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“When people are united, they can move Mount Tai.”

by Mao Zedong
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Abstract

Graphs, as an important model capable of describing real-world relationships,

are getting more and more attention from database researchers and developers.

DuckPGQ is an extension developed based on DuckDB with support for

SQL/PGQ, which allows DuckDB to construct graphs from relational models

and perform operations such as matching, shortest path finding, and so on, on

graphs.

The existing path-finding functionality of DuckPGQ was developed based on

User-Defined Functions (UDFs).UDFs are black boxes for DuckDB, and their

execution relies on DuckDB’s morsel-driven parallelism. Shortest path search

is a time-consuming operation, and a morsel contains an excessive number

of source-to-destination pairs, which makes UDF usually single-threaded with

limited performance.

In this thesis, we refactor the existing Multi-Source Breadth-First Search

(MS-BFS) algorithm to properly parallelize it. We locate and eliminate

race conditions present in the parallel algorithm and explore performance

optimization methods including work stealing and direction optimization.

Parallel MS-BFS is wrapped by DuckDB’s event and task mechanisms to

support custom parallelization. The wrapped algorithm is embedded in

operators with common interfaces, supporting an integrated process from CSR

construction to results output.

We validate the performance and scalability of the new operator through

experiments based on the Linked Data Benchmark Council’s Social Network

Benchmark (LDBC SNB) dataset. The experiments demonstrate that direction

optimization has only limited performance improvement. Compared with

UDF, the parallel operator has a very significant performance improvement

in pathfinding, especially good performance on large graphs. However, the

speedup cannot be linear and there are still bottlenecks in the algorithm that

have not been eliminated.
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1

Introduction

1.1 Context

There is a growing desire to perform more complex analyses on the increasing amounts of

data being gathered. A significant value of large data sets is that they capture connections

between their entities. It is intuitive to represent and think of these connections as

graphs (1). Graph databases, or graph database management systems (DBMS), are

optimized for working with graph-related workloads. These systems use graph structures

to represent and store data, consisting of nodes (entities) and edges (relationships) (2).

Traditional relational databases struggle to handle the interconnected nature of graph

data (3), leading to the rise of specialized graph databases like Neo4j (4), KÙZU (5), and

the DuckPGQ extension on DuckDB (6). DuckDB is an in-process SQL OLAP (Online

Analytical Processing) database management system known for its efficient columnar

storage and vectorized execution engine. This makes it highly suitable for analytical

workloads that require low-latency query execution (7). DuckPGQ extends its capabilities

by introducing support for graph queries, leveraging its high-performance mechanisms to

provide a robust platform for executing complex graph queries. DuckPGQ implements

an extension of SQL, namely SQL/Property Graph Queries (SQL/PGQ) (8), a part

of the official SQL:2023 standard developed by ISO, to enable users to easily perform

various graph-based operations such as traversals, shortest path calculations, and pattern

matching.

Path-finding is a fundamental operation in graph databases (9), essential for applications

like shortest path queries, network analysis, and recommendation systems. Breadth-First

Search (BFS) is a common algorithm used for exploring vertices in an unweighted graph,

layer by layer, starting from a source node (10). Multi-source BFS (MS-BFS) (11) extends

1



1. INTRODUCTION

this concept by allowing simultaneous traversal from multiple source nodes, which can

significantly reduce the time required to explore large graphs. Previously, the path-finding

functionality in DuckPGQ was based on MS-BFS implemented as a User-Defined Function

(UDF) (12). While this approach was functional, it did not fully exploit the potential of

parallel execution.

Parallelism in DuckDB is based on morsel-driven parallelism. Morsel-driven

parallelism (13) divides the data into small chunks, or morsels, that are processed

independently by multiple workers. In DuckDB, an operator has multiple parallel copies to

speed up computation. This method takes advantage of DuckDB’s efficient query execution

engine but does not fully leverage the potential of parallel execution in graph algorithms.

Operator-level parallelism, on the other hand, involves parallelizing the algorithm itself.

The acceleration of expensive algorithms can be refined from executing multiple algorithms

in parallel to executing the algorithms themselves in parallel.

Several studies have demonstrated the effectiveness of parallel BFS implementations. For

instance, Harish and Narayanan (14) introduced a GPU-based parallel BFS algorithm that

demonstrated significant speedup compared to CPU-based implementations. Similarly,

Hong et al. (15) developed a parallel BFS algorithm for multicore processors, highlighting

the potential of parallelism in improving graph traversal performance. These advancements

underscore the potential benefits of applying parallelism to graph traversal algorithms in

graph databases.

The implications of efficient graph traversal extend beyond academic research into

practical applications in various domains. In social network analysis, efficient path-finding

algorithms are crucial for identifying influential nodes and discovering communities (16).

Similarly, in bioinformatics, analyzing protein-protein interaction networks requires robust

graph traversal techniques to uncover meaningful biological insights (17). Efficient path-

finding also plays a critical role in transportation networks, where optimizing routes and

managing traffic flow depend heavily on the ability to quickly process and analyze large

graph datasets (18). The implementation of parallel MS-BFS in DuckPGQ thus holds

promise for enhancing these applications by providing faster and more efficient graph query

capabilities.

In the context of DuckPGQ, we pursue here the opportunity to enhance path-

finding performance by integrating an improved parallel MS-BFS. Our approach leverages

operator-level parallelism to distribute the computational load to multiple threads

effectively, potentially improving the overall performance of graph traversal operations. By

2



1.2 Research Questions

improve the performance of MS-BFS, DuckPGQ can handle larger graphs more efficiently

and provide faster query results for path-finding operations.

The primary objective of this thesis is to enhance the path-finding capabilities of

DuckPGQ by implementing parallel MS-BFS and migrating the shortest path-finding

implementation from UDF to an operator. The research involves investigating the

limitations of morsel-driven parallelism in the context of graph traversal, designing and

implementing a parallel MS-BFS algorithm within DuckPGQ, incorporating parallel MS-

BFS into the operator, and evaluating the performance of the proposed approach against

existing methods using various testing directions. By addressing these objectives, this

thesis aims to advance the state of the art in graph database technology and provide a more

efficient solution for large-scale graph traversal. This will not only improve the performance

of DuckPGQ but also set a precedent for future innovations in graph database systems.

1.2 Research Questions

The following research questions have been defined for this thesis work:

1. How best to refactor path-finding in DuckPQG?

• How to correctly parallelize the MS-BFS algorithm?

• What techniques can be used to optimize parallelized MS-BFS to improve

speed?

• How to embed parallelized MS-BFS into the path-finding operator instead of

the UDF?

2. What is the performance of parallelized MS-BFS?

3. What are the bottlenecks of parallelized MS-BFS?

1.3 Thesis Structure

The paper is structured as follows. Chapter 2 will introduce the data model for representing

graphs, DuckDB, the DuckPGQ extension, and shortest path-finding algorithms that

currently exist. Chapter 3 presents related work on shortest path finding including various

shortest path finding methods and parallelization approaches. Chapter 4 will describe how

we design and implement operator based parallelized shortest path finding, details of the

algorithms as well as alternative implementation techniques will be stated. Chapter 5

3



1. INTRODUCTION

presents the performance results of the new operators in various dimensions, based on

which we will discuss the bottlenecks. Finally, Chapter 6 will look ahead to the work

considered but not implemented in this work, as well as optimizations that may be feasible

in the future. Chapter 7 summarizes the thesis.

4



2

Background

This chapter will introduce important concepts and background knowledge that will be

used in the thesis to help the reader understand the work.

2.1 Graph

Graphs are a fundamental data structure used to model relationships between objects,

consisting of vertices (or nodes) and edges (or arcs) that connect pairs of vertices. In a

graph G = (V,E), V represents the set of vertices, and E represents the set of edges.

Graphs can be directed or undirected, weighted or unweighted, and vary in complexity

from simple linear structures to intricate networks with millions of vertices and edges (19).

Directed graphs have edges with a direction, indicating a one-way relationship between

vertices, represented as ordered pairs (u, v), where u is the source vertex and v is the

destination vertex. Undirected graphs have edges without a direction, indicating a mutual

relationship between vertices, represented as unordered pairs (u, v). Weighted graphs

have edges with associated weights or costs, representing the strength or capacity of the

connection between vertices, crucial for applications like network routing and shortest path

algorithms. The graphs treated in this thesis are directed and unweighted.

Graph representation methods include adjacency matrices, adjacency lists, and edge

lists. An adjacency matrix is a |V | × |V | matrix where the entry at row i and column j

is non-zero if there is an edge from vertex i to vertex j. This allows fast access to check

if an edge exists but is memory-intensive for sparse graphs. An adjacency list uses an

array of lists, where each list at index i contains the vertices adjacent to vertex i, making

it more memory-efficient for sparse graphs and widely used in practical applications. An

edge list is a simple representation useful for graph algorithms that process edges one at

5



2. BACKGROUND

Figure 2.1: A directed unweighted graph and its corresponding CSR

a time, listing all edges in the graph with each edge represented as a pair of vertices. In

the next subsection, we will introduce the graph data structure used in this thesis, which

is essentially an adjacency list.

2.2 Compressed Sparse Row

Compressed Sparse Row (CSR) is an efficient data structure used to represent sparse

matrices, which is particularly useful for handling large and sparse adjacency matrices in

graph processing. This representation optimizes storage and allows for efficient execution

of graph algorithms such as breadth-first search (BFS) and shortest path computations.

In the CSR format for a graph, we use two main arrays: V to store vertex information

and E to store edges. This format is designed to make graph traversal and algorithm

execution efficient and straightforward.

The V array contains information about the starting index of each vertex’s adjacency

list in the E array. Essentially, V [i] indicates the index in E where the edges of vertex i

begin. The last element of V points to the end of the E array. The last element is there to

help determine the range of the previous element’s edges; it is not an existing vertex itself.

The E array holds the actual edges of the graph. Specifically, E contains the destination

nodes of the edges. For each vertex, its edges are stored consecutively in E.

For example, consider a simple graph shown in the left part of Figure 2.1. In CSR

format, this graph would be represented as the right part.

To explain how this works, let’s break down the arrays:

• V [0] = 0: The edges for vertex 0 start at index 0 in E. The edges are [2, 3].

• V [1] = 2: The edges for vertex 1 start at index 2 in E. The edges are [0, 3].

6



2.2 Compressed Sparse Row

Figure 2.2: Vertex and Edge table for example graph

• V [2] = 4: The edges for vertex 2 start at index 4 in E. The edge is [3].

• V [3] = 5: The edges for vertex 3 start at index 5 in E. The edges are [1, 2].

• V [4] = 7: This marks the end of the E array.

This format makes it easy to access the neighbors of any vertex. For example, to get the

neighbors of vertex 1, we look from E[V [1]] to E[V [2]], which gives us [0, 3].

The CSR format offers several advantages. First, by storing only the non-zero elements

(edges) and their positions, CSR significantly reduces memory usage compared to a full

adjacency matrix. Second, accessing the neighbors of a vertex is efficient, as we can quickly

locate the start and end of the vertex’s edges using the V array. Third, CSR’s structure

facilitates parallel processing since different vertices’ adjacency lists can be accessed and

processed independently.

In DuckDB, we compute on relational tables, which are on-the-fly converted to CSRs

whenever we need to perform graph operations. The table corresponding to the CSR

mentioned before is shown in Figure 2.2. We get vertex information through the vertex

table and edge information through the edge table. In the implementation, each vertex on

the CSR is represented by a hidden row row_id of the vertex table, which is unique and

dense to facilitate the algorithm to be able to compute on a unified data structure, also

the primary key is not relied upon when performing operations on the graphs.
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2.3 Parallelization

Parallelization is a technique used to enhance the performance of a program or algorithm

by dividing its tasks into smaller sub-tasks that can be executed concurrently. This

approach leverages multiple processing units, such as multi-core CPUs or GPUs, to achieve

faster computation times. The principles of parallelization involve task decomposition,

synchronization, and efficient communication between processing units:

1. Data Partitioning: Divide the data into independent chunks that can be processed

concurrently. Ensure that the data partitioning minimizes dependencies and

maximizes parallel work.

2. Load Balancing: Distribute the workload evenly among all processing units to

prevent some units from being idle while others are overloaded. Aim for an equal

distribution of tasks to maximize resource utilization.

3. Minimize Communication Overhead: Reduce the amount of data exchanged

between processing units to lower the communication overhead. Efficiently manage

the data transfer and synchronization to prevent bottlenecks.

4. Avoid Race Conditions: Ensure that concurrent processes do not interfere with

each other. Use synchronization mechanisms such as locks, semaphores, or atomic

operations to manage shared resources safely.

5. Locality of Reference: Optimize for data locality to take advantage of cache

memory and reduce access times. Ensure that each processing unit works on data

that is close to it in memory to improve performance.

6. Granularity: Balance the size of the parallel tasks (granularity). Fine-grained tasks

can lead to high overhead due to frequent synchronization, while coarse-grained tasks

may not fully utilize parallelism. Find an optimal granularity that maximizes parallel

efficiency.

To evaluate the effectiveness of parallelization, several metrics are used to compare the

performance between serial and parallel implementations:

1. Speedup: Measures the ratio of the execution time of the serial version to the

execution time of the parallel version. It is defined as:

Speedup =
Tserial

Tparallel
(2.1)
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A speedup greater than 1 indicates a performance improvement due to parallelization.

2. Efficiency: Measures the utilization of processing resources in the parallel system.

It is defined as:

Efficiency =
Speedup

N
(2.2)

where N is the number of parallel processing units. Efficiency values range from 0

to 1, with higher values indicating better utilization.

3. Scalability: Evaluates how the performance of a parallel algorithm improves as the

number of processing units increases. A scalable algorithm will show near-linear

speedup with an increasing number of processors.

4. Amdahl’s Law: Provides a theoretical limit on the speedup achievable by

parallelizing a portion of a program. It states that if P is the fraction of the program

that can be parallelized, the maximum speedup S is given by:

S =
1

(1− P ) + P
N

(2.3)

This law highlights the diminishing returns of adding more processors if a significant

portion of the program remains serial.

2.4 DuckDB

DuckDB (7) is an in-process SQL OLAP (Online Analytical Processing) database

management system designed to deliver high-performance analytical query processing

on large-scale data. Developed to provide robust analytical capabilities directly within

applications, DuckDB is characterized by its lightweight footprint, ease of integration,

and efficient execution engine. It leverages a columnar storage layout and vectorized

execution model, which allow for high throughput and low-latency query performance.

Unlike traditional databases that often require a separate server process, DuckDB operates

entirely within the host application’s process, making it ideal for embedded analytics,

interactive data analysis, and complex data transformations directly within the application

environment. This design choice also simplifies deployment and enhances data locality,

resulting in faster query performance.
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2.4.1 Query Execution Pipeline

The query execution pipeline in DuckDB involves several key components that transform

SQL queries into executable instructions through multiple stages. These stages include

the Parser, Binder, Logical Planner, Optimizer, Physical Planner, and Execution Engine

(20).

The Parser converts SQL queries into tokens such as SQLStatement, QueryNode,

TableRef, and ParsedExpression, without resolving catalog details or data types. The

Binder resolves these references using the catalog, assigns types, and extracts aggregate

and window functions, converting nodes into their bound equivalents. The Logical Planner

then creates a logical query tree from these bound nodes. The Optimizer refines this

tree with techniques like expression simplification, filter pushdown, join reordering, and

common subexpression extraction, generating an optimized logical plan. The Physical

Planner translates this logical plan into a physical operator tree, specifying the actual

algorithms and data structures for execution. Finally, the Execution Engine executes

this physical plan using a push-based vectorized model, where data chunks are processed

efficiently through the operator tree to produce the query results.

DuckDB splits the query into operators such as table scans, joins, filters, and

aggregations, each responsible for a specific part of the query execution. During the

planning stages, the query is broken down into these discrete operations, allowing for

detailed optimization and parallel execution. Operators with data dependencies will form

a pipeline with a starting point called the source and an endpoint called the sink, where

operators from the source to the sink push chunks of data upwards as they execute. A

sink operator needs to get all the data before it can be executed, then act as a source

for the next pipeline. The shortest path-finding operator we designed contains two sinks:

it has to get the complete CSR and all source-destination pairs to find paths before the

MS-BFS operator can be executed. An operator may depend on more than one source,

so the pipeline can form an operator tree with branches from the bottom up that can be

executed in parallel.

On the pipeline, data is processed in parallel with Morsel-Driven Parallelism. Data is

processed in vectors, typically 60× 2048 = 122880 tuples in size, which allows DuckDB to

make better use of CPU caches and SIMD (Single Instruction, Multiple Data) instructions,

processing multiple data points simultaneously. As data flows through the operators,

intermediate results are passed along until the final result set is produced and returned to

the user.
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2.4.2 Push-Based Execution

In pipeline query execution, there are two execution models: push-based and pull-based

execution. The pull-based model involves operators pulling data from their child operators

as needed. This means each operator requests data from its predecessors only when it is

ready to process it. This model is simple and intuitive but can lead to inefficiencies due to

frequent function calls and context switching. More importantly, the model is difficult to

parallelize.

Conversely, the push-based execution model, which DuckDB employs, involves data being

pushed from one operator to the next in a pipeline without explicit requests. In this model,

once an operator produces data, it immediately pushes it downstream to the next operator.

While the data is generated by operators, the flow is managed externally so that the model

is able to handle very complex data flows such as full outer join.

In DuckDB, the push-based data flow model is designed to enhance execution efficiency

by separating data flow management from the operators, centrally scheduled by a scheduler.

Operations are divided into two primary types: operators, which process data (e.g., filtering

and projections), and sources, which emit data (e.g., table scans).

Operators utilize the Execute interface to process input data chunks and produce output

results dynamically as data becomes available. For operations requiring complete data

before processing, such as certain aggregates, the Finalize interface is used, which waits

for all data to be materialized before execution. This distinction allows DuckDB to handle

immediate and deferred processing tasks effectively.

Sources use the Sink interface to push data into the execution pipeline. This push-based

mechanism is complemented by morsel-driven parallelism, where each processing thread

operates on small data chunks (morsels). Each thread maintains a local state, which is

later merged into a global state so the Finalize interface can use it. Data emission from

sources is managed through the GetData interface, which supplies data to operators’ Sink

interfaces for processing.

DuckDB parallelizes the push-based pipeline through events. A pipeline can be divided

into three events, namely pipeline execution, pipeline finish which needs to wait for all

the data on the pipeline to materialize before calling the Finalize interface, and pipeline

completion. These three events have a front-back correlation and need to be executed

serially. However, events that are not correlated can be executed in parallel. Parallel

methods can also be customized within each event to increase parallelism. In our shortest

path finding operator, the execution of the algorithm is located in the pipeline finish event.
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2.4.3 Morsel-driven Parallelism

Morsel-driven parallelism (13) in DuckDB is a technique for efficiently distributing query

execution workloads across multiple CPU cores. The key idea is to divide the workload

into small, manageable chunks called "morsels," which are then processed independently.

Each morsel typically contains a fixed number of tuples, currently 122880, which allows

for fine-grained parallelism and dynamic load balancing if millions or even more tuples are

processed.

In DuckDB, when a query is executed, the workload is split into these morsels. Each

morsel is assigned to a separate thread, and multiple threads can process different morsels

simultaneously. This approach leverages the full computational power of modern multi-core

processors, ensuring that each core is utilized effectively.

Technically, the process begins with the pipeline source, which generates the data

morsels. These morsels are then queued for execution by worker threads. The scheduling

system ensures that each thread receives a new morsel as soon as it completes its current

one, maintaining a constant flow of work and minimizing idle time.

Given that DuckDB’s vectorized query engine treats 2048 tuples as a data chunk and

processes it once, while morsel has a size of 60× 2048 tuples, it follows that a thread will

be allocated up to 60 data chunks at a time. Normal database operations such as join

perform well on data of this magnitude, however pathfinding does not. Just a single tuple

of source-to-destination vertices can take tens of seconds to find a path when the graph

is large enough. Even with SIMD acceleration with a width of 512 bits, finding 122880

paths will remain time-consuming. So morsel-driven parallelism is not applicable to time-

consuming operators like shortest path finding. We need to customize the parallelism

within the operator to speed up the computation.

2.4.4 Extension and User-Defined Functions

DuckDB supports extension and scalar User-Defined Function (UDF) (12) to enhance

its functionality and adapt to specific application needs. Scalar functions can receive a

number of scalar parameters (e.g. string, integer) and produce one scalar result. Extensions

in DuckDB are modular components that can be dynamically loaded into the database

engine, providing additional capabilities such as new data types, functions, or even storage

formats. These extensions can be written in C++ and integrated seamlessly into the

DuckDB ecosystem. DuckPGQ is developed in the form of a graph extension that does

not require modifications to the internals of DuckDB but still achieves good performance.
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User-defined function allows users to define their own functions using SQL or external

programming languages like Python or R. This flexibility enables users to perform custom

computations directly within the database. For instance, a Python UDF can be created

to apply complex data transformations that are not natively supported by DuckDB.

These UDFs are integrated into the SQL query execution pipeline, allowing for powerful,

customized data processing workflows. UDFs in DuckDB exist mainly as expressions in

SQL, which are a part of the pipeline and subject to morsel-driven parallelism. However,

the internal logic of UDF is a black box for DuckDB and cannot be used by the optimizer

to estimate the workload.

2.5 DuckPGQ

DuckPGQ (6) is an extension of DuckDB designed to support advanced graph querying

capabilities. It leverages the efficient, in-memory processing strengths of DuckDB to

handle complex graph queries typically found in graph databases. DuckPGQ introduces

specialized functions and algorithms optimized for graph traversal and analysis, enabling

users to perform operations like shortest path finding and cheapest path finding directly

within the DuckDB environment. This integration allows for seamless analytical querying

and graph data management within a unified SQL-based system.

2.5.1 Multi-source Breadth-first Search

The underlying algorithm for implementing shortest path finding in DuckPGQ comes

from the multi-source breadth-first search (MS-BFS) proposed by Then et al (21). The

algorithm is an improvement on the single-source breadth-first search that allows multiple

BFS instances to run on a graph simultaneously. The pseudo-code is shown by Algorithm 1.

Concurrency of multiple BFSs is achieved by set operations, otherwise, the algorithm is

very similar to the single-source version. The algorithm takes a graph G, a collection of

BFS instances B, and a collection of source vertices s. An element (v,B′) in the set seen

indicates that vertex v has been seen on a subset of BFS instances B′. An element (v,B′)

in the set visit indicates that on the subset B′ of BFS instances, the vertex v is on the

frontier of the current iteration. The set visitNext is the frontier of the next iteration. In

each iteration, we first find on which BFS instances B′
v the vertex v on the frontier is active.

Then, in the process of exploring the neighbors of v, vertices that have already been visited

are excluded through B′
v \seenn, leaving the unvisited vertices and the corresponding BFS
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instances (n,D) to be added to the next iteration’s frontier. As the frontier expands over

the graph, MS-BFS implements breadth-first searches.

Algorithm 1 Multi-Source Breadth-First Search (MS-BFS)
Input: G,B, s

2: seensi ← {bi} for all bi ∈ B

visit←
⋃

bi∈B{(si, {bi})}
4: visitNext← ∅

while visit ̸= ∅ do
6: for each v in visit do

B′
v ← ∅

8: for each (v′,B′) in visit where v′ = v do
B′

v ← B′
v ∪B′

10: end for
for each n in neighboursv do

12: D← B′
v \ seenn

if D ̸= ∅ then
14: visitNext← visitNext ∪ {(n,D)}

seenn ← seenn ∪D

16: Do BFS computation on n

end if
18: end for

end for
20: visit← visitNext

visitNext← ∅
22: end while

2.5.2 Shortest Path-finding UDF

DuckPGQ wraps the above MS-BFS in a UDF. This UDF receives two parameters, a

(src, dst) pairs vector and the CSR. The (src, dst) vector contains the source-to-destination

pairs to be searched, and the CSR generated on the fly before calling the UDF. Due to

DuckDB’s global vector size setting, the pairs vector has up to 2048 pairs. The number of

parallel BFS instances of MS-BFS is set to 512 in this thesis, which is the widest SIMD

instruction width and allows 512 pairs to be searched at the same time, this is called a

batch. So one UDF call searches at most four batches. Based on the global morsel size, it is

possible for more than 60 UDF calls to result in multithreaded parallelization, before that

MS-BFS actually runs in single-threaded mode and does not take advantage of multicore

14



2.6 Single Instruction Multiple Data

acceleration at all. So custom parallelization that is not based on morsel-driven is highly

desirable.

2.6 Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) is a parallel computing architecture designed to

improve performance by processing multiple data points simultaneously using a single

instruction. SIMD works by utilizing vector registers, which can hold multiple data

elements, and vector instructions that apply the same operation to all elements within

these registers in parallel. This architecture leverages data-level parallelism to achieve

significant performance improvements, particularly in applications involving large datasets

and repetitive calculations.

In SIMD, each vector register can hold multiple data elements, such as integers or

floating-point numbers. The size of the vector register and the number of elements it

can hold vary depending on the hardware architecture. For instance, in a typical SIMD

setup, a single instruction can add corresponding elements of two vector registers and store

the result in a third vector register. This simultaneous processing of multiple elements in a

single instruction cycle significantly speeds up computations compared to scalar processing,

where each operation handles only a single data element.

On x86 platforms, prominent SIMD instruction sets include AVX2 (22) and AVX-

512 (23). AVX2 supports 256-bit registers, allowing the processing of eight 32-bit integers

or four 64-bit integers simultaneously. It includes features such as gathering instructions

for efficient loading of non-contiguous data from memory and fused multiply-add (FMA)

operations for combining multiplication and addition in a single instruction. AVX-

512 extends these capabilities with 512-bit registers, doubling the data parallelism and

introducing masked operations for conditional execution, along with a broader set of

instructions for complex arithmetic and data manipulation.

In the ARM ecosystem, SIMD capabilities are provided by the NEON architecture (24),

which features 128-bit registers and supports a variety of data types, including 8, 16, 32,

and 64-bit integers, as well as single-precision floating-point numbers. NEON is designed

to accelerate multimedia processing, digital signal processing, and other computationally

intensive tasks common in mobile and embedded applications.

SIMD code can be written in two main ways: explicit SIMD (using intrinsics) and implicit

SIMD (using compiler auto-vectorization).
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Explicit SIMD involves using intrinsics, which are special functions provided by the

compiler that map directly to SIMD instructions. Intrinsics offer fine-grained control over

SIMD operations, allowing developers to optimize performance-critical sections of code

manually. Here is an example of using AVX-512 intrinsics in C++ to add two arrays of

floats:

#include <immintrin.h>

for (int i = 0; i < 512; i += 8) {

__m512i vec_a = _mm512_loadu_epi64(&a[i]);

__m512i vec_b = _mm512_loadu_epi64(&b[i]);

__m512i vec_result = _mm512_add_epi64(vec_a, vec_b);

_mm512_storeu_epi64(&result[i], vec_result);

}

In this example, _mm512_loadu_epi64 loads data into 512-bit registers, _mm512_add_epi64

performs the addition, and _mm512_storeu_epi64 stores the result back to memory. This

explicit use of AVX-512 intrinsics allows fine-tuning of performance-critical sections of

code. The assembly code of these C++ codes compiled by GCC 14.1 is:

.L6:

vmovdqu64 zmm0, ZMMWORD PTR [rsi+rax]

vpaddq zmm0, zmm0, ZMMWORD PTR [rcx+rax]

vmovdqu64 ZMMWORD PTR [rdx+rax], zmm0

add rax, 64

cmp rax, 4096

jne .L6

xor eax, eax

vzeroupper

ret

It uses vmovdqu64 to load 512-bit chunks (8 long integers) from source arrays into the zmm0

register. The vpaddq instruction then adds two sets of values within the zmm0 register. The

result is stored back into the destination array using vmovdqu64.

Implicit SIMD relies on the compiler’s ability to automatically vectorize code. This

approach requires less effort from the developer but depends on the compiler’s ability to

recognize opportunities for vectorization. The new version of the GCC compiler has the

ability to compile out SIMD code without any explicit instructions, for the following C++

code:
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for (int i = 0; i < 512; ++i) {

result[i] = a[i] + b[i];

}

The corresponding assembly code is:

.L7:

vmovdqu64 zmm0, ZMMWORD PTR [rdi+rax]

vpaddq zmm0, zmm0, ZMMWORD PTR [rsi+rax]

vmovdqu64 ZMMWORD PTR [rcx+rax], zmm0

add rax, 64

cmp rax, 4096

jne .L7

vzeroupper

In subsequent implementations, we do not use explicit SIMD instructions instead rely

on the C++ compiler’s auto-vectorization capabilities. Because DuckDB is designed to

be cross-platform, each platform has its own unique SIMD instructions and widths. If we

used explicit SIMD, we would need to use macros to determine the platform at compile

time, or dynamically call the correct code at runtime. Both increase code complexity and

reduce maintainability. Although the compiler does not recognize some code that can be

accelerated, or outputs SIMD code that is less performant than the manual one, it has

very good portability, while at worst it can output serial code to complete the function.

2.7 Cache Latency

Cache latency is a critical factor in CPU performance, affecting how quickly data can be

accessed and processed. Modern CPUs use a multi-level cache hierarchy to balance speed

and capacity, including Level 1 (L1), Level 2 (L2), and Level 3 (L3) caches, with each level

progressively larger and slower.

CPU caches are designed to store frequently accessed data close to the CPU cores,

reducing the need to access the slower main memory (RAM). The cache hierarchy typically

consists of L1, L2, and L3 caches:

1. L1 Cache: Smallest and fastest, usually split into instruction (L1i) and data (L1d)

caches, located directly within the CPU core. Typical size is 32 KB to 64 KB per

core.
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Cache Level Access Cycles Access Time (ns)
L1 1 - 3 cycles 0.4167 - 1.25 ns
L2 10 - 20 cycles 4.167 - 8.333 ns
L3 20 - 50 cycles 8.333 - 20.835 ns

RAM 100+ cycles 41.67+ ns

Table 2.1: Access cycles and estimated time for different caches under 2.4Ghz

2. L2 Cache: Larger and slower than L1, serves as an intermediary, with a unified

cache for both instructions and data. Typical size is 256 KB to 512 KB per core.

3. L3 Cache: Largest and slowest, shared among multiple cores, reducing latency for

data shared across cores. Typical size is a few megabytes to several tens of megabytes.

Access times for these caches, measured in CPU cycles, are as shown in Table 2.1. We

assume the CPU frequency is 2.4GHz, which is the same as our experiment machine.

Lower cache levels (L1 and L2) provide faster access times, while higher levels (L3) and

RAM have progressively longer access times. Suppose a core in the CPU needs to process

100GB of data in two executions, the first execution has 50GB of data in L1 hits and the

rest of the data needs to be fetched from RAM. In the second execution, all data needs

to be fetched from RAM. We take the L1 access cycles to be 2 and the RAM cycles to

be 100. then the first execution takes about 2125.17 seconds to read the data and the

second execution takes about 4167 seconds. Cache misses can greatly affect the program’s

performance.

To minimize cache latency and improve performance, several techniques are employed.

Prefetching involves predicting which data will be needed next and loading it into the

cache before it is requested, significantly reducing cache miss rates and improving access

times. Organizing data in memory to align with cache line boundaries can optimize

cache usage, as modern CPUs fetch data in blocks called cache lines (typically 64 bytes),

ensuring that frequently accessed data is aligned with these boundaries can reduce access

times. In multi-core systems, ensuring that all cores have a consistent view of memory is

crucial. Cache coherency protocols like MESI (Modified, Exclusive, Shared, Invalid) help

maintain consistency across caches, but they increase latency, because each write needs to

be communicated (if the line is shared) and dropped. Cache associativity (direct-mapped,

set-associative, fully associative) and replacement policies (LRU, FIFO, etc.) affect how

data is stored and replaced in the cache. Higher associativity can reduce conflict misses,
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while effective replacement policies ensure that the most useful data stays in the cache

longer.

It is clear that cache misses significantly affect the time it takes for the core to access data

and hence influence performance, as does the protocol for maintaining cache consistency.

This requires us to design algorithms that take into account the reduction of random

Read/Write and use global synchronization as little as possible.
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Related Work

3.1 Parallel Path-finding Algorithms

Some high-performance path-finding algorithms and their optimizations are demonstrated

below.

3.1.1 Parallel Breadth-First Search

Since the shortest path finding function already available in DuckPGQ is implemented

based on multi-source breadth-first search (MS-BFS), in this thesis, we mainly focus on

improving the performance of BFS. We first show the optimization methods for normal

single-source BFS and then show what methods are available to speed up the computation

in the case of multiple sources. We mainly focus on the literature on performance

improvement through parallelization.

3.1.1.1 Single-source BFS

The single-source shortest path is the basis of all optimization efforts. Given a graph

G = (V,E) and a source vertex s ∈ V , the BFS explores the vertices on the graph that can

be accessed by edges, starting from s. The BFS explores the graph in a layer-wise order,

and each iteration will look for the neighboring vertices NS of the current frontier FS.

Exploration from the frontier can be in any order, and so can be parallelized. The basic

serial single-source BFS algorithm is shown in Algorithm 2.

Basic parallelism. The basic parallelization of a single-source BFS is intuitive; the FS

is divided into multiple blocks, and each worker computes the block to which it belongs.

Note that synchronization is required when exploring neighbors since two workers are

likely to visit the same vertex. This simple parallelization is used by many applications,
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Algorithm 2 Serial single-source BFS algorithm
Input: G(V,E), source vertex s.

2: Output: d[1..n], where d[v] gives the length of the shortest path from s to v ∈ V .
for all v ∈ V do

4: d[v]←∞
end for

6: d[s]← 0, level← 1, FS ← ϕ, NS ← ϕ

push s→ FS

8: while FS ̸= ϕ do
for each u in FS do

10: for each neighbor v of u do
if d[v] =∞ then

12: push v → NS

d[v]← level

14: end if
end for

16: end for
FS ← NS, NS ← ϕ, level← level + 1

18: end while

e.g. Barnat et al. (25) uses parallel BFS for checking loops in graphs. Their parallel BFS

runs on a distributed system, and workers communicate with each other using MPI. The

graph is divided into blocks to be distributed to the workers. To avoid synchronization,

the update of a vertex only occurs in the worker it belongs to. If a worker updates a vertex

that does not belong to it, it notifies the correct worker to perform the update. Iterations

are strictly synchronized to avoid conflicts between them.

The parallel BFS proposed by Scarpazza et al. (26) clarifies the details of this

parallelization method. They divide each iteration into four parts. The first part initializes

the variables that are reused in the iteration. The second part Gather and Dispatch explores

the neighbors, and the vertices on the frontier of the next iteration will be divided into

different queues temporarily stored in the local memory of the workers according to the

attribution of the vertices. Part three All-to-All workers swap queues to globally clarify

the attribution of vertices. The fourth part Bitmap workers exclude vertices that have

already been accessed. The parts cannot be executed asynchronously with each other to

avoid race conditions. Since a worker’s local memory is likely to be limited in a distributed

system, they also propose an optimized parallel BFS: Gather and Dispatch is split into two
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parts, where the workers in Gather fetch a specified number of pieces of vertices at a time

instead of dividing the graph equally.

Workload imbalance overhead. Obviously, parallel BFS has a lot of overhead in the

computation process. The first overhead comes from workload imbalance. This can easily

happen in the real world considering that the number of edges is different for each vertex.

For example in social networks famous people can have millions of times the number of

followers of ordinary people. It is clearly unfair for two workers to handle the same number

of famous and ordinary people separately. Globally this would cause all threads to wait

for the slowest thread. Many researchers have proposed ways to make the workload more

fair.

One way to mitigate the workload imbalance is to statically assign vertex blocks with

the same number of edges to each worker in advance. Yasui et al. (27) proposed to divide

the adjacency list equally to get blocks that will have the same workload. Zhang et al. (28)

proposed round-robin vertex shuffling, where vertices with large and small degrees are

placed evenly in each chunk, which avoids having all large degree nodes or all small degree

vertices in one chunk.

Scarpazza et al. (26) proposes that the number of edges contained in the vertices within

a block is dynamic whenever a worker extracts the block it wants to process. The worker

traverses the vertices so that once the traversed vertices contain the specified number of

edges, these vertices are used as blocks to be processed.

Communication overhead. The second most significant overhead comes from

synchronization communication during neighbor exploration. On single-machine systems,

the communication overhead usually comes from workers waiting for the main memory

to lock, when one worker atomically updates the memory, other workers must wait for

the update to complete. In distributed systems, the communication overhead comes

from nodes propagating modifications to vertices that do not belong to them between

nodes to complete synchronization. In a single-machine system, the cores take only a few

tens of nanoseconds to update the memory, but due to physical distances and complex

communication protocols, the propagation of updates from distributed nodes can take

several seconds. This overhead cannot be eliminated but can only be minimized as much

as possible.

In a non-distributed scenario, the communication overhead between the processor’s cores

and memory is small, so it is feasible to make changes made by each worker immediately

visible to all other workers. Such updates to contending data must be mutually exclusive.
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Typically we use locks to accomplish this operation, but Hassaan et al. (29) propose that

compare-and-swap (CAS) can be used to avoid the use of locks.

Communication can be reduced by changing the way the graph is divided. Andy et

al. (30) proposes a 2D partitioning of graphs. Their parallel BFS is computed on the

adjacency matrix rather than on the adjacency list. The adjacency matrix is divided equally

into R ·C rows and C columns, and the worker (i, j) owns the block (j − 1) ·R+ i. Thus,

whenever a worker participates in vertex swapping, it only needs to communicate with

other R or C workers instead of the full R · C workers, thus reducing the synchronization

overhead. Yasui et al. (27) proposed column-wise partitioning but it is essentially similar

to 2D partitioning, which is achieved by horizontally partitioning the adjacency list of

each vertex. Their approach is shown to be suitable for NUMA architectures to provide

data locality as much as possible. Buluç et al. (31) adapts 2D partitioning to distributed

computing. Since a node within a current distributed system usually has multiple cores,

they designed intra-node parallelization in addition to inter-node parallelization.

Further, the graph may be modified to accommodate parallel computing. Obviously, the

more edges a vertex has, the more likely it is to be accessed simultaneously as a neighbor

of multiple vertices in a single iteration, introducing synchronization overhead. So vertices

can be pre-ordered by the number of edges such that vertices with the most edges are

clustered together (32). This makes synchronization to these hotspot vertices more likely

to occur within workers rather than between workers, thus reducing communication costs.

In addition to reducing the number of communications, it is also possible to reduce

the amount of data per communication, which is particularly important in distributed

computing. Lv et al. (33) proposes that messages can be compressed because workers pass

bitsets between each other, which usually have consecutive 0s or 1s, and are well suited for

compression. Also, useless parts of the message can be eliminated, e.g. we can know in

advance which part of the vertices on the frontier the workers need to get. During the task

assignment phase, each worker is usually given a piece of the graph that it owns. Many

graphs in the literature are represented as CSR, which involves the transfer of it. Although

CSR has been very efficient, there is still room for compression. Ueno et al. (34) proposed

that a bitset can be used to indicate whether a vertex has out edges or not, and from the

CSR these vertices without edges can be removed. Their experiments show that up to 60%

of the space can be saved.

Direction optimization One optimization that is very common in the literature

is direction optimization. Direction optimization has two meanings, the first refers to

searching towards the center from both the source and destination vertices at the same

24



3.1 Parallel Path-finding Algorithms

time (30), this method is also known as bidirectional BFS. The second refers to searching

from unvisited vertices to find their neighbors that are in the frontier, usually, this method

is called hybrid BFS (27, 35) shown in Algorithm 3. Both methods can improve the

performance because they prevent the algorithm from having too large a frontier in the

late phase of execution.

More optimization. Some researchers have argued that algorithmic bottlenecks come

not only from explicit workload imbalances and communication overhead etc., but also

from bandwidth bottlenecks between the physical cores and memory. In particular, random

accesses during neighbor exploration in BFS introduce an extremely high cache miss rate.

To address this situation, Attia et al.(37) propose that the data structure can be modified

to reduce the amount of data transfer. They customized the vertex list in the CSR so that

each element in it is a 64-bit value, and the last bit of the element represents whether the

vertex has been visited or not. When the vertex has not been visited, the first 32 of the

remaining 63 bits are the start of the edge’s offset and the last 31 bits are the end of the

edge’s offset. When the vertex has been visited, the other 63 bits are used to store the

vertex’s level. This method compresses four variables (start offset, end offset, level, visited)

into one.

Additionally unnecessary data reading can be avoided to reduce bandwidth pressure.

Zhang et al. (28) proposed that bit operations can be utilized to speed up the checking

of whether a vertex has been visited or not. This is done by loading the bitmap block

containing the target vertex each time the check is performed, if the block is all 1’s, all the

vertices in the block must have been visited so the algorithms could skip them, otherwise

the offset of the vertex in the block can be used to check whether it has been visited or

not. This optimization helps the algorithm to skip a large number of vertices that have

already been visited in the intermediate and late iterations.

There are some unconventional optimizations. Träff (38) points out that once a vertex

has been visited, all its incoming edges are useless. Imagine that a vertex is visited in level 3,

but in level 4 a thousand vertices will revisit it along the edges, generating a lot of invalid

computations. By removing the incoming edges of this vertex, it will not be revisited.

However, this approach requires the support of an easily changeable data structure such

as a pointer adjacency list. John et al. (39) changed the memory model for BFS programs.

They used a tree-structured memory model called the Fresh Breeze program execution

model (PXM). They modified BFS to be an expansion of the tree, which combined with

the properties of the model can eliminate synchronization and achieve lock-free parallel

BFS.
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Algorithm 3 Hybrid BFS algorithm of Beamer et al. (36)
Input: G = (V,AF , AB) : unweighted directed graph.

s : source vertex.
Variables: QF : frontier queue.

QN : neighbor queue.
visited : vertices already visited.
state ∈ {top-down, bottom-up} : traversal policy.

Output: π(v) : predecessor map of BFS tree.

1: π(v)← −1, ∀v ∈ V

2: visited← {s}
3: QF ← {s}
4: QN ← ∅
5: state← ‘top-down’
6: while QF ̸= ∅ do
7: if state = ‘top-down’ then then
8: for all v ∈ QF in parallel do
9: for all w ∈ AF (v) do

10: if w /∈ visited atomic then
11: π(w)← v

12: visited← visited ∪ {w}
13: QN ← QN ∪ {w}
14: end if
15: end for
16: end for
17: else
18: for all w ∈ V \ visited in parallel do
19: for all v ∈ AB(w) do
20: if v ∈ QF then
21: π(w)← v

22: visited← visited ∪ {w}
23: QN ← QN ∪ {w}
24: break
25: end if
26: end for
27: end for
28: end if
29: state← traversal_policy(QF , QN , visited, state)

30: QF ← QN

31: QN ← ∅
32: end while
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Running on GPU. The application of GPUs to parallelize Breadth-First Search

(BFS) has been explored extensively in various research studies, each contributing unique

techniques and optimizations to improve performance. One notable approach is presented

by Harish and Narayanan (14), who utilized CUDA to implement BFS on large graphs.

Their method employs a level-synchronous approach, where each level of the BFS tree is

processed in parallel. In this implementation, vertices at the current level are processed

concurrently by CUDA threads, which update the frontier and mark vertices for the

subsequent level. Significant optimization is achieved by using shared memory for fast

access to node data and employing coalesced memory accesses to optimize global memory

usage.

Hong, Oguntebi, and Olukotun (15) introduced a hybrid method that combines multi-

core CPUs and GPUs to enhance the efficiency of BFS. Their algorithm dynamically

partitions the graph and assigns tasks to either the CPU or GPU based on workload

characteristics and device capabilities. This dynamic partitioning is complemented by

a work-stealing mechanism between the CPU and GPU, which helps balance the load,

thereby reducing idle times and improving overall performance. The combination of these

techniques results in a more efficient utilization of available computational resources.

Zhang et al. (40) introduces several key optimizations for Breadth-First Search (BFS)

on GPUs, focusing on data representation, graph partitioning, and communication among

GPUs to tackle challenges like irregular memory access, workload imbalance, and high

communication overhead. They propose a GPU-friendly Compressed Sparse Row (CSR)

structure, which includes bitmap adaptive CSR and warp-aligned adjacency lists to enhance

memory coalescing and access efficiency. Additionally, the bidirectional 1D partitioning

scheme distributes both vertices and edges more evenly across GPUs, reducing inter-GPU

communication and balancing workloads. Furthermore, a Unified Memory (UM)-aware

communication method integrates CUDA-based MPI with UM to enable asynchronous

data transfers, minimizing the limitations imposed by PCIe bandwidth. Their experiments

on NVIDIA Tesla T4 and V100 GPUs demonstrate significant performance improvements,

with BFS on four T4 GPUs achieving an average of 132.67 GTEPS and on four V100

GPUs reaching 392.35 GTEPS, outperforming existing CPU-based clusters. These

advancements highlight the effectiveness of combining optimized data structures, balanced

partitioning, and advanced communication techniques for scalable and efficient BFS on

GPU architectures.
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3.1.1.2 Multi-source BFS

The main work of this thesis is based on multi-source BFS Algorithm 1, which has been

described in the background section. Many parallelization and optimization methods for

single-source BFS can be directly applied to multi-source BFS, such as 2D partitioning

of graphs and message compression. Related work on parallelized multi-source BFS is

relatively rare at the moment, with the main work originating from (11).

They addresses the challenge of parallelizing Multi-Source BFS (MS-BFS) on multi-

core systems. They extend the serial MS-BFS algorithm by replacing queues with fixed-

sized arrays to eliminate contention points typical in BFS algorithms. The approach to

parallelization is essentially the same as for single-source BFS, where synchronization is

maintained between iterations, while the iterations are internally divided into several main

parts: initialization, neighbor search, and visited vertex removal. And they significantly

mitigates overhead through the use of a novel vertex labeling scheme and a low-overhead

work-stealing scheduling scheme. The vertex labeling is both cache-friendly and skew-

avoiding, ensuring even distribution of work among threads and improving cache hit rates.

The work-stealing mechanism dynamically balances the load by allowing idle threads

to "steal" tasks from busy threads, thereby maintaining high utilization of all cores.

Furthermore, they optimize for Non-Uniform Memory Access (NUMA) architectures by

pinning threads to specific CPU cores and strategically placing memory pages to maintain

NUMA locality, which minimizes the expensive cross-NUMA node data accesses. Their

evaluation on large graphs demonstrates that these techniques enable their parallel BFS

algorithms to scale well and outperform existing state-of-the-art algorithms, providing

excellent CPU utilization and significantly better performance.

3.1.2 Other Parallel Path-finding algorithms

The BFS is not the only algorithm that implements parallel shortest path finding; many of

the classical algorithms in graph theory can be parallelized to improve performance. Many

of the current state-of-the-art graph databases are still built on these classical algorithms.

Our thesis is mainly aimed at correctly parallelizing MS-BFS, and the other algorithms

presented in this section are used for inspiration and reference.

3.1.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a well-known shortest path algorithm for graphs with non-negative

weights. It efficiently finds the shortest path from a single source to all other nodes in the
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graph. The algorithm maintains a priority queue to keep track of the next most promising

node to explore based on the shortest known distance. Its primary feature is that it handles

weighted graphs and ensures the shortest path by repeatedly selecting the node with the

smallest tentative distance.

The parallelization of Dijkstra’s algorithm focuses on distributing the workload of

exploring nodes and updating distances across multiple processors. One approach, as

described by Harish and Narayanan (14), involves using a distributed priority queue where

each processor maintains its local priority queue and periodically merges results. Another

method, proposed by Crauser et al. (41), uses a hierarchical organization of priority

queues, with a global queue for coarse-grained tasks and local queues for fine-grained

processing. Additionally, the -stepping algorithm, introduced by Meyer and Sanders (42),

partitions the edge relaxations into buckets of different ranges, allowing parallel processing

within each bucket. These strategies enable the algorithm to efficiently handle large

graphs by parallelizing node exploration and distance updates, minimizing inter-processor

communication.

3.1.2.2 Floyd-Warshall Algorithm

The Floyd-Warshall algorithm computes shortest paths between all pairs of nodes in a

graph, making it suitable for dense graphs where every node is potentially reachable from

every other node. The algorithm operates by iteratively refining the shortest paths through

intermediate nodes, updating a distance matrix that stores the shortest known distances

between every pair of nodes.

Parallelizing the Floyd-Warshall algorithm involves distributing the iterations of the

outer loop across multiple processors. Czech (43) suggested that each processor handle a

portion of the rows or columns of the distance matrix. In a shared memory model, OpenMP

can be used to parallelize the loops directly, with synchronization mechanisms to handle

updates to the distance matrix. In a distributed memory model, the distance matrix is

partitioned across processors, and message passing (MPI) is used to synchronize updates,

ensuring consistency. Tiling techniques can further enhance performance by improving

cache utilization and reducing communication overhead (44). These approaches leverage

the algorithm’s inherent parallelism to efficiently compute shortest paths in large, dense

graphs.
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3.1.2.3 Bellman-Ford Algorithm

The Bellman-Ford algorithm computes shortest paths from a single source node to all other

nodes and can handle graphs with negative weights. It operates by iteratively relaxing the

edges of the graph, updating the shortest known distances until no further improvements

can be made.

Parallelizing the Bellman-Ford algorithm involves distributing the relaxation steps across

multiple processors. Bader et al. (45) proposed that each processor handle a subset of

edges during each iteration. Another significant contribution is the work by S. Sharma

et al. (46), which presents an efficient implementation of the Bellman-Ford algorithm for

Kepler GPU architectures, leveraging the massive parallelism available in modern GPUs.

Meanwhile ideas from -stepping algorithm can still be used.

3.1.2.4 A* Algorithm

The A* algorithm is a heuristic-based path-finding algorithm commonly used in AI and

game development. It combines the advantages of Dijkstra’s algorithm and best-first

search, using heuristics to guide the search towards the goal node more efficiently. The

algorithm maintains a priority queue to explore the most promising nodes first, making it

suitable for both weighted and unweighted graphs.

Parallelizing the A* algorithm involves distributing the search space across multiple

processors. Kishimoto et al. (47) proposed a method where each processor explores

different regions of the graph. Synchronization mechanisms ensure consistency, especially

when processors find paths that need to be shared or merged. Parallel fringe search

and dynamic load balancing techniques are used to improve efficiency, as discussed by

Sturtevant and Buro (48). These approaches enable the algorithm to handle large search

spaces by parallelizing node exploration and heuristic evaluation, reducing search time and

improving scalability.

3.1.2.5 Johnson’s Algorithm

Johnson’s algorithm is used for finding shortest paths between all pairs of nodes in sparse

graphs. It combines the Bellman-Ford algorithm to reweight the graph and then uses

Dijkstra’s algorithm for each node. This approach allows it to handle negative weights

while maintaining efficiency in sparse graphs.

Pogorilyy et al. (49) developed a parallel implementation of Johnson’s algorithm using

General-Purpose GPU (GPGPU) technology. The Bellman-Ford component is parallelized
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by distributing edge relaxations across multiple GPU threads. Each thread processes a

subset of edges and updates distances in parallel. For the Dijkstra component, the graph

is divided into subgraphs, each handled by different GPU threads. CUDA’s efficient thread

management is leveraged to minimize inter-thread communication. Atomic operations are

used to update shared distances, ensuring consistency across threads. The implementation

uses CUDA kernel functions to execute both Bellman-Ford and Dijkstra’s components

concurrently. This approach achieves significant speedups in computing shortest paths for

large, sparse graphs by utilizing the parallel processing power of GPUs.

3.1.2.6 Yen’s Algorithm

Yen’s algorithm is used for finding the K shortest paths between a pair of nodes in a graph.

It first finds the shortest path and then iteratively finds the next K-1 shortest paths by

modifying the graph and applying Dijkstra’s algorithm.

Singh and Singh (50) proposed a parallel implementation of Yen’s algorithm using

CUDA. Each CUDA thread handles a portion of the path modifications and subsequent

shortest path computations. The graph is represented using an adjacency list stored in

multiple arrays to facilitate efficient memory access. The parallel implementation uses

CUDA’s thread hierarchy to manage the computation: blocks of threads are assigned to

different segments of the graph, and individual threads within each block handle specific

path modifications. Shared memory is used to store intermediate results, reducing global

memory accesses. The implementation achieves a 6x speedup over the serial version by

concurrently computing multiple shortest paths and efficiently managing memory and

computation resources on the GPU.

3.2 Query Parallelism

Query Parallelism is a critical aspect of modern database management systems (DBMSs)

and big data processing aimed at optimizing performance and scalability. Various

approaches have been developed to exploit parallel processing capabilities, enabling

databases to handle increasingly complex and voluminous workloads efficiently. By

reviewing existing acceleration methods, we can get inspired to accelerate our pathfinding

operator.
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3.2.1 Intra-Query Parallelism

Intra-query parallelism focuses on parallelizing the execution of a single query by dividing

it into smaller tasks that can be executed concurrently. This approach can be further

divided into pipeline parallelism, Partitioning parallelism, and dataflow parallelism.

3.2.1.1 Pipeline Parallelism

Pipeline parallelism exploits the natural stages of query processing, such as scanning,

filtering, and aggregation, by executing these stages concurrently across different processing

units. A notable example of this is the Volcano model, which introduces a pull-based

execution model allowing operators to work in a pipelined fashion (51).

Modern implementations have refined this approach to include techniques like vectorized

execution, which processes batches of tuples to minimize overhead and improve cache

performance (52). The Apache Arrow project (53) exemplifies such advancements,

offering a columnar in-memory format that enhances data locality and speeds up analytic

workloads.

3.2.1.2 Partitioning Parallelism

Partitioning parallelism, also known as data partitioning or horizontal partitioning, divides

the dataset into smaller, independent partitions that can be processed in parallel. This

technique is widely used in shared-nothing architectures (54), where each node operates on

its local partition of data. Systems like Google BigQuery (55) and Amazon Redshift (56)

utilize partitioned parallelism to scale out their processing capabilities across distributed

nodes.

Research has shown that effective data partitioning strategies, such as range partitioning,

hash partitioning, and round-robin partitioning, are critical for load balancing and

minimizing data movement across nodes (57). Adaptive partitioning techniques, which

dynamically adjust partitions based on workload characteristics, further enhance the

efficiency of partitioned parallelism (58).

3.2.1.3 Dataflow Parallelism

Dataflow parallelism extends the concept of pipeline parallelism by modeling query

execution as a directed acyclic graph (DAG) of operators, where edges represent data

flow between operators. This model allows for fine-grained parallelism and optimizations,

such as operator fusion and scheduling (59).
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Frameworks like Apache Flink (60) employ dataflow parallelism to execute complex

analytical queries on large-scale data. These systems provide fault tolerance and elasticity,

enabling them to handle varying workloads effectively. Recent research has focused

on optimizing dataflow execution with techniques like dynamic task rebalancing and

speculative execution to further improve performance (61).

3.2.2 Inter-Query Parallelism

Inter-query parallelism focuses on executing multiple queries concurrently by leveraging

the multi-threading and multi-processing capabilities of modern hardware. This approach

is beneficial for environments with high query throughput, such as transactional systems

and real-time analytics platforms.

3.2.2.1 Multi-Threaded Execution

Multi-threaded execution involves spawning multiple threads within a single process

to handle different queries or subqueries concurrently. This approach takes advantage

of multi-core processors to improve query response times and system throughput.

Database systems like PostgreSQL (62) employ multi-threaded execution for parallel query

processing.

Recent advancements in multi-threaded execution include techniques like thread-level

speculation, which allows speculative execution of queries to mitigate the impact of

dependencies and contention (63). Additionally, fine-grained locking mechanisms and lock-

free data structures have been developed to reduce synchronization overhead and improve

scalability (64). Lock-free data structures, such as concurrent queues and hash tables, allow

multiple threads to operate on shared data without using locks, thus avoiding contention

and potential deadlocks.

3.2.2.2 Multi-Processing and Distributed Execution

Multi-processing and distributed execution extend inter-query parallelism to a distributed

environment, where queries are executed across multiple processes or nodes. This

approach is prevalent in cloud-native databases and distributed systems like Google

Spanner (65), which provide global consistency and fault tolerance through distributed

consensus algorithms.

Techniques such as distributed query optimization and federated query processing

have been proposed to efficiently execute queries across heterogeneous data sources and
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geographically dispersed nodes (66). Distributed query optimization involves generating an

execution plan that minimizes data transfer and balances the load across nodes. Federated

query processing, on the other hand, allows queries to be executed across multiple databases

as if they were a single database, using techniques like data localization and query rewriting

to optimize performance.

3.2.3 Hybrid Approaches

Hybrid approaches combine intra-query and inter-query parallelism to leverage the

strengths of both techniques. These approaches aim to maximize resource utilization and

improve overall system performance by dynamically balancing the execution of multiple

queries and subqueries.

3.2.3.1 Adaptive Query Execution

Adaptive query execution (AQE) is a hybrid approach that dynamically adjusts query

execution plans based on runtime statistics and feedback (67). This technique allows

for better handling of data skew, resource contention, and changing workloads. Systems

like Apache Spark (68) have integrated AQE to optimize execution plans and improve

performance.

Research in AQE has focused on techniques like re-optimization, which revisits and

adjusts execution plans during query execution, and adaptive partitioning, which adjusts

data partitioning strategies based on runtime information (69). Re-optimization allows the

system to change the execution strategy mid-query, based on observed data distributions

and system load. Adaptive partitioning dynamically changes the size and number of

partitions to ensure a balanced load and efficient resource use.

3.2.3.2 Federated Query Processing

Federated query processing involves executing queries across multiple, potentially

heterogeneous data sources. This approach combines intra-query parallelism for local

execution with inter-query parallelism for coordinating across data sources. Systems like

Presto (70) and Apache Drill (71) exemplify federated query processing, providing a unified

query interface for disparate data sources.

Recent advancements in federated query processing include techniques like data

virtualization (72), which abstracts underlying data sources, and query optimizations (73),

which optimize query execution across heterogeneous systems. Data virtualization allows
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users to query different data sources without needing to know the specifics of each source,

while query optimizations aim to minimize data transfer and processing time by pushing

computations closer to the data source.

3.3 DBMSs Supporting Path-finding

Graph path-finding is an essential feature in database management systems (DBMSs)

for applications such as social networks, logistics, and recommendation systems. DBMSs

supporting graph path-finding can be categorized into native graph systems and multi-

model systems. Native graph systems refer to systems that are graph-oriented from the

beginning of their design, and they usually have the most sophisticated graph operations.

Multi-model systems refer to the fact that as graphs have become more important, some

traditional relational databases have supported graph operations through plug-ins or

extensions, etc., and they are easy to integrate with data sources already in use. Below is

a summary of selected most popular DBMSs from the DB-Engines Ranking (74).

3.3.1 Native Graph DBMS

3.3.1.1 Neo4j

Neo4j (75) is a leading native graph database known for its efficient graph processing

and robust querying capabilities. It employs the Cypher (76) query language, which is

purpose-built for handling graph data, allowing users to express complex graph queries

intuitively.

Neo4j includes a comprehensive library of graph algorithms and uses index-free

adjacency, which allows for direct linking of nodes with their neighbors without

intermediary structures. This significantly improves the performance of graph traversals

and makes Neo4j suitable for applications requiring intricate relationship handling and

real-time updates.

For path-finding, Neo4j supports a range of functions including shortest path, all shortest

paths. The built-in algorithms provided by A to realize these functions are shown in

Table 3.1, which lists the important features of these algorithms.

3.3.1.2 Memgraph

Memgraph (77) is an in-memory native graph database designed for real-time analytics and

transactional workloads. Its architecture is optimized for low-latency processing, making
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Algorithm Source Destination Functionality Directed Undirected Weighted Parallel
Delta-Stepping Single Multi Shortest path √ √ √ √

Dijkstra Single Multi Shortest path √ √ √ ×
A* Single Single Shortest path √ √ √ ×

Yen’s Single Single K-Shortest path √ √ √ √

BFS Single Multi Traversal √ √ × √

DFS Single Multi Traversal √ √ × ×
Random walk Multi Multi Random path √ √ √ √

Bellman-Ford Single Multi Shortest path √ √ √(negative) √

Prim Single Multi Minimum spanning tree × √ √(negative) ×

Table 3.1: Path-finding algorithms for Neo4j

it suitable for use cases such as fraud detection, recommendation systems, and network

analysis.

Memgraph’s in-memory design ensures rapid access to graph data and supports dynamic

schema evolution, allowing modifications to the graph structure without downtime. It also

integrates with various data streaming platforms, enabling real-time data ingestion and

processing.

For path-finding, Memgraph uses the Cypher query language to express complex graph

queries. It supports four built-in path algorithms that can be directly supported by queries.

For unweighted graphs, DFS is used to find all shortest paths from a given vertex to

reachable vertices, and BFS returns only one shortest path for each pair of vertices. For

weighted graphs, Dijkstra’s algorithm is used to return a path with the smallest weight

sum, and an alternative syntax can be used to implement all shortest paths. Memgraph

can support more advanced algorithms, which exist as libraries. Memgraph leverages its in-

memory processing to enhance the performance of these algorithms, ensuring low-latency

responses for real-time analytics.

3.3.1.3 NebulaGraph

NebulaGraph (78) is a high-performance, scalable graph database designed for handling

massive graphs with billions of nodes and edges. It supports the openCypher (79) query

language, allowing users to execute complex graph queries efficiently.

NebulaGraph provides a distributed architecture that ensures data redundancy and fault

tolerance, making it ideal for applications in social networks, recommendation systems, and

network management. The system is optimized for large-scale graph data, ensuring efficient

data handling and processing.
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Algorithm Source Destination Functionality Directed Undirected Weighted Parallel
A* Single Single Shortest path √ √ √ ×

BFS Single Multi Traversal √ √ × ×
Edmond-Karp Single Single Maximum flow √ √ √ ×

Prim Single Multi Minimum spanning tree × √ √ √

Bellman-Ford Single Multi Any shortest path √ √ √(negative) √

Table 3.2: Path-finding algorithms for TigerGraph

NebulaGraph natively supports pathfinding via the FIND PATH statement. This

statement supports directed or undirected graphs, finds paths between two vertices,

obtains single or all shortest paths, or returns all possible paths. The statement supports

returning paths with loops, but the paths are of type TRAIL, which only supports

duplication of vertices. Internally there are various algorithms that support the functional

implementation, including BFS and some highly customizable algorithms. The statement

runs in single-threaded mode. NebulaGraph has algorithm extension libraries (80) to

support more advanced algorithms. The database employs multi-threaded execution and

efficient indexing to parallelize graph queries, significantly enhancing the performance of

path-finding operations. These acceleration techniques ensure quick query responses even

for large-scale graph data.

3.3.1.4 TigerGraph

TigerGraph (81) is a high-performance, distributed graph database known for its ability to

handle complex graph queries and real-time analytics. It supports the GSQL (82) query

language, designed specifically for graph data, enabling users to execute intricate queries

with ease.

TigerGraph excels in performing high-speed graph analytics, making it suitable for

applications in fraud detection, recommendation systems, and social network analysis.

The database is optimized for parallel processing of graph queries, ensuring efficient data

handling and query execution.

TigerGraph supports complex graph operations through TigerGraph Graph Data Science

Library (GDS), where path-finding algorithms can be specified directly in the query. The

supported algorithms are shown in Table 3.2.

3.3.1.5 Dgraph

Dgraph (83) is an open-source, distributed graph database designed for high-performance

graph processing and real-time queries. It supports the GraphQL (84) query language,
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Algorithm Source Destination Functionality Directed Undirected Weighted Parallel
bdBFS Single Single All shortest path √ √ × √

DFS Single Single All simple path √ √ × ×
Dijkstra Single Single Shortest path √ √ √ √

bdDijkstra Single Single Shortest path √ √ √ √

Bellman-Ford Single Multi Shortest path √ √ √ ×

Table 3.3: Path-finding algorithms for Oracle Graph

enabling users to perform complex graph operations using a flexible and expressive syntax.

Dgraph’s native graph storage engine is optimized for fast data retrieval and efficient

graph traversals. This ensures strong consistency and fault tolerance, making it suitable

for applications requiring reliable graph processing.

Dgraph provides a built-in k-shortest path query statement. This query finds the shortest

path for a pair of source and destination points at a time. It supports graphs with non-

negative weights and the result does not contain circular paths. Internally, Dijkstra’s

algorithm is used for implementation.

3.3.2 Multi-model DBMS

3.3.2.1 Oracle

Oracle (85) Database is a leading relational database management system that also offers

extensive support for graph processing through its Property Graph feature. Earlier Oracle

used the PGQL (86) query language to support operations on graphs, and starting in

2023, Oracle began supporting SQL/PGQ (8), which is compliant with the SQL 2023

standard. in addition, Oracle REST Data Services (ORDS) recently supported the

GraphQL language, which extends Oracle’s ability to work with graphs even more.

Oracle Graph supports a rich set of graph algorithms, as shown in Table 3.3. Among

them, the implementation of BFS and Dijkstra applies the idea of bi-directional search,

i.e., the search starts from the source and the target at the same time and the algorithms

will meet in the middle. This approach is able to reduce the amount of computation.

3.3.2.2 Microsoft SQL Server

Microsoft SQL Server (87) is a robust relational database system that extends its

capabilities with graph processing features. It incorporates graph extensions within SQL

to support graph data modeling and querying.
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SQL Server integrates graph data into relational structures using graph tables, allowing

seamless data handling. This integration is complemented by advanced security features,

ensuring secure graph data processing. Starting with SQL Server 2017, Transact-SQL

extensions are applied to support graph operations. Users are allowed to create node

tables and edge tables to represent graphs, both of which are compatible with normal

relational tables.

Shortest path queries in SQL Server are used with the statement SHORTEST_PATH in

conjunction with MATCH. The query supports one-to-one, one-to-many, and many-to-many,

and can only return any one shortest path between two vertices. The query supports only

unweighted graphs. Since SQL Server is closed source, there is no clear source indicating

what the implemented algorithm is. Based on the fact that the query does not support

characteristics such as weights, it is reasonable to assume that the actual algorithm used

is BFS. Listing 1 shows an example to perform shortest path finding.

Listing 1 Find shortest path between two people on SQL Server

SELECT PersonName, Friends

FROM (

SELECT

Person1.name AS PersonName,

STRING_AGG(Person2.name, '->') WITHIN GROUP (GRAPH PATH) AS Friends,

LAST_VALUE(Person2.name) WITHIN GROUP (GRAPH PATH) AS LastNode

FROM

Person AS Person1,

friendOf FOR PATH AS fo,

Person FOR PATH AS Person2

WHERE MATCH(SHORTEST_PATH(Person1(-(fo)->Person2)+))

AND Person1.name = 'Jacob'

) AS Q

WHERE Q.LastNode = 'Alice'

3.3.2.3 PostgreSQL

PostgreSQL (88) is an advanced open-source relational database known for its extensibility

and SQL compliance. It supports graph processing through extensions like pgRouting (89)

and AgensGraph (90), enabling rich graph data functionalities.
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PostgreSQL is highly extensible, allowing advanced customization and integration of

various graph processing capabilities. The database supports a wide range of data types

and indexing techniques, providing robust support for diverse applications.

For path-finding, PostgreSQL supports functions like shortest path and all pairs shortest

path through pgRouting. It implements weighted shortest distance finding mainly by A*

algorithm and Dijkstra’s algorithm while bidirectional versions of these two algorithms

are also implemented for speedup. BFS and DFS and their derived algorithms are used

to construct minimum spanning trees. And K shortest path is implemented by Yen’s

algorithm. None of these algorithms support parallelization and are only capable of

speeding up a batch of searches by running multiple queries simultaneously.

3.3.2.4 MariaDB

MariaDB (91) is a popular open-source relational database that extends its functionality

with graph processing through the OQGRAPH (92) storage engines. These engines enable

users to model and query graph data within the relational framework.

MariaDB’s OQGRAPH storage engine integrates seamlessly with SQL, allowing users

to perform graph operations within a relational context. This provides a straightforward

approach to incorporating graph processing into existing SQL-based applications.

For path-finding, MariaDB supports functions like shortest path through the OQGRAPH

storage engine. The graph still exists as a relational table at the physical layer, but there

is no need to explicitly convert the relational table to a graph structure each time a graph

query is executed. The BFS and Dijkstras algorithms are used to implement the shortest

path query, and the desired algorithm can be specified in the query. OQGRAPH is not

very robust, making it suitable for nightly work on pre-existing data.
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Design & Implementation

The goal of this project is to refactor the shortest path finding functionality already in

DuckPGQ, moving from the UDF implementation to the operator implementation, so

that custom parallelization can be achieved in operators using DuckDB’s Event and Task

interfaces, rather than morsel-driven parallelization handled automatically by DuckDB. As

we mentioned in Chapter 2, the shortest path-finding based on morsel-driven is not able

to fully utilize the resources, and we expect that parallelizing the Multi-source breadth-

first search (MS-BFS) algorithm within the operator itself leads to better performance.

This chapter details how we built the parallelized shortest path finding operator, using the

refactoring and parallelizing of the original algorithm as an entry point.

First, the most basic algorithmic refactoring will be outlined, with some alternative

technical solutions at the implementation level described in detail. Furthermore,

optimization methods can be applied, and their advantages, disadvantages, and feasibility

will be discussed. Finally, the surrounding workflow of the algorithm will be described,

where the execution of the algorithm will be switched from UDF to a local operator

implementation.

4.1 Basic Algorithm Design

4.1.1 Multi-Source BFS in Implementation

The current implementation of the shortest path finding algorithm by DuckPGQ is based

on MF-BFS proposed by (21), as shown in Algorithm 4, which we will refer to as Basic Top-

down Multi-Source Breadth-First Search. The term "basic" indicates that the algorithm is

the basis for subsequent parallel algorithms. The algorithm searches from visited vertices to

find unvisited neighboring vertices, referred to as top-down. Alternatively, the bottom-up
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algorithm is to find neighboring vertices that have already been visited from the unvisited

vertices. A discussion of the bottom-up approach in the context of direction optimization

will be presented in Section 4.5.

Algorithm 4 Basic Top-down Multi-Source Breadth-First Search
change← true

2: while change = true do
next← ∅, change← false

4: for each v ∈ V do
if visit[v] ̸= ∅ then

6: for each n ∈ neighborsv do
next[n]← next[n] | visit[v]

8: end for
end if

10: end for
for each v ∈ V do

12: if next[v] ̸= ∅ then
next[v]← next[v] & ∼seen[v]

14: seen[v]← seen[v] | next[v]
change← change | next[v]

16: end if
end for

18: ReachDetect()
visit← next

20: end while

Unlike the original theoretical algorithm, Algorithm 4 is a pseudo-code closer to the

actual implementation to represent the details better. First, there are three important

variables, visit, next, and seen, all of which are structured as two-dimensional arrays.

The outer layer corresponds to the vertex array V , which has the same length as V .

The inner layer is a bitset to introduce SIMD acceleration, where each bit represents an

independent BFS search, which we call a lane, and the length of the bitset can be set to any

local machine-allowable SIMD vector length. An element of the variable visit[v][l] = true

means that on lane l, vertex v is a visited vertex of the current BFS search iteration, but

visit only includes information about the current iteration. An element of the variable

next[v][l] = true means that on lane l, vertex v is considered the visited vertex for the

next iteration. An element of the variable seen[v][l] = true means that on lane l, vertex v
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Figure 4.1: Finding the shortest path from 1 to 4 with a lower bound of length 3

has already been visited, and it is a superset of visit, containing information from earlier

iterations.

Each run of the outermost loop of the algorithm indicates that the breadth-first search

has completed one iteration. The interior of the loop is divided into four parts in a logical

order. Line 3 is the first part used to initialize the variables for each iteration. Lines 4

to 10 are the second part used to scan each visited vertex on the frontier and find their

neighbors. Line 11 to line 17 is the third part used to exclude already visited vertices from

next so that the final path obtained is loop-free. Lines 18 to 19 are the final part to finish

up, where we check if any of the destination vertices have been visited in the seen, and in

addition, the next of this iteration will be the visit for the next iteration. we also have

a variable change to indicate if the next iteration is necessary, as long as there are still

vertices in the next the next iteration can be carried out.

4.1.2 Bounded Multi-Source BFS

Before discussing how to parallelize MS-BFS, this thesis proposes a shortest-path search

algorithm that supports upper and lower bounds. Upper and lower bounds for shortest

paths are defined as finding the shortest path whose length is between a given upper and

lower bounds for a given source vertex s and destination vertex d. More unambiguously,

the definition is equivalent to enumerating all possible paths between the upper and

lower bounds and finding the shortest among them. Our proposed Bounded Multi-Source

Breadth-First Search (BMS-BFS) is in the WALK mode, i.e., vertices and edges can be

repeated in paths leading to loops, which is shown in Algorithm 5.
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Algorithm 5 Bounded Multi-Source Breadth-First Search (BMS-BFS)
Input: lower, upper

2: change← true

iter ← 1

4: while change = true and iter ≤ upper do
next← ∅, change← false

6: for each v ∈ V do
if visit[v] ̸= ∅ then

8: for each n ∈ neighborsv do
next[n]← next[n] | visit[v]

10: end for
end if

12: end for
for each v ∈ V do

14: if next[v] ̸= ∅ then
if iter ≥ lower then

16: next[v]← next[v] & ∼seen[v]
seen[v]← seen[v] | next[v]

18: end if
change← change | next[v]

20: end if
end for

22: if iter ≥ lower then
ReachDetect()

24: end if
iter ← iter + 1

26: visit← next

end while
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Algorithm 5 demonstrates the design of BMS-BFS. The upper bound is easy to

implement as we keep track of the number of iterations to avoid exceeding the upper

bound. The implementation of the lower bound is related to finding the correct shortest

path because the shortest path with a lower bound may require repeated visits to already

visited vertices during the search. Shown in Figure 4.1 is a graph consisting of 4 vertices

and 5 edges, we want to find the shortest path starting from vertex 1 to vertex 4 with a

minimum length of 3. MS-BFS does not allow visited vertices to be revisited, it only allows

us to find the global shortest path 1 → 4. Our proposed BMS-BFS is divided into two

parts by the lower bound. When the number of iterations is lower than the lower bound,

the visited vertices are not written into seen and the visited vertices are not excluded

from next. When the number of iterations is equal to or greater than the lower bound,

the normal MS-BFS logic is executed. These modifications are located in lines 15 through

18. Thus vertices 3 and 4 can be selected as next in the second iteration, vertex 4 can be

selected as next in the third iteration, and the final path 1 → 2 → 3 → 4 of length 3 can

be searched.

We prove that the path found by BMS-BFS is the shortest of all paths P whose lengths

are between the upper and lower bounds. At the end of the first phase of BMS-BFS the

vertex located at the frontier F is at a distance lower−1 from the source vertex s, and the

set of paths is P1. At the end of the second phase of BMS-BFS, if the destination vertex d

is found, the path P2 in the second phase is the shortest path from F to d. P1 is the prefix

of P that has the same length and P2 is guaranteed to be the shortest, then P1 ∪ P2 is the

shortest of all paths P.

4.1.3 Multi-source BFS Parallelization

4.1.3.1 Intuitive parallelization

In Chapter 2 we mentioned several key points for parallelizing an algorithm, including

eliminating race conditions, reducing communication, and lowering workload imbalance.

We apply these principles to parallelize MS-BFS. MS-BFS is hard to be parallelized with

strong data dependency between different iterations, while the individual loops within each

iteration have low data dependency. The time-consuming operations within an iteration

are concentrated in three loops that scan V . The first loop traverses next sequentially,

the second loop traverses visit sequentially and randomly accesses next, and the third

loop traverses next and seen sequentially. The sequential scanning of arrays can be easily

parallelized by simply dividing V into multiple parts Vw which we refer to as tasks, and
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each thread w processes on one of them, finally aggregating the results. The algorithm

after parallelization is shown in Algorithm 6.

Algorithm 6 Basic Top-down Parallel Multi-Source Breadth-First Search
change← true

2: run on each w ∈ workers

while change = true do
4: change← false

for each v ∈ Vw do ▷ First loop
6: next[v]← ∅

end for
8: for each v ∈ Vw do ▷ Second loop

if visit[v] ̸= ∅ then
10: for each n ∈ neighborsv do

next[n]← next[n] | visit[v] ▷ Random access
12: end for

end if
14: end for

for each v ∈ Vw do ▷ Third loop
16: if next[v] ̸= ∅ then

next[v]← next[v] & ∼seen[v]
18: seen[v]← seen[v] | next[v]

change← change | next[v]
20: end if

end for
22: if workerId = 0 then

ReachDetect()
24: end if

visit← next

26: end while

4.1.3.2 Data Race

Algorithm 6 is not correct because there is a lot of data race.

First, line 11 has a data race because access to next is randomized and multiple threads

may access an element of next at the same time. This race does not exist in a single-source

BFS because next[n] will always end up being set to true by one of the threads rather

than being written to false. However, the elements of a multi-source BFS are arrays, and
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operations on next cannot be considered to be naturally atomic.

Line 11 consists of three instructions, first reading next[n] from memory to a register,

then computing next[n] | visit[v] and staging the result in the register, and finally writing

the result back to memory; they are all non-atomic instructions. The read must occur

strictly after the writeback to avoid information loss. Suppose two threads t0 and t1 access

next[n] = [l0, l1] at the same time, and the read of t1 occurs before the write-back of

t0, at which point both threads consider next[n] = [l0, l1]. Assuming that t0 writes back

next[n] = [l′0, l1] and t1 writes back next[n] = [l0, l
′
1], the final result will be next[n] = [l0, l

′
1]

if the write-back of t0 occurs first, and next[n] = [l′0, l1] if the write-back of t1 occurs first,

whereas we expect the result to be next[n] = [l′0, l
′
1]. In other words, since the unit of

computation is an array, elements that have not been updated by one thread may have

been updated by other threads, leading to the presence of old information and possibly

causing the old information to overwrite the new. Therefore, line 11 must be executed

mutually exclusive across all thread scopes.

Secondly, there is also a data race between the four logical parts within an iteration. The

second part randomly updates next, and it must wait for the first part to reset the entire

next, otherwise, the update may be reset. The third part needs to read next, and since

the second part updates next randomly, it needs to wait for the second part to execute

completely to avoid missing information. The fourth part scans the list of destination

vertices in the implementation to check if they appear in seen. Since the workload is

not significant we assign it to thread 0 which will always be present. However, the third

part needs to be executed completely. These four parts are logically causal and cannot

be executed asynchronously. We could insert the reset of next into the fourth part to

eliminate the wait in the second part, but this optimization breaks the logical readability

of the algorithm and the reset task can be distributed equitably enough that we do not

make it the final choice.

Thirdly, a data race occurs between iterations. In the fourth part of the previous

iteration, after detecting that all the destination vertices have been found, we usually set

change to false to achieve early stopping. The next iteration needs change to determine

if it can be started, so it must wait until the previous iteration has finished executing.

Finally, a data race also occurs when logging paths. In the serial implementation, we

use the following fragment of the algorithm for logging paths:

for each n, e ∈ neighborsv do

2: next[n]← next[n] | visit[v]
for l ∈ S do
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4: if Pv[n][l] = ∅ and visit[v][l] = true then

Pv[n][l]← v

6: end if

if Pe[n][l] = ∅ and visit[v][l] = true then

8: Pe[n][l]← e

end if

10: end for

end for

Two two-dimensional arrays Pv and Pe are used to log the vertices and edges on the path,

respectively. The line Pv[n][l] = v means that vertex n has predecessor v on BFS instance l,

the line Pe[n][l] = e means that vertex n has edge e with its predecessor v on BFS instance

l. The term S means the set of all lanes. Before assigning, it is necessary to check whether

the predecessors and edges have already existed, this is to prevent destroying paths that

have been constructed in previous iterations.

In a parallel environment, there is no guarantee that edges and vertices are matched.

Suppose two threads t0 and t1 are processing vertices v0 and v1, and both vertices have

a successor n at the same time, with corresponding edges e0 and e1. In this case,

we have two alternative paths, v0
e0−→ n and v1

e1−→ n. However, since the logging

of the vertices and edges is executed separately, the result will likely be disordered to

v0
e1−→ n or v1

e0−→ n. So the logging of the vertices and the corresponding edges must

be mutually exclusive. Considering that any arbitrary mutual exclusion technique would

incur additional performance loss, we devise a lock-free logging approach with the core

idea of using a single variable to log both vertices and edges:

for each n, e ∈ neighborsv do

2: next[n]← next[n] | visit[v]
for l ∈ S do

4: if Pve[n][l] = ∅ and visit[v][l] = true then

Pve[n][l]← {v, e}
6: end if

end for

8: end for

Each element in Pve is a 64-bit unsigned number whose first 30 bits are used to store

vertices and the last 34 bits are used to store edges. The number of vertices and edges that

can be represented by these bits exceeds the amount of data from the LDBC dataset when
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scale factor = 10000, which is used to simulate 10,000 GiB of real data, so we believe

that a 64-bit value is sufficient to represent both vertices and edges. For each assignment,

vertices and edges are first composed into a new value, and then the new value is assigned

to the elements in Pve so that the assignment of vertices and edges is not disturbed by

other threads. If more than one thread is assigned to an element at the same time, it

means that there are multiple alternative paths, and we only need to get any one of them

so no other synchronization measures are needed.

Algorithm 7 is the correct algorithm after eliminating the data race. We add sync at

line 12 to indicate that the line of code needs to be executed mutually exclusive. Between

parts, a barrier indicates that threads need to wait for all other threads to reach this

point before continuing execution.

We analyze the performance of PMS-BFS through the key principles of parallel programs

mentioned in Chapter 2:

• Data partitioning: Sequential access to arrays is naturally parallelizable without

dependencies, i.e., one thread does not need to wait for the results of other threads.

However, there are dependencies on random accesses of line 12. Additionally, there

are dependencies between the different parts, where the next part needs to wait for

the result of the former part.

• Load balancing: When each thread has the same |Vw|, the first and third loops

have the same workload for each thread. However, the number of neighbors per

vertex is variable, resulting in the second loop having varying workloads. We will

discuss the workload balancing approach in detail in Section 4.4.

• Communication overhead: On a single machine, assignment of tasks, processing

of tasks, and collection of results are all zero-copy operations on original arrays.

However, the communication bottleneck exists between the CPU and memory. Each

core requires a constant amount of bus bandwidth per unit of time, and as the

number of threads grows, so does the bus bandwidth demand. When the demand of

the threads exceeds the bus bandwidth, it leads to waiting.

• Race conditions: We eliminate the data race that exists in PMS-BFS through the

sync and barrier instructions. However, the introduction of the synchronization

mechanism makes it inevitable for threads to wait, where all threads need to wait for

the thread that takes the longest to execute, which leads to performance degradation.
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Algorithm 7 Top-down Parallel Multi-Source Breadth-First Search (PMS-BFS)
change← true

2: run on each w ∈ workers

while change = true do
4: change← false

for each v ∈ Vw do
6: next[v]← ∅

end for
8: barrier

for each v ∈ Vw do
10: if visit[v] ̸= ∅ then

for each n ∈ neighborsv do
12: sync next[n]← next[n] | visit[v]

end for
14: end if

end for
16: barrier

for each v ∈ Vw do
18: if next[v] ̸= ∅ then

next[v]← next[v] & ∼seen[v]
20: seen[v]← seen[v] | next[v]

change← change | next[v]
22: end if

end for
24: barrier

if workerId = 0 then
26: ReachDetect()

end if
28: barrier

visit← next

30: end while
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• Scalability: Due to the synchronization mechanism, we believe that PMS-BFS

cannot achieve linear speedup, i.e., the speedup ratio is equal to the number of

threads. As the number of threads grows, individual threads take less time to execute,

making the impact of the worst-performing threads increase, and the idle ratio of all

threads increases. Also, the update to next in the second part of the algorithm is

executed serially, and the execution time consumed grows linearly with the number

of threads. It can be concluded from the analysis that as the number of threads

increases, the speedup ratio first increases rapidly and then flattens out. When the

number of threads is too high, the overall performance is degraded by the effect of

synchronization. In addition, when the number of threads exceeds the number of

physical cores available on the local machine, performance degradation also occurs

because of scheduling between threads.

• Data locality: Except for global variables and unavoidable random accesses to next,

each thread accesses only an entire block of memory within the task, with a high

cache hit rate.

4.2 Barrier

There are many techniques for implementing the barrier, in this section, we choose three

that are widely used and easy to implement: conditional variable, spin lock, and the POSIX

thread (pthread) library. These techniques have advantages and disadvantages, and we will

verify their performance in subsequent experiments.

4.2.1 Condition Variable

In C++, condition variables are a synchronization primitive used to block a

thread until notified by another thread that a particular condition is true. The

std::condition_variable class provides mechanisms for both waiting and notifying. The

wait function is used to block the calling thread until it is awakened by a call to notify_one

or notify_all. The notify_all function is used to wake up all threads currently waiting

on the condition variable, making it particularly useful for implementing a barrier. A

barrier ensures that all participating threads reach a certain point of execution before any

of them proceed, by having each thread wait on the condition variable until the last thread

reaches the barrier and calls notify_all, allowing all waiting threads to continue.
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Under the hood, a condition variable in C++ operates by leveraging a combination of a

mutex and a queue to manage the waiting and signaling of threads. When a thread calls

wait, it first acquires the mutex to ensure mutual exclusion, then checks the condition

in a loop to handle spurious wakeups. If the condition is not met, the thread is placed

into the queue of waiting threads and the mutex is released, putting the thread into a

blocked state. When another thread calls notify_all, the condition variable re-acquires

the mutex, removes all threads from the queue, and transitions them back to a ready state.

These threads then attempt to re-acquire the mutex to proceed. This mechanism ensures

that waiting threads can be efficiently managed and notified in a thread-safe manner.

Internally, this synchronization is typically implemented using platform-specific primitives

such as futexes on Linux or condition variables on Windows, ensuring optimal performance

and correct behavior across different operating systems.

Using condition variables for thread synchronization in C++ has several advantages,

threads consume few resources while waiting and the code is portable. However, there are

also disadvantages, such as the potential for spurious wakeups, where threads are awakened

without any explicit signal, necessitating additional checks within a loop to revalidate the

condition.

2 shows how we implement the barrier based on C++ conditional variables. Whenever

a thread enters Wait, it decrements mCount by one. The last thread will reduce mCount

to 0. Instead of waiting, the thread will call notify_all to wake up the other threads,

and mGeneration will be incremented by one to represent the end of the current barrier,

as well as resetting mCount. While blocking, threads avoid spurious wakeups by checking

if mGeneration has changed.

4.2.2 Spin Lock

A spin lock barrier is a synchronization mechanism used in parallel computing to coordinate

multiple threads, ensuring they all reach a certain point of execution before any can

proceed. This is implemented using spin locks, which are simple locking mechanisms where

threads repeatedly check if the lock is available, effectively "spinning" in a loop until they

acquire the lock. The primary advantage of spin lock barriers is their efficiency in scenarios

with short wait times, as they avoid the overhead associated with context switching, making

them ideal for high-performance, fine-grained parallel applications where locking periods

are brief and contention is low(93, 94).

However, spin lock barriers also have notable disadvantages. The busy-waiting nature of

spin locks can lead to significant CPU resource wastage, especially under high contention,
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Listing 2 C++ Condition Variable Barrier Implementation

class Barrier {

public:

explicit Barrier(std::size_t iCount) :

mThreshold(iCount),

mCount(iCount),

mGeneration(0) {

}

void Wait() {

std::unique_lock<std::mutex> lLock{mMutex};

auto lGen = mGeneration;

if (!--mCount) {

mGeneration++;

mCount = mThreshold;

mCond.notify_all();

} else {

mCond.wait(lLock, [this, lGen] { return lGen != mGeneration; });

}

}

private:

std::mutex mMutex;

std::condition_variable mCond;

std::size_t mThreshold;

std::size_t mCount;

std::size_t mGeneration;

};

as threads consume processing power while waiting for the lock. This can degrade overall

system performance. Additionally, implementing spin locks correctly is challenging due to

the need for atomic operations to avoid race conditions, which may not be efficiently

supported on all hardware architectures(94, 95). Despite these challenges, spin lock

barriers are valuable in scenarios where their simplicity and low overhead in low-contention

situations outweigh their drawbacks.

Listing 3 shows our code for implementing a spin lock-based barrier. Similar to the

conditional variable, all threads enter the loop waiting except the last thread. The last

thread adds one to mGeneration to notify the other threads that the wait is over. The
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variables mCount and mGeneration must be atomic to avoid synchronization errors.

Listing 3 Spin Lock Barrier Implementation

class Barrier {

public:

explicit Barrier(std::size_t iCount) :

mThreshold(iCount),

mCount(iCount),

mGeneration(0) {

}

void Wait() {

auto lGen = mGeneration.load();

if (!--mCount) {

mCount = mThreshold;

++mGeneration;

} else {

while (lGen == mGeneration.load()) {

std::this_thread::yield();

}

}

}

private:

std::mutex mMutex;

std::size_t mThreshold;

std::atomic<std::size_t> mCount;

std::atomic<std::size_t> mGeneration;

};

4.2.3 Pthread Library

In our project, we also utilize the POSIX Threads (Pthreads) library to implement

a barrier. POSIX Threads, defined by the IEEE POSIX 1003.1c standard, provides

a standardized API for creating and managing threads, facilitating efficient parallel

execution in shared memory systems. Pthread barriers are implemented using the

pthread_barrier_t type, which encapsulates the state of the barrier. To use a barrier,

it must first be initialized with pthread_barrier_init, which sets the number of threads

that must call pthread_barrier_wait before any of them can proceed. Each thread that
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reaches the barrier calls pthread_barrier_wait and blocks until the specified number of

threads have reached the barrier. Once the last thread reaches the barrier, all threads are

released and can continue their execution. The underlying mechanism involves maintaining

a count of the number of threads that have reached the barrier and using condition variables

and mutexes to block and wake threads (96, 97). 4 shows how we encapsulate the pthread

API.

The basic principle of the pthread barrier is similar to that of the C++ conditional

variable-based barrier we defined in that it uses conditional variables. However, the

pthread library is highly optimized for UNIX-like systems, leading to better performance on

UNIX-like systems than the more general-purpose C++ condition variable library. Being

oriented towards UNIX-like systems, the pthread library has compatibility issues with other

systems. However DuckDB is a cross-platform DBMS, which makes the pthread library

impractical to use, but we think it is still interesting for comparison.

Listing 4 Pthread Barrier Implementation

class Barrier {

public:

explicit Barrier(std::size_t iCount) {

pthread_barrier_init(&mBarrier, nullptr, iCount);

}

void Wait() {

pthread_barrier_wait(&mBarrier);

}

private:

pthread_barrier_t mBarrier;

};

4.3 Synchronization

For the synchronization of the access to next in the neighbor exploration phase of the

algorithm, there are many techniques to implement. The lanes in the original design are

represented as bitsets, from which we can make atomic bitsets. In addition, classical locking

mechanisms can be used for mutually exclusive accesses.
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4.3.1 Atomic Bitset

In Algorithm 4 we define the data structure of next, visit, seen as

vector<bitset<LANE_LIMIT>>. Access to each element in the vector can be

done by SIMD vector instructions. The following is the assembly code of code

next[0] = next[0] | visit[0] compiled by X86-64 gcc 14.1 with compilation option

-O3 -march=skylake-avx512 -mprefer-vector-width=512:

vmovdqu64 zmm0, ZMMWORD PTR [r13+0]

mov rdi, QWORD PTR [rsp+96]

mov rsi, QWORD PTR [rsp+112]

vporq zmm0, zmm0, ZMMWORD PTR [rbx]

sub rsi, rdi

vmovdqa64 ZMMWORD PTR [rsp+128], zmm0

vmovdqu64 ZMMWORD PTR [rdi], zmm0

vzeroupper

Data transfer and OR operation on bitset are accomplished by SIMD instructions vmovdqu64

and vporq.

On this basis, intuitively, we can atomize each bitset for mutually

exclusive access. In C++, we can define data structures directly using

vector<atomic<bitset<LANE_LIMIT>>>. The new assembly code for C++ code

next[0].store(next[0].load() | visit[0].load()) is:

...

mov r14, QWORD PTR [rsp+96]

call __atomic_load

vmovdqa64 zmm0, ZMMWORD PTR [rsp+256]

...

vmovdqa64 ZMMWORD PTR [rsp+128], zmm0

vzeroupper

call __atomic_load

vmovdqa64 zmm0, ZMMWORD PTR [rsp+256]

...

vporq zmm0, zmm0, ZMMWORD PTR [rsp+128]

vmovdqa64 ZMMWORD PTR [rsp+256], zmm0

vzeroupper

call __atomic_store
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When a bitset is atomized, operations on it can still be performed using SIMD instructions,

but data reads and writes require explicit calls to built-in functions.

The atomized bitset only ensures that reads and writes to elements do not occur

simultaneously, but the entire statement still cannot be executed mutually exclusive. We

additionally need the Compare-And-Swap (CAS) mechanism to ensure that updates to

next are not lost. CAS is an atomic operation used in concurrent programming to achieve

synchronization without traditional locking mechanisms. CAS works by taking three

parameters: a memory location, an expected old value, and a new value. The operation

checks if the current value at the memory location matches the expected old value; if it

does, the memory location is updated to the new value. If not, no change occurs, and

the process can be retried. CAS is executed atomically, ensuring the check-and-update

operation is indivisible, which prevents race conditions. However, CAS can lead to busy-

waiting and higher CPU usage in high-contention scenarios.

CAS needs to poll the data, and we usually set the bitset size to 256 or 512 bits, making

reads and writes expensive and putting a high load on the CPU bandwidth and cache. In

some preliminary experiments, we have observed the low performance of atomized bitsets so

we do not consider it an optional technique in the experiments section. The following code

snippet demonstrates our modifications to the neighbor exploration phase of the parallel

algorithm:

for each n ∈ neighborsv do

2: do

oldNext← next[n]

4: newNext← oldNext | visit[v]

while atomic_cas(next[n], oldNext, newNext)

6: end for

4.3.2 Atomic Segmented Lanes

On top of the atomic bitset, similar to Then et al.(11), we can segment the bitset to avoid

having to read and write the full bitset each time, and to avoid calling the time-consuming

built-in functions. Specifically, for a bitset that is 512 bits wide, we use eight 64-bit

integer variables to represent it in segments. Each integer can be atomic to avoid race

conditions. The new data structure is defined as vector<array<atomic<idx_t>, 8>>. In

the meantime, we modify the Algorithm 7 to be compatible with the segmented bitset:

for each n ∈ neighborsv do
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2: for j ∈ [0, 8) do

do

4: oldNext← next[n][j]

newNext← oldNext | visit[v][j]

6: while atomic_cas(next[n][j], oldNext, newNext)

end for

8: end for

However, while inspecting the assembly code we found that the segmented bitset will

not be able to utilize the SIMD instruction. For the following C++ code:

for (idx_t i = 0; i < 8; i++) {

next[0][i] = next[0][i] | visit[0][i];

}

Its corresponding assembly code is:

mov rax, rbx

mov rcx, rbp

lea rdi, [rbx+64]

.L19:

mov rdx, QWORD PTR [rax]

mov rsi, QWORD PTR [rcx]

or rdx, rsi

xchg rdx, QWORD PTR [rax]

add rax, 8

add rcx, 8

cmp rdi, rax

jne .L19

We assume that this is due to the inability of the compiler to automatically recognize

that the code snippet is vectorizable. It is possible to write correctly vectorized code using

the low-level SIMD API provided by the system, but this poses a compatibility problem.

The loss of the SIMD feature significantly affects serial programs because more instructions

need to be executed, but we believe that this effect is attenuated in parallel programs. In

the experiments section we use the program generated by the compiler without any explicit

SIMD instructions
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4.3.3 Lock

A lock is a synchronization mechanism used in concurrent programming to ensure that

only one thread can access a critical section of code at a time, thereby preventing race

conditions. In C++, the standard library provides std::mutex as a fundamental locking

primitive. By employing std::mutex, a thread can lock a critical section by calling lock(),

ensuring exclusive access, and unlock it by calling unlock() once the critical operation is

complete. This mechanism guarantees mutual exclusion, making it a straightforward and

reliable way to handle concurrent data access.

The performance bottlenecks of locks, particularly those implemented with C++

std::mutex, arise mainly from contention, context switching, and cache line effects. When

multiple threads compete for the same lock, contention leads to threads being blocked and

frequent context switching, which incurs significant overhead due to saving and restoring

thread states. Locking operations involve atomic instructions such as compare-and-swap,

which are inherently costly, ranging from tens to hundreds of nanoseconds depending on

the platform and lock state. Moreover, lock contention causes cache line invalidations

across different CPU cores, leading to cache line bouncing, further degrading performance

by forcing frequent memory reloads. With simpler locks, such as spin locks, frequent cache

invalidations also introduce synchronization overhead because threads that want to lock or

unlock need to frequently query the critical zone. This issue is exacerbated by false sharing,

where independent variables on the same cache line cause unnecessary invalidations.

Considering that the granularity of locks should be as small as possible to minimize

collisions, but not too small to avoid consuming more than the protected code for locking

and unlocking, we lock each bitset in the next vector. For next of length |V |, an array of

mutexes of length |V | is required to protect it. The following algorithmic snippet shows

how we modify Algorithm 7:

for each n ∈ neighborsv do

2: lock(mutex[n])

next[n]← next[n] | visit[v]
4: unlock(mutex[n])

end for

But defining an array of mutexes may bring low cache performance. This is because

normally the CPU reads 64 bytes of data from memory at once, whereas std::mutex is 40

bytes on Linux and 80 bytes on x64_86 systems. Mutex locks and cache lines cannot be

aligned and raise cache read and write requirements.
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4.4 Task Distribution

Fair task distribution is crucial in parallel computing as it ensures that all processing units

are utilized effectively, preventing some from being idle while others are overburdened. This

balance maximizes resource utilization and reduces overall computation time, leading to

improved performance and efficiency. When tasks are evenly distributed, the workload is

processed concurrently, minimizing the time spent waiting for tasks to complete. This

is especially important in high-performance computing applications where imbalanced

workloads can lead to significant delays and inefficient use of computational resources.

Fair distribution also helps in reducing bottlenecks and contention among threads or

processes, thereby enhancing scalability and allowing systems to handle larger and more

complex problems efficiently. Studies have shown that improper task distribution can

lead to up to 30% degradation in performance due to idle CPU cycles and increased

context switching (98). Therefore, employing strategies for dynamic load balancing and

fair scheduling is essential for optimizing the performance of parallel systems.

Observing the PMS-BFS, we find that the workload imbalance mainly appears in

the neighbor exploration part, because different vertices have different out-degrees.

Accordingly, we design two different task creation strategies for the algorithm, namely

dynamic task creation and static task creation.

4.4.1 Task Creation

In the neighbor exploration phase of PMS-BFS, the time consumption of threads is

proportional to the out-degree of vertices on the frontier. To ensure that the work balance

can be achieved by the number numThreads of threads also called workers, we divide the

vertex list V into uneven chunks, where the sum of the out-degrees of the vertices in each

chunk is at least taskSize. During the traversal of the chunks, some vertices not on the

frontier will be skipped, resulting in the actual workload being less than that contained

in the chunks. We mitigate the skip impact by decreasing the taskSize of each chunk so

that a worker can extract tasks from the task list multiple times to attenuate the impact

of a single task. At the same time, task creation follows a round-robin pattern so that the

tasks belonging to each worker are distributed as evenly as possible on V to avoid some

hot vertices being skipped frequently.

Figure 4.2 shows how dynamic task creation is performed on a graph with 12 vertices

and 18 edges. The graph has three edges for vertices V [0] and V [9], two edges for vertices

V [4] and v[10], and one edge for the other vertices. We create tasks for three workers, each
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Figure 4.2: Dynamic task creation for graph with |V | = 12 and |E| = 18

with splitSize of 3. Each worker has its own queue of tasks. We traverse V , whenever the

traversed vertices have no less than splitSize edges, these vertices are divided into a task

chunk and assigned to a worker. Then the edge count is reset and the traversal of vertices

continues with the next chunk being assigned to the next worker. When the last worker

has been assigned a block, we revert back to the first worker for assignment. The result

of task creation on this graph is that worker 0 has two tasks for index ranges [0, 1) and

[6, 9), worker 1 has two tasks for [1, 4) and [9, 10), and worker 2 has two tasks for [4, 6)

and [10, 12).

Algorithm 8 shows the details of dynamic task creation. The task queue for each worker

is represented by workerTasks[workerId], curWorker indicates which worker needs to be

assigned a task currently, taskEdges is used to count the number of edges while traversing

V , and taskStart indicates the starting offset of the current chunk. During traversal, the

number of edges at vertex i can be computed from V [i + 1] − V [i] since the elements in

V are upper bounds on the indexes of the edges of the previous vertices in E. Note that

the last task is likely to be insufficient to form a complete chunk and needs to be treated

specially. Once all tasks have been partitioned, we pair each workerTasks[workerId] with

an atomic task pointer. This pointer is used by the worker to retrieve the task from the

queue. Dynamic task creation is efficient by traversing V only once.

In PMS-BFS, the initialization of next in the first part and the setting of seen and next

in the third part do not involve access to edges, hence their workload is static. On this

basis, for these two parts, we do not use dynamic tasks because of the time cost of fetching
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Algorithm 8 Dynamic Task Creation
Input: V, taskSize, numThreads

2: workerTasks← ∅
curWorker ← 0

4: taskEdges← 0

taskStart← 0

6: for i = 0 to |V | do
vertexEdges← V [i+ 1]− V [i]

8: if taskEdges+ vertexEdges > taskSize and i ̸= taskStart then
workerId← curWorker mod numThreads

10: range← {taskStart,min(taskStart+ taskSize, |V |)}
workerTasks[workerId]← workerTasks[workerId] ∪ range

12: curWorker ← curWorker + 1

taskStart← i, taskEdges← 0

14: end if
taskEdges← taskEdges+ vertexEdges

16: end for
if taskStart < |V | then

18: workerId← curWorker mod numThreads

range← {taskStart,min(offset+ taskSize, |V |)}
20: workerTasks[workerId]← workerTasks[workerId] ∪ range

end if
22: taskQueues← ∅

for i = 0 to numThreads− 1 do
24: taskQueues[i]← {0, workerTasks[i]}

end for
26: return taskQueues
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tasks from the queue. We simply divide V equally into numThreads chunks, such that each

chunk contains a similar number of vertices, and each worker is assigned one chunk. The

static assignment method ensures that workers have theoretically the same amount of work

while each chunk is accessed consecutively with high cache hit performance. Algorithm 9

shows how we create tasks statically.

Algorithm 9 Static Task Creation
Input: vSize, numThreads, workerId

2: blockSize← ⌈ vSize
numThreads⌉

left← blockSize× workerId

4: right← min(blockSize× (workerId+ 1), vSize)

return left, right

4.4.2 Task Fetch

In static task creation, we directly return the range of the corresponding chunk to each

worker, but in dynamic task creation, workers need to have a reasonable mechanism for

extracting tasks from the queue. Initially, each worker can pull tasks from its own queue for

processing. When a worker has processed all the tasks belonging to it while other workers

are still running, it can try to steal work from other workers’ queues. Work stealing is

another mechanism to ensure that the workload of the workers is balanced, and it takes

effect at runtime. Algorithm 10 shows how the fetching of tasks takes place. The variable

offset controls which queue the worker is currently accessing, when offset = 0 the worker

accesses its own queue. Each queue has an atomic pointer to the currently available task in

the queue, which ensures that only one worker acquires each task. After a worker accesses

a queue, the pointer is atomically added to one. If the pointer is within the range of the

queue, the task is available, otherwise, the worker tries to access the next worker’s queue

until all queues have been accessed.

4.5 Direction Optimization

Direction optimization in Breadth-First Search (BFS) focuses on improving efficiency by

dynamically adjusting the search direction during neighbor exploration. Instead of always

expanding the frontier from visited vertices, direction optimization alternates by exploring

from the unseen vertices to the visited frontier when beneficial. This approach reduces

the number of vertices and edges processed in each iteration, thereby speeding up the
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Algorithm 10 Task Fetch
Input: taskQueues, workerId

2: offset← 0

do
4: i← (workerId+ offset) mod |taskQueues|

taskId← atomic_fetch_add(taskQueues[i], 1)
6: if taskId < |taskQueues[i]| then

return taskQueues[i][taskId]

8: else
offset← offset+ 1

10: end if
while offset < |taskQueues|

12: return ∅

search process. By attempting to find frontier vertices from the set of unseen vertices,

direction optimization minimizes unnecessary explorations and balances the workload,

making it particularly effective in large-scale, highly connected graphs. This technique

is highly advantageous in parallel and distributed computing environments, where it helps

to reduce inter-processor communication and evenly distribute the computational load,

leading to significant performance gains over traditional BFS methods. Many studies on

optimizing breadth-first search have applied direction optimization (99, 100), but no study

has explicitly addressed direction optimization under parallelization.

4.5.1 Bottom-up Parallel MS-BFS

When a regular BFS search is performed, the frontier starts at the source vertex and

expands with iterations until it starts shrinking at some intermediate iteration, this process

may take as little as 2 or 3 iterations to complete on small and dense graphs. After

shrinking, the search continues until the destination vertex is found or all feasible paths

have been visited but not found. During all of this time, the number of seen vertices

gradually increases and the number of unseen vertices gradually decreases. At some

intermediate iteration, the frontier is so large that finding neighbors from the frontier

consumes more time than finding neighbors that are frontiers from unseen vertices. This

is the basic principle of direction optimization, and finding frontiers from unseen vertices

is called bottom-up BFS.

Algorithm 11 shows how we can modify the top-down PMS-BFS to bottom-up. Mainly

the neighbor exploration phase of the algorithm is modified. When vertex v is not seen in
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a lane, it has to be used as the starting point of bottom-up to explore whether a neighbor

is in the frontier. If there is a neighbor vertex n within visit[n], next[v] is to be set to

true. Since the element being updated does not collide between multiple threads, there is

no longer the need to guarantee mutual exclusion. In addition, the barrier between the

second and third part is no longer needed since each thread only updates vertices that are

within its own task and there is no race condition.

Algorithm 11 Bottom-up Parallel Multi-Source Breadth-First Search
change← true

2: run on each w ∈ workers

while change = true do
4: change← false

for each v ∈ V ′
w do

6: next[v]← ∅
end for

8: barrier
for each v ∈ V ′

w do
10: if seen[v] has false then

for each n ∈ neighborsv do
12: next[v]← next[v] | visit[n]

end for
14: if next[v] ̸= ∅ then

next[v]← next[v] & ∼seen[v]
16: seen[v]← seen[v] | next[v]

change← change | next[v]
18: end if

end if
20: end for

barrier
22: if workerId = 0 then

ReachDetect()
24: end if

barrier
26: visit← next

end while
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Figure 4.3: Forward and reverse CSRs for a graph

4.5.2 Reverse CSR

Since the type of graphs DuckPGQ deals with is directed and cyclic, the information about

edges contained in CSR is unidirectional, which we refer to as forward CSR. it is easy to

find child vertices from the parent vertices in forward CSR by traversing the set of edges

pointed to by the parent vertices only, but it is very difficult to do so in reverse. Therefore,

to work with bottom-up PMS-BFS, a reverse CSR needs to be created at the same time

as the forward CSR. As shown in Figure 4.3 is the forward and reverse CSRs of a graph

containing 4 vertices and 5 edges, each vertex of the forward CSR points to its set of child

vertices, and each vertex of the reverse CSR points to its set of parent vertices. So we can

use the reverse CSR to find its parent vertices in the frontier from the unseen vertices.

4.5.3 Direction Switching

Two types of metrics are commonly used in the current literature(11, 36, 101) to determine

the timing of switching directions, with the core idea being to estimate the workload

of the next iteration. The first is the number of vertices on the frontier, nf , and the

number of unvisited vertices, nu, with top-down search enabled when nf < nu
α and bottom-

up search enabled when nf >= nu
α , where α is an empirical value. The second is the

sum of the degrees of the vertices on the frontier, mf , and the sum of the degrees of

the unvisited vertices, mu, with top-down search enabled when mf < mu
β , and bottom-
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up search enabled when vice versa, where β is an empirical value. The degree-based

workload estimation is more accurate. However, on some single-source BFSs (102), the

vertex count-based approach performs better because counting vertices is simpler and less

consuming than counting edges. But in multi-source BFS, we have to start counting from

zero in each iteration and cannot use data from the previous iteration, so there is no

significant performance gap between the two methods. Also, metrics based on the number

of vertices struggle to have similar performance on dense and sparse graphs. In subsequent

experiments, we choose the degree-based metrics to determine the direction switching.

The next fragment of the algorithm shows how we count the sum of degrees, where V

denotes the list of vertices in the forward CSR and V ′ denotes the list of vertices in the

reverse CSR:

if next[v] ̸= ∅ then

2: mf ← V [v + 1]− v[v]

end if

4: if seen[v] has false then

mu ← V ′[v + 1]− V ′[v]

6: end if

4.5.4 Effectiveness Argument

On a single-source BFS, it is intuitive that mf grows and mu decreases as iterations

proceed. However, on a multi-source BFS, the growth of mf can be certain, but mu may

not decrease as iterations proceed. The reason for this is that multi-source BFS operates

on multiple lanes, and as long as vertex v has not been visited in any of the lanes, its

degree needs to be added to mu. If multiple sources are spread out on the graph, it is

difficult to make it possible for v to have been visited on all lanes, and this becomes less

likely as the number of lanes increases. We select the graph at scale factor = 10 from the

LDBC dataset, which has 68 673 vertices and 1 839 354 edges, and randomly select 1 and

512 sources and destination pairs on the graph, respectively. Figure 4.4 shows the change

of mf and mu for each iteration when the number of lanes is 512.

As can be seen from Figure 4.4, when there is only one pair of source and destination

vertices, the changes of mf and mu are close to the single-source BFS. it is worth noting

that mf decreases abnormally on the 5th and 6th iterations, which may be due to the

frontier entering the articulation point of the graph. When there are 512 pairs, it is clear

that the variation of mf is smoother, showing an increase followed by a decrease. However
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Figure 4.4: Frontier degree (mf ) and Unseen degree (mu) for 1 and 512 pairs search

mu stays maximal, indicating that no vertex is visited on all lanes from the beginning

to the end. This suggests that bottom-up will always be more computationally intensive

than top-down. However, we assume that in this case when mu is slightly larger than mf

bottom-up search is still worth enabling because it does not need to synchronize during

neighbor exploration while using one less barrier. This may bring performance advantages

to the bottom-up approach. We can use the empirical value β to adjust the threshold

for direction switching. When β is greater than 1, it allows the bottom-up search to be

initiated even if mu is greater than mf . We will explore the optimal β in the experiment

section.

4.6 Operator Workflow

Figure 4.5 shows the workflow within the shortest path finding operator.

After properly parallelizing MS-BFS to PMS-BFS, we can integrate it into DuckDB’s

shortest path finding operator.

At DuckDB, each operator has common interfaces. There are multiple LocalState and

one GlobalState within an operator. LocalState refers to the work that a thread carries

on a single morsel based on morsel-driven parallelism as the lower-level operator pushes

data upwards. LocalState is eventually merged into GlobalState. The process of pushing

data by the lower level operator is called Sink and the process of LocalState being merged

into GlobalState is called Combine. After all the Combines are over the complete data is

68



4.6 Operator Workflow

Figure 4.5: Workflow for path-finding operator

obtained and the operator enters the Finalize phase. After Finalize is executed, the result

data obtained is pushed upwards by the GetData interface.

Our operators follow these interfaces. There are two kinds of Sinks within the operator,

corresponding to the two operands of the operator, CSR creation and src-dst pairs

collection.

In the CSR operand, the data obtained from the scanning of the vertex and edge tables

from the lower level will be pushed to the operator concurrently by the Sink interface. The

input data for each input is the vertices and the number of outgoing edges for each vertex.

The value of each element of the vertex list in CSR is the upper bound of the offset of

the previous vertex’s edges in the edge list, which corresponds to how many edges there

were before that vertex. We can set the number of edges for each vertex in the vertex list

in parallel, and then scan over the list once and compute the rolling sum. So the vertex

list can be constructed in parallel at the same time during the Sink process. Because the

scan-and-compute for constructing the vertex list can only be done after all the CSR Sinks

have been materialized, constructing the edge list can also only be done afterward.

The process is similar for the pairs operand. The lower-level scan operator scans the data

from the pairs table and then concurrently pushes the data through the Sink interface. The

Combine interface is also called to assemble to get all the pairs.

When both sinks are materialized, the Finalize interface will be called. The first step is

to complete the construction of the edge list for the CSR. First, the vertex list is scanned

over to compute and set the rolling sum, where the offset of each vertex’s edge on the edge

list is known. After that, the edge list can be constructed in parallel. Thereafter tasks can
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be partitioned on the CSR to get the task queue for each worker. For pairs, first, the global

state needs to be materialized because the complete arrays of source and target vertices

need to be obtained. After two arrays are ready, each batch has up to 512 pairs from which

to extract to PMS-BFS, corresponding to the number of lanes set by the algorithm. We

set the number of lanes to 512 because the widest SIMD array (with AVX-512) is 512.

The above process follows DuckDB’s push-based execution model. The two operands

correspond to two separate pipelines with morsel-driven parallelization on the pipeline.

They can be abstracted as Execute events. When all Execute events are finished, Finalize

events are fired, which computes all the data obtained. When Finalize events are completely

finished, Complete events are fired to indicate that the pipeline execution is finished. Our

MS-BFS parallelization extends the event mechanism. Between the Finalize event and the

Complete event, we insert BFS events, with custom parallelization within each BFS event

and serial execution between BFS events, corresponding to multiple batches of BFS.

More detailed, PMS-BFS is wrapped by duckdb::BasePipelineEvent, where multiple

ExecutorTasks can be defined in each Event corresponding to the workers. In an event,

any number of workers can be defined and started, and the scheduling between workers

is hidden by DuckDB. An event ends when all the workers have finished executing. This

mechanism is an abstract encapsulation of threading, providing developers with an easy-

to-use generic threading interface. As a result, we replace DuckDB’s default morsel-driven

parallelism with our custom implementation of the parallelism mechanism.

After the execution of each batch event is completed, the shortest path found will be

inserted into the result. After finally combining the results of all batches, the operator will

push the result data to the upper level via the GetData interface.
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Evaluation

We verify the performance of parallelized shortest path finding through a series of

experiments. First, we perform performance fine-tuning validation to check which

barriers, synchronization techniques, task sizes, and number of threads are optimal. The

effectiveness of the direction optimization is also verified. After choosing the best tuning

parameters, we compare the best parallel results with the serial results. Finally, we check

the percentage of time consumed by each part inside the operator to identify possible

performance bottlenecks.

5.1 Experiments Setup

5.1.1 Environments

All experiments were performed on the same machine, which had the following hardware

configuration:

• DuckDB version v0.10.2 Development

• 2 NUMA nodes

• 2 × Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz, 10 cores with Hyper-Threading;

total 20 cores and 40 threads

• 384 GiB RAM

• L1 data cache: 32 KiB per core; L1 instruction cache: 32 KiB per core; L2 cache:

1024 KiB per core; L3 cache: 13.75 MiB shared

• Compiler: GCC 14.1.1
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Scale factor Number of vertices Number of edges
1 10 620 219 450
3 25 870 668 431
10 70 800 2 304 951
30 175 950 6 880 584
100 487 700 23 116 805
300 1 230 500 68 313 982

Table 5.1: Number of vertices and edges for different scale factors

• Operating system: Fedora release 40

5.1.2 LDBC Social Network Benchmark

The Linked Data Benchmark Council (LDBC) (103) provides datasets and standardized

benchmarks designed to evaluate the performance of graph database systems. It provides

a comprehensive set of graph data and queries that simulate real-world scenarios, such as

social networks, to test various aspects of graph processing capabilities, including query

performance, scalability, and data loading efficiency. The LDBC provides different types

of benchmarks, including the Social Network Benchmark (SNB) (104), specifically tailored

to model the complex interactions and relationships found in social network data.

A crucial aspect of the SNB dataset is the concept of the scale factor (SF), which

determines the size of the dataset. The scale factor allows the dataset to be scaled up

or down to meet different testing requirements. For example, a scale factor of 1 (SF1)

represents a smaller dataset suitable for testing on a single machine, whereas a scale factor

of 1000 (SF1000) would generate a significantly larger dataset intended for testing on

distributed systems or high-performance computing environments. In general, the value of

SF can be viewed approximately as how many GiB of data there are.

We select SNB as the dataset and choose scale factors from 1 to 300. The original dataset

will be trimmed down to just two tables, Person and Person_Knows_Person, which will be

used to compose the graph. Person is used as vertices on the graph and edge information is

obtained from Person_Knows_Person. These graphs are relatively sparse with an average

degree of 200 for millions of vertices. Usually, BFS traversal can be accomplished within

seven to eight iterations. Table 5.1 shows the number of vertices and edges in the graph at

each scale factor. For pairs, we randomly select 1 to 4096 pairs of source and destination

vertices from each graph.
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5.2 Tuning Performance

According to the design, we have five fine-tuning parameters, namely the technique of

barrier, the technique of synchronization, the number of threads, the size of the task,

and the β in direction optimization. This subsection determines the optimal parameters

through experiments. To speed up the experiments, all experiments have removed the

recording of paths because it is very time-consuming. The experiments in this section only

query the length of the shortest path between vertices.

5.2.1 Barrier

For the barrier, we mentioned that there are three implementations, which are based

on C++ condition variables, based on spinlock, and based on the pthread library,

in addition, we removed the barriers to observing the effect of barriers on parallel

performance. Synchronization and barrier are two separate events, in the experiments

the synchronization technique is always lock to reduce the noise associated with

synchronization. The number of threads is highly correlated with the performance of

the barrier, we chose 1, 2, 4, 8, 16, 32, 64, and 128 number of threads for our experiments.

The task size may have impact on the barrier efficiency, because the larger the task, the

more likely the workload is unbalanced, we chose 128, 256, 512, and 1024 as the experiment

configuration. Direction optimization is disabled in this experiment. The number of pairs

was fixed to 4096 such that each BFS was run filled and was run for 8 batches to reduce

noise.

Figure 5.1 illustrates the experiment results. There are six subgraphs, each representing

results on SF from 1 to 300. The x-axis of each subgraph represents the number of threads,

and the y-axis represents the complete execution time of the shortest-length query. Each

line in the figure represents the query execution time for one pairing of barrier and task size.

It can be observed that each barrier possesses a similar time profile, showing a decrease

followed by an increase with the increasing number of threads on each SF. The increase

in execution time when the number of threads is too large is because threads exceeding

the number of physical cores lead to scheduling, reducing the degree of parallelism. Where

the condition variable performs slightly worse than pthread for large thread numbers,

suggesting that pthread is better optimized for large numbers of threads. The spinlocks, on

the other hand, show a very noticeable performance degradation for large thread numbers

at SF < 100, considering that the machine has two NUMA nodes, we believe that this

is a performance loss due to node synchronization caused by frequent polling of atomic
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Figure 5.1: Execution time for different barrier implementations
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variables. When PMS-BFS has no barriers, the execution time becomes longer, and the

performance gap reaches 4x when SF = 300, indicating that the loss of information causes

additional iterations to be executed. Lastly, task size had no significant effect on the

performance of the barrier. Considering various techniques, we finally pick the condition

variable as the best implementation because it achieves good performance and can follow

DuckDB’s cross-platform requirements

5.2.2 Synchronization

For the neighbor exploration synchronization, we mentioned that there are three

implementations, which are atomic bitset, atomic segmented bitset, and lock. As we

discussed in Section 4.5, because the atomic bitset has shown poor performance in the

design phase, we do not consider it. In addition, we removed the synchronization to observe

the effect of synchronization on parallel performance. The barrier has been determined by

previous experiments to be based on the condition variable. The number of threads is

highly correlated with the performance of the synchronization. We chose 1, 2, 4, 8, 16,

32, 64, and 128 number of threads for our experiments. For task size, we chose 128, 256,

512, and 1024 as the experiments configuration. Direction optimization is disabled in this

experiment. The number of pairs was fixed to 4096 such that each BFS was run filled and

was run for 8 batches to reduce noise.

Figure 5.4 shows the results of the experiments. The definition of each subplot is the same

as for the barrier experiments. It can be seen that the time curves for each synchronization

technique are similar, showing a rapid decrease and then a slight increase. Lock-based

synchronization has significantly better performance than segmented bitset, since the latter

introduces serial code, this performance gap is to be expected. Similar to the barrier

experiments, task size has no significant effect on synchronization performance. Given the

obvious performance difference, we chose the lock as the best implementation.

We can also note that queries without the synchronization mechanism have significantly

better performance on all datasets. The performance gap between with and without

synchronization is largest when the number of threads is small, illustrating the substantial

performance loss associated with synchronization. However, even without synchronization,

the time curve is still similar to that with synchronization, where the query fails to

achieve linear speedup, suggesting that the bottleneck in the algorithm comes from outside

of synchronization. The results above are for the entire query, which contains parts

that cannot be parallelized, giving incorrect speedups. To compare the speedups more

accurately, we removed the barriers and synchronization from PMS-BFS and only used
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Figure 5.2: Execution time for different synchronization implementations
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Figure 5.3: No synchronization and no barrier PMS-BFS Speedup for different threads on
SF = 300 and pairs = 4096

bottom-up search since it has the same amount of work in each iteration. As shown in

Figure 5.3 is the speedup of the modified algorithm when the number of threads goes from

1 to 64. Unlike previous experiments, the speedup here is calculated purely on the running

time of PMS-BFS itself, not the time of the query. It can be seen that the speedup is

far from linear, indicating that there is indeed a bottleneck affecting performance beyond

synchronization.

5.2.3 Threads Number

We now explore the impact of the number of threads on parallel performance. When

parallelizing a serial program, the best-case performance is that every time the number

of threads doubles, the execution time of the program is halved. However, due to the

presence of unserializable code, communication overheads, and synchronization overheads,

it is often not possible to achieve a linear speedup. We choose condition-variable-based

barrier, and lock-based synchronization, to perform experiments on the number of threads

from 1 to 128 and task sizes from 128 to 1024.

Figure 5.4 illustrates the results of the experiment, with the same definitions of the

subplots as in the previous experiments. It can be seen that as the number of threads
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Figure 5.4: Execution time for different threads number and task size
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increases, the speedup gradually decreases. From a single thread to two threads, double

the speedup can be achieved on large-size graphs, this phenomenon is less noticeable with

smaller graph sizes, because the percentage of time taken by the part of the program that

is not parallelized increases. The machine has 20 physical cores and 40 concurrent threads,

we can see that after the number of threads exceeds 20, the speedup multiplier still grows,

indicating that the hyperthreading technique helps the concurrency of our program. When

SF = 1, the performance gradually decreases after the number of threads is greater than

16, indicating that the overhead from synchronization and scheduling is increasing. This

phenomenon also exists in other SFs, but it is not obvious because BFS itself consumes

a lot of time. In addition, the correlation between task size and number of threads is

not obvious. Finally, considering the convenience of the experiment, we choose 32 as the

optimal number of threads. In a real product, all physical cores should be used.

5.2.4 Task Size

Although we did not observe any significant effect of task size on performance in our

previous experiments, for a more comprehensive comparison we plot Figure 5.5. The first

six subplots in the figure correspond to each combination of a barrier and a synchronization

method, and the last subplot is the sum of the first six subplots. The x-axis of each subfigure

represents the task size and the y-axis represents the number of threads. Each grid in the

subplot means the number of times that the PMS-BFS of that configuration performs best

on datasets with SF ranging from 1 to 300 and pairs ranging from 1 to 4096 in comparison

with other possible configurations. In other words, the larger the number in the grid, the

better the robustness of that configuration on each type of payload. No significant effect of

task size on the performance of the algorithm can be observed from the figure. We choose

256 as the final task size.

5.2.5 Direction Optimization

Recall that in the design phase we assumed that although bottom-up PMS-BFS

typically has more accesses across iterations than top-down, the nature of not requiring

synchronization may allow it to achieve better performance on some iterations. In this

subsection, we verify the correctness of this assumption through experiments and try to find

the optimal β. After applying the optimal parameters obtained from previous experiments,

we enable bottom-up search and set β from 1.0 to 3.0. This is because the value is the

multiplier of the theoretical computation of the bottom-up over the top-down method.
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Figure 5.5: Number of times the specified task size and number of threads reached the fastest
execution time
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SF Top-down β = 1.0 β = 1.25 β = 1.5 β = 1.75

1 0.219836 0.407989 0.408516 0.231391 0.434389
3 0.433990 0.658036 0.464988 0.459835 0.463083
10 0.933430 1.733386 0.806883 1.128601 1.088325
30 2.584600 3.772880 2.047760 3.919304 2.080028
100 7.849802 11.351795 7.194967 12.653576 13.466585
300 21.877030 32.020254 19.457272 17.504649 37.523230
SF β = 2.0 β = 2.25 β = 2.5 β = 2.75 β = 3.0

1 0.321863 0.411080 0.305971 0.416304 0.240690
3 0.943509 0.568147 0.391666 0.516448 0.387394
10 1.073819 1.108598 1.912498 1.919550 1.007618
30 4.532985 5.993518 2.207222 6.141169 2.436672
100 13.346917 13.654138 7.174697 6.400421 15.923058
300 20.256315 41.702507 37.182964 41.895926 20.926702

Table 5.2: Query execution time for top-down PMS-BFS and bottom-up PMS-BFS on
different β, Pairs = 4096

Bottom-up methods can only be initiated with more computations when β is greater than

1. When β is greater than 3, the difference in the amount of computation is too large and

likely exceeds the difference in performance due to synchronization.

Table 5.2 shows the query completion times for top-down PMS-BFS and bottom-up

PMS-BFS with different βs when the number of pairs is 4096. It can be seen that the

bottom-up method is not faster in most cases. The optimal β is 1.25, at which point the

bottom-up method is slightly faster. There are two main reasons for the unsatisfactory

performance of the bottom-up method. First, when using the bottom-up method, we need

to note mf and mu during the iteration, adding two additional trips to traverse the vertex

list in effect. Second, as we can learn from previous experiments, the algorithm does

not have a very large performance gain with 32 threads when there is no synchronization

mechanism, giving less potential for improvement. So we do not enable bottom-up search

in the final comparison with the serial version.

5.3 Performance Scalability

Through tuning experiments, an optimal set of parameters is obtained. This configuration

is considered best in combination when the barrier is based on the condition variable,

synchronization is based on lock, the number of threads is 32, the task size is 256, and
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direction optimization is not enabled. After applying the optimal parameters, we compare

the parallel operator with the serial version. There are two serial versions, user-defined

function (UDF) based shortest path finding and operator-based shortest path finding,

where the operator-based one replaces the PMS-BFS with MS-BFS. The scalability of the

operator to the graph size and the workload (number of pairs) will be verified. In addition

to performing shortest length finding, we also perform shortest path finding.

5.3.1 Graph Size Scalability

The result of the shortest length finding is shown in Figure 5.6. We keep the number of

pairs constant and change the size of the graph to compare the performance. Regardless

of the implementation of the search, the execution time grows linearly with increasing

SF. It can be noticed that the sequential operator is much slower than the sequential

UDF, considering that both implementations have the same kernel algorithm, then the

sequential operator spends a lot of time on parts other than the search algorithm. The

parallel operator and the sequential UDF have similar performance. As the number of

pairs increases, the performance advantage of parallelism becomes more and more obvious.
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Figure 5.6: Execution time of serial and parallel shortest length operators for different graph
sizes
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Figure 5.7 shows the results of pathfinding. Unlike length finding, path-finding will have

more work per thread. The only difference between path-finding and length-finding is the

addition of logging the path, recalling the logging method mentioned in Section 4.1.3.2.

Since the parent vertex of each vertex on lanes is not the same, it is necessary to record each

lane individually, so it is not possible to utilize SIMD speedup. The time complexity of one

iteration of the serial MS-BFS is O(|V |+ |E|), and the complexity rises to O(|V |+ |E| · |S|)
with the addition of the path logging, which is an increase of about |S| times. The time

complexity of parallel MS-BFS is similar. So we can see that the UDF and operator

implementations of serial pathfinding have similar time consumption because the time

consumed by the parts other than the algorithm is reduced. Also, the parallel operator

can be significantly accelerated because we designed the path logging to be lock-free. The

algorithm can be further optimized to reduce the memory footprint by using 32-bit values

instead of 64-bit values to store parent vertices or edges. However, this may lead to overflow

when processing super-large graphs. Currently, there are 3,709,057,850 edges in the SNB

dataset when SF = 10000, and 32-bit values can represent 4,294,967,296 edges, which is

close to the upper limit.

The parallelization speedup is ineffective when there is only one pair, clearly, the BFS

search is taking too low a percentage of the total query execution time. When there are

more pairs, the effect of parallelization speedup is very obvious.

5.3.2 Workload Scalability

We fix the size of the graph and vary the number of pairs to see how the performance of

the serial and parallel programs changes when there are different amounts of work on a

graph. Figure 5.8 shows the results of performing the shortest length finding. It can be

seen that the serial UDF performs much better than the serial operator. As the size of the

graph increases, the parallel operator becomes more effective. When SF is approximately

equal to 5, it can be estimated that the parallel operator and the serial UDF have close

performance.

Figure 5.9 shows the results of the shortest path finding. All three implementations

of the find follow linear time growth. The sequential UDF and operator have very close

execution times, since the core algorithm takes up the majority of the time, making the

impact of the other parts smaller. The parallel operator has an overwhelming performance

advantage over the other two implementations.

Finally, we summarize the speedup of parallel shortest length finding and shortest path

finding compared to sequential UDF in Table 5.3. The number to the left of each cell of

83



5. EVALUATION

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Execution Time by Scale Factor for 1 Pairs

0

50

100

150

200

250

300

350

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Execution Time by Scale Factor for 16 Pairs

0 50 100 150 200 250 300
Scale Factor

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Execution Time by Scale Factor for 256 Pairs

0 50 100 150 200 250 300
Scale Factor

0

1000

2000

3000

4000

5000

6000
Ex

ec
ut

io
n 

Ti
m

e 
(s

ec
on

ds
)

Execution Time by Scale Factor for 4096 Pairs

Algorithm Type
Sequential UDF
Sequential Operator
Parallel

Figure 5.7: Execution time of serial and parallel shortest path operators for different graph
sizes

data in the table is the shortest length speedup and the right is the shortest path speedup.

The best speedup we achieved using 32 threads on the dataset involved in the experiment

was 11.46.

5.4 Operator Component Costs

In our previous experiments, we mentioned that there are many other parts inside an

operator besides the BFS. These parts consume the main execution time of the operator

instead when the BFS workload is small. The main time-consuming parts of an operator

are the following:

• csr_vertex: The creation of CSR vertices list.

• csr_edge: The creation of CSR edges list.

• pairs_get: Sink and combine source and destination vertex pairs.
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Figure 5.8: Execution time of serial and parallel shortest length operators for different pairs
number

SF Pairs = 1 Pairs = 16 Pairs = 256 Pairs = 4096

1 1.74 | 1.33 1.46 | 2.08 0.90 | 4.54 0.64 | 9.12
3 1.10 | 1.56 0.96 | 4.59 0.98 | 8.55 0.82 | 9.98
10 0.96 | 1.02 0.87 | 4.00 0.74 | 6.60 1.44 | 8.48
30 0.87 | 0.83 1.06 | 4.93 1.17 | 6.17 1.48 | 10.00
100 0.75 | 0.65 1.24 | 6.45 1.43 | 6.87 2.02 | 10.12
300 0.89 | 0.64 1.42 | 5.90 1.74 | 6.80 2.56 | 11.46

Table 5.3: Speedup between parallel operator and sequential UDF (length and path)
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Figure 5.9: Execution time of serial and parallel shortest path operators for different pairs
number

• pairs_materialize: Converting the data structure of pairs into a form that can be

easily processed by algorithms.

• state_init: Initialize BFS runtime variables and parameters, e.g. the three main

variables seen, visit, and next. When paths need to be logged, the parent vertex

array also needs to be initialized. Initialization of variables consumes a lot of time

when the amount of data is huge. Variables are initialized serially in the experiments,

whether parallelism will speed up the process needs to be verified in the future.

• event_init: Extract a batch of pairs, initialize the BFS event and start it.

• bfs: The PMS-BFS algorithm.
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• results_get: Push all results to upper-level operators.

• others_in_operator: Other code in the operator.

• out_of_operator: parts outside of the operator, such as scanning tables and

outputting results.

Figure 5.10 and Figure 5.11 show the proportion of the total time consumed by

each internal component of the shortest length finding when the pairs are 1 and 4096,

respectively. It can be seen that when the number of pairs is 1, the BFS search occupies

only a very small portion of the time, while the major portion of the time is spent on

constructing the CSR. In addition, the parts outside the operator also consume time, but

the percentage decreases as the graphs are expanded. When the number of pairs is 4096,

the BFS search takes up the majority of the total time, followed by CSR construction,

and finally, parts out of the operator are still visible as a noticeable percentage. Overall,

the impact of the other components decreases significantly as the BFS workload increases.

This will be more noticeable in the shortest path finding because BFS with path logging

is very time-consuming.

5.4.1 Bottleneck Analyze

Ultimately, we found that the PMS-BFS-based shortest path operator could not achieve

linear speedup. There are many sources of bottlenecks in a parallel program, we analyze

the sources and importance of bottlenecks by:

• Memory Bandwidth Limitation: The rate at which data can be transferred

between RAM and CPU caches is limited. As more threads simultaneously access

memory, the bandwidth may become saturated, causing contention. According to

the tool stream(105), the actual sequential copy rate of the experiment machine is

111.6 GB/s. When SF = 300, there are 1,230,500 vertices in the graph, each vertex

needs 64 bits i.e. 8 bytes to store, so the size of the vertex list V of CSR is 9.844

MB. There are 68,313,982 edges in the graph, each edge also needs 8 bytes to store,

so the size of the edge list E is about 547 MB. The length of the three important

arrays, seen, visit, and next, is the same as the number of vertices, each element

is 512 bits long, and the size of each array is 78.752 MB. Since we are using a pure

bottom-up search, no locks are used in the process. In top-down search, the effect of

locks needs to be taken into account, for our experiment configuration the amount

of data read for locks in the case of top-down search is about 219 GB.
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Figure 5.10: The time used for each part of the operator in the shortest length finding
(Pairs = 1)

In the experiment shown in Figure 5.3 we know that a bottom-up search running 8

batches of 10 iterations each would take 12.376 seconds. Due to the nature of the

multi-source bottom-up search, each iteration needs to traverse the complete V and

E. Where each iteration V will be read once, E will be read once, next will be read

twice, the elements of visit will be randomly read |E| times, and seen will be read

once. About 33.4GB of data needs to be transferred per second. According to these

figures, without considering other effects, the algorithm’s bandwidth demand does

not exceed the physical upper limit. But obviously if the amount of data increases,

the read and write requirements are likely to exceed the bandwidth.

• Cache Contention: Modern CPUs have multiple levels of cache (L1, L2, L3).

If multiple threads access data that map to the same cache lines, it can cause

cache contention and cache thrashing. Due to the large amount of data required

for searching, it is likely to result in multiple threads accessing a cache line, but the

cache line corresponds to a different memory. This will cause performance loss.

• Cache Miss: Fast CPU access to memory relies heavily on cache performance.
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Figure 5.11: The time used for each part of the operator in the shortest length finding
(Pairs = 4096)

According to Table 2.1, modern CPUs typically access cache and memory at speeds

of 0.4167 - 1.25 nanoseconds for L1 cache, 4.167 - 8.333 nanoseconds for L2 cache,

about 8.333 - 20.835 nanoseconds for L3 cache, and about 41.67+ nanoseconds for

DRAM memory. In our bottom-up search, accesses to the visit array, which has the

largest amount of data, are random and the size of each element is 64 bytes, which

is equivalent to the size of a cache line that a Xeon processor typically has. The

L3 cache of the experiment machine is 13.75MiB, which is much smaller than the

amount of data the program runs. This means that each access to visit is likely to

result in a cache miss and the number of data transfers per second drops from the

theoretical 10.4 GT/s to 24 MT/s. All 32 cores are reading data at the same time,

and each cache miss results in the transfer of 64 bytes of data at a rate of 24 MT/s

per core. it can be calculated that the theoretical random read rate that can be

provided by 32 cores is 49.2 GB/s, which is very close to the actual speed derived

from our previous calculations. Besides memory access time, there are three levels

of cache misses time, Translation Lookaside Buffer (TLB) misses time, etc., so the

actual rate may be lower. Although TLB misses can be avoided by increasing the
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page size, the default page size was not modified in our experiments. With a size of

4KB per page, the visit array requires 19,688 pages to store, so clearly TLB misses

cannot be ignored. In conclusion, the cache miss due to random access becomes a

performance bottleneck.

• Synchronization Overhead: Synchronization mechanisms like locks, barriers, and

atomic operations ensure correct access to shared resources. However, they introduce

overhead and can become a bottleneck.

• Load Imbalance: If the work is not evenly distributed among threads, some threads

may finish earlier and remain idle while others are still processing. We mitigate the

imbalance through dynamic task creation and small-sized tasks.

• Thread Management Overhead: Creating, scheduling, and managing threads

incur overhead. Frequent context switches between threads can degrade performance.

In the experiments, the number of threads used did not exceed the number available

on the system, so scheduling due to too many threads had no effect. However, there

is a large number of barriers in the algorithm. We learned from the experiment

that each barrier of 32 threads will consume 121 milliseconds. When the number

of threads is fixed, the consumption of the algorithm on barriers only grows with

the number of iterations. Considering that for the SNB dataset, the number of

iterations is usually less than 10, the overhead caused by the barrier only accounts

for a very small portion. Also based on previous experiments with barriers, removing

the barriers instead causes the algorithm to be difficult to stop and consumes more

time.

• NUMA Effects: In Non-Uniform Memory Access (NUMA) systems, the latency,

and bandwidth to memory can vary depending on the memory location relative to the

processor accessing it. The experiment machine has two NUMA nodes that access

the same memory. Considering that the machine’s memory is very large, it should

not be local to any of the NUMA nodes. So the overhead does exist. As NUMA

nodes result in slower access to memory and synchronization between cores, it will

exacerbate bottlenecks caused by cache misses and synchronization.

• Amdahl’s Law: Amdahl’s Law states that the speedup of a parallel program is

limited by the serial portion of the program. Based on the operator component

cost experiments, it can be seen that the serial part severely pulls down the overall

performance when the amount of data is not large.
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Future Work

In this chapter, we discuss what other optimizations can be made in the future based on

the work already stated.

6.1 Parallel Bounded Path-finding

In Section 4.1.2 we designed the shortest path-finding algorithm with upper and lower

bounds, which has many optimization directions in the future, including parallelization,

path logging optimization, and so on.

The algorithm has two parts, the first part performs MS-BFS but does not exclude

already visited vertices from the next, and the second part performs normal MS-BFS.

Both parts can directly be parallelized using the parallelism that we designed in our thesis.

Each iteration of the first part will use one less barrier, but the frontier will grow faster,

resulting in more computation.

The most important reason for the degradation of the performance of the algorithm is

the low performance of the path logging. Unlike normal MS-BFS, in the first part of the

algorithm, we need to use the ternary (i, v, l) instead of (v, l) to locate the successor of a

vertex, where i refers to the iteration, v refers to the vertex, and l refers to the lane. Because

vertices may be visited repeatedly on different iterations during the search process, each

visit has a different successor. These successor relations cannot be randomly overwritten

like normal MS-BFS, otherwise it will lead to errors in the path chain. But this means

that we need to use three-dimensional arrays to store the information about the successors,

which will greatly increase the memory requirement. Developing a high-performance and

low-consumption path logging method is an important direction for the future.
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6.2 SIMD Effects

In our design and experiments, we have always set the number of lanes to 512, which

corresponds to the maximum number of SIMD register bits available in the AVX-512

instruction set. One piece of unfinished work is the effect of different lanes on performance.

Recall that we proposed the segmented bitset, a data structure that does not use SIMD

instructions at the instruction level. We have experimentally demonstrated that this

approach does not perform particularly poorly. So it is necessary to study how much

SIMD actually affects the performance. In addition, in the bottleneck analysis subsection,

we point out that each read of a bitset of 512 lanes is likely to result in a cache miss. So

it makes sense to analyze whether fewer lanes add unexpectedly to performance. Finally,

different CPUs support different SIMD instruction widths; Intel’s latest products have

widely used the AVX-512 instruction set, but the NEON technology (24) currently used

by ARM only supports 128-bit SIMDs. so investigating the performance of different lane

widths is necessary in the future.

6.3 Workload Elimination

In addition to parallelizing the algorithm to speed up pathfinding, we can also reduce the

actual workload of the algorithm. This idea comes from the frequent behavior of databases

in real scenarios. When a user performs a shortest path finding, it is very common to have

a query that starts at one vertex and goes to multiple vertices, or vice versa. This kind

of query can be efficiently optimized as a single-source shortest path search since BFS is

essentially a one-to-many search algorithm.

The key difficulty in achieving this optimization is how to efficiently identify from the

input pairs that can be optimized, i.e., how to efficiently remove duplicate elements from

the array. The basic idea is to use hash tables for de-duplication. The offset of the

elements of the hash table is determined by the source vertices, and each element is a list

containing the destination vertices, thus realizing the one-to-many relationship. Since the

hash table needs to be queried after each iteration to determine the completed search, the

high performance of the hash table is critical.

6.4 Advanced Parallelism

The parallelization proposed in the thesis still has room for optimization. We added several

barriers to each iteration of PMS-BFS to avoid race conditions. However, the process can
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be optimized to reduce the use of barriers. One idea is to implement asynchronous PMS-

BFS. the last barrier of each iteration ensures that the change can affect all threads. With

the correct result, we can remove this barrier, allowing some threads to perform the reset to

next without knowing if they can globally move on to the next iteration. In the bottom-up

approach, the barrier between the reset next and the neighbor exploration can be deleted

because the elements of next that the threads need to access are determined, but this

requires that the next reset phase also use dynamic task creation.

In addition, given that the efficiency of speedup grows slower as the number of threads

increases, we can run two or more instances of PMS-BFS at the same time. For example,

running two PMS-BFS on a 40-core machine with 20 cores per algorithm. In this way, the

efficiency of each PMS-BFS in using resources rises, and the global speedup performance

may be better.

6.5 Distributed Parallelism

Although DuckDB is designed as a DBMS for standalone machines, it has the potential to

be extended to distributed databases, e.g., MotherDuck (106). In addition, machines under

the NUMA architecture can be considered as distributed systems with less communication

overhead. So the study of shortest path-finding under distributed systems is also necessary

in the future. Several related works (99) have explored the computation of BFS under

distribution and the core idea is to reduce the communication overhead between threads.

Each thread should compute on local memory as much as possible. Due to the randomness

of top-down search, this approach is not applicable to distributed computation. Instead,

the randomness of the bottom-up search comes from read-only access to the visit, which can

simply be exchanged across threads before each iteration. Since distributed computation

requires exactness in the amount of computation, work-stealing cannot be applied anymore

to avoid threads computing on the memory of other threads.

6.6 Lock Free Algorithm

Top-down search requires locks to help synchronize, and in previous experiments, we have

shown that lock-free algorithms can improve performance by up to 2x. Before developing

lock-free algorithms, algorithms that use fewer locks can be explored. Currently, we lock

each neighbor vertex every time we explore the neighbor. However, not every exploration

leads to contention. Larger granularity of locks can be used to optimize performance.
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There are two technical approaches to implement lock-free. Firstly error recovery can be

implemented. In the shortest path finding MS-BFS, we have implemented lock-free path

logging. The parent vertex array practically duplicates the information contained in the

next array, i.e., which vertices will appear on the frontiers of the next iteration. In this way,

after each iteration, we can correct the next array using the information from the parent

vertex array. The second technical approach is inspired by distributed BFS, where updates

to elements in the next array can be modified to occur only in the worker that owns it.

This approach avoids the possibility of multiple workers modifying the same element but

requires additional space to store modification requests from other workers. And more

communication is required between workers.

6.7 GPU Optimization

GPUs can provide more cores and larger bandwidths, making them ideal for parallel

computing. However, performing computations containing branches in GPUs is expensive.

Analyzing top-down and bottom-up search separately we can conclude that bottom-up

search is more suitable for GPU parallelization. Firstly it does not require synchronization

while exploring neighbors and secondly, the data that needs to be updated by each

worker is determined for each iteration making it very easy for task allocation. However,

GPU parallelization introduces new problems, firstly SIMD instructions on GPUs are

obviously different from CPUs, which involves program refactoring, introducing additional

complexity and reducing maintainability. In addition, the current parallelized MS-BFS

contains a large number of barriers whereas global synchronization on GPUs is expensive.
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Conclusion

In this thesis, we successfully implement PMS-BFS, a shortest path finding algorithm with

custom parallelism integrated into operators, replacing the existing UDF-based finding

that relies on morsel-driven parallelism. During the design process, we also considered

different implementation techniques and compared their performance. In addition, we

tried direction optimization and proved that it has limited optimization for multi-source

BFS, but has potential for distributed computing. Finally, we proved that the new shortest

path finding operator has better performance than UDF through experiments.

Following are answers to the research questions defined for this thesis work:

How best to refactor path-finding in DuckPQG? Instead of UDF, we use an

operator-based parallel shortest path finding algorithm, where the existing event and

task mechanisms of DuckDB can be leveraged for custom parallelization. Inside the

operator, we can control the full flow of function execution, including the construction

of the CSR, the collection of vertex pairs, and performing the BFS search. In addition,

operators have a uniform interface, which facilitates consistency in the development style

of DuckDB. Finally, operator-based methods have better optimization potential and can

be incorporated into the optimization mechanisms of DuckDB.

How to correctly parallelize the MS-BFS algorithm? A requirement for proper

parallelization is the elimination of race conditions. Since race conditions between

iterations are difficult to eliminate, parallelization occurs within iterations. Race conditions

between individual loops within an iteration are eliminated by barriers, and race conditions

due to random neighbor exploration are eliminated by mutual exclusion. These measures

are introduced at the cost of algorithmic performance degradation.
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What techniques can be used to optimize parallelized MS-BFS to improve

speed? First, the barriers and synchronization techniques used by the algorithm in

parallelization can be selected as optimal. We compared three techniques for barriers,

C++ condition variable, spin lock, and Pthread library, and experiments proved that

the condition variable is the best while maintaining compatibility. There are also three

techniques for synchronization, which are atomized bitset, segmented atomized bitset, and

locks. Experiments prove that locks have the best performance. Secondly, we designed

dynamic task creation and work stealing to ensure that each thread has the same amount

of work. Finally, we also explored direction optimization but were experimentally shown

to have limited optimization.

How to embed parallelized MS-BFS into the path-finding operator instead of

UDF? We utilize the generic operator interface of DuckDB. The shortest path operator

has two Sinks for materializing the CSR and vertex pairs. One of them, CSR, can

construct vertex lists in parallel when Sinking. After both are fully materialized, we call

the parallelized MS-BFS in the Finalize interface of the operator, and we need to complete

the construction of the edges of the CSR and the initialization of the runtime environment

parameters of the algorithm before the algorithm is called. The execution of a batch of

vertex pairs is wrapped in a DuckDB event, which can define any task containing the

logic of the algorithm, corresponding to a thread. The scheduling of threads is hidden by

DuckDB. After all batches are executed, the results are pushed upwards by the GetData

interface of the operator.

What is the performance of parallelized MS-BFS? We show through experiments

that the speedup cannot be linear, that it grows slower as the number of threads increases,

and that ultimately there is a lower bound on the execution time. Acceleration is most

efficient at 2 to 4 threads, after which speedup increases less. In addition, it is demonstrated

by experiments that the size of the task block processed by each thread does not have a

significant effect on performance. Finally, we find that for the shortest-length finding

without path logging, the UDF implementation already performs well enough on small

graphs and even outperforms the parallel algorithm. However, when the graph is very

large, the parallel algorithm still has a performance advantage. For shortest path finding,

the parallel algorithm has a considerable speedup, which can reach 11.46 in the case of

SF = 300. The larger the graph size the more obvious the performance advantage of the

parallel algorithm.
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What are the bottlenecks of parallelized MS-BFS? There are many sources of

bottlenecks in the parallel algorithm PMS-BFS. First, the introduction of synchronization

clearly slows down the speed, especially on large graphs. While barriers should theoretically

reduce performance, experiments have shown that the algorithm is difficult to stop without

them. Second, the bottleneck comes from the communication between the CPU and

memory. Although the experiments we conducted with the largest amount of data did not

reach the theoretical memory bandwidth, it is clear that the bandwidth will be insufficient

with larger amounts of data. Finally, by computation, we believe that cache misses lead

to performance degradation.
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