[2,1,0]

[0]

T.b T.a
R

S T

R.a = S.a

S.b = T.b

R

S T

R.a = S.a

S.b = T.b

R.b = T.a

R

S T

R.a = S.a

S.b = T.b

R.b = T.a

R.b = T.a

0

0

0

0

0

1

2

0

0

0

1

2

0

0

2

1

0 
0 
0

0 
0

S.a=R.a S.b=T.b T.a=R.b
Final Result

Build on R.a, R.b 
Probe with S.a, T.a

0,0

0,1

0,2

1,0

2,0

[0]

[0]

[1]

[0]

[2]

R.a,R.b R.a

11
 r
ow
s

Figure 4.21: Binary query plan with intermediate results and hash tables for the query in
Listing 4.7

“symmetrically”, but still form a cycle. Instead of every condition following the pattern

X.a = Y.b, the first two conditions have the pattern X.a = Y.a. In a graph context, this

would mean that the required direction of the edge is changed in comparison to the first

example.

In Figure 4.21 we can see the binary join plan for the query listed in Listing 4.7 together

with its intermediate results. On the left-hand side of the figure, we can see the triangle

together with its edge conditions. On the right-hand side, we can see the hash tables of

the corresponding hash join operators. The query execution begins by retrieving all edge

combinations in S and T that share a common node b. DuckDB uses a hash join for this,

with T as the build side. Since we join on S.b = T.b, T.b is the build key for the hash

table, and the chains of the hash table contain elements of T.a. Three rows qualify for T.b

= 0, resulting in a chain of three elements for this hash table bucket. The other keys in T

only occur once, so their respective chain only contains one element. This join operation is

87

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

0

0

0

1

2

0

1

2

0

0

a b
R

0

0

0

1

2

0

1

2

0

0

a b
T

0

0

0

1

2

0

1

2

0

0

a b
S

Hash Join

S.b=T.b

Hash Join

S.a=R.a

[T.a]=[R.b]

Build on T.b,  
Probe with S.b

-

2

0

-

1

[0]

[2,1,0]

[0]

T.b T.a
R

S T

S.a=R.a

S.b = T.b

R

S T

S.a=R.a

S.b = T.b

[T.a] = [R.b]

R

S T

S.a=R.a

S.b = T.b

[T.a] = [R.b]

[T.a] = [R.b]

0

0

0

0

0

1

2

0

0

0

1

2

0

0

2

1

0 
0 
0

0 
0

S.a=R.a S.b=T.b T.a=R.b
Final Result

0

0

0

1

2

0

1

2

0

0

[2,1,0] 
[0] 
[0]

[2,1,0] 
[2,1,0]

S.a S.b/T.b [T.a]
Intermediate Result (Factorized)

Build on R.a,  
Probe with S.a

-

2

0

-

1

[0]

[2,1,0]

[0]

R.a R.b

Figure 4.22: Factorized query plan with intermediate results and hash tables for the query
in Listing 4.7

explosive, transforming the initial 5 rows into 11. The reason therefore is that every row
in S for which S.b = 0 holds will match with the three-element chain in the hash table,
leading to three emitted rows per matching probing row.

This intermediate result becomes the probe side of the second hash join operator, with
R as the build side. This join ensures the remaining triangle conditions are fulfilled by
checking R.a = S.a and R.b = T.a. Consequently, the hash table for the second join
is built on the composite keys R.a and R.b, ensuring unique entries in the hash table.
The probing side computes the key (and hash) from S.a and T.a. This makes computing
the last two join conditions very efficient, by checking both in one run. The final result,
containing only seven rows, is smaller than the intermediate result of eleven rows.

In the factorized execution of the cyclic join, the goal is to avoid the explosion of the
intermediate result of the first join and to efficiently find matches for the factorized tuples.
The whole process is depicted in Figure 4.22. Both plans start with the same hash join

88

4.8 Factorized Execution

src

0

0

0

1

2

0

1

2

0

0

dst
Relation R

Hash Join

S.a=R.a

[T.a]=[R.b]

0

1

2

0

0

0

0

0

1

2

[2,1,0] 
[0] 
[0]

[2,1,0] 
[2,1,0]

S.b=T.bS.a [T.a]
Factorized Intermediate

2

-

0

1

[0]

[0]

[2,1,0]

R.a [R.b]

 Probe with S.a

 HT for S.a=R.a

Hash Table built on R.a

 Intersect chains

Figure 4.23: Detailed illustration of the second join probe and factorized condition checking
for the factorized join plan in Figure 4.22

operation combining S on the probe side and T on the build side under the condition S.b

= T.b. Again, the operator builds a hash table on T.b which contains chains of elements

of T.a. But instead of the explosive flat result, the operator emits the pointers to chains of

T.a. Therefore, we only have five rows in the intermediate results. Note that in Figure 4.22,

the intermediate result now has a column of [T.a] instead of T.a compared to the binary

join plan. In addition, the column’s values are depicted as actual lists, but physically they

only contain pointers to these lists.

In the cyclic join, the second hash join needs to check the factorized condition [T.a] =

[R.b]. Therefore, we need chains containing elements of R.b. This is achieved by only

building the hash table for the second operator on the key R.b. The resulting hash table is

depicted on the right center of Figure 4.22.

In the probing phase both the flat condition S.a = R.a and the factorized condition

must be checked. This happens in three steps, which are depicted in Figure 4.23. The

graphic shows only the second join of Figure 4.22 without the result of the join. The first

step is to build the hash table for the flat condition S.a = R.a, which than has chains

containing values of R.b. For each element with have to probe, we first satisfy the first

condition by probing the hash table with the key S.a of the probe side. This is depicted

as a red arrow in Figure 4.23. After finding the corresponding bucket in the hash table, we

know that all elements in the chain of this bucket hold true for the condition S.a = R.a.

To check the factorized condition, we have to intersect this hash table chain [R.b] now

with the probe side chains [T.a], which can be accessed using the probe side pointers.

This is depicted as the green arrow in Figure 4.23. The figure shows this process for the

89

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

0

0

 Chain
Length

Operator Hash Table Hash Table
Sizes

Chain Hash
Tables

-

2

0

-

1

[0] 1 2

[2,1,0] 3 8

[0] 4 2

R.a R.b

0

2

1

Figure 4.24: Allocation of micro hash tables for evaluating factorized join predicates

second row r2 of the probe side:

[T.a]r2 ∩ [R.b]S.a=R.a=0 = [0] ∩ [2, 1, 0] = [0] (4.17)

Note that the intersection operation ∩ is not strictly a mathematical set operation. For

every element in the probe side chain Cp, we need to iterate over each element of the build

side chain Cb and return a match if they satisfy the joining condition. Therefore, this

intersection is more like a conditional Cartesian product - Cp oncond Cb. For example, if

Cp = [1, 2, 2, 3] and Cb = [2, 2, 1], the result would be [2, 2, 2, 2, 1], since every 2 ∈ Cp must

be paired with every matching 2 ∈ Cb.

To compute the entire join, we perform many “micro” joins or list intersections between

the probe side factor chain and the matching build side check. Although these lists are

typically short, these micro joins might need to be computed millions of times, once for

each row on the probe side, making efficient implementation critical.

Similar to the “big” joins, the micro joins are also computed using hash tables. Therefore,

for each of the chain intersections, we need to choose one chain as the probe and one as the

build side. Then, we build a tiny hash table for the build side chain and probe this table

with the elements of the probe side chain. This process and the population of the hash

tables is depicted in Figure 4.24: For each of the chains in the hash table, we calculate the

size of the hash table as the next power of two of two times the number of elements in the

chains. We use a power of two as the size to be able to replace the modulo to range the

90

4.8 Factorized Execution

hash to the size of the hash table array using a bitmask, similar to the standard hash table
of the hash join operator. Details can be found in Section 4.4.2.

The information on how big the hash table for a chain is and where it is located in
memory is again stored in the factor definitions which were previously used to cache the
count in the factorized aggregate calculation (see Figure 4.18). When processing cyclic
joins, these definitions store the pointer to the chain’s hash table as well as additional
information like whether this hash table was already built or not.

Since we do not know if a chain will be chosen as the build side of a chain intersection,
we do not populate the allocated arrays directly. Each chain, however, already has an array
it could use for building the hash table. During the probing phase, if we determine that
two chains need to be intersected, the build side is chosen as follows: If both or neither of
the chains already have a build hash table, the larger side is chosen as the build side. If
one of the chains already has a build hash table, it is chosen as the build side. We chose
the larger side as the hash table since building the hash table is a reusable task for many
probes. Building the hash table for a large chain and probing it multiple times with many
shorter chains is more efficient than repeatedly probing with the large chain on many small
hash tables. Further work might also evaluate the performance of always taking the larger
relation as the build side to truly achieve the worst-case optimal join guarantees, but this
has not been implemented in this project.

After two of the hash table chains are interested, we emit a flat result as the join
operations result as we cannot use the chains anymore because each probing tuple now
has the unique intersection between probing and build side chain. Instead of emitting a
flat result, one could also consider emitting a factorized result with a materialized chain,
similar to the one depicted in Figure 4.16b. Investigations into this could be interesting for
future work.

1 SELECT COUNT(*) FROM links l1
2 JOIN links l2 ON l1.dst = l2.src
3 JOIN links l3 ON l2.src = l3.dst AND l3.dst = l1.src;

Listing 4.8: Count the number of cycles in the WebStan dataset

We evaluated the performance of factorized cyclic joins in DuckDB by performing triangle
joins along links in the WebStan dataset3. This dataset consists of 685,231 nodes and
7,600,595 edges. The cyclic join experiment was conducted on a cloud instance running
Fedora 40, equipped with an Intel Xeon Gold 5115 CPU with 40 threads and 248 GB of
RAM. The query used to find triangles among the hyperlinks is shown in Listing 4.8. We

3https://snap.stanford.edu/data/web-BerkStan.html

91

https://snap.stanford.edu/data/web-BerkStan.html

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

0 10 20 30 40 50 60 70 80 90
Time (s)

KùzuDB

Umbra

DuckDB

1 Thread

4 Threads

8 Threads

(a) Binary Join Plan

0 1 2 3 4 5 6 7 8 9 10 11
Time (s)

KùzuDB

Umbra

DuckDB

(b) WCOJ/Factorized Join Plan

Figure 4.25: Runtimes of different systems and configurations for finding the number of
triangles in WebStan dataset

compared the binary join plan execution time with the WCOJ-plan for the systems Kùzu [34],
Umbra [76], and DuckDB [84], which all have implementations for both algorithms. To
test the scalability of the systems, we ran the query with one, four, and eight threads per
system.

The results of these benchmarks are depicted in Figure 4.25 and detailed in Table 4.7.
Furthermore, the parallel efficiency of the algorithms is depicted in Table 4.8. Parallel
efficiency is a measure of how effectively a parallel algorithm utilizes multiple processors.
It is calculated as the ratio of the speedup achieved with multiple processors to the number
of processors used. High parallel efficiency indicates that the algorithm scales well with
the addition of more processors. The formula for parallel efficiency Ep is given by:

Ep = T1
Tp × p

(4.18)

where T1 is the execution time with 1 thread, Tp is the execution time with p threads,
and p is the number of threads.

For the Binary Join plan, Umbra outperformed both Kùzu and DuckDB across all thread
counts, outperforming DuckDB by a factor of four. Kùzu’s binary join plan is the slowest,
being outperformed by DuckDB by a factor of about four for one thread. In terms of scaling
with CPU cores, DuckDB exhibits the best scaling for four cores with a parallel efficiency
of 90.9%, while for eight threads, Umbra achieves the best scaling with an efficiency of
77.0%.

For the worst-case optimal join plans, or in the case of DuckDB factorized join plans,
the runtime numbers are closer together. For one thread, the factorized execution strategy

92

4.8 Factorized Execution

Table 4.7: Runtimes of different systems and configurations for finding the number of triangles
in WebStan dataset. While for the binary join plan, Umbra is superior, for the factorized join
plan and one thread the new DuckDB factorized join plan is the best

Algorithm System 1 Thread (s) 4 Threads (s) 8 Threads (s)

Binary Join
Kùzu 86.010 26.913 25.973

Umbra 3.645 1.158 0.585
DuckDB 17.337 4.767 2.867

WCOJ
Kùzu [34] 11.214 4.126 2.572

Umbra [76] 7.715 2.340 1.356
DuckDB [84] 7.253 2.889 2.272

Table 4.8: Parallel Efficiency of the Systems in table Table 4.7 for four and eight threads.

Algorithm System 4 Threads 8 Threads

Binary Join
Kùzu 0.799 0.414

Umbra 0.787 0.770
DuckDB 0.909 0.756

WCOJ
Kùzu 0.679 0.545

Umbra 0.824 0.711
DuckDB 0.628 0.399

proposed in this thesis outperforms Umbra by 0.5 seconds, being the fastest implementation.
However, for four and eight threads, Umbra’s multijoin implementation is faster. The
Kùzu WCOJ implementation has the largest execution time but comes close to DuckDB
for eight threads. As shown in Table 4.8, both DuckDB and Kùzu have parallel efficiencies
of around 65% for four threads, while Umbra excels with 82.4%. The DuckDB factorized
implementation has a comparatively low efficiency for eight threads at only 39.9%. This
is due to the lack of optimization in parallelization, with steps like the micro hash table
memory allocation occurring sequentially.

Table 4.9: Speedup of WCOJ over Binary Join for Different Systems and Threads

System 1 Thread 4 Threads 8 Threads
DuckDB 2.390 1.650 1.262

Kùzu 7.670 6.523 10.098
Umbra 0.472 0.495 0.431

To determine which systems benefit from factorized or multi-join execution, we can refer

93

4. FACTORIZATION USING LINEAR-CHAINED HASH TABLES

to Table 4.9. It illustrates the speedup of the WCOJ implementation over the binary
join plan. Notably, Kùzu achieves the highest speedup compared to their binary join
implementation, with a speedup of 7.7x for one thread and 10.1x for eight threads. DuckDB
shows a significant speedup with smaller thread counts, achieving 2.4x for one thread but
only 1.3x for eight threads, showing that factorized execution is not yet optimized for
parallelism. Umbra, however, does not benefit from WCOJ optimal joins; their binary
execution is more than twice as fast as the WCOJ plan, with a speedup of 0.5x.

94

5

Adaptive Factorization

As shown in the chapter before, factorized execution, or WCOJ, can outperform binary

join plans by avoiding the creation of large intermediate results. However, this approach

requires additional helper structures and more complex logic to compute the results. For

instance, when computing cyclic joins using a factorized execution strategy, multiple small

hash tables are needed to perform list intersections. These investments may not justify the

runtime benefits if large intermediate results are not avoided. In the case of cyclic joins, if

there are few duplicates on the build side keys, the chains of hash tables used as factors

may be short or, in the worst case, contain only one item.

This is why, while WCOJ and factorized query processing offer great alternatives, they

cannot fully replace binary join operators and require planning by the query optimizer.

The challenge of determining the optimal conditions for using these algorithms remains

unresolved, as discussed in Section 3.3.

In this chapter, we aim to assess a new approach for this challenge by introducing

an adaptive approach that decides on runtime when to apply factorization. The idea is

that if we identify a query that could benefit from factorization like a cyclic join or a

many-to-many join followed by an aggregation during the query optimization phase, we

mark the plan as potentially factorizable. This does not change the execution strategy

directly but triggers the collection of runtime metrics. We delay the decision of whether to

use factorization until the factorized and default query execution start to differ. Based on

the runtime metrics we have gathered, we now have a much clearer understanding of the

data structure, allowing us to assess the potential benefits of factorization more precisely.

The work presented in this chapter was created in close collaboration with Daniël ten

Wolde.

95

5. ADAPTIVE FACTORIZATION

5.1 Adaptivity through Run-time Strategy Switching

The core concept is to adaptively implement factorization by postponing the decision to

use either a factorized or flat execution strategy until the latest possible moment and

collecting metrics until this moment.

Our proposed approach for integrating factorization and, worst-case, optimal cyclic

join computation is based on altering and repurposing existing data structures without

introducing completely new operators and concepts. Therefore, traditional query plans do

not usually differ drastically from plans employing these new technologies. This was also

illustrated in the flat and factorized query plan for finding triangles in Figure 4.21 and

Figure 4.22. Here, binary and worst-case optimal execution are similar in the beginning.

The first join is nearly the same in both plans, only differing in the probing phase. This

shows that it is advantageous to avoid completely different operators, such as WCOJ or

multi-join operators. Instead, we can make small modifications to the Hash Join Operator

to switch from a standard to a factorized execution strategy.

For the second join, during materialization, for both execution strategies, the hash

of both build side keys is needed. In a binary join plan, the hash table is built on the

composite of the two keys, so we need a hash that includes both. For a factorized execution,

a hash for the first key is needed to build the hash table, while keys for the second join are

used to perform micro hash joins later. Therefore, the hashes of both keys are required in

both scenarios. These hashes can, therefore, be used to compute sketches, which provide

additional metrics for the runtime decision.

The decision on when to opt for factorization can be made after the first hash table is

built but must be made before probing the first hash table. Additionally, it can occur after

the materialization phase of the second hash table but before the build of this hash table.

As we can wait until the first join hash table is built, we get an accurate distinct count for

the build key of the first hash table as a metric. This count enables us to determine the

average chain length, calculated as the distinct count divided by the number of elements

on the build side.

This shows that an adaptive hash join operator can postpone the decision on whether to

use a factorized or normal execution strategy very late in the query execution process. At

this point, we will have better statistics on our data than during the query optimization

phase. Instead of relying on cardinality and unique value estimations, we can (additionally)

use accurate metrics. Which metrics we collect will be discussed in the next section.

96

5.2 Training and Evaluation Dataset

5.2 Training and Evaluation Dataset

To gather the required metrics for training and evaluating the adaptive factorization and

our classifiers, we used three distinct datasets. In each dataset, we constructed triangle

queries that, while searching different relations for triangles, all represent cyclic queries.

The first dataset was a synthetic collection of 305 graphs, with sizes ranging from 100

to 100,000 nodes and 100 to 10 million edges. These graphs were designed with a broad

range and distribution of in-degrees and out-degrees, and we generated them using the

Python library NetworkX [75].

The second dataset included SNAP datasets [60], where we took graphs containing over

1 million edges. These datasets provided real-world data for our analysis.

Finally, we used the LDBC SNB BI datasets [94], using scale factors of 1, 3, and 10.

From the SNB dataset, we extracted 352 unique triangle queries on different relations. To

get to this number of triangle queries, we additionally created reverse versions of each of

the 27 edge tables by swapping the source and destination columns and using them to find

more triangle queries. We combined all these datasets into one big data set.

As the effort of implementing an adaptive query execution in DuckDB is large, to evaluate

the viability of our approach we proceeded as follows. For each of the queries, we run both

the factorized execution strategy and the flat execution strategy. We measure the median

execution time of five runs for each strategy. While running the factorized strategy, we also

logged the runtime metrics so we could use them for later analysis. As we have the runtime

for both strategies per query, we can compute the speedup of the factorized strategy and

use this as the target column for the models. We then can try to use the collected runtime

metrics to train and test a classifier to predict this speedup based on the metrics.

In Table 5.1, we present a sample of the collected data, showing the first four rows. Each

row represents a single query and includes various metrics collected during execution, such

as join sizes, chain lengths, predicted join size, the number of unique relations, and runtime

metrics. These metrics, their retrieval, and their significance will be in detail discussed in

the next section. The speedup column indicates how much faster the factorized strategy

was compared to the flat strategy, and the ”Faster Class” column marks whether the

factorized strategy was faster (1) or not (0). The final collected data consisted of 3998

rows.

97

5. ADAPTIVE FACTORIZATION

Columns Row 1 Row 2 Row 3 Row 4

1st Join Size 1,801,048 596,297 1,600 205,858
1st Join Avg Chain Length 18.01 596.3 16 205.86
1st Join AMS Array Mean 0.0008 0.01 0.0375 0.0101
2nd Join Size 1,801,048 499,858 15,040 205,858
2nd Join Avg Chain Length 18.01 499.86 1.18 205.86
2nd Join AMS Array Mean 0.0008 0.01 0.0383 0.01
Predicted Join Size 35,098,596 336,036,013 242,704 47,885,800
Number of Unique Relations 1 3 3 1
Explosion Factor 19.49 613.12 29.17 232.62
Baseline Median Runtime 1.65 9.98 0.014 1.33
Factorized Median Runtime 0.96 7.34 0.022 0.79
Speedup 1.72 1.36 0.63 1.68
Faster Class 1 1 0 1

Table 5.1: Sample Data from the Collected Dataset used to train and evaluate the adaptive
factorization

1s
t
Jo

in
B
ui

ld
Si

de
C
ar

di
na

lit
y

1s
t
Jo

in
A
vg

C
ha

in
Len

gt
h

1s
t
Jo

in
C
ha

in
K
ey

Sk
ew

2n
d

Jo
in

B
ui

ld
Si

de
C
ar

di
na

lit
y

2n
d

Jo
in

A
vg

C
ha

in
Len

gt
h

2n
d

Jo
in

C
ha

in
K
ey

Sk
ew

Pre
di

ct
ed

Jo
in

Si
ze

N
um

be
r
of

U
ni

qu
e
R
el
at

io
ns

Exp
lo
sio

n
Fa

ct
or

Fa
st
er

C
la
ss

Sp
ee

du
p

1st Join Build Side Cardinality

1st Join Avg Chain Length

1st Join Chain Key Skew

2nd Join Build Side Cardinality

2nd Join Avg Chain Length

2nd Join Chain Key Skew

Predicted Join Size

Number of Unique Relations

Explosion Factor

Faster Class

Speedup

0.33

0.28 0.47

0.24 0.07 0.11

-0.16 -0.04 -0.04 -0.13

-0.01 -0.00 0.01 0.09 -0.02

0.15 -0.00 0.49 0.13 -0.02 0.06

0.20 0.07 0.06 0.12 -0.32 0.01 0.03

0.10 -0.01 0.46 0.03 0.16 0.20 0.89 -0.02

-0.23 -0.09 -0.08 -0.19 0.48 0.01 -0.05 -0.26 0.06

-0.03 -0.01 0.00 -0.02 0.03 0.00 -0.01 -0.05 0.11 0.09

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.1: Correlation Matrix of the Metrics:

98

5.3 Metrics for Adaptive Factorization

5.3 Metrics for Adaptive Factorization

In order to make a sound runtime decision, we consider both runtime and optimization

time known metrics. Our experiments show that collecting the runtime features only leads

to a runtime overhead of below 1%.

Figure 5.2 presents a density diagram illustrating the distribution of speedup across

different metrics. The plots suggest a correlation between certain metrics and the observed

speedup. What becomes apparent is that the speedup for the factorized triangle joins

heavily varies per query, as the dataset features speedups in the range of 0.1 to 10. This

again highlights how important it is to find a good method to decide whether to use the

factorized or the normal execution strategy.

To assess the potential explosiveness of the join result, we estimate the join size of the

condition that would be computed using list intersection. For example, in Figure 4.22, this

would correspond to the condition [T.a] = [R.b] in the second join. We use the AMS

sketch, a type of linear sketch, to estimate the join size between relations, which enables

the detection of skew [6].

During the hash table build phase, an AMS sketch is constructed for the keys that will

be compared using list intersection, T.a and R.b. The sketches generated from both hash

tables can then be multiplied to estimate the size of the intersection join.

The AMS sketch is represented by a matrix C with dimensions d × w, where d is the

number of hash functions used, and w is the number of buckets for each hash function. Two

hash functions are employed: (1) hj(i) maps item i to a bucket in the j-th row, and (2)

gj(i) maps item i to either +1 or −1, adding randomness and enhancing the independence

of updates.

In our implementation, we utilize the 64-bit hash generated during the hash join materi-

alization phase for each item i. Since this hash must be computed in both the binary and

factorized join plans, there is no additional overhead in hashing the keys for the sketch.

This 64-bit hash is split into bytes, and for each row j, the j-th byte is used for both

hj(i) and gj(i). Specifically, hj(i) is determined by the last 7 significant bits, while gj(i)
is determined by the most significant bit, mapping to either +1 or −1. We use the AMS

sketch to estimate the explosiveness of the join keys by populating two sketches with the

hash values of the respective keys and taking their scalar product as an estimate of the

join size.

99

5. ADAPTIVE FACTORIZATION

100 101 102 103 104 105

Average Hash Table Chain Length

10−1

100

101

S
p

ee
d

u
p

1st Chain Length vs Speedup

100 101 102 103

Average Hash Table Chain Length

2nd Chain Length vs Speedup

Speedup = 1

103 104 105 106 107

1st Join Build Side Cardinality

10−1

100

101

S
p

ee
d

u
p

1st Join Size vs Speedup

103 104 105 106 107 108

2nd Join Build Side Cardinality

2nd Join Size vs Speedup

10−2 100 102 104

Explosion Factor

10−1

100

101

S
p

ee
d

u
p

Explosion Factor vs Speedup

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of Unique Relations

Number of Unique Relations vs Speedup

10−1 100 101 102 103 104 105

1st Chain Key Skew Estimation

10−1

100

101

S
p

ee
d

u
p

1st Chain Key Skew Estimation vs Speedup

100 102 104 106

2nd Chain Key Skew Estimation

2nd Chain Key Skew Estimation vs Speedup

Figure 5.2: Distribution of the Speedup over different static and runtime metrics:

100

5.3 Metrics for Adaptive Factorization

To further understand the relationships between the metrics and their influence on the
speedup of factorized queries, we compute a correlation matrix visible in Figure 5.1. This
matrix shows how strongly each metric is linked to the observed speedup. The correlation
coefficient, ranging from -1 to 1, indicates the strength and direction of the relationship:
positive values show that as one metric increases, so does the speedup, while negative values
indicate the opposite. The matrix is computed using the Pearson correlation coefficient,
which measures the linear correlation between two variables [82]. The matrix displays the
features used for prediction, along with the metrics to be predicted, which are the faster
class and the speedup. Using this matrix, we will will now discuss the features’ quality.
1st Join Average Chain Length
Retrieval This feature describes the average length of the chains of the hash table that
is built on the first hash join operator. In Figure 4.22, this is the join having the condition
S.b. = T.b. As discussed, this join operator only needs to either emit factorized or flat
tuples during the probing process depending on the execution strategy. Therefore we can
collect metrics while the hash table is built, as we only have to decide on a strategy after
the build is completed. We can get the average chain length by having a counter that
gets incremented every time we insert an element into an empty slot. Thereby we get the
number of chains we have in the hash table. In addition, we know the number of elements
of the build side after the sink phase of the hash table is completed (see Section 4.4.1). To
get the average number of elements in the chain, we divide the number of elements of the
build side by the number of chains.
Quality The distribution of the average chain length over the speedup is depicted in the
top left corner of Figure 5.2. We can see there is some correlation with the speedup in
the range of a chain length of 1 to 100, with the speedup getting higher the longer the
chain is. However, in between a chain length of 100 to 1000, the speedup seems to decrease
with a larger chain length. Looking at the correlation matrix, we can see that there is
only very little linear correlation between the first chain’s average length and both faster
class and speedup. However, it could be that there is still some correlation as seen in the
distribution plot, but just not a linear correlation.

2nd Join Average Chain Length
Retrieval This feature, similar to the first, describes the average chain length of the
hash table built during the second hash join. However, unlike for the first feature, we
cannot wait for the hash table to be fully constructed, as the final hash table will vary
depending on the chosen execution strategy. Despite this, the materialization phase of

101

5. ADAPTIVE FACTORIZATION

the join in the two strategies remains the same, allowing us to populate an HyperLogLog
(HLL) sketch [36] using the hashes of the keys computed during this phase. This sketch
can be used for estimating the number of distinct values. With this, we can again calculate
the average chain length, as these unique values represent the number of chains. For the
project on hand, we used the exact distinct values that are available after the second hash
table is built during the factorized execution strategy, as there was not enough time to
implement the HLL sketch. Using an estimate instead will be part of the future work.
Quality The distribution plot of this feature can be found in the top right corner of
Figure 5.2. This feature seems to be very promising, as there seems to be a linear cor-
relation between the speedup and the chain length: The longer the chains of the second
join, the higher the speedup. This is also suggested by the correlation matrix, as the corre-
lation between the faster class and this feature is the best compared to all the other features.

1st & 2nd Join Build Side Cardinality
Retrieval These two features can be discussed together as both the retrieval and the
quality are very similar. They describe the cardinality of the build side for the first or
second join, respectively. The exact cardinality of the build side is known after the sink
phase of the hash join operator is completed, as the operator waits for all the tuples to
materialize to determine the hash table size.

Quality Both the first and second build side cardinalities appear to be negatively cor-
related with speedup: larger build sides tend to result in lower speedups. This is also
visible from the correlation matrix, where both cardinalities have a negative correlation
of around -0.2. Thus, these metrics are valuable as features for a prediction model. This
correlation appears counterintuitive, as factorization’s potential should not depend on data
cardinality. Therefore, the bad performance of the factorized approach for large data could
be because of the lack of optimization for parallel processing. In general, with a growing
data size, the parallel efficiency should increase. However, since the factorized approach
offers less parallelization than binary methods, larger datasets might more clearly expose
this limitation.

Predicated Join Size & Explosion Factor
Retrieval The predicated join size comes from the join size estimation using the AMS
sketches described in the text above. However, as this metric is very dependent on the size
of the join, we decided to introduce a second metric, the explosion factor. This metric is

102

5.3 Metrics for Adaptive Factorization

calculated by dividing the predicted join size by the average of the cardinalities of the two
build sides.

Quality The explosion factor’s distribution over the speedup is depicted in the 2nd last
row and first column of Figure 5.2. We can see that a high explosion factor seems to
have an influence on the speedup: the bigger the explosion factor, the higher the speedup.
Looking at the correlation matrix, we can only see a very small correlation between the
labels and the explosion factor or the predicted join size.

Number of Unique Relations
Retrieval The number of unique relations across which triangles are searched can be
determined from the query plan, making it a static metric that is known before runtime. If
there is only one unique relation, cycles are searched within that relation, for example, cycles
within the follows relation. If there are two unique relations, the query involves different
relationships, like finding users where one follows another, and both live in the same town,
involving the follows and lives_in relations. This metric is interesting because, with
only one relation, metrics like the first hash table chain length could also be relevant to
the second hash table chain length when joined on the same key. Additionally, if the probe
side joins keys match any of the build side keys, we can infer information about them as well.

Quality The distribution plot for this metric is shown in the second column of the third
row in Figure 5.2. The number of distinct relations has a noticeable impact on the speedup
distribution. With more relations involved, the range of possible speedups becomes wider.
When only one relation is involved, nearly all queries achieve a speedup greater than 1.
However, with three relations, the speedup distribution is much broader, and more queries
tend to have speedups closer to 1.

1st & 2nd Chain Key Skew Estimation
Retrieval To get information in addition to using the AMS sketch to predict the join size
we also use it to get information on the skewness of the join keys involved in the factorized
intersection. This is done by instead of calculating the F2 value on the two sketches of
both sketches, we calculate it based on twice the same sketch. This returns the size of a
self-join, which can then be used to estimate the number of duplicates in the sketch.

Quality The distribution over the speedup for both estimations can be seen in the last
row of Figure 5.2. This feature seems to be loosely correlated with the speedup, getting

103

5. ADAPTIVE FACTORIZATION

Selection Method Accuracy Speedup
Objective Best/Worst

Always choose faster N/A 1.58x
Always choose slower N/A 0.90x
Always choose factorization N/A 1.47x
Never choose factorization N/A 1.00x

Classifiers
Logistic Regression 0.78 1.47x
Decision Tree 0.87 1.54x
Random Forest 0.89 1.55x
Gradient boosting 0.88 1.55x

Table 5.2: Accuracy and Speedup for various selection methods and classifiers on the test
dataset

higher speedups the larger the skew estimation. However, the correlation matrix does not
show a big correlation.

5.4 Adaptive Factorization with Machine Learning Strategies

Using the features outlined in the previous section, we trained machine learning models
to predict whether it would be advantageous to switch to factorized execution for a given
query based on its characteristics. We used an 80:20 train-test split to train and evaluate
the performance of our models.

Table 5.2 compares the accuracy and speedup of different selection methods and classifiers
on the test dataset. The “Always choose faster” scenario represents the best possible
situation with a perfect model, where the fastest execution strategy is always selected.
It achieves the highest possible speedup of 1.58x, setting the upper bound for what any
predictive model could achieve. In contrast, the “Always choose slower” scenario assumes
the slowest execution strategy is always chosen, leading to a speedup of 0.90x, which serves
as the worst-case scenario and lower bound for performance. “Never choose factorization”
is the baseline, consistently applying the standard execution strategy. The “Always choose
factorization” means always selecting the factorized execution strategy, resulting in a
speedup of 1.47x. This shows that factorization is generally faster than the baseline but
still slower than the perfect strategy. Therefore, the range between the factorization
speedup (1.47x) and the perfect model (1.58x) represents the potential performance gain

104

5.4 Adaptive Factorization with Machine Learning Strategies

our machine learning models can achieve.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Importance

Explosion Factor

1st Join Cardinality

1st Join Mean Chain Length

1st Join Chain Key Skew

2nd Join Cardinality

Predicted Join Size

2nd Join Chain Key Skew

Number of Unique Relations

2nd Join Mean Chain Length

Figure 5.3: Features and their importance for the random forest model indicate that the 2nd
join’s mean chain length is the most important, with both dynamic (chain length) and static
(number of unique relations) features being important.

The best strategy was achieved using a Random Forest classifier, having an accuracy of
0.89 and a speedup of 1.55x, which is nearly optimal compared to the maximum possible
speedup of 1.58x. Other models, including Decision Trees and Gradient Boosting, also
showed good performance, with only slight differences in accuracy and speedup.

Figure 5.3 shows the importance of the features used in the Random Forest model. The
2nd join’s mean chain length is the most important feature. This was to be expected
from the analysis of the metrics in the previous chapter. It is twice as important as the
following feature. These are the number of unique relations, which is a static feature, and
the 2nd join key skew, as well as the predicted join size. Therefore, we can conclude that
the runtime metrics greatly improve the model’s performance and that using these features,
machine learning models can predict accurately when the factorized execution strategy
would be faster than the default execution strategy.

105

6

Discussion & Future Work

We showed that by introducing our Linear-Chained Hash Table to the Hash Join Operator

in DuckDB to have collision-free chains, we cannot only increase the performance for

large data sets and many-to-many joins but also use these chains as d-representations for

factorized query processing.

The alterations made to the hash table are well-tested and production-ready and were

merged into DuckDB1. They are expected to become publicly available with DuckDB 1.1,

which is planned to be released on the 2. September of 2024 [100].

One possible further optimization for the hash table could be to not only use the free

upper bits of the hash table pointers as salt. As we have 16 free bits, there is only a chance

of 1
216 = 1

65,536 that if the salt of two values matches, the keys do not match. In this case,

the key comparison was unnecessary. We could repurpose one of the 16 free bits as a

marker which indicates whether there was a hash collision for a slot during the build of

the hash table. If we now probe for a key and find that the hash table slot, which the

hash of the probing key leads to, is full but does not match the probing key, we can use

the marker. If the marker indicates that there was no hash collision during the build, we

know that linear probing is unnecessary and that there is no need to check the next slot.

Otherwise, we have to check the next slot. Re-purposing this bit increases the chance for a

false salt match to 1
32,768 , which should still be enough. Implementing and benchmarking

this optimization would be interesting for further work.

While the changes to DuckDB’s Hash Table layout lay the foundation for making

factorized query execution publicly available in DuckDB, the factorized strategies discussed

in this work have only been implemented as a proof of concept. This includes the

1https://github.com/duckdb/duckdb/pull/11472

107

https://github.com/duckdb/duckdb/pull/11472

6. DISCUSSION & FUTURE WORK

implementation for factorized aggregate computation only for the COUNT(*) aggregation2.
However, we could demonstrate that, in this case, factorized query processing can yield
significant performance improvements. Furthermore, we could show that integrating
factorized query processing does not require new operators but that it is enough to update
existing operators to handle factorized vectors. For aggregations, further work should
include supporting all types and all aggregates DuckDB supports to fully integrate factorized
aggregate computation into DuckDB. In this work, we only introduced aggregates for the
case where the GROUP BY key is not within the factor itself. It would be interesting to see
how one could efficiently implement factorized aggregations for the case where the key is
within the factor. This could allow factorized aggregates for all cases where there is a build
side with duplicate keys followed by an aggregate function.

One question that remains open in regards to factorized aggregation is how the approach
proposed by us relates to the claim of Birler et al., stating that computing aggregates on
factorized representation is not necessary because of eager aggregation [19]. Further work
should analyze which cases can adopt factorized aggregation or eager aggregation and how
the two approaches are related in terms of performance.

Also, for the cyclic join, this work only features a proof of concept implementation3.
The implementation can compute most n-sized cyclic queries, with triangle queries being
the most tested. The hash table used to intersect the chains is currently a custom linear
probing hash table but should be altered to use the same infrastructure as DuckDB’s Hash
Table for joins. This would allow us to support all different types of join keys, while the
current implementation is only usable with 64-bit integer keys.

Furthermore, as seen in the evaluation of the cyclic join, the factorized execution strategy
currently lacks optimization for parallel execution, with a parallel efficiency of only 39.9%
for eight threads. While DuckDB can beat Umbra’s WCOJ implementation in single-
threaded mode, using eight threads, it is nearly two times slower than Umbra. This is why
the parts of the algorithm that currently happen sequentially must be parallelized. Here,
the focus should mainly be on the allocation and distribution of memory for the micro
hash tables and the creation of the factor definitions described in Figure 4.18.

Another method of using factorization that we did not explore in this work is delaying the
expansion of one join operator’s chains after a second, selective join, which was proposed by
the 3D hash join paper [35]. To implement this, we would need an expansion operator that

2https://github.com/gropaul/duckdb/commits/factorized-aggr/
3https://github.com/gropaul/duckdb/commits/fact-intersection-join-ht

108

https://github.com/gropaul/duckdb/commits/factorized-aggr/
https://github.com/gropaul/duckdb/commits/fact-intersection-join-ht

flattens the result after the second join is computed. This probe-expansion decomposition
would allow factorized filtering.

Further, it would be interesting to conduct a complexity study to evaluate whether our
proposed strategy to compute cyclic joins has the same worst-case runtime guarantees as
classical WCOJ algorithms. Birler et al. [19] conducted such a study for their implementa-
tion of the Expand3 operator, which is very similar to our proposed strategy. The authors
showed that most cyclic queries can be decomposed in ternary cycles using binary joins
and then computed with the Expand3 operator, which has the same runtime guarantees as
WCOJ joins [19].

In this work, the query optimizer rule that handles which operators should emit or
consume factorized vectors was very basic. The rule opted always to use factorization if
there was an operator that could emit factorized vectors, like a Hash Join Operator, and if
there was an operator on top that could deal with these factorized vectors. If this is the
case, the optimizer would alter the logical operators so that their physical counterparts
would respectively emit or process the factors.

In regards to query optimization, the whole process of detecting (sub-) queries that could
benefit from factorization, marking them as potential factorizable, and then gathering
runtime metrics to make a delayed, but informed decision is still missing. It is especially
interesting how to integrate the switch of plans. This requires changing the upstream
operators. Here, systems that do not rely on code generation for query execution could
have an advantage.

While gathering test data for the adaptive factorization and running benchmarks, we
discovered that both Kùzu and Umbra made wrong decisions in regards to using WCOJs.
In the example query for the evaluation of the DuckDB’s factorized cyclic join performance
in Listing 4.8, Umbra opted for using the WCOJ while its binary join is faster for this
query. Also, Kùzu used a binary join plan while its WCOJ join plan would have been
faster. Both systems required hints to use the best strategy. Therefore, we have at least
anecdotal evidence that planning WCOJ and factorization is still an open research question
for these systems.

To explore whether Umbra or Kùzu could benefit from adaptive decision-making, we
can apply the same evaluation techniques we used to test DuckDB’s factorized execution.
A straightforward approach would involve benchmarking both the WCOJ and the binary
join, as well as their respective optimizer, and then using the metrics obtained from these
runs, similar to what we did with DuckDB, to develop a predictor that determines the
optimal scenarios for using Umbra’s or Kùzu’s WCOJ. We could continue using the features

109

6. DISCUSSION & FUTURE WORK

collected during DuckDB’s factorized runs as our feature set, assuming techniques like
runtime sketch creation and pipelined execution can be translated to the other systems.

One big problem our proposed approach could have is overfitting. While we tried to have
diverse training and test data to build our models, other users might have totally different
data and workloads, on which the accuracy of our models might decline. To increase the
robustness of our models, future work should focus on getting more heterogeneous data and
analyzing which features might be prone to overfitting. For example, specific metrics like
cardinalities might be too specific to our data. This may be due to the lesser parallelization
efficiency of the factorized method compared to the binary approach, but still needs further
analysis.

110

7

Conclusion

To answer our research question on how general-purpose systems could implement WCOJ
algorithms and factorized representations, we developed an adaptive method of using
collision-free hash table chains as factorized representations. This method, which we
proposed, implemented, and evaluated in DuckDB, allows for the factorized computation
of aggregates and, worst-case optimal cyclic join computation.

We improved the hash join operator by implementing a new method for resolving
duplicates and collisions using our proposed linear-chained hash table. This hash table
features collision-free chains by a combination of linear probing and uses micro bloom filters
(“salt”) at the head of the 64-bit pointers. Our implementation of this new hash table
layout in DuckDB resulted in a 12% reduction in total runtime for the TPC-H benchmark
and a 32% reduction for the TPC-DS benchmark at a scale factor of 100. Even at lower
scale factors, we observed performance improvements, although the benefits diminish with
smaller data sizes. This demonstrates that, with the salt optimization, our linear-chained
hash table outperforms default hash tables. Consequently, this new hash table layout has
been integrated into DuckDB, starting from version 1.1.

We then used these collision-free hash table chains as factorized representations. More
specifically, this approach features what the theory of factorization calls d-representations,
which are factor definitions that can be referenced by multiple tuples. We did this by
emitting pointers to the hash table chains while probing instead of expanding the result
directly during probing.

These d-representations were then utilized to (1) efficiently calculate aggregates and (2)
perform cyclic joins in a worst-case optimal manner. For both aggregates and cyclic joins,
we enhanced performance by avoiding the expansion of large intermediate results and by
caching results and helper structures alongside the hash chain pointer. When a specific

111

7. CONCLUSION

operation is executed on a tuple within a d-representation, other tuples sharing the same
d-representation can reuse the result, eliminating the need to recompute the operation.
With this approach, we achieved speedups of up to 17.58x for aggregate computations and
up to 16.77x for cyclic join computations.

We then observed that these optimizations are only beneficial if there are long hash
table chains that can be avoided to be expanded. To only use our optimization when
beneficial, we proposed, implemented, and evaluated an adaptive way of using factorization
and worst-case optimal join processing. Our approach enables adaptivity by not requiring
separate operators or data structures for WCOJ and factorized representations of other
systems like Kùzu or FDB. Instead, as our approach leverages a lot of existing technologies,
namely hash table collision chains, factorized and non-factorized execution starts very
similarly. We can, therefore, leverage the common operations the two execution strategies
have and collect statistics on the data. Only when the two strategies’ execution differs can
we adaptively decide which plan to follow. To make this decision, we proposed machine
learning classifiers. We demonstrated that these models can achieve an accuracy of up to
89%. By employing these models, we gained a speedup of 1.54x, very close to the theoretical
maximum of 1.58x for our benchmark. In contrast, relying solely on factorization would
result in a speedup of just 1.47x. Therefore, we showed that we can leverage nearly the
full potential of adaptive factorization with adaptive decision-making and runtime metrics.

112

References

[1] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. “Column-oriented
database systems.” In: Proceedings of the VLDB Endowment 2.2 (Aug. 2009),
pp. 1664–1665. url: https://dl.acm.org/doi/10.14778/1687553.1687625
(visited on 05/22/2024) (6).

[2] Christopher Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Re. “Level-
Headed: A Unified Engine for Business Intelligence and Linear Algebra Querying.” In:
2018 IEEE 34th International Conference on Data Engineering (ICDE). ISSN: 2375-
026X. Apr. 2018, pp. 449–460. url: https://ieeexplore.ieee.org/document/
8509269 (visited on 08/12/2024) (37).

[3] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. Empty-
Headed: A Relational Engine for Graph Processing. arXiv:1503.02368 [cs]. Jan. 2017.
url: http://arxiv.org/abs/1503.02368 (visited on 08/12/2024) (28, 39).

[4] Veronika Abramova and Jorge Bernardino. “NoSQL databases: MongoDB vs cassan-
dra.” In: Proceedings of the International C* Conference on Computer Science and
Software Engineering. C3S2E ’13. New York, NY, USA: Association for Computing
Machinery, July 2013, pp. 14–22. url: https://doi.org/10.1145/2494444.
2494447 (visited on 06/10/2024) (6).

[5] Kirti Aggarwal and Harsh K. Verma. “Hash_RC6 — Variable length Hash algorithm
using RC6.” In: 2015 International Conference on Advances in Computer Engineering
and Applications. Mar. 2015, pp. 450–456. url: https://ieeexplore.ieee.org/
document/7164747 (visited on 06/11/2024) (17).

[6] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approxi-
mating the Frequency Moments.” In: STOC. ACM, 1996, pp. 20–29 (99).

[7] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Distributed
Evaluation of Subgraph Queries Using Worstcase Optimal LowMemory Dataflows.
arXiv:1802.03760 [cs]. Feb. 2018. url: http://arxiv.org/abs/1802.03760 (visited
on 08/12/2024) (37, 38, 46).

[8] Renzo Angles. “The Property Graph Database Model.” In: AMW. 2018 (24).

113

https://dl.acm.org/doi/10.14778/1687553.1687625
https://ieeexplore.ieee.org/document/8509269
https://ieeexplore.ieee.org/document/8509269
http://arxiv.org/abs/1503.02368
https://doi.org/10.1145/2494444.2494447
https://doi.org/10.1145/2494444.2494447
https://ieeexplore.ieee.org/document/7164747
https://ieeexplore.ieee.org/document/7164747
http://arxiv.org/abs/1802.03760

REFERENCES

[9] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. “Foundations of Modern Query Languages for Graph Databases.”
In: ACM Computing Surveys 50.5 (Sept. 2017), 68:1–68:40. url: https://dl.acm.
org/doi/10.1145/3104031 (visited on 06/13/2024) (24).

[10] Apache Cassandra | Apache Cassandra Documentation. en. url: https://cassandra.
apache.org/_/index.html (visited on 06/12/2024) (6).

[11] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir
Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. “Design and Implementation
of the LogicBlox System.” In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 1371–1382. url: https://doi.org/10.1145/
2723372.2742796 (visited on 08/13/2024) (38, 46).

[12] atomic_compare_exchange_weak, atomic_compare_exchange_strong, atomic_com-
pare_exchange_weak_explicit, atomic_compare_exchange_strong_explicit - cppref-
erence.com. url: https://en.cppreference.com/w/c/atomic/atomic_compare_
exchange (visited on 06/26/2024) (66).

[13] Albert Atserias, Martin Grohe, and Dániel Marx. Size Bounds and Query Plans for
Relational Joins. arXiv:1711.03860 [cs]. Nov. 2017. url: http://arxiv.org/abs/
1711.03860 (visited on 08/11/2024) (26).

[14] RJ Atwal, Peter A Boncz, Ryan Boyd, Antony Courtney, Till Döhmen, Florian Ger-
linghoff, Jeff Huang, Joseph Hwang, Raphael Hyde, Elena Felder, et al. “MotherDuck:
DuckDB in the cloud and in the client.” In: CIDR. 2024 (33).

[15] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodný. “FDB: a query engine
for factorised relational databases.” In: Proceedings of the VLDB Endowment 5.11
(July 2012), pp. 1232–1243. url: https://doi.org/10.14778/2350229.2350242
(visited on 04/10/2024) (30, 39, 40, 47).

[16] B. Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh Khandelwal, Y.
Kiran, Sainath Mallidi, B. McGaughy, M. Personick, K. Rajan, Simone Rondelli,
A. Ryazanov, Michael Schmidt, Kunal Sengupta, B. Thompson, D. Vaidya, and
S. Wang. “Amazon Neptune: Graph Data Management in the Cloud.” In: 2018 (1,
7).

[17] Benchmarks. en. url: https://duckdb.org/docs/guides/performance/benchmarks.
html (visited on 06/30/2024) (70).

[18] Steve Bertolani. Dovetail Join · RelationalAI. en. Nov. 2021. url: http : / /
localhost:4321/resources/dovetail-join/ (visited on 08/13/2024) (35).

114

https://dl.acm.org/doi/10.1145/3104031
https://dl.acm.org/doi/10.1145/3104031
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://en.cppreference.com/w/c/atomic/atomic_compare_exchange
https://en.cppreference.com/w/c/atomic/atomic_compare_exchange
http://arxiv.org/abs/1711.03860
http://arxiv.org/abs/1711.03860
https://doi.org/10.14778/2350229.2350242
https://duckdb.org/docs/guides/performance/benchmarks.html
https://duckdb.org/docs/guides/performance/benchmarks.html
http://localhost:4321/resources/dovetail-join/
http://localhost:4321/resources/dovetail-join/

REFERENCES

[19] Altan Birler, Alfons Kemper, and Thomas Neumann. “Robust Join Processing with
Diamond Hardened Joins.” In: 2024 (39, 43–45, 50, 108, 109).

[20] Peter Boncz, M. Zukowski, and Niels Nes. “MonetDB/X100: Hyper-Pipelining Query
Execution.” In: 2nd Biennial Conference on Innovative Data Systems Research,
CIDR 2005 (Jan. 2005) (6, 32).

[21] S. Ceri, G. Gottlob, and L. Tanca. “What You Always Wanted to Know About
Datalog (And Never Dared to Ask).” In: IEEE Trans. on Knowl. and Data Eng.
1.1 (1989), pp. 146–166. url: https://doi.org/10.1109/69.43410 (visited on
08/13/2024) (38).

[22] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A structured English
query language.” In: Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control. SIGFIDET ’74. New York,
NY, USA: Association for Computing Machinery, 1974, pp. 249–264. url: https:
//dl.acm.org/doi/10.1145/800296.811515 (visited on 06/07/2024) (10).

[23] CMU Database Group and Andy Pavlo. Hash Tables (CMU Intro to Database
Systems / Fall 2021). Sept. 2021. url: https://www.youtube.com/watch?v=
f71kc4osCyM (visited on 06/11/2024) (15, 17–19).

[24] CMU Database Group and Andy Pavlo. Join Algorithms (CMU Intro to Database
Systems / Fall 2022). Oct. 2022. url: https://www.youtube.com/watch?v=yFk_
GfaY2Hk (visited on 06/10/2024) (20, 22).

[25] CMU Database Group, Mark Raasveldt, and Andy Pavlo. DuckDB Internals (CMU
Advanced Databases / Spring 2023). Apr. 2023. url: https://www.youtube.com/
watch?v=bZOvAKGkzpQ (visited on 06/26/2024) (58).

[26] E. F. Codd. “A relational model of data for large shared data banks.” In: Communi-
cations of the ACM 13.6 (June 1970), pp. 377–387. url: https://dl.acm.org/
doi/10.1145/362384.362685 (visited on 06/07/2024) (7, 10).

[27] Edgar F Codd. “Further normalization of the data base relational model.” In: Data
base systems 6 (1972). Publisher: Prentice-Hall Englewood Cliffs, NJ, pp. 33–64
(7).

[28] Edgar F Codd et al. Relational completeness of data base sublanguages. IBM
Corporation, 1972 (10).

[29] Cyan4973/xxHash: Extremely fast non-cryptographic hash algorithm. url: https:
//github.com/Cyan4973/xxHash (visited on 06/11/2024) (17).

[30] DB-Engines Ranking. en. url: https://db-engines.com/en/ranking (visited on
06/07/2024) (7).

115

https://doi.org/10.1109/69.43410
https://dl.acm.org/doi/10.1145/800296.811515
https://dl.acm.org/doi/10.1145/800296.811515
https://www.youtube.com/watch?v=f71kc4osCyM
https://www.youtube.com/watch?v=f71kc4osCyM
https://www.youtube.com/watch?v=yFk_GfaY2Hk
https://www.youtube.com/watch?v=yFk_GfaY2Hk
https://www.youtube.com/watch?v=bZOvAKGkzpQ
https://www.youtube.com/watch?v=bZOvAKGkzpQ
https://dl.acm.org/doi/10.1145/362384.362685
https://dl.acm.org/doi/10.1145/362384.362685
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash
https://db-engines.com/en/ranking

REFERENCES

[31] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. “TigerGraph: A Native MPP
Graph Database.” In: ArXiv (Jan. 2019). (Visited on 05/22/2024) (7).

[32] duckdb/duckdb: DuckDB is an analytical in-process SQL database management
system. url: https://github.com/duckdb/duckdb (visited on 06/14/2024) (33).

[33] FDB Research. url: https://fdbresearch.github.io/principles/second-
example.html (visited on 04/09/2024) (29–31).

[34] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. “KÙZU
graph database management system.” In: The Conference on Innovative Data
Systems Research. 2023 (7, 25, 35, 39, 41, 46–49, 92, 93).

[35] Daniel Flachs, Magnus Müller, and Guido Moerkotte. “The 3D hash join: Building
on non-unique join attributes.” de. In: Chaminade: CIDR, 2022, pp. 1–9. url:
https://madoc.bib.uni-mannheim.de/62365/ (visited on 01/08/2024) (39, 43,
45, 47, 50, 55, 57, 58, 81, 108).

[36] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. “HyperLogLog:
The analysis of a near-optimal cardinality estimation algorithm.” In: Discrete Math-
ematics & Theoretical Computer Science DMTCS Proceedings vol. AH,... (Mar.
2012) (102).

[37] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
“Cypher: An Evolving Query Language for Property Graphs.” In: Proceedings of
the 2018 International Conference on Management of Data. SIGMOD ’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp. 1433–1445. url:
https://dl.acm.org/doi/10.1145/3183713.3190657 (visited on 06/13/2024)
(24).

[38] M. Freitag, Maximilian Bandle, Tobias Schmidt, A. Kemper, and Thomas Neumann.
“Combining Worst-Case Optimal and Traditional Binary Join Processing.” In: 2020.
(Visited on 08/14/2024) (37).

[39] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas
Neumann. “Adopting worst-case optimal joins in relational database systems.” In:
Proc. VLDB Endow. 13.12 (July 2020), pp. 1891–1904. url: https://doi.org/10.
14778/3407790.3407797 (visited on 08/12/2024) (28, 36, 37, 48, 50).

[40] google/cityhash. original-date: 2015-08-14T21:08:16Z. June 2024. url: https://
github.com/google/cityhash (visited on 06/11/2024) (17).

[41] google/farmhash. original-date: 2015-08-14T21:01:50Z. May 2024. url: https://
github.com/google/farmhash (visited on 06/11/2024) (17).

116

https://github.com/duckdb/duckdb
https://fdbresearch.github.io/principles/second-example.html
https://fdbresearch.github.io/principles/second-example.html
https://madoc.bib.uni-mannheim.de/62365/
https://dl.acm.org/doi/10.1145/3183713.3190657
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/3407790.3407797
https://github.com/google/cityhash
https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/google/farmhash

REFERENCES

[42] G. Graefe. “Volcano - An Extensible and Parallel Query Evaluation System.”
In: IEEE Trans. on Knowl. and Data Eng. 6.1 (Feb. 1994), pp. 120–135. url:
https://doi.org/10.1109/69.273032 (visited on 08/14/2024) (12).

[43] Goetz Graefe. “New algorithms for join and grouping operations.” en. In: Computer
Science - Research and Development 27.1 (Feb. 2012), pp. 3–27. url: https:
//doi.org/10.1007/s00450-011-0186-9 (visited on 06/10/2024) (15).

[44] Andrey Gubichev. “Query Processing and Optimization in Graph Databases.” PhD
thesis. Technische Universität München, 2015. url: https://mediatum.ub.tum.
de/1238730 (visited on 06/13/2024) (23).

[45] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. Columnar Storage and List-
based Processing for Graph Database Management Systems. arXiv:2103.02284 [cs].
Oct. 2021. url: http://arxiv.org/abs/2103.02284 (visited on 04/09/2024)
(41–43).

[46] Richard Hipp. SQLite Home Page. url: https://www.sqlite.org/ (visited on
05/21/2024) (1, 6).

[47] Information technology — Database languages SQL - Part 16: Property Graph
Queries (SQL/PGQ). Standard. International Organization for Standardization,
Mar. 2023 (24).

[48] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. “Faster set intersection with
SIMD instructions by reducing branch mispredictions.” In: Proc. VLDB Endow. 8.3
(Nov. 2014), pp. 293–304. url: https://doi.org/10.14778/2735508.2735518
(visited on 08/13/2024) (39).

[49] Prashant Kannan, Chuck Murray, Melliyal Annamalai, Korbinian Schmid, Albert
Godfrind, Oskar van Rest, Jorge Barba, Ana Estrada, Steve Serra, Ryota Yamanaka,
Bill Beauregard, Hector Briseno, Hassan Chafi, Eugene Chong, Souripriya Das, Juan
Garcia, Florian Gratzer, Zazhil Herena, Sungpack Hong, Roberto Infante, Hugo
Labra, Gabriela Montiel-Moreno, Eduardo Pacheco, Joao Paiva, Matthew Perry,
Diego Ramirez, Siva Ravada, Carlos Reyes, Jane Tao, Edgar Vazquez, Zhe (Alan)
Wu, and Lavanya Jayapalan. What Are Property Graphs? en-US. concept. Publisher:
June2022. url: https://docs.oracle.com/en/database/oracle/property-
graph/22.2/spgdg/what-are-property-graphs.html (visited on 06/13/2024)
(24).

[50] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots.” In: 2011 IEEE
27th International Conference on Data Engineering. ISSN: 2375-026X. Apr. 2011,

117

https://doi.org/10.1109/69.273032
https://doi.org/10.1007/s00450-011-0186-9
https://doi.org/10.1007/s00450-011-0186-9
https://mediatum.ub.tum.de/1238730
https://mediatum.ub.tum.de/1238730
http://arxiv.org/abs/2103.02284
https://www.sqlite.org/
https://doi.org/10.14778/2735508.2735518
https://docs.oracle.com/en/database/oracle/property-graph/22.2/spgdg/what-are-property-graphs.html
https://docs.oracle.com/en/database/oracle/property-graph/22.2/spgdg/what-are-property-graphs.html

REFERENCES

pp. 195–206. url: https://ieeexplore.ieee.org/document/5767867 (visited on
08/12/2024) (37).

[51] Russ Kennedy. The New Era Of Big Data. en. Section: Innovation. May 2023. url:
https://www.forbes.com/councils/forbestechcouncil/2023/05/24/the-
new-era-of-big-data/ (visited on 08/17/2024) (1).

[52] Laurens Kuiper, Peter Boncz, and Hannes Mühleisen. “Robust External Hash
Aggregation in the Solid State Age.” English. In: IEEE Computer Society, May
2024, pp. 3753–3766. url: https://www.computer.org/csdl/proceedings-
article/icde/2024/171500d753/1YOtBb8JI7C (visited on 08/14/2024) (33, 67).

[53] Jérôme Kunegis. “KONECT: the Koblenz network collection.” In: Proceedings of
the 22nd International Conference on World Wide Web. WWW ’13 Companion.
New York, NY, USA: Association for Computing Machinery, 2013, pp. 1343–1350.
url: https://doi.org/10.1145/2487788.2488173 (visited on 05/23/2024) (43).

[54] Harald Lang, Andreas Kipf, Linnea Passing, Peter Boncz, Thomas Neumann, and
Alfons Kemper. “Make the most out of your SIMD investments: counter control flow
divergence in compiled query pipelines.” In: Proceedings of the 14th International
Workshop on Data Management on New Hardware. DAMON ’18. New York, NY,
USA: Association for Computing Machinery, June 2018, pp. 1–8. url: https:
//doi.org/10.1145/3211922.3211928 (visited on 08/15/2024) (32).

[55] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. “Morsel-driven
parallelism: a NUMA-aware query evaluation framework for the many-core age.” In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’14. New York, NY, USA: Association for Computing Machinery,
June 2014, pp. 743–754. url: https://dl.acm.org/doi/10.1145/2588555.
2610507 (visited on 02/05/2024) (6, 32, 36).

[56] Viktor Leis, Alfons Kemper, and Thomas Neumann. “The adaptive radix tree:
ARTful indexing for main-memory databases.” In: 2013 IEEE 29th International
Conference on Data Engineering (ICDE). ISSN: 1063-6382. Apr. 2013, pp. 38–49.
url: https://ieeexplore.ieee.org/document/6544812 (visited on 06/14/2024)
(33).

[57] Daniel Lemire. A fast alternative to the modulo reduction – Daniel Lemire’s blog.
en-US. June 2016. url: https : / / lemire . me / blog / 2016 / 06 / 27 / a - fast -
alternative-to-the-modulo-reduction/ (visited on 06/28/2024) (63).

[58] Daniel Lemire. “Fast Random Integer Generation in an Interval.” In: ACM Transac-
tions on Modeling and Computer Simulation 29.1 (Jan. 2019). arXiv:1805.10941 [cs],
pp. 1–12. url: http://arxiv.org/abs/1805.10941 (visited on 06/28/2024) (63).

118

https://ieeexplore.ieee.org/document/5767867
https://www.forbes.com/councils/forbestechcouncil/2023/05/24/the-new-era-of-big-data/
https://www.forbes.com/councils/forbestechcouncil/2023/05/24/the-new-era-of-big-data/
https://www.computer.org/csdl/proceedings-article/icde/2024/171500d753/1YOtBb8JI7C
https://www.computer.org/csdl/proceedings-article/icde/2024/171500d753/1YOtBb8JI7C
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/3211922.3211928
https://doi.org/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/2588555.2610507
https://dl.acm.org/doi/10.1145/2588555.2610507
https://ieeexplore.ieee.org/document/6544812
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
http://arxiv.org/abs/1805.10941

REFERENCES

[59] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graphs over time: densifi-
cation laws, shrinking diameters and possible explanations.” In: Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discovery in data
mining. KDD ’05. New York, NY, USA: Association for Computing Machinery, Aug.
2005, pp. 177–187. url: https://doi.org/10.1145/1081870.1081893 (visited on
05/23/2024) (42).

[60] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data. June 2014 (97).

[61] Dapeng Liu, Zengdi Cui, Shaochun Xu, and Huafu Liu. “An empirical study on the
performance of hash table.” In: 2014 IEEE/ACIS 13th International Conference on
Computer and Information Science (ICIS). June 2014, pp. 477–484. url: https:
//ieeexplore.ieee.org/abstract/document/6912180 (visited on 06/11/2024)
(19).

[62] Andrew Mayers. CS 312: Hash tables and amortized analysis. Cornell University,
Department of Computer Science., Apr. 2021. url: https://www.cs.cornell.edu/
courses/cs312/2008sp/lectures/lec20.html (visited on 06/26/2024) (62).

[63] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures: the basic toolbox.
eng. Berlin Heidelberg: Springer, 2008 (17, 18).

[64] Puya Memarzia, Suprio Ray, and Virendra C Bhavsar. “On Improving Data Skew
Resilience In Main-memory Hash Joins.” In: Proceedings of the 22nd International
Database Engineering & Applications Symposium. IDEAS ’18. New York, NY,
USA: Association for Computing Machinery, June 2018, pp. 226–235. url: https:
//doi.org/10.1145/3216122.3216156 (visited on 06/17/2024) (55).

[65] Amine Mhedhbi. “GraphflowDB: Scalable Query Processing on Graph-Structured
Relations.” en. Accepted: 2023-10-02T14:39:48Z. Doctoral Thesis. University of
Waterloo, Oct. 2023. url: https://uwspace.uwaterloo.ca/handle/10012/19981
(visited on 01/07/2024) (26, 28, 30, 35–39, 42, 48, 49).

[66] Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor
Szárnyas. “LSQB: a large-scale subgraph query benchmark.” In: Proceedings of the
4th ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA). GRADES-
NDA ’21. New York, NY, USA: Association for Computing Machinery, June 2021,
pp. 1–11. url: https://dl.acm.org/doi/10.1145/3461837.3464516 (visited on
06/13/2024) (25).

119

https://doi.org/10.1145/1081870.1081893
http://snap.stanford.edu/data
https://ieeexplore.ieee.org/abstract/document/6912180
https://ieeexplore.ieee.org/abstract/document/6912180
https://www.cs.cornell.edu/courses/cs312/2008sp/lectures/lec20.html
https://www.cs.cornell.edu/courses/cs312/2008sp/lectures/lec20.html
https://doi.org/10.1145/3216122.3216156
https://doi.org/10.1145/3216122.3216156
https://uwspace.uwaterloo.ca/handle/10012/19981
https://dl.acm.org/doi/10.1145/3461837.3464516

REFERENCES

[67] Priti Mishra and Margaret H. Eich. “Join processing in relational databases.” In:
ACM Computing Surveys 24.1 (1992), pp. 63–113. url: https://dl.acm.org/doi/
10.1145/128762.128764 (visited on 06/10/2024) (10, 14).

[68] Guido Moerkotte and Thomas Neumann. “Accelerating queries with group-by and
join by groupjoin.” In: Proceedings of the VLDB Endowment 4.11 (Aug. 2011),
pp. 843–851. url: https://dl.acm.org/doi/10.14778/3402707.3402723
(visited on 04/08/2024) (85).

[69] Alex Monahan. Even Friendlier SQL with DuckDB. en. Aug. 2023. url: https:
//duckdb.org/2023/08/23/even-friendlier-sql.html (visited on 06/14/2024)
(33).

[70] MongoDB: The Developer Data Platform. en-us. url: https://www.mongodb.com
(visited on 06/12/2024) (6).

[71] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. “Naiad: a timely dataflow system.” In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. SOSP ’13. New York,
NY, USA: Association for Computing Machinery, Nov. 2013, pp. 439–455. url:
https://dl.acm.org/doi/10.1145/2517349.2522738 (visited on 08/12/2024)
(37).

[72] Raghunath Othayoth Nambiar and Meikel Poess. “The making of TPC-DS.” In:
Proceedings of the 32nd international conference on Very large data bases. VLDB
’06. Seoul, Korea: VLDB Endowment, Sept. 2006, pp. 1049–1058. (Visited on
06/30/2024) (70).

[73] Ovais Naseem. Relational vs. Non-Relational Databases - DataScienceCentral.com.
en-US. Feb. 2024. url: https : / / www . datasciencecentral . com / decoding -
different-types-of-databases-a-comparison/ (visited on 06/10/2024) (6).

[74] Neo4j Graph Database & Analytics – The Leader in Graph Databases. en. url:
https://neo4j.com/ (visited on 05/22/2024) (1, 7).

[75] NetworkX — NetworkX documentation. url: https://networkx.org/ (visited on
08/09/2024) (97).

[76] Thomas Neumann and Michael J. Freitag. “Umbra: A Disk-Based System with
In-Memory Performance.” In: 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org, 2020. url: http://cidrdb.org/cidr2020/papers/p29-neumann-
cidr20.pdf (visited on 05/22/2024) (36, 46–48, 92, 93).

120

https://dl.acm.org/doi/10.1145/128762.128764
https://dl.acm.org/doi/10.1145/128762.128764
https://dl.acm.org/doi/10.14778/3402707.3402723
https://duckdb.org/2023/08/23/even-friendlier-sql.html
https://duckdb.org/2023/08/23/even-friendlier-sql.html
https://www.mongodb.com
https://dl.acm.org/doi/10.1145/2517349.2522738
https://www.datasciencecentral.com/decoding-different-types-of-databases-a-comparison/
https://www.datasciencecentral.com/decoding-different-types-of-databases-a-comparison/
https://neo4j.com/
https://networkx.org/
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

REFERENCES

[77] Hung Q Ngo, Christopher Ré, and Atri Rudra. “Skew strikes back: new developments
in the theory of join algorithms.” In: SIGMOD Rec. 42.4 (Feb. 2014), pp. 5–16. url:
https://dl.acm.org/doi/10.1145/2590989.2590991 (visited on 08/12/2024)
(27, 28, 35, 43, 44).

[78] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case Optimal Join
Algorithms. arXiv:1203.1952 [cs, math]. Mar. 2012. url: http://arxiv.org/abs/
1203.1952 (visited on 05/14/2024) (14, 27).

[79] Dan Olteanu. “Factorized Databases: A Knowledge Compilation Perspective.” In:
2016. (Visited on 04/10/2024) (30, 41).

[80] Dan Olteanu and Jakub Zavodny. Factorised Representations of Query Results.
arXiv:1104.0867 [cs]. Apr. 2011. url: http://arxiv.org/abs/1104.0867 (visited
on 04/09/2024) (80).

[81] Dan Olteanu and Jakub Závodný. “Size Bounds for Factorised Representations of
Query Results.” In: ACM Transactions on Database Systems 40.1 (2015), 2:1–2:44.
url: https://doi.org/10.1145/2656335 (visited on 05/14/2024) (31, 81).

[82] Karl Pearson and Francis Galton. “Note on regression and inheritance in the case
of two parents.” In: Proceedings of the Royal Society of London 58.347-352 (1895).
Publisher: Royal Society, pp. 240–242. url: https://royalsocietypublishing.
org/doi/10.1098/rspl.1895.0041 (visited on 08/09/2024) (101).

[83] PyPI Download Stats. url: https://pypistats.org/packages/duckdb (visited
on 05/22/2024) (1, 6).

[84] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analytical
Database.” In: Proceedings of the 2019 International Conference on Management of
Data. SIGMOD ’19. New York, NY, USA: Association for Computing Machinery,
June 2019, pp. 1981–1984. url: https://doi.org/10.1145/3299869.3320212
(visited on 05/21/2024) (1, 6, 33, 92, 93).

[85] Raghu Ramakrishnan and Johannes Gehrke. Database management systems. McGraw-
Hill, Inc., 2002 (1, 17).

[86] Pingan Ren. “Parallelized Path-finding in DuckPGQ.” MA thesis. VU Amsterdam,
July 2024. url: https://homepages.cwi.nl/~boncz/msc/2023-ThomasGlas.pdf
(visited on 08/17/2024) (34).

[87] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases: new opportunities
for connected data. ” O’Reilly Media, Inc.”, 2015 (23).

121

https://dl.acm.org/doi/10.1145/2590989.2590991
http://arxiv.org/abs/1203.1952
http://arxiv.org/abs/1203.1952
http://arxiv.org/abs/1104.0867
https://doi.org/10.1145/2656335
https://royalsocietypublishing.org/doi/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/10.1098/rspl.1895.0041
https://pypistats.org/packages/duckdb
https://doi.org/10.1145/3299869.3320212
https://homepages.cwi.nl/~boncz/msc/2023-ThomasGlas.pdf

REFERENCES

[88] Kenneth A. Ross. “Efficient Hash Probes on Modern Processors.” In: 2007 IEEE
23rd International Conference on Data Engineering. ISSN: 2375-026X. Apr. 2007,
pp. 1297–1301. url: https://ieeexplore.ieee.org/document/4221787 (visited
on 06/28/2024) (18, 63).

[89] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu.
“The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing:
Extended Survey.” In: The VLDB Journal 29.2-3 (May 2020). arXiv:1709.03188 [cs],
pp. 595–618. url: http://arxiv.org/abs/1709.03188 (visited on 05/22/2024)
(1, 26, 48).

[90] Kim Shanley. History of TPC. Feb. 1998. url: https://www.tpc.org/information/
about/history5.asp (visited on 06/30/2024) (70).

[91] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database system concepts.
Seventh edition. New York, NY: McGraw-Hill, 2020 (5, 7, 9, 10, 12, 14, 15, 17, 20).

[92] std::unordered_map - cppreference.com. url: https://en.cppreference.com/w/
cpp/container/unordered_map (visited on 06/12/2024) (18).

[93] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. “Birthday
Paradox for Multi-collisions.” en. In: Information Security and Cryptology – ICISC
2006. Ed. by Min Surp Rhee and Byoungcheon Lee. Berlin, Heidelberg: Springer,
2006, pp. 29–40 (18).

[94] Gábor Szárnyas et al. “The LDBC Social Network Benchmark: Business Intelligence
Workload.” In: Proc. VLDB Endow. (2022), pp. 877–890 (97).

[95] Jordan Tigani. Big Data is Dead. en. Mar. 2023. url: https://motherduck.com/
blog/big-data-is-dead/ (visited on 08/17/2024) (1).

[96] TPC-DS Homepage. url: https://www.tpc.org/tpcds/ (visited on 06/30/2024)
(70).

[97] TPC-H Homepage. url: https://www.tpc.org/tpch/ (visited on 06/30/2024)
(70).

[98] Richard J. Trudeau and Richard J. Trudeau. Introduction to graph theory. Dover
books on advanced mathematics. New York: Dover Pub, 1993 (23).

[99] Jeffrey D. Ullman and Jeffrey D. Ullman. Classical database systems. eng. 8. printing.
Principles of database and knowledge-base systems / Jeffrey D. Ullman Vol. 1.
Rockville, Md: Computer Science Press, 1995 (10).

[100] GitHub User. Release Calendar. en. url: https : / / duckdb . org / docs / dev /
release_calendar.html (visited on 08/11/2024) (107).

122

https://ieeexplore.ieee.org/document/4221787
http://arxiv.org/abs/1709.03188
https://www.tpc.org/information/about/history5.asp
https://www.tpc.org/information/about/history5.asp
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/unordered_map
https://motherduck.com/blog/big-data-is-dead/
https://motherduck.com/blog/big-data-is-dead/
https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/
https://duckdb.org/docs/dev/release_calendar.html
https://duckdb.org/docs/dev/release_calendar.html

REFERENCES

[101] Todd L. Veldhuizen. Incremental Maintenance for Leapfrog Triejoin. arXiv:1303.5313
[cs]. Mar. 2013. url: http://arxiv.org/abs/1303.5313 (visited on 08/13/2024)
(38, 39).

[102] Todd L. Veldhuizen. Leapfrog Triejoin: a worst-case optimal join algorithm. arXiv:1210.0481
[cs]. Dec. 2013. url: http://arxiv.org/abs/1210.0481 (visited on 08/13/2024)
(38).

[103] Yisu Remy Wang, Max Willsey, and Dan Suciu. “Free Join: Unifying Worst-Case
Optimal and Traditional Joins.” In: Proceedings of the ACM on Management of Data
1.2 (June 2023), 150:1–150:23. url: https://dl.acm.org/doi/10.1145/3589295
(visited on 01/09/2024) (29).

[104] Adrienne Watt and Nelson Eng. Database Design, 2nd edition. eng. Accepted: 2018-
02-26T20:54:16Z. BCcampus, 2014. url: https://openlibrary-repo.ecampusontario.
ca/jspui/handle/123456789/247 (visited on 06/07/2024) (7).

[105] Daniel ten Wolde, Tavneet Singh, Gábor Szárnyas, and P. Boncz. “DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS.” In: 2023. (Visited on
05/14/2024) (24, 34).

[106] Daniel ten Wolde, Gábor Szárnyas, and Peter Boncz. “DuckPGQ: Bringing SQL/PGQ
to DuckDB.” In: Proceedings of the VLDB Endowment 16.12 (Aug. 2023), pp. 4034–
4037. url: https://dl.acm.org/doi/10.14778/3611540.3611614 (visited on
06/14/2024) (34).

[107] Weipeng P. Yan and Per-Åke Larson. “Eager Aggregation and Lazy Aggregation.”
In: Proceedings of the 21th International Conference on Very Large Data Bases.
VLDB ’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Sept. 1995,
pp. 345–357. (Visited on 08/15/2024) (44).

[108] Marcin Zukowski, Peter A Boncz, Niels Nes, and Sándor Héman. “MonetDB/X100-A
DBMS In The CPU Cache.” In: IEEE Data Eng. Bull. 28.2 (2005), pp. 17–22 (32).

123

http://arxiv.org/abs/1303.5313
http://arxiv.org/abs/1210.0481
https://dl.acm.org/doi/10.1145/3589295
https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/247
https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/247
https://dl.acm.org/doi/10.14778/3611540.3611614

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background and Related Work
	2.1 Database Management Systems
	2.1.1 Relational Database Systems
	2.1.2 Query Processing

	2.2 Join Implementations for Relational Databases
	2.2.1 Nested Loop Join
	2.2.2 Sort Merge Join
	2.2.3 Hash Joins

	2.3 Graph Database Management Systems
	2.3.1 Property Graphs and Property Graph Queries
	2.3.2 Characteristics of Graph Workloads
	2.3.3 Worst-case Optimal Joins
	2.3.4 Factorized Representations

	2.4 Optimizations for Read-Heavy Workloads
	2.5 DuckDB and DuckPGQ

	3 Literature Review
	3.1 Adoption of Worst-case Optimal Joins
	3.1.1 GraphflowDB, later Kùzu
	3.1.2 Umbra
	3.1.3 BiGJoin in Timely Dataflow
	3.1.4 LogicBlox
	3.1.5 EmptyHeaded

	3.2 Adoption of Factorized Representations
	3.2.1 FDB System
	3.2.2 GraphflowDB, later Kùzu
	3.2.3 Umbra
	3.2.4 3D Hash Join

	3.3 Challenges in Adopting WCOJ Algorithms and Factorized Representations

	4 Factorization using Linear-Chained Hash Tables
	4.1 Hash Table Chains as Factors
	4.2 Improving Performance With Collision-Free Chains
	4.3 Approaches for Collision-Free Chains
	4.3.1 Nested Chaining
	4.3.2 Linear-Chained Hash Tables
	4.3.3 Comparison of Nested Chaining and Linear Probing with Chaining

	4.4 The DuckDB Hash Join Operator
	4.4.1 Sink Phase: Materialization and Hash Calculation
	4.4.2 Sink Finalize: Building the Hash Table
	4.4.3 Operator Phase: Probe Phase

	4.5 Linear-Chained Hash Table Integration for DuckDB
	4.5.1 Salted Linear Probing Optimization
	4.5.2 Changes Made to the Build Phase
	4.5.3 Changes Made to the Probe Phase

	4.6 Evaluation of the Linear-Chained Hash Table
	4.6.1 Experiment Setup
	4.6.2 Results & Discussion

	4.7 Emission of Factorized Intermediate Results
	4.8 Factorized Execution
	4.8.1 Aggregates
	4.8.2 Cyclic Joins

	5 Adaptive Factorization
	5.1 Adaptivity through Run-time Strategy Switching
	5.2 Training and Evaluation Dataset
	5.3 Metrics for Adaptive Factorization
	5.4 Adaptive Factorization with Machine Learning Strategies

	6 Discussion & Future Work
	7 Conclusion
	References

