
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Improving Parquet Compression Using
Global Dictionaries in Delta Lake

Author: Eames Trinh (2782581 - etr142)

1st supervisor: Peter Boncz
daily supervisor: Lars Kroll (Databricks)
2nd reader: Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 31, 2025

Abstract

As data lakes grow in scale, optimizing storage efficiency is essential for main-
taining performance and controlling costs. Apache Parquet, a widely used
columnar storage format, offers dictionary encoding to reduce data size, but
this encoding is limited to individual row groups and cannot take advantage
of redundancy across files. This thesis introduces global dictionary compres-
sion for Parquet files in Delta Lake, enabling shared dictionaries that span
multiple files and ensure consistent encoding of repeated values. We present a
system design that integrates global dictionaries with Delta Lake’s metadata
and transaction mechanisms, supports hybrid encoding with local fallbacks, and
maintains compatibility with existing Parquet infrastructure. Extensive bench-
marks on both synthetic and real-world datasets demonstrate storage savings
of well over 10 percent in favorable scenarios, with minimal overhead during
reads and writes. Additionally, we show how global dictionary generation can
be effectively packaged into a background job, contributing to long-term stor-
age optimization with minimal disruption in the write path. These findings
establish global dictionary encoding as a practical and effective enhancement
to Parquet-based data lake systems.

Contents

1 Introduction 1
1.1 Research Objective . 1
1.2 Methodology Overview . 2
1.3 Contribution . 3

2 Background 4
2.1 Database Fundamentals . 4

2.1.1 The Relational Model and SQL . 4
2.1.2 OLAP Workloads and Analytical Queries 4
2.1.3 Query Execution . 5
2.1.4 Storage: Row-Oriented vs Column-Oriented 5

2.2 Apache Parquet . 6
2.2.1 Logical Data Organization . 6
2.2.2 Physical Data Layout and Compression 7
2.2.3 Dictionary Encoding in Detail . 8
2.2.4 Mechanics of RLE_DICTIONARY Encoding 9
2.2.5 Parquet Specification Versions: V1 vs. V2 10

2.3 Delta Lake and Metadata Management . 10
2.3.1 Architecture Overview . 10
2.3.2 Global Dictionary Storage in Delta Lake 11
2.3.3 Challenges and Considerations . 11

2.4 Databricks Tooling . 12

3 Related Work 13
3.1 Current Body of Literature . 13

3.1.1 Metadata Management in Data Lake Table Formats 13
3.1.2 Emerging Columnar Formats and Compression Techniques 14
3.1.3 Dictionary Compression in Columnar Formats 16
3.1.4 Optimizing Dictionary Access and Lookup 16
3.1.5 From Local to Global Dictionaries 17
3.1.6 Summary and Gaps in Existing Work 18

i

CONTENTS

4 Global Dictionary Compression for Static Datasets 19
4.0.1 Scope and Exclusions . 20

4.1 Constructing Global Dictionaries . 21
4.1.1 Value selection . 21
4.1.2 Value normalization . 22
4.1.3 Storage format . 23
4.1.4 Resource considerations . 23

4.2 Modifying the Write Path . 23
4.2.1 Dictionary Creation . 23
4.2.2 Encoding Control Flow . 24
4.2.3 Fallback Strategy . 24
4.2.4 Static Dictionary Lookups . 25
4.2.5 Encoding Type Identifier . 26

4.3 Reading with Global Dictionaries . 27
4.4 Compression Evaluation . 28

4.4.1 Benchmark Setup and Datasets . 28
4.4.2 Frequency Threshold Sensitivity (TPC-DS) 29
4.4.3 Column-Level Compression Analysis 30
4.4.4 Gathering Column-Level Statistics 32
4.4.5 Correlation Analysis of Column Features 33
4.4.6 Uniqueness Proportion Across Datasets 34
4.4.7 Variance in Compression Outcomes 35
4.4.8 Data Type–Level Compression Patterns 36

4.5 Hybrid Dictionary Design . 38
4.5.1 Hybrid Mode Implementation . 38
4.5.2 Index Range Partitioning . 38
4.5.3 Control Flow and Layout . 39
4.5.4 Read Path . 40
4.5.5 Compression Results . 41
4.5.6 Byte Width Rounding Effects in Dictionary Encoding 42
4.5.7 Column-Level Analysis . 43
4.5.8 Byte-Width Analysis . 44

4.6 Indirection Dictionaries Design . 45
4.6.1 Usage Efficiency of Global Dictionaries 45
4.6.2 Impact of Inflated Byte-Widths . 46
4.6.3 Visual Analysis of Global Dictionary Usage 47
4.6.4 Indirection Dictionary Design . 48
4.6.5 Decoder-Aware Dictionary Compaction Optimization 50
4.6.6 Byte Width Optimization Verification 52
4.6.7 Indirection Compression Results . 52
4.6.8 Analysis of Indirection Dictionary Dynamics 53

ii

CONTENTS

4.7 Takeaways From Global Dictionaries on Static Datasets 55

5 Supporting Incremental and Adaptive Use 56

5.1 Delta Log Integration . 57

5.1.1 Designing the Dictionary Metadata Layer 57

5.1.2 Choosing AddFile-Level Metadata 58

5.1.3 Multi-Column Dictionary Packaging 58

5.1.4 Reading a Column Dictionary from a Shared Dictionary File 59

5.2 Decoupling Dictionary Creation from Writes 60

5.2.1 Standalone Dictionary Jobs . 60

5.2.2 Integration into the Write Path . 61

5.2.3 Invoking Dictionary Generation Jobs 61

5.2.4 System Integration Overview . 62

5.3 Experimental Evaluation: Incremental Write Performance 62

5.3.1 Storage Size Results . 64

5.3.2 Space Savings and Asymptotic Behavior in TPC-DS 65

5.3.3 Effect of Batch Count on Compression Effectiveness 67

5.4 Comparing Incremental vs. One-Shot Dictionary Generation 68

5.4.1 Stealing a Dictionary from an Existing Table 69

5.4.2 Implementation Considerations . 69

5.4.3 Experimental Design . 70

5.4.4 Evaluating Incremental vs. One-Shot Dictionary Approaches 70

5.5 Efficient Dictionary Estimation with Sketches 71

5.5.1 Why Exact Frequency Computation is Expensive 72

5.5.2 Sketch Selection and Design Tradeoffs 72

5.5.3 Experimental Evaluation: Efficiency Gains from Sketching 75

5.5.4 Sketch Optimization: Vertical Partitioning 76

5.5.5 Compression Accuracy of Sketch-Based Dictionaries 77

5.5.6 Further Optimizations . 78

5.5.7 Recovering Cardinality Awareness with HyperLogLog 78

5.6 Read and Write Performance Analysis . 79

5.6.1 Caching Optimization . 80

5.7 Global Dictionary Cost/Benefit Analysis . 81

5.7.1 Point Estimate: Best-Case Breakeven Time 81

5.7.2 Limitations of Static Estimates . 82

5.7.3 Incremental Breakeven Evaluation 82

5.7.4 Improving Efficiency via Incremental Dictionary Updates 83

iii

CONTENTS

6 Open Issues and Future Work 85
6.1 Delta Table Lifecycle and Cross-Table Optimizations 85

6.1.1 Dictionary Reuse via CREATE TABLE AS SELECT 85
6.1.2 Integrating Dictionary Generation with Table Optimization 86
6.1.3 Tracking and Exposing Dictionary Effectiveness via Metadata 86
6.1.4 Column-Level Control of Dictionary Encoding 86
6.1.5 Throttling Dictionary Sizes Based on Cardinality Profiles 87
6.1.6 Managing Dictionary File Retention 87

6.2 Query Optimization Opportunities . 87
6.2.1 Standardized Codes and Query Performance 88
6.2.2 Accelerating Aggregations with Precomputed Frequencies 89
6.2.3 Enhancing Cache Efficiency with Block-Aware Dictionaries 89
6.2.4 Toward Dictionary-Aware Query Planning 90

6.3 Sketch Optimizations . 90
6.3.1 Streaming and Incremental Sketches 90
6.3.2 Limitations with Nested Data and Schema Flattening 91

7 Conclusion 92
7.1 Conclusion . 92
7.2 Final Remarks . 93

References 94

iv

1

Introduction

In today’s data-driven world, organizations increasingly rely on large-scale, semi-structured
datasets to support analytical workloads, machine learning, and real-time decision-making.
As data volumes continue to grow, so does the demand for storage formats that are both
space-efficient and performant. Apache Parquet has emerged as a widely adopted solution
in this space due to its columnar layout, which supports efficient I/O, and its built-in
compression techniques, particularly dictionary encoding. By replacing repeated values in
a column with compact integer representations, dictionary encoding helps reduce file sizes
and speeds up query execution.

However, Parquet’s dictionary encoding is inherently limited: it operates only within
the boundaries of a single chunk of a single column in a single file. This local scope
means it cannot exploit redundancies that appear across multiple parts of a file, much
less across different files. In many real-world scenarios, such as logs, user activity records,
or e-commerce transactions, datasets contain numerous repeated values (e.g. user IDs,
country codes, or categories) that recur across files. Parquet’s lack of cross-file awareness
results in missed opportunities for improved compression and efficient data processing.

Delta Lake, a storage layer built on top of Parquet, introduces a metadata-driven ar-
chitecture that offers a potential solution to this limitation. By maintaining a centralized
transaction log and schema information, Delta Lake enables coordination and optimiza-
tion across many Parquet files in a dataset. This centralized control opens the door to
implementing global dictionaries: shared dictionaries that span multiple files and ensure
consistent encoding of values throughout the dataset. Such a mechanism could lead to
significant storage savings and potentially faster query execution (due to integer-based
filtering across files).

1.1 Research Objective

The primary objective of this thesis is to explore the feasibility, design, and storage/performance
implications of implementing global dictionaries in Delta Lake. While dictionary encoding
already provides substantial compression benefits within individual Parquet row groups,

1

1. INTRODUCTION

this research aims to extend those benefits across files by enabling shared, "global" dictio-
naries. The work is motivated by the need to improve storage efficiency and query per-
formance in large-scale data lake environments, particularly in scenarios where datasets
contain significant redundancy across files.

To guide this investigation, the following research questions are defined:

• RQ1: How can a global dictionary be designed and managed across distributed
systems, considering file immutability and evolving datasets? Can global dictionaries
coexist with local dictionaries in a complementary manner?

• RQ2: What are the trade-offs in write, read and storage performance when using
global dictionaries compared to local dictionaries?

• RQ3: How does the system handle newly arriving data with previously unseen
values, and how does this affect dictionary maintenance?

• RQ4: How can global dictionaries be integrated with Delta Lake’s metadata mech-
anisms, such as metadata and add actions?

• RQ5: Can global dictionaries be efficiently utilized during compaction or check-
pointing processes?

1.2 Methodology Overview

The research approach consists of multiple phases, beginning with a literature review and
feasibility study. This is followed by the design and implementation of several prototypes of
global dictionary encoding within the Delta Lake framework. Each prototype is evaluated
under different workloads to understand its impact on compression efficiency, query latency,
and ingestion throughput.

This work is conducted at Databricks, the original creator of Delta Lake. The implemen-
tation and evaluation take place within the Databricks environment, using the Databricks
Runtime (DBR), an extended and optimized version of Apache Spark. This environment
provides practical insights into real-world system behavior and production constraints.
Throughout the project, care is taken to ensure that the core implementation remains as
compatible as possible with and contributes to the open-source Parquet and Delta Lake
projects, so as to make it such that the findings and solutions developed here can be of
value to the broader data engineering and research community.

The methodology involves several key phases. It begins with a review of existing com-
pression and dictionary encoding techniques in Parquet and related systems. Based on this
foundation, a global dictionary architecture is designed and implemented to be compatible
with Delta Lake. The prototype is then iteratively refined through performance testing
and analysis of integration challenges. Finally, the prototypes are evaluated using both
real-world and synthetic datasets to measure their effects on write and read performance,
storage savings, and overall system overhead.

2

1.3 Contribution

1.3 Contribution

This thesis contributes a practical investigation into the design and implementation of
global dictionaries for Delta Lake. Specifically, it offers:

• A novel architecture for supporting global dictionary encoding across Parquet files
using Delta Lake’s metadata coordination layer.

• Multiple working prototypes demonstrating different trade-offs in terms of update
strategies, hybrid dictionary usage, and fallback mechanisms.

• A comprehensive performance evaluation across various datasets.
• Design insights and implementation guidelines for integrating global dictionaries into

real-world data lake systems, including discussion of production feasibility and future
improvements.

Perhaps equally important to the contributions in storage savings, the omission of com-
pute savings must be addressed. Due to the nature of having a single global dictionary
that provides consistent encodings across an entire dataset, potentially massive read-path
optimizations becomes available. This can take the form of efficient cross-file comparisons
on encoded data and aggregation query speedups. Although placed beyond the scope of
this research, we discuss briefly what its impacts may be in Section 6.

3

2

Background

2.1 Database Fundamentals

In this section, we provide a comprehensive overview of fundamental database concepts
necessary to understand the context and motivation for this thesis. The discussion spans
the relational model, query execution, storage models, and characteristics of analytical
workloads. These topics set the foundation for understanding the role of columnar storage
and compression techniques, particularly dictionary compression in Apache Parquet, and
how global dictionaries can offer improvements in performance and efficiency.

2.1.1 The Relational Model and SQL

Relational databases represent data in terms of relations, commonly referred to as tables.
Each table consists of rows (tuples) and columns (attributes), where each column has a
specific data type and semantic meaning. The relational model, proposed by E. F. Codd in
1970 (1), forms the basis of most modern database systems and defines a formal framework
for data storage and manipulation using mathematical set theory and predicate logic.

Structured Query Language (SQL) is the standard language used to query and ma-
nipulate relational databases. SQL supports a wide range of operations including data
definition (DDL), data manipulation (DML), and data querying. A typical SQL query
retrieves data from one or more tables using a combination of operations such as selec-
tion (filtering rows), projection (selecting specific columns), joins (combining rows from
different tables), aggregation (summarizing data), and ordering.

SQL queries are declarative, meaning that the user specifies what data is desired without
detailing how to obtain it. The database query engine is responsible for parsing the SQL
statement, optimizing the query plan, and executing it efficiently.

2.1.2 OLAP Workloads and Analytical Queries

Online Analytical Processing (OLAP) workloads are characterized by complex, read-intensive
queries over large volumes of data (2). Unlike Online Transaction Processing (OLTP),

4

2.1 Database Fundamentals

which emphasizes rapid transactional updates and inserts, OLAP focuses on gaining in-
sights from historical and current data through aggregations, filters, and multi-dimensional
analysis.

A common design pattern for OLAP databases is the star schema, where a central
fact table stores quantitative data (e.g., sales, transactions) and is connected to multiple
dimension tables that provide descriptive attributes (e.g., time, customer, product). Ana-
lytical queries typically access a subset of rows and columns, performing operations such
as grouping, summation, and joining with dimensions to provide context.

Given the scale of data in OLAP systems, efficient query execution becomes critical.
Optimization techniques such as columnar storage, data compression, predicate pushdown,
and vectorized execution are employed to reduce I/O, memory usage, and computation
time (3, 4).

Recent system-level studies reinforce the importance of such optimizations. Snowflake’s
disaggregated cloud-native architecture highlights the need for elasticity, ephemeral inter-
mediate storage, and caching to handle OLAP workloads with diverse and unpredictable
characteristics (5). Meanwhile, Redshift shows how cloud DBMS systems can improve by,
for example, decoupling storage and compute or sharing precompiled queries anonymously
across users (6), a model also employed by Snowflake and Databricks.

2.1.3 Query Execution

Query execution involves translating a high-level SQL query into a series of low-level op-
erations that can be performed on data. The typical stages include:

• Parsing and Validation: The SQL query is parsed into an abstract syntax tree
(AST), which is validated against the schema and syntax rules.

• Logical Plan Generation: The query is converted into a logical plan representing
relational algebra operations such as scans, filters, projections, and joins.

• Optimization: The logical plan is transformed through rule-based and cost-based
optimizations, such as join reordering, predicate pushdown, and subquery flattening.

• Physical Plan Generation: The optimized logical plan is converted into a physical
plan with concrete operators that define how each operation will be executed.

• Execution: The physical plan is executed by the query engine, often using pipelined
and vectorized execution strategies to improve performance (7).

Execution engines in modern distributed systems, such as Apache Spark, compile query
plans into low-level bytecode or native code to eliminate interpretation overhead. Whole-
stage code generation and just-in-time (JIT) compilation are commonly used techniques (8).

2.1.4 Storage: Row-Oriented vs Column-Oriented

The way data is stored on disk and in memory significantly impacts query performance.
Two primary storage models exist:

5

2. BACKGROUND

Firstly, in row-oriented storage, data for each row is stored contiguously. This model
is efficient for OLTP workloads where entire rows are frequently accessed or modified.
However, it can be suboptimal for OLAP queries that only access a subset of columns but
many rows, as unnecessary data must be read and processed.

Column-oriented storage, on the other hand, stores data column by column. All values
of a single column are stored contiguously, allowing efficient access to relevant data for
OLAP queries. This layout enables several optimizations:

• I/O Efficiency: Only the required columns are read from disk, reducing I/O.
• Better Compression: Columns often have homogeneous data types and repeated

values, enabling high compression ratios using techniques such as dictionary encoding,
run-length encoding (RLE), and bit-packing (9).

• Vectorized Execution: Processing columnar data in concurrent vectors of (colum-
nar) data yields several benefits, such as reduced query expression interpretation
cost (in the absence of code generation optimizations) as well as compiler based loop
optimization techniques like SIMD, loop hoisting, and strength reduction (10).

2.2 Apache Parquet

Apache Parquet is an open-source, columnar storage format designed for efficient data
analytics on large-scale datasets (9). It is widely used in modern big data ecosystems
due to its support for flexible schemas, efficient compression, and performance-optimized
read/write operations. Parquet is particularly suited for OLAP workloads, where queries
typically involve reading a small subset of columns from large datasets.

It is worth noting that Parquet is simply one of many data storage formats, and often
competes with contemporaries such as ORC (9), which contains many similar features.
Other nascent formats exist only as research proposals, like Fastlanes (11) or BtrBlocks
(12), which attempts to rely cascading and lightweight encodings like dictionary, run-
length, or FSST encoding (13) in favor general purpose compression techniques like Snappy,
Zstd, or LZ4.

Nevertheless, this section details Parquet’s data organization, focusing on its logical
structure, physical layout, and encoding/compression schemes. Particular attention is
given to dictionary encoding, which plays a central role in this thesis.

2.2.1 Logical Data Organization

Parquet stores data in a hierarchical manner, enabling efficient access and scalability. The
core components of the logical structure are shown in Figure 2.1 (9):

• File: The top-level container that includes a magic number at the beginning, the
metadata in the footer, and one or more row groups in between.

• Row Group: A logical horizontal partitioning of data, containing data for a subset
of rows (as they would correspond to in a traditional DBMS) across all columns.

6

2.2 Apache Parquet

Magic Number

Row Group 1

Column
Chunk 0

Column
Chunk 1

Column
Chunk n

...

Row Group n

Column
Chunk 0

Column
Chunk 1

Column
Chunk n

...

...

Footer

Row Group 0

Column
Chunk 0

Column
Chunk 1

Column
Chunk n

...

Row Group 0

Column Chunk 0

Dictionary Page

[The Netherlands, Brazil, Canada, Japan, Egypt,
Sweden, Argentina, India, South Korea, Mexico,

Italy, Kenya, Australia, Turkey, Vietnam, Germany,
Peru, Thailand, Spain, South Africa, Indonesia...]

Data Page 0

Page Header

Repetition Levels

Definition Levels

Values
[12, 0, 7, 89, 114, 56, 23, 98, 45, 67, 12,

101, 78, 39, 5, 111, 88, 26, 74, 92, 15, 60,
119, 34, 80, 47, 108, 21, 99, 3, 55, ...]

Data Page 1

Column Chunk 1

Example Raw Data
[Canada, Argentina, Canada, The Netherlands,
Vietnam, Canada, Vietnam, The Netherlands]

Dictionary Encoded Data
[2, 6, 2, 0, 14, 0, 14, 0]

Figure 2.1: Parquet file format structure, emphasizing the page structure within column
chunks, and how dictionary encoding is applied within it.

Row groups allow for optimizations such parallel read/write operations and range
filtering.

• Column Chunk: A contiguous block of data for a single column within a row group.
That is, the row group is made up of n column chunks, where n is the number of
columns in the Parquet schema.

• Page: The smallest unit of data. Each column chunk consists of one or more pages (of
1MB size by default). Pages can be of different types (i.e., data pages and dictionary
pages).

The file’s footer stores important metadata, including the schema, row group statistics,
and offsets for efficient navigation during reads.

2.2.2 Physical Data Layout and Compression

Parquet’s physical storage is optimized for efficient I/O and space utilization. Data is stored
in a columnar fashion, meaning that values of the same column are stored together (within
a row group). This design facilitates the application of compression schemes tailored to
the specific data type and value distribution of each column.

There are two general page types in Parquet:

• Dictionary Page: An optional page containing a dictionary of unique values for a
column chunk when dictionary encoding is used.

• Data Page: Contains the actual encoded and compressed data. In the case of
dictionary encoded data pages, the values are array offset referencing dictionary

7

2. BACKGROUND

indices.

Parquet supports multiple encoding schemes1. However, the de facto encodings are those
included in Parquet V1, the most (if not only) used Parquet version in practice. It includes
two encoding types, plain (raw; without compression) and dictionary encoding (mapping
unique values, stored in a dictionary page, to integer indices, stored in the data page, as
surrogate keys).

Beyond encoding, Parquet also uses general-purpose compression (e.g., Snappy, GZIP,
LZO, Zstd) to further compress pages. The compression is applied after encoding, and is
written immediately after the page header. By default, Snappy compression is used.

2.2.3 Dictionary Encoding in Detail

Dictionary encoding is a two-level compression technique that is particularly effective for
string or categorical data with a limited number of unique values (3). The steps involved
are as follows:

1. As each new value is written to the Parquet, it’s existence is checked in the current
dictionary. If absent, add it to the dictionary array before finally encoding its offset
in the dictionary.

2. If the dictionary size passes a certain size threshold (typically 1MB), rewrite all values
using their plain representations. All subsequent pages will be plain encoded, as well.

3. The dictionary is written to a dictionary page; the indices are written using RLE
and bit-packing hybrid encoding.

The dictionary page enables significant space savings and efficient query execution since
comparisons can be done at the index level rather than on full values.

However, Parquet’s dictionary encoding operates at the column chunk level, meaning
each row group’s column chunk has its own independent dictionary (see Figure 2.1). This
design facilitates parallelism and localized compression but introduces several limitations:

• Redundancy: Repeated values across column chunks lead to duplicated dictionar-
ies. This effect is exacerbated when the column already has a limited domain across
the entire dataset.

• Limited Scope: Dictionary size is constrained by row group size and memory limits,
affecting high-cardinality columns.

• Reader Overhead: Each reader must load and manage multiple dictionaries for a
column across different files and row groups.

• Inconsistent Encoding: The same value may have different dictionary indices
in different files, complicating optimizations and indexing as their encoded formats
cannot be directly compared.

To address these challenges, this thesis proposes externalizing dictionaries from the Par-
quet file structure and managing them globally in Delta Lake. Global dictionaries can

1https://parquet.apache.org/docs/file-format/data-pages/encodings

8

2.2 Apache Parquet

improve compression efficiency, reduce redundancy, and enable advanced query optimiza-
tions by leveraging shared value mappings across datasets.

This architectural change requires modifications to both Parquet writers and readers to
support external dictionary lookups during encoding and decoding, as well as integration
with Delta Lake’s metadata and transaction management systems.

2.2.4 Mechanics of RLE_DICTIONARY Encoding

While dictionary encoding in Parquet provides significant space and performance improve-
ments, the internal mechanics of the encoding process reveal further details critical for
understanding its efficiency and its limitations, particularly in the context of this thesis.

Parquet’s RLE_DICTIONARY encoding, the primary dictionary-based compression method
in the original (V1) Parquet specification, combines multiple techniques:

• Dictionary Compression: A unique dictionary is built for each column chunk,
assigning an integer code to each distinct value.

• Run-Length Encoding (RLE): Sequences of identical dictionary codes are stored
compactly by representing the repeated value and its count, rather than listing each
occurrence individually.

• Bit-Packing: To minimize space further, the dictionary codes are stored using only
as many bits as necessary to represent the maximum code value (e.g., 2 bits if there
are 4 unique values).

When writing a column chunk with RLE_DICTIONARY encoding, Parquet first emits a
dictionary page containing all distinct values, followed by one or more data pages that
store sequences of dictionary indices compressed using a mixture of RLE and bit-packing
runs. This layout allows efficient lookups during query execution, but has critical design
trade-offs:

• If a value is highly repeated (e.g., a country column dominated by “United States”),
RLE enables highly compact representation.

• If values are more uniformly distributed, bit-packing ensures that even without rep-
etition, the space usage remains minimal.

However, dictionary encoding in Parquet V1 is restricted to operate per column chunk,
and dictionary page sizes are capped, leading to situations where high-cardinality columns
may exhaust the dictionary, forcing fallback to plain encoding within the same column
chunk.

This detail is particularly relevant for this thesis, as the local, per-chunk nature of dic-
tionary compression in Parquet is a motivating factor for introducing global dictionaries
managed externally through Delta Lake. A global dictionary can overcome the fragmen-
tation and duplication across chunks, offering improved compression efficiency and query
optimization opportunities.

9

2. BACKGROUND

2.2.5 Parquet Specification Versions: V1 vs. V2

Most existing Parquet implementations, including those used in Spark and Delta Lake,
remain based on the original V1 specification.

The V2 specification introduces more advanced encoding techniques, such as delta en-
coding variants for integers and byte arrays, which in theory offer better compression for
specific patterns like incremental or prefix-sharing data. However, V2 has not been widely
adopted in practice. This is largely due to the lack of support across major processing
engines, concerns about interoperability with existing tools, and the additional complexity
it introduces without sufficiently clear benefits to justify replacing the stable and well-
understood V1 formats.

Naturally, this raises concerns about why extending the V1 specification with global
dictionaries would not run into the exact difficulties V2 did. Conducting this research
within Databricks makes this investigation particularly worthwhile, as the managed table
infrastructure provides a controlled environment where introducing enhancements to stor-
age formats is more realistic than in open, heterogeneous systems. In such a context, the
possibility of coordinating global dictionaries transparently for users becomes feasible and
valuable, justifying the focus of this work.

2.3 Delta Lake and Metadata Management

Delta Lake is an open-source storage layer that brings ACID (Atomicity, Consistency, Isola-
tion, Durability) transactions, scalable metadata handling, and unified batch and streaming
data processing to existing data lakes. Built atop Apache Spark and cloud storage systems
(e.g., Amazon S3, Azure Data Lake), Delta Lake introduces a transaction log and schema
enforcement mechanisms that ensure reliability and consistency of data (14).

Traditional data lakes rely on append-only file systems, often leading to issues such as
inconsistent reads, schema conflicts, and complex job orchestration. Delta Lake addresses
these limitations by layering transactional guarantees and scalable metadata management
over existing storage formats, particularly Apache Parquet. It ensures that read and write
operations are isolated and consistent even in highly concurrent environments. In addition,
it supports strong data typing with schema enforcement and evolution, enabling structured
growth of datasets. Delta Lake also offers time travel functionality, allowing users to query
previous versions of data, and it includes performance optimizations such as file compaction
and data skipping, which leverage collected statistics like min/max values and null counts.

In this section, we present an overview of Delta Lake’s architecture, focusing on its
metadata management capabilities, and discuss how its design can support external or
global dictionary management for Parquet data.

2.3.1 Architecture Overview

Delta Lake augments Parquet-based storage with a transaction log and metadata that
reside alongside the data files.

10

2.3 Delta Lake and Metadata Management

Firstly, the core of Delta Lake is its transaction log (stored in the _delta_log directory),
which tracks every change to a Delta table. The log consists of a sequence of JSON or
Parquet files (log entries), each recording data operations (e.g., inserts, deletes, updates),
schema changes, and metadata updates.

The log follows a Write-Ahead Log (WAL) pattern and allows for:

• Atomic commits: Multiple files can be added or removed atomically.

• Versioning: Each transaction corresponds to a new version of the table.

• Concurrency control: Enables multi-writer scenarios with optimistic concurrency.

Delta Lake stores metadata at multiple levels:

• Table Metadata: Table schema, partitioning, and configuration.

• File Metadata: For each file, Delta Lake tracks statistics such as minimum and
maximum values per column, null counts, and record count.

• Custom Metadata: Delta Lake supports storing arbitrary key-value pairs, enabling
extensibility.

2.3.2 Global Dictionary Storage in Delta Lake

Delta Lake’s robust metadata and transaction mechanisms provide a natural foundation for
externalizing dictionary compression by managing global dictionaries outside of individual
Parquet files. The transaction log ensures consistency and versioning, making it feasible
to manage dictionaries in a reliable and scalable manner.

Some of these features are of particular use in storing global Parquet data. Most im-
portant is the centralization delta lake provides. Any Parquet reader or writer can find
a global dictionary file by querying the transaction log to find its file path or version.
In addition, its version control allows safe updates to dictionaries with rollback support,
meaning we can still read old data using old dictionary versions.

2.3.3 Challenges and Considerations

Despite its benefits, several challenges must be addressed for effective integration. First,
performance overhead is a concern, as dictionary lookups during reads and writes must
be optimized, techniques such as caching and batch retrieval may be necessary. Second,
schema evolution introduces complexity: dictionary updates need to remain compatible
with changes in schema while preserving backward compatibility. Finally, tool compatibil-
ity presents a hurdle, since many existing tools expect dictionaries to reside within Parquet
files, whereas external dictionaries require adapted readers and infrastructure.

In the subsequent chapters, we propose and evaluate a system for managing external
dictionaries using Delta Lake and explore its performance and storage benefits in realistic
big data scenarios.

11

2. BACKGROUND

2.4 Databricks Tooling

Parquet files are typically read and written using the open-source Apache Parquet li-
brary. The main Java implementation of this library is known as parquet-mr (also called
parquet-java)1. Although Parquet has implementations in multiple languages, the Java
version is most relevant here because Apache Spark and much of the Databricks ecosystem
are written in Scala and Java, which runs on the JVM and interfaces easily with Java
libraries.

The reader within parquet-mr supports two primary modes: a basic sequential row-based
reader (sometimes called the “naive” reader) and a more optimized vectorized reader. The
vectorized reader processes data in columnar batches, which allows for both better memory
locality and more efficient CPU usage. It also enables parallelism by allowing multiple row
groups or column chunks to be read concurrently, which is essential for distributed data
processing at scale.

Databricks, however, goes beyond the open-source tooling. Internally, it has developed
multiple proprietary Parquet readers and writers, with various iterations aimed at im-
proving performance and reducing overhead. One of the more recent developments is the
Native Frame Reader, a high-performance reader written in C++. This reader is designed
for greater speed and lower memory usage compared to the Java-based implementation.
Despite these advantages, this thesis intentionally avoids relying on Databricks-specific
optimizations. Our goal is to ensure the results are generalizable and reproducible in envi-
ronments that use the open-source stack rather than Databricks-managed enhancements.

Finally, an important feature in the Databricks platform that ties together its I/O infras-
tructure is the DBIO cache. This cache is a block-level caching layer that prefetches entire
blocks from disk into memory—even when only a small portion of the block is required for
a query. This design choice minimizes the overhead of frequent disk I/O operations and
can significantly improve read performance for workloads that repeatedly access similar
data regions.

1https://github.com/apache/parquet-java

12

3

Related Work

The concept of global dictionaries sits at the intersection of several active areas of research
in data storage and query optimization. While dictionary encoding has long been used
as a standard compression technique in columnar formats like Parquet, global dictionaries
remain rare and difficult to implement successfully. They have not seen widespread adop-
tion, partly because new versions of Parquet are hard to deploy broadly in the database
community. Nevertheless, we pursue this idea because, beyond the obvious storage ben-
efits, global dictionaries have the potential to optimize compute by, for example, making
dictionary-encoded values comparable across row groups or files and avoiding expensive
string operations (see Chapter 6). By managing them within managed tables, we can
sidestep the need for wider ecosystem support, which makes this a promising direction to
be explored.

Existing literature related to this topic generally falls into three broad categories. The
first includes work focused on improving dictionary compression itself, either through bet-
ter encoding schemes or space-time tradeoffs, with some of these works touching on, or
implicitly benefiting from, global dictionary structures (13, 15, 16, 17). The second cat-
egory centers on optimizing access and lookup speed within dictionary-encoded systems,
often introducing techniques such as ordered or mostly ordered dictionaries (18, 19, 20, 21).
Finally, a smaller but growing set of research explicitly investigates mechanisms for transi-
tioning from local to global dictionary management, aiming to reduce redundancy, improve
consistency, and enable richer query optimizations across distributed datasets (18, 22, 23).
In the following, we discuss representative work from each of these areas and situate our
approach within this broader landscape.

3.1 Current Body of Literature

3.1.1 Metadata Management in Data Lake Table Formats

Modern data lakehouse table formats like Delta Lake, Apache Hudi, and Apache
Iceberg introduce an explicit metadata layer on top of flat files to support ACID trans-
actions and efficient queries. Delta Lake maintains a transaction log in cloud storage

13

3. RELATED WORK

(with periodic Parquet “checkpoint” files) that tracks all files and table versions (14). This
design avoids expensive object store directory listings by allowing query engines to quickly
read prepared metadata even for billions of partitions instead of enumerating files on each
read (14, 24). Hudi similarly writes timeline delta-logs and also builds a specialized meta-
data table that indexes file names and statistics (24, 25). This Hudi metadata table acts as
a cached lookup for file listings, dramatically speeding up query planning on large tables by
bypassing repeated full directory scans (25). In contrast, Iceberg employs a hierarchical
metadata tree: a top-level JSON table definition points to manifest lists and manifest files
that enumerate the data files and their statistics (24, 26). Each commit in Iceberg creates
a new snapshot and atomically updates the top-level pointer. This hierarchy reduces write
contention and allows readers to load just a handful of small metadata files (the latest table
metadata and a few manifests) to discover relevant data files, rather than scanning a long
log (24). The trade-off is that Delta Lake and Hudi can leverage distributed processing
(e.g., Spark jobs) to scan or compact their metadata for extremely large tables, whereas
Iceberg’s single-file manifests are simple and efficient for moderate table sizes but may
become a planning bottleneck at extreme scale (24).

Recently, the DuckDB project proposed DuckLake, an alternative take on the meta-
data layer. DuckLake forgoes the file-based log or manifest approach and instead stores
table metadata (schema, file index, statistics) inside a single SQLite database accessed
via DuckDB (27). In essence, DuckLake replaces the myriad of JSON/Parquet metadata
files with a traditional SQL catalog stored in one file (27). This design can greatly reduce
round-trip latency to cloud storage and leverage indexing for faster lookups. For instance,
a global dictionary in DuckLake could simply be another table indexed by values or codes,
making dictionary lookups or updates transactional and fast. The trade-off, however, is
compatibility and openness: whereas formats like Delta and Iceberg use human-readable,
file-based metadata (JSON, Avro) for engine interoperability, DuckLake’s approach ties
metadata to a specific database engine format (27). Nonetheless, it demonstrates an ex-
treme point in the design space: pushing all metadata (and potentially dictionaries) into a
single ACID database to minimize overhead. This underscores how crucial the metadata
layer is for any cross-file structure like a global dictionary, whether via log files, manifest
indexes, or an embedded database, the architecture must efficiently broadcast and version
these dictionaries across the data lake.

3.1.2 Emerging Columnar Formats and Compression Techniques

Beyond table formats, a parallel thread of research is innovating on the columnar file for-
mats themselves to improve compression and performance. Several new formats aim to
outperform standard Parquet and ORC in both size and speed. FastLanes (11) redesigns
columnar compression layouts to exploit modern CPUs. It generalizes bit-packing with a
1024-bit virtual SIMD register model and a unified tuple layout, enabling decoding of dic-
tionary, delta, frame-of-reference and RLE encodings at over 100 billion integers per second
in purely scalar code (11). The key insight is that Parquet’s adaptive bit-packing (with

14

3.1 Current Body of Literature

variable run lengths) hinders vectorization, whereas FastLanes uses fixed-size interleaved
blocks that compilers can auto-vectorize (11). This yields extremely fast decompression,
with reported speedups of 40× over Parquet decoding while still reducing storage size by
approximately 40% (11). Such advances illustrate that one can have high compression and
high throughput by carefully co-designing the format with hardware capabilities.

Another example is BtrBlocks (28), a columnar format purpose-built for cloud data
lakes. BtrBlocks analyzes columns in small blocks (e.g., 1MB chunks) and chooses the
best lightweight encoding for each chunk (such as bit-packing, dictionary, delta encoding).
Importantly, all encodings in its arsenal are designed for fast decompression rather than
maximum compression (28). The authors argue that in disaggregated storage (e.g., S3 and
100 Gbit networks), Parquet often becomes CPU-bound due to decoding costs, something
that global dictionaries may likely solve through making decoding unnecessary in many
cases (see Chapter 6). By using simpler schemes and compressing each block independently,
BtrBlocks can significantly speed up scan throughput while still achieving compression on
par with or better than Parquet with ZSTD (28). On TPC-H data, BtrBlocks was shown to
compress approximately 1.5× smaller than Parquet+Zstd and scan faster, by eliminating
the heavy per-tuple decoding logic of Parquet in favor of streamlined operations (28).

Other new formats prioritize not just speed but also flexibility and advanced capabili-
ties. Vortex (29) is an extensible columnar format built on Apache Arrow’s in-memory
structures, enhanced with advanced compression and embedded metadata. A Vortex file
is essentially a collection of Arrow arrays with additional metadata such as per-column
min/max statistics and optional custom compute annotations (29). In its canonical un-
compressed form, a Vortex file resembles an Arrow IPC file, enabling seamless zero-copy
conversion to Arrow in-memory structures (29). Vortex adds column-level compression
and stores summary statistics to enable efficient predicate pushdown (29). For example,
min/max values in the footer allow query engines to skip segments that do not match a
filter (29). The format is explicitly designed to be extensible, so developers can intro-
duce new compression methods or specialized column types without defining a new file
format (29). Overall, Vortex combines Arrow’s interoperability with columnar database
performance while enabling rich metadata such as internal indexes or custom operations.

Lance (30) is a newer format from the machine learning community aimed at balancing
fast sequential scans with fast random access. It was designed for workloads like vector
search, where systems often need to fetch small subsets of data rather than scan entire
columns (30). Parquet struggles in these scenarios because even small reads require scan-
ning footers and row groups. Lance instead organizes data as a single logical row group with
internal indexing, enabling direct access to any row or batch (30). Adaptive structural en-
codings, such as row ordering and column clustering, further optimize access patterns (30).
While it still applies compression (such as LZ4 or dictionary encoding), Lance’s strength
lies in its structural layout (30). By avoiding the overhead of multiple row groups and
embedding auxiliary indexes, Lance significantly improves point lookups and small-range

15

3. RELATED WORK

scans, particularly in cloud storage environments (30). Early results show scan perfor-
mance similar to Parquet on full reads, with much lower latency for selective queries (30),
making it well suited for machine learning workloads with mixed access patterns.

3.1.3 Dictionary Compression in Columnar Formats

A substantial body of research focuses on improving how dictionaries themselves compress
data. Müller et al. (15) propose adaptive dictionary compression for in-memory databases,
selecting the optimal compression technique dynamically based on observed access pat-
terns. Their system chooses between different compression formats (e.g., bit-packing vs.
Huffman coding) depending on data properties, showcasing how flexible dictionary man-
agement can achieve strong space and speed tradeoffs.

Doblander (16) explores dictionary compression in publish/subscribe systems, where
minimizing the cost of transmission is paramount. One notable insight from this work is
the emphasis on online adaptation: dictionaries must evolve as new data arrives, a principle
directly relevant to our goal of supporting incremental updates.

Boncz et al. (13) introduce FSST, a very lightweight string compression scheme based
on static symbol tables. Although FSST is not explicitly global, its focus on extremely
fast decompression and high random-access efficiency align with the performance goals our
system must meet when externalizing dictionaries.

Finally, Tong et al. (17) study principled dictionary pruning for corpus compression.
Using relative Lempel-Ziv (RLZ) coding, they show that aggressive pruning of rarely used
substrings can dramatically shrink dictionary size with little loss of compression quality.
This result highlights a tradeoff we must consider: global dictionaries must be compact
but also broadly representative across datasets.

3.1.4 Optimizing Dictionary Access and Lookup

A second line of research focuses on dictionary layout and lookup optimizations. An-
toshenkov (20) proposes order-preserving dictionary compression, enabling compressed
data to be compared directly without decompression. This work is crucial because global
dictionaries must often support efficient range queries; however, strict order preservation
may require large dictionaries or complicated encoding, limiting practicality.

Binnig et al. (19) extend this idea by designing dictionaries that are both compressed and
order-preserving, allowing faster equality and range scans in main-memory column stores.
They demonstrate that minor sacrifices in compression ratios can yield large performance
benefits when query speed is the primary concern.

Martínez-Prieto et al. (21) also study RDF dictionaries, emphasizing the need for both
fast ID-to-string lookups and efficient string-to-ID encodings. Their findings underscore
that even slight inefficiencies at lookup time can dominate query costs at scale.

Liu et al. (18) propose “Mostly Order Preserving Dictionaries” (MOP), which strike a
compromise between fully ordered dictionaries and purely random ones. Instead of guar-
anteeing strict ordering, they maintain order for a large fraction of the values, improving

16

3.1 Current Body of Literature

the efficiency of range queries while tolerating some disorder. This model is especially
appealing for dynamic or incrementally updated datasets and hints at hybrid strategies
like those we consider in this thesis.

3.1.5 From Local to Global Dictionaries

The third group of works moves beyond local dictionaries and explores how dictionaries
can be shared, reused, or coordinated across datasets.

In a complementary line of work, Gubner et al. (31) propose the Unique Strings Self-
aligned Region (USSR), a lightweight, dynamic query-time dictionary that opportunisti-
cally compresses and caches frequent strings to reduce memory usage and improve cache
locality. Unlike persistent global dictionaries as explored in this thesis, the USSR is con-
structed on-the-fly during query execution and resides entirely in memory, avoiding the
overhead of maintaining consistent dictionaries across files or transactions. Nevertheless,
it highlights the performance potential of dictionary-based approaches beyond static stor-
age optimization, supporting the broader view that dictionary management can benefit
both storage and compute layers.

Foufoulas et al. (22) introduce an adaptive compression scheme for string columns that
uses “differential dictionaries” across file blocks. Inspired by I-frames and P-frames in
video compression, their method selectively uses local or differential dictionaries to balance
compression and lookup speed. They show that by reducing redundancy between blocks,
scan speed can improve dramatically, up to an order of magnitude in some cases. While
their system does not fully externalize dictionaries, it demonstrates the feasibility of cross-
file dictionary sharing, an idea this thesis extends into a more explicit, transactional system
with Delta Lake.

Lemke et al. (23) describe techniques for operating directly on compressed data in SAP’s
TREX engine. Although their work primarily focuses on compression for memory savings,
they stress that direct query processing over compressed representations (e.g., dictionary-
encoded integers) is critical for modern OLAP systems. They note that maintaining a
balance between compression efficiency and query speed is essential.

Apache CarbonData provides perhaps the most complete implementation of a global dic-
tionary (32). It includes support for generating global dictionaries by reading/preprocessing
the entire dataset before the table’s first write, as we do in Chapter 4. It even supports
incremental updates, through an append-only dictionary. However, it has no support for
any hybrid dictionary solution to prevent premature fallback (see Section 4.5) and thus
achieves worse compression ratios on TPC-DS. It also has no support for global dictionary
versioning workflows (see Figure 5.1).

Liu et al. (18) (MOP again) illustrate that partially global dictionaries can still yield most
of the benefits of full globality while remaining flexible for evolving datasets. Their notion
of reserving space for “unknown” values and handling ordering conflicts is an interesting
solution in our use case, where we might want to segment the global dictionary between a
global and local section.

17

3. RELATED WORK

Lastly, while much of the literature treats Parquet as a fixed standard, recent work
by Saeedan and Eldawy demonstrates that it can, in fact, be extended to support new
data types and compression methods (33). Their design of Spatial Parquet integrates
custom geospatial encodings and lightweight indexing into the standard Parquet layout,
while remaining compatible with existing readers and preserving columnar benefits. This
reinforces the view that Parquet is not a static format but an evolving platform capable
of accommodating novel features. Their work supports the feasibility of this thesis’s aim:
to fundamentally alter and augment a key facet of Parquet’s structure.

3.1.6 Summary and Gaps in Existing Work

While extensive research addresses dictionary compression, lookup optimization, and even
preliminary forms of cross-file dictionaries, several gaps remain:

• Transactional Consistency: Existing global or semi-global dictionary proposals do
not integrate with transactional systems like Delta Lake, where concurrent updates
and consistent snapshots are necessary.

• Incremental Global Updates: Few solutions support incremental extension or
replacement of global dictionaries without rewriting large portions of the dataset.

• Hybrid Global-Local Strategies: There is little systematic exploration of hy-
brid models that combine global dictionaries with smaller local augmentations for
flexibility and compatibility.

• Compatibility with Standard Formats: Most prior work assumes bespoke stor-
age formats; adapting global dictionaries cleanly into the Parquet + Delta Lake
ecosystem is still an open challenge.

This thesis advances the field by proposing a practical architecture for global dictionaries
that satisfies ACID properties through Delta Lake’s transaction log, supports efficient
hybrid dictionary designs, and can be extended to incremental update scenarios without
major disruption to existing Parquet infrastructure.

18

4

Global Dictionary Compression for
Static Datasets

The goal of this work is to demonstrate that global dictionaries can reduce the storage
footprint of Parquet files by eliminating redundant local dictionary pages across row groups
and files. In this section, we lay out the motivation, assumptions, and expected benefits
of the approach, particularly in the context of static datasets with stable schemas.

Parquet encodes each row group’s column chunk independently, including its own dic-
tionary page if dictionary encoding is applied. This design favors local parallelism but
leads to significant redundancy when a column has a (large) finite set of recurring values.
Global dictionaries address this by externalizing a single dictionary per column and reusing
it across all chunks and files in the dataset. This decoupling enables compression benefits
and consistency in encoding.

We measure compression effectiveness using the following ratio (34):

Compression Ratio =
SizeBaseline Parquet

SizeParquet + Global Dict
(4.1)

This compares the total on-disk footprint of the dataset when using global dictionaries
(including both Parquet and dictionary files) against a baseline of conventional Parquet
files using local dictionaries. When useful, we will also refer to space saving (expressed in
%) to emphasize proportional improvement, defined as:

Space Saving = 1−
SizeParquet + Global Dict

SizeBaseline Parquet
(4.2)

For example, a 10% space saving is equivalent to a compression ratio of 1.11
While the idea of reusing a global dictionary might seem universally beneficial, its actual

impact depends heavily on the characteristics of the column being encoded. Our hypothesis
is that the approach is most effective for columns with medium-sized domains, typically
with cardinalities in the hundreds or low thousands. The reasoning is as follows:

19

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

• Low-cardinality columns already compress well using local dictionaries because
their dictionary pages are small. Moving to a global dictionary introduces metadata
overhead and may offer negligible improvement.

• High-cardinality columns often exceed the capacity of dictionary encoding al-
together, causing a fallback to plain encoding. These are generally unsuitable for
dictionary-based compression, whether local or global.

• Medium-cardinality columns strike a balance: their domains are large enough
that local dictionaries are expensive to replicate across row groups, but still small
enough to fit comfortably into a single global dictionary. Reusing this dictionary
across chunks removes redundancy while maintaining encoding benefits.

This sweet spot is common in analytical workloads, where such columns include cate-
gorical identifiers like product categories, country codes, device types, or user segments.

4.0.1 Scope and Exclusions

In this static compression setting, we assume the entire dataset is available in advance and
the global dictionary is constructed in a preprocessing step before any files are written.
This is realistic for batch ETL pipelines or data warehousing scenarios where table content
is rewritten in bulk.

While this chapter introduces a structural change to Parquet file layout by replacing
per-chunk dictionaries with shared, global ones, we limit our scope strictly to evaluating
the effects on storage compression. Specifically, we measure the total on-disk size of
Delta tables and global dictionary files combined, without attempting to optimize write
speed, read latency, or memory usage.

Several adjacent concerns are explicitly excluded from our implementation and subse-
quent evaluation of this design:

• Query execution performance. Although global dictionaries may improve query
performance via direct encoded value comparison or faster filtering (see Chapter 6),
we do not investigate such effects here.

• Write-time performance. We do not evaluate the overhead introduced during
dictionary generation or encoding. In some scenarios, these operations may slow
down data ingestion pipelines.

• Reader optimizations. We make minimal changes to the read path to support
external dictionaries, but do not explore cache-aware lookup schemes, in-memory
compaction, or lazy decoding.

• Advanced metadata-driven strategies. While external dictionaries enable pos-
sibilities like adaptive skipping, index building, or predicate pushdown based on
frequency histograms, these are considered out of scope for this work.

We intentionally adopt this narrow focus in order to isolate the question: Can global
dictionaries, in their simplest form, improve storage compression in analytical data lakes?

20

4.1 Constructing Global Dictionaries

Other potential benefits or costs while promising for future work are not addressed in this
evaluation.

4.1 Constructing Global Dictionaries

Global dictionaries must be built before any files are written, making their construction a
critical first step in applying the static compression strategy described earlier. This section
outlines the process of generating a single, reusable dictionary per column, including value
selection, normalization, encoding, and storage.

We assume that the entire static dataset is available and represented as a logical Delta
table prior to write time. This includes the full contents of each column and its associated
metadata. We do not require that the data is materialized in memory at once, but we
assume access to column-level scans or aggregations to extract frequent values efficiently.

4.1.1 Value selection

The core idea behind a static global dictionary is to precompute a list of the most common
values in a column and assign each a fixed index. In this chapter, we use a simple frequency-
based approach: the top-k most frequent values are inserted into the dictionary, where k

is constrained by either a target memory budget or a fixed cardinality cap.
The frequency distribution is computed over the full input dataset. The goal is to balance

two conflicting objectives:

• Coverage: The dictionary should contain as many of the actually-used values as
possible to reduce fallback.

• Compactness: The dictionary should attempt to remain small and avoid introduc-
ing overhead. Moreover, allowing the dictionary to become too large may indicate
the dictionary is working on a large-domain column (e.g. timestamps), and likely
has limited use.

Several heuristics can be used to select which values to include in a global dictionary,
each aiming to balance dictionary compactness and overall compression benefit:

• Frequency-based selection: Include the most frequent values across the column,
under the assumption that coverage is maximized.

• Length-frequency product: Score values by multiplying their string length by
their frequency, prioritizing values that consume the most space overall.

• Entropy reduction: Choose values that, if dictionary-encoded, most reduce the
overall entropy of the column, measured via estimated information gain.

In this chapter, we adopt frequency-based selection as a practical and effective default.
It is simple to compute using standard aggregation tools, produces stable results across a
variety of distributions, and typically ensures that the most common values, those most
likely to repeat across row groups, are encoded. While other strategies may offer additional
gains in specific scenarios (e.g., where long low-frequency values dominate), they require

21

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

Spark Schema
(Nested)

 "user_id" : StringType

"location" : StructType

 "country" : StringType

 "city" : StringType

"metrics" : ArrayType

StructType
"timestamp" : StringType

"status" : StringType

Parquet Format
(Flattened)

 user_id

 location.country

 location.city

 metrics.list.element.timestamp

 metrics.list.element.status

Figure 4.1: Example of a Spark DataFrame schema with nested fields and mixed types.
Global dictionaries must normalize fields like location.city and metrics[].status into
flat, byte-encoded values for compatibility with Parquet encoders.

more metadata, more passes over the data, or additional tuning. Our focus here is to es-
tablish a robust baseline for static dictionary compression without introducing unnecessary
complexity.

4.1.2 Value normalization

Before values are inserted into the dictionary, they must be normalized into the form ex-
pected by the Parquet writer. This ensures consistency between the top-k keys as returned
by the Spark job, and the byte representation that parquet-mr will eventually read back.
This includes:

• Serializing nested or complex types (e.g., struct, array, or map types) by flattening
their schemas and converting their leaf nodes into a deterministic byte format.

• Canonicalizing nulls and corner cases (e.g., treating null and None consistently).
• Enforcing ordering rules (e.g., UTF-8 lexicographic order for strings) to guarantee

repeatable index assignments.

Figure 4.1 shows an example Spark schema that includes both primitive and nested
types, and their corresponding Parquet schema. A column like location.city is easily
extracted and normalized, but arrays of structs (e.g., metrics.status) require consis-
tent flattening and serialization to avoid mismatches between dictionary encoding and the
actual written output. It is critical that we rename the flattened columns to what Par-
quet expects them to be called. For example, metrics.status is a single column called
metrics.list.element.status in the Parquet format. Any inconsistency may result in
invalid lookups or decoding errors at read time. We ensure that normalized dictionary
entries match the exact byte form emitted by the Parquet writer.

Once the normalized set of dictionary values is finalized. Their order/offsets in the global
dictionary will become the values that will be written to data pages via RLE/bit-packing

22

4.2 Modifying the Write Path

compression.
The choice of index ordering can influence performance if the dictionary is ever used for

range queries or binary search, but in this chapter, we do not exploit this ordering beyond
compact representation. A simple frequency-descending or lexicographic order is sufficient.

4.1.3 Storage format

Global dictionaries are written to standalone files, separate from any Parquet data. These
files must be:

• Efficient to load: Readers must be able to map encoded indices back to values
without scanning the full file.

• Self-contained: Each file is structured exactly as a normal dictionary page, with a
header containing metadata about the encoding, number of values, size, etc. and the
data portion.

• Compatible: The format must match the reader and writer implementation in byte
layout and encoding (e.g., prefix length for variable-length strings).

In our implementation, each dictionary is stored as a single file in a dedicated dictionary
directory. For reference, the file layout mimics that of the parquet-mr dictionary page (see
Figure 2.1).

4.1.4 Resource considerations

Building global dictionaries over large datasets raises practical questions around mem-
ory usage, compute cost, and parallelism. While our implementation supports single-pass
aggregation and approximate sketches (see next chapter), the approach in this chapter
assumes that sufficient resources are available to compute exact frequency counts per col-
umn.

These potential optimizations are orthogonal to the main results and not necessary for
evaluating the feasibility of global dictionary compression in static datasets.

4.2 Modifying the Write Path

To apply global dictionary compression effectively, the Parquet writer must be modified to
support encoding values using an external dictionary. This requires changes to the encoding
logic, fallback handling, and metadata emission for each column chunk. In this section,
we describe the integration strategy, focusing on minimal disruption to the standard write
pipeline.

4.2.1 Dictionary Creation

Before each write operation, a dedicated dictionary generation step is triggered. This step
is implemented as a Spark job that performs a groupBy followed by a count on each target
column to compute the global frequency of every distinct value. Once the counts are

23

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

available, a filter is applied based on a minimum count threshold to control dictionary size
and reduce noise from rare or unhelpful values. The resulting top values are then serialized
into global dictionary files, which are reused across all row groups during encoding.

This preprocessing step is mandatory for enabling global dictionary compression, as the
encoding logic depends on the availability of a complete and filtered dictionary in advance.
However, this also introduces a major limitation: the dictionary generation is relatively
expensive and cannot be skipped or delayed. As such, it makes the approach unsuitable for
incremental updates or streaming ingestion, where data is appended in small batches over
time. In these scenarios, re-running the full dictionary generation job before every write
would introduce prohibitive overhead and negate the performance benefits of dictionary
reuse. Consequently, this design is best suited to static datasets that are written in batch
mode, where the cost of a one-time dictionary generation is amortized over the entire write
workload.

4.2.2 Encoding Control Flow

The key decision during writing is whether the values in a given column chunk can be
entirely encoded using the global dictionary. If so, we emit encoded indices into data
pages and omit the dictionary page entirely. If not, we fall back to an alternative encoding
strategy, such as plain encoding or a hybrid local+global approach. The control flow is
shown in Algorithm 1.

This flow preserves compatibility with the Parquet specification: values are still written
as encoded pages, but dictionary pages are omitted when the dictionary is externalized.
The global dictionary is assumed to be discoverable in a static location with a predictable
file naming schema.

4.2.3 Fallback Strategy

Fallback is triggered if even a single value in a chunk is missing from the global dictio-
nary. In our static implementation, we treat this as an all-or-nothing decision to preserve
simplicity and avoid mixed modes within the same chunk. Possible fallback strategies
include:

• Plain encoding: Store raw, uncompressed values as-is.

• Local dictionary: Build a local dictionary for this chunk and proceed with standard
RLE_DICTIONARY encoding.

• Hybrid mode: Use global dictionary for encodable values and add local indices for
unknowns (discussed in Section 4.5).

In this section, we prefer plain or local fallback depending on dataset characteristics and
Parquet writer capabilities.

24

4.2 Modifying the Write Path

Algorithm 1 Writing Column Data with Global Dictionary in Parquet
1: function WriteColumnWithGlobalDictionary(columnData, globalDictionary-

Path)
2: globalDict← LoadGlobalDictFromFile(globalDictPath)
3: lookupMap← BuildDictionaryLookup(globalDict)
4: encodedV alues← []
5: maxDictID ← 0
6: needsFallback ← false
7: for each value in columnData do
8: dictID ← lookupMap.get(value)
9: if dictID exists then

10: append dictID to encodedV alues
11: maxDictID ← max(maxDictID, dictID)
12: else
13: needsFallback ← true
14: break
15: end if
16: end for
17: if not needsFallback then
18: bitWidth← CalculateMinBitWidth(maxDictID)
19: header ← [bitWidth] ▷ 1-byte header with bit width
20: encoder ← RLEBitPackingEncoder(bitWidth)
21: for each id in encodedV alues do
22: encoder.writeInt(id)
23: end for
24: compressedData← header+ encoder.getBytes()
25: return compressedData
26: else
27: return WritePlainEncoding(columnData) ▷ Fall back to plain encoding
28: end if
29: end function

4.2.4 Static Dictionary Lookups

Unlike local dictionary encoding which commits the dictionary page after writing a chunk,
no dictionary page is written to the Parquet file when using a global dictionary. Instead,
we rely on external lookup at read time, and encode this dependency via metadata.

To ensure that readers can resolve the correct global dictionary during decoding, each
dictionary file must be named predictably according to the column:

"user_id" ->
"path/to/delta/dictionaries/user_id.dict"

"location.city" ->
"path/to/delta/dictionaries/location.city.dict"

25

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

Delta Log Folder (Omitted)

Delta Table

Col 1
Dict

Col 2
Dict

Col n
Dict

Global Dict Folder

Data Folder

Parquet Parquet Parquet

Parquet Parquet Parquet Parquet

Parquet

. . .

Figure 4.2: Illustration of a global dictionary file structure, including metadata, dictionary
entries, and value offsets for fast access.

All dictionary pages are stored in the delta table’s folders under a separate dictionaries
directory and named as column_name.dict (see Figure 4.2 for a high level design of the
Delta table). The path to the delta table’s dictionaries directory is passed in via a key:value
pair in the config:

parquet.global.dictionary.directory.path ->
path/to/delta/dictionaries

This highlights the need for the original delta global dictionary page writer to in-
fer the column name as Parquet would see it. For example, from the schema in Fig-
ure 4.1, the column, metrics.timestamp (as Spark sees it), cannot be aggregated and
written to the file metrics.timestamp.dict as Parquet operates using the column name,
metrics.list.element.timestamp and will look for metrics.list.element.timestamp.dict.

4.2.5 Encoding Type Identifier

To ensure that readers can distinguish data pages encoded with global dictionaries from
those using standard Parquet encodings, we introduce a new encoding identifier embedded
in the data page header. This is necessary because global dictionary pages omit the dic-
tionary payload and rely on an external lookup, breaking the default assumptions of the
Parquet reader.

We define a new custom encoding constant:

RLE_GLOBAL_DICTIONARY

26

4.3 Reading with Global Dictionaries

This encoding is used in the Parquet data page header’s encoding field in place of
RLE_DICTIONARY.

It is worth pointing out that introducing a new encoding is perhaps one of the more “in-
vasive” changes, as it requires the Parquet Thrift format to be updated. Specifically,
the Encoding enum in the Parquet format specification must be extended to include
RLE_GLOBAL_DICTIONARY, which affects both the writer and all downstream readers. While
Parquet is designed to tolerate unknown encodings gracefully (typically by failing to decode
pages), full support requires recompiling the Thrift definitions and updating dependent
tooling. This limits out-of-the-box compatibility but enables unambiguous decoding and
better long-term maintainability when the extension is properly documented and adopted.

4.3 Reading with Global Dictionaries

Once a column chunk has been encoded using a global dictionary, the reader must be
modified to decode the values using that external dictionary instead of expecting an in-file
dictionary page. In this section, we describe the extensions necessary to support global
dictionary decoding with minimal disruption to the existing Parquet read path.

The first step in decoding is to determine whether a given data page was written using a
global dictionary. This is achieved by checking the encoding field in the data page header
for the custom identifier RLE_GLOBAL_DICTIONARY (see Section 4.2.5).

Once detected, the reader must resolve the correct dictionary file to load. In our imple-
mentation, this is based on a convention-driven filename scheme (see Section 4.2.4). The
reader reconstructs the dictionary path using:

• The fully-qualified column name, as seen by Parquet (e.g., metrics.list.element.status).

• A configuration or table-level pointer to the dictionary directory.

If the dictionary file cannot be located or parsed, the reader will fail fast with an infor-
mative error, as decoding is impossible without access to the dictionary mapping.

Once the external dictionary is loaded into memory, decoding proceeds as follows:

1. Read the one-byte header from the data page to extract the bit width used for the
encoded indices.

2. Decode the remaining bytes using standard RLE/BitPacking logic to recover the
integer indices.

3. Use the indices to look up the actual values in the loaded global dictionary.

This mirrors the decoding logic used for local dictionaries, with the primary difference
being that the dictionary is not embedded in the file and must be loaded independently.
The decoding function is shown in Algorithm 2.

Caching is disabled for both local and global writers and readers. This is due to difficulty
of reaching the DBIO cache from within parquet-mr. The DBIO cache is a block level cache
that can cache entire blocks containing one or multiple dictionary pages, depending on their

27

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

Algorithm 2 Decoding a Column Chunk with Global Dictionary
1: function ReadColumnWithGlobalDictionary(dataPage, globalDictPath)
2: globalDict← LoadGlobalDictFromFile(globalDictPath)
3: bitWidth← dataPage.readHeaderByte()
4: decoder ← RLEBitPackingDecoder(bitWidth, dataPage)
5: decodedV alues← []
6: while decoder.hasNext() do
7: dictID ← decoder.readInt()
8: value← globalDict.getValue(dictID)
9: append value to decodedV alues

10: end while
11: return decodedV alues
12: end function

sizes (see Section 2.4). However, while possible to implement, bringing a core Delta/Spark
dependency into parquet-mr is too cumbersome to bring into scope in this chapter.

Global dictionary decoding introduces a new point of failure, external dictionary resolu-
tion. Still, the system remains robust under reasonable assumptions:

• If a data page uses RLE_GLOBAL_DICTIONARY but no dictionary is found, the reader
fails explicitly, avoiding silent corruption.

• If an unknown encoding type is encountered, standard Parquet readers will fail grace-
fully, as per the format specification.

• Since the dictionary is referenced by file path and not by content hash, care must be
taken to maintain dictionary immutability and reproducibility across versions (e.g.,
during Delta replay events).

4.4 Compression Evaluation

To evaluate the effectiveness of global dictionary compression in static datasets, we con-
ducted extensive benchmarks across four diverse datasets. This section presents our find-
ings in terms of overall compression ratios and space savings, along with a deeper per-
column analysis to understand which structural features lead to the most (or least) benefit
from global dictionaries.

4.4.1 Benchmark Setup and Datasets

Many works in the field of DBMS’s tend to rely on common synthetic datasets like TPC-
DS. While this is not inherently bad, it opens experiments to the dataset and benchmark
query bias of just using one benchmark (35). Our evaluation is based on four datasets
(three of them being real-world) that vary significantly in schema complexity, data size,
and distribution characteristics:

28

4.4 Compression Evaluation

Table 4.1: Table-level compression results across datasets. Global Dict Total Size is broken
down into Parquet and Dictionary components. Higher ratios indicate better compression
from global dictionaries.

Dataset Baseline
Size

Parquet
Size
(Global
Dict)

Dict
Size

Total
Size

Ratio Space
Saving

TPC-DS 10GB 4.50 GB 3.74 GB 0.25 GB 3.99 GB 1.125 0.1111
Common Government 7.67 GB 7.85 GB 0.28 GB 8.13 GB 0.944 -0.059
NYC 1.04 GB 1.09 GB 0.05 GB 1.14 GB 0.907 -0.102
Library Inventory 5.68 GB 5.65 GB 0.12 GB 5.77 GB 0.985 -0.015

• TPC-DS 10GB: A well-known analytical benchmark with synthetic data; includes
a mixture of categorical, numeric, and timestamp fields pertaining to a company’s
operations. The synthetic nature of the dataset causes its distributions to be rather
uniform in value and frequency.

• CommonGovernment1 (PublicBI): Contains detailed records of U.S. federal gov-
ernment procurement contracts, including agency information, contract values, ven-
dor data, and classification codes.

• NYC2 (PublicBI): Captures 311 service request data for New York City, docu-
menting complaints by location, agency, type, and resolution status.

• Library Collection Inventory3 (NextiaJD): Lists inventory details of a library’s
collection, including bibliographic data, item type, and location within the system.

All datasets were processed using the same pipeline. Each dataset was written twice, once
using conventional local dictionaries and once using global dictionaries, using a frequency
threshold of n = 1 (see Section 4.4.2) and a maximum global dictionary page size of 2 MB.
Table 4.1 summarizes the total size and compression ratios for each dataset. It highlights
that while global dictionaries can significantly reduce file size in synthetic benchmarks,
they may regress performance on real-world data with sparse or inconsistent domain reuse.

4.4.2 Frequency Threshold Sensitivity (TPC-DS)

A key design parameter in constructing global dictionaries is the minimum number of times
a value must occur in a column to be included. This frequency threshold determines how
aggressive the dictionary is in covering rare values, which in turn affects both the size of
the dictionary and the likelihood of fallback to plain encoding. In this section, we analyze
the impact of varying this threshold in the TPC-DS 10GB dataset.

1https://event.cwi.nl/da/PublicBIbenchmark/CommonGovernment
2https://event.cwi.nl/da/PublicBIbenchmark/NYC
3https://event.cwi.nl/da/NextiaJD

29

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

Table 4.2: Compression outcomes on TPC-DS (10GB) with varying minimum key occurrence
thresholds, with sizes in gigabytes (GB). Higher ratios indicate better overall compression.

Min Count Baseline
Size (GB)

Global
Parquet
Size (GB)

Global
Dict Size
(GB)

Total
Global
Size (GB)

Ratio

≥ 5 4.188 3.899 0.086 3.985 1.050
≥ 4 4.188 3.889 0.093 3.982 1.052
≥ 3 4.188 3.865 0.103 3.969 1.054
≥ 2 4.188 3.841 0.118 3.959 1.058
≥ 1 4.188 3.569 0.152 3.721 1.125

Experimental setup. We evaluated five minimum thresholds for a value’s number of
appearances in the dataset to be included in the global dictionary. The results are sum-
marized in Table 4.2.

The results show a clear trend: lower thresholds consistently yield better com-
pression, with the best result achieved when all values are included (i.e., threshold
≥ 1). This is somewhat counter to the intuition that larger dictionaries might incur sub-
stantial storage or indexing overhead. In practice, the size of the dictionary file grows
modestly (from 86MB to 152MB across thresholds) while the benefit from being able to
encode more chunks is substantial.

Allowing more values into the global dictionary increases the probability that an entire
column chunk is encodable using dictionary indices. If even a single value is missing from
the dictionary, the entire chunk falls back to plain encoding, which is significantly less
efficient. As such, the primary limiting factor is not dictionary size, but the ability to
prevent fallback.

Even in the most permissive configuration, the global dictionary represents only ∼4% of
the dataset’s total size. This negligible figure is reflected in the other datasets as well, as
shown in Table 4.1. This confirms that, in practice, dictionary size is not a bottleneck
as far as compression is concerned. As long as the dictionary remains small enough
to be loaded into memory and indexed efficiently, a more inclusive approach yields better
outcomes.

In the case of TPC-DS, the best compression is achieved when no threshold is applied
at all. While this may not generalize to all datasets, it highlights that overly aggressive
pruning of infrequent values can backfire by forcing chunks to fall back to less efficient
encodings. A permissive threshold, even down to 1, is justified when dictionary overhead
remains small.

4.4.3 Column-Level Compression Analysis

While global dictionaries may yield promising table-level compression on some datasets,
their effectiveness ultimately hinges on individual column characteristics. This is because,

30

4.4 Compression Evaluation

in a production-level application of this technology, it would be wasteful to generate global
dictionaries for columns (or datasets) that have no use for them. In this section, we
investigate which column-level features most strongly correlate with compression gains so
that it can be predicted which columns might benefit from global dictionary encoding
before encoding anything. We analyze both successful and failed compression cases across
TPC-DS and other benchmark datasets.

We collected a range of metrics per column to explain compression performance, includ-
ing:

• Data type: (e.g., string, decimal)
• Row count, cardinality, uniqueness proportion (cardinality

row count)
• Null percentage
• Coefficient of variation, average value length, entropy
• Min, max, percentiles (25/50/75)

Among the collected metrics, we further explain the rationale behind the coefficient of
variation (CoV) and Shannon entropy (36). These provide complementary perspec-
tives on value distribution.

The Coefficient of Variation measures the relative dispersion of a dataset, defined as:

CoV =
σ

µ

where σ is the standard deviation and µ is the mean. CoV is unitless and useful for
comparing variability across columns with different scales. In the context of dictionary
compression, a high CoV may indicate noisy numeric data or long-tailed distributions,
which reduce the likelihood of repeated values and increase fallback risk.

Shannon entropy, on the other hand, quantifies the unpredictability or uniformity of a
value distribution. For a discrete set of values with empirical probabilities pi, entropy is
defined as:

H(X) = −
n∑

i=1

pi log2 pi

Higher entropy implies a more uniform distribution (i.e., less repetition), which typically
leads to worse dictionary compression. Conversely, columns with a few dominant values
(low entropy) are highly compressible and benefit significantly from dictionary reuse.

We considered several other statistical measures, but omitted them for practical or in-
terpretability reasons:

• Kurtosis: Measures the “tailedness” or extremity of values. While potentially useful
for numeric columns, it is difficult to interpret in the context of compression and
often correlates with CoV.

• Skewness: Captures asymmetry in the distribution. Although helpful for under-
standing certain long-tailed patterns, its additional insight over entropy or CoV was
limited in our analysis.

31

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

• Gini coefficient: Often used for inequality, this metric can reflect concentration of
values but is computationally intensive and non-intuitive for column-level heuristics.

• Jaccard similarity across row groups: Could capture domain reuse across chunks,
but would require chunk-level scans and pairwise comparisons which are prohibitively
expensive for large datasets.

Ultimately, we focused on metrics that are (a) computable from global statistics, (b)
interpretable in the context of compression, and (c) diverse enough to capture value repe-
tition, distribution shape, and dispersion. While more advanced metrics may help fine-tune
predictive models in future work, the ones used here already provide strong explanatory
power.

4.4.4 Gathering Column-Level Statistics

To perform compression analysis at the column level, we require detailed size information
for each column’s Parquet and dictionary encoding. Rather than parsing metadata directly
from existing files, we adopt a simpler and more modular strategy: for each column in the
dataset, we write it to a separate Parquet file using our standard encoding logic, then
measure the resulting file and dictionary sizes individually.

This approach significantly reduces implementation complexity, as it leverages the same
encoding pipeline used for full-table compression, avoiding the need for intricate metadata
parsing or custom tooling. It also ensures consistency between the encoding method used
for evaluation and that used in actual compression.

The downside of this method is that file-level overhead, such as headers, footers, and
file metadata, is repeated for each individual column file. This can slightly inflate the
measured file sizes, especially for small columns where overhead forms a proportionally
larger share. However, we mitigate this in two ways: we exclude very small columns (file
size below 2KB) from the column-level analysis, as they are both less impactful in total
file size and more susceptible to metadata distortion. In addition, Parquet file metadata is
relatively compact compared to the actual encoded data, so the distortion remains minor
for medium to large columns.

A more precise but complex alternative is to use parquet-cli, an open-source command-
line tool for inspecting Parquet file metadata. It exposes per-column statistics, including
uncompressed and compressed byte sizes, by parsing the file footer directly without reading
the full data. In principle, this would allow us to analyze column sizes without rewriting
or re-encoding data.

However, integrating parquet-cli or replicating its functionality in custom code is non-
trivial:

• Its output is not structured for programmatic consumption, as it pretty-prints its
values to the terminal; parsing and interpreting its output requires additional tooling
or wrappers.

32

4.4 Compression Evaluation

Ro
wC

ou
nt

Ca
rd

in
al

ity

Un
iq

ue
ne

ss
Pr

op
or

tio
n

Nu
llP

er
ce

nt
ag

e

Co
ef

fic
ie

nt
Of

Va
ria

tio
n

En
tro

py

Gl
ob

al
Di

ct
To

ta
lS

ize

No
Gl

ob
al

Di
ct

To
ta

lS
ize

Sp
ac

eS
av

in
g

RowCount

Cardinality

UniquenessProportion

NullPercentage

CoefficientOfVariation

Entropy

GlobalDictTotalSize

NoGlobalDictTotalSize

SpaceSaving

1.00 0.03 -0.20 -0.02 0.02 -0.03 0.25 0.28 0.06

0.03 1.00 0.50 -0.05 0.59 0.57 0.16 0.16 -0.01

-0.20 0.50 1.00 -0.06 0.23 0.54 0.04 0.04 -0.31

-0.02 -0.05 -0.06 1.00 -0.13 0.06 -0.01 -0.01 0.01

0.02 0.59 0.23 -0.13 1.00 0.30 0.35 0.27 0.03

-0.03 0.57 0.54 0.06 0.30 1.00 0.63 0.55 -0.13

0.25 0.16 0.04 -0.01 0.35 0.63 1.00 1.00 -0.02

0.28 0.16 0.04 -0.01 0.27 0.55 1.00 1.00 0.01

0.06 -0.01 -0.31 0.01 0.03 -0.13 -0.02 0.01 1.00 0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Correlation heatmap of column-level metrics across all four datasets. Space
Saving is most negatively correlated with Uniqueness Proportion.

• It has no integration with global dictionaries, and does not know how to read a
RLE_GLOBAL_DICTIONARY encoded data page if need be. However, this is something
a full production-ready implementation should be able to handle, meaning we will
place into the list of future works.

• The effort to reliably extract per-column metrics at scale, especially for dictionary
pages, is high compared to our current pipeline.

For these reasons, we prioritize simplicity and robustness over exact byte precision,
accepting minor noise in the data in exchange for much lower implementation overhead
and better compatibility with our global dictionary evaluation setup.

4.4.5 Correlation Analysis of Column Features

To better understand the relationships between column-level statistics and compression
effectiveness, we computed Pearson correlation coefficients between key features across all
datasets. The results are shown in the heatmap in Figure 4.3. Note that, especially in
TPC-DS, there are a large number of tables/columns with very few rows (e.g. categorical
data such as department). We consider the space saving data on these columns too be too
small to be relevant, and thus disregard anything below 2KB.

The most notable correlation is between Uniqueness Proportion and Space Saving,
with a coefficient of −0.31. This suggests that columns with fewer unique values relative
to their row count tend to benefit more from global dictionary encoding. This follows from

33

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

0.0 0.2 0.4 0.6 0.8 1.0
Uniqueness Proportion

100

80

60

40

20

0

20

40

Sp
ac

e
Sa

vi
ng

 (%
)

Data Type
string
int
bigint
decimal(7,2)
decimal(5,2)
date
timestamp
decimal(15,13)
smallint
double

Figure 4.4: Space saving vs. uniqueness proportion across all four datasets, colored by data
type. Lower uniqueness generally correlates with better compression.

the nature of dictionaries, which prefer encoding finite domain columns, such that their
dictionary entries can be reused. Other moderate correlations include:

• Entropy: Correlated at −0.13 with Space Saving.
• Cardinality: Weak correlation, likely due to interaction with other variables.
• Coefficient of Variation (CoV): Near-zero correlation, indicating that relative

dispersion may not be a strong standalone predictor.

It is also worth noting that GlobalDictTotalSize and NoGlobalDictTotalSize are tightly
correlated with entropy and CoV, which is expected. Larger, more variable columns tend
to occupy more space regardless of encoding.

4.4.6 Uniqueness Proportion Across Datasets

While Uniqueness Proportion showed the strongest overall correlation with compression
effectiveness, its predictive power varies significantly by dataset. In the TPC-DS 10GB
dataset, for instance, the correlation was substantially stronger at −0.53.

Figure 4.4 shows how space saving (expressed as percent change) varies with uniqueness
proportion, broken down by data type across all datasets.

From this scatter plot, several patterns emerge:

• Columns with uniqueness below 0.4 are the most likely to yield large space savings.
• Decimal types (especially low-precision decimals) often outperform strings even at

comparable uniqueness levels.
• String columns show wide variability: some compress well while others regress, sup-

porting the idea that domain size alone is not enough to predict success.

These findings support the idea that global dictionaries are particularly sensitive to
columns with “localized” subdomains. For example, if even a single value in a column
chunk is missing from the global dictionary, the entire data page will be reverted to plain
encoding. Local dictionaries do not have this limitation as their dictionaries are built only
from the values present in that particular column chunk, and therefore have the space to

34

4.4 Compression Evaluation

100 80 60 40 20 0 20 40
Space Saving (%)

0

100

200

300

400

500

Fr
eq

ue
nc

y

Figure 4.5: Distribution of space savings per column across all four datasets. Most columns
see modest gains or losses, but a few yield extreme improvements or regressions.

include these localized values completely (and avoid reverting to plain encoding). This will
be addressed in Section 4.5

Despite the clearer trends observed in TPC-DS, results on other datasets were more
mixed. In CommonGovernment and Library Collection Inventory datasets, correlations
between uniqueness and space saving were much weaker or non-existent. In these real-
world datasets, the assumptions of uniform chunk reuse and global repetition often break
down due to sparse, long-tailed, or dirty data distributions.

This raises a critical question: Can we generalize compression heuristics across datasets?
Our findings suggest caution. Even when metrics like uniqueness proportion or entropy
appear predictive in aggregate, they may not consistently translate to real-world benefit
on arbitrary datasets.

Uniqueness proportion is a strong, though not universal, predictor of compression gain.
While it can be used to guide global dictionary enablement, it should be considered along-
side dataset-specific factors such as data cleanliness, chunk boundaries, and row group
variability. In practice, adaptive and column-aware strategies are necessary for robust
deployment (see Chapter 5).

4.4.7 Variance in Compression Outcomes

The impact of global dictionaries varies widely across columns, even within the same
dataset or table. Figure 4.5 shows the overall distribution of per-column space savings
across all datasets. While most columns cluster near zero, there is a long left tail of
regressions and a shorter right tail of highly compressible fields.

Several columns achieved more than 50% space savings, typically due to highly repeated
decimal values:

• store_sales.ss_list_price — decimal(7,2)

• web_sales.ws_list_price — decimal(7,2)

• store_returns.sr_return_time_sk — int

35

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

• web_returns.wr_fee — decimal(7,2)

These fields share a common structure: they use a constrained, low-precision domain
(e.g., dollar or time fields) with frequent value repetition across files and row groups.

In contrast, other columns consistently performed poorly or regressed in size:

• item.i_product_name — string

• commongovernment_5.vend_dunsnumber — string

• customer.c_customer_sk — int

• web_returns.wr_refunded_cdemo_sk — int

Interestingly, the best- and worst-performing columns can coexist within the same table.
In web_returns, for example, wr_fee saw over 50% compression gain, while wr_refunded_cdemo_sk
increased in size due to fallback and inefficient encoding.

This wide variance underscores the necessity of column-aware strategies that, for ex-
ample, understand that compression gain is highly feature-specific. This means not all
columns in a well-compressing table are good candidates. Additionally, numeric columns
with coarse domains and repeated values (like list prices or return fees) are ideal targets
for global dictionaries. This is particularly true when the datatype has significant waste
(e.g. decimal types for a limited amount of unique prices).

Even within a single dataset or table, global dictionaries must be applied selectively.
The presence of both extreme gains and losses supports a hybrid approach or a predictive
selection mechanism informed by simple metrics like uniqueness proportion, entropy, and
domain size.

4.4.8 Data Type–Level Compression Patterns

Compression outcomes vary not just by column structure, but also by data type. Figure 4.6
summarizes the distribution of space savings across all tested data types.

The best-performing data type is decimal(7,2), where global dictionaries consistently
yield large space savings. These fields typically represent monetary values and exhibit
limited precision and high repetition (e.g. 0.99, 1.50, 9.99, etc.), which are ideal conditions
for dictionary compression. Even decimal(5,2) and smallint fields perform well, albeit
with lower variance due to smaller domains.

Despite conventional wisdom suggesting that string and binary fields benefit most from
dictionary encoding, we observe limited gains. Most values cluster near 0% compression
improvement, with many even regressing. This could potentially be explained by Parquet’s
local dictionary encoding already handling repeated string values efficiently. Global dic-
tionaries often fail to add further benefit unless there is substantial cross-file repetition.
Moreover, string and binary types tend to be larger than any other datatype. Conse-
quently, fewer values are able to be placed into a global dictionary of a constant, 2MB,
size. We know that the smaller the cardinality of the global dictionary the worse its ability
is to be generalized across an entire column.

36

4.4 Compression Evaluation

str
ing int

big
int

de
cim

al(
7,2

)

de
cim

al(
5,2

)
da

te

tim
est

am
p

de
cim

al(
15

,13
)

sm
alli

nt

do
ub

le

Data Type

100

80

60

40

20

0

20

40
Sp

ac
e

Sa
vi

ng
 (%

)

Figure 4.6: Space saving breakdown by data type across all four datasets. Decimal types
tend to benefit the most from global dictionaries, while timestamp and string types often show
limited gain.

This suggests that global dictionaries are not necessarily additive for strings as they may
duplicate what local encoding already does well.

Timestamp fields show consistent compression regression. This is most likely caused by
their larger encoded widths and has little to do with the data type itself. Due to the nature
of global dictionaries, encoded values (in the data page) typically require greater bitwidths
than their local dictionary encoded counterparts (e.g. 16-bit vs. 8-bit), particularly when
the cardinality is just right (or just wrong). These timestamp columns tended to have a
cardinality of ∼2000 which is in the “goldilocks zone” for such a phenomenon to occur.
This is expanded upon further in our discussion of indirection dictionaries in Section 4.6.4.

To conclude, while decimal and low-cardinality numeric fields benefit most from global
dictionaries, string and timestamp types often regress or stagnate. Local dictionary encod-
ing, encoding optimizations, and fallback sensitivity all play a role. These insights draw
us away from the conclusion that any particular data type carries greater compression
potential over local dictionaries.

Our results suggest that compression effectiveness could, in principle, be predicted in
advance by a small set of column-level statistics:

• Cardinality relative to dictionary size

• Uniqueness proportion

• Entropy (when cheap to compute)

However, computing these features at scale is non-trivial. For example, determining
the uniqueness proportion of a column typically requires a full scan and a distributed

37

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

distinct operation in Spark. Internally, these operations translate to global aggregations,
often involving:

• A full table scan to materialize the column

• Serialization and shuffling of keys across the cluster

• Hash-based aggregation and cardinality estimation (or full materialization, if exact)

This results in high memory pressure and network I/O, especially for wide or unbounded
domains (e.g., strings, timestamps). In many real-world pipelines, such computations are
prohibitively expensive for all columns in large datasets.

Entropy and coefficient of variation also require second-order statistics (value frequencies,
variances), which are expensive to collect unless approximate sketches or histograms are
precomputed.

Therefore, these statistics may not justify their computation cost in real-time. We pro-
pose approximate or sketch-based alternatives be left for future work (see Chapter 6).

These findings motivate hybrid encoding schemes, which we explore next.

4.5 Hybrid Dictionary Design

While global dictionaries offer strong compression potential for certain columns, their util-
ity is limited by an all-or-nothing fallback strategy: if even one value in a row group
is missing from the dictionary, the entire column chunk reverts to a less efficient encod-
ing. Hybrid dictionaries aim to overcome this by combining the reuse benefits of global
dictionaries with the adaptability of local ones.

4.5.1 Hybrid Mode Implementation

The hybrid dictionary encoding mode modifies the Parquet write path to support mixed
dictionary references. Values are encoded using global dictionary indices where possible.
For values not present in the global dictionary, a local dictionary is constructed dynamically
and assigned a separate index range.

4.5.2 Index Range Partitioning

We divide the index space into two contiguous intervals:

• [0, G): Reserved for global dictionary values, where G is the size of the global dictio-
nary.

• [G,G+ L): Assigned to local dictionary entries constructed during encoding, where
L is the number of locally seen values not found in the global dictionary.

This partitioning allows both dictionaries to coexist without ambiguity, as there is no
overlapping index space between the two. A sample mapping is illustrated in Figure 4.7.

38

4.5 Hybrid Dictionary Design

 String2100
 String2099

 ...

 String4
 String3
 String2
 String1
 String0

 String2900

 ...

 String2102
 String2101

Global
Domain
(External)

Local
Domain

Figure 4.7: Illustration of hybrid dictionary encoding for a string column. Values are first
mapped to the global dictionary (gray). Missing values are assigned to a local dictionary
stored in the Parquet file (dark gray) with non-overlapping indices.

4.5.3 Control Flow and Layout

During writing, we maintain a lookup map for the global dictionary. For each value:

• If it exists in the global dictionary, we emit the global index directly.

• Otherwise, we insert it into a local dictionary and emit a new index offset by G.

Note that, if all values are present in the global dictionary, a local dictionary will never
be written.

Both dictionaries are serialized into separate pages and wrapped into a unified hybrid
dictionary page structure. This structure contains a) the global dictionary portion (pre-
loaded from external file) and b) the (optional) local dictionary portion (generated on-the-
fly).

This layout minimizes ambiguity at read time and supports efficient lookup with minimal
branching.

We define a new encoding constant:

RLE_HYBRID_DICTIONARY

This value is written to the Parquet data page header and allows readers to invoke the
appropriate decoding logic. In the event that no auxiliary local dictionary was used, the
data page encoding remains RLE_GLOBAL_DICTIONARY. Hybrid decoding is discussed further
in Section 4.5.4.

The algorithm for encoding values using a hybrid dictionary is summarized in Algorithm
3.

39

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

Algorithm 3 Write Value Using Hybrid Dictionary
Require: Value v, Global dictionary G, Local dictionary L, Bitwidth estimator E

Ensure: Encoded index appended to EncodedV alues
1: id← lookup(v) in G
2: if id = −1 then
3: if L = null then
4: L← new empty dictionary
5: usingLocalDictionary ← true
6: missingV aluesInGlobalDictionary ← true
7: end if
8: id← lookup(v) in L
9: if id = −1 then

10: id← G.size() + L.size()
11: insert v into L with index id
12: dictionaryByteSize← dictionaryByteSize+ sizeof(v)
13: end if
14: end if
15: maxUsedDictionaryEntry ← max(maxUsedDictionaryEntry, id)
16: append id to EncodedV alues
17: update E with id

The combined dictionary is never explicitly materialized during encoding. Only the local
dictionary is emitted in the Parquet file’s dictionary page. The global dictionary is stored
externally and reused across chunks.

4.5.4 Read Path

When reading a hybrid-encoded column chunk, the decoder must reconstruct the full dic-
tionary by merging the global and local components in a consistent index space. The
process is as follows:

1. Detect whether the column chunk uses hybrid dictionary encoding by inspecting the
encoding type (RLE_HYBRID_DICTIONARY) in the page header.

2. Load the global dictionary from the configured external dictionary path. This is
parsed into a list of values indexed from [0, N).

3. Decode the column chunk’s local dictionary page and append its entries to the global
dictionary, assigning indices from [N,N +M). Note, that if a hybrid encoded data
page is present, a local dictionary page must be present.

4. Read the one-byte bitwidth header and decode the rest of the page using RLE/bit-
packing.

5. Use the combined dictionary to resolve values by index.

This read strategy ensures that the same index-space is maintained as during encoding.
Since all dictionary entries (global + local) are immutable and ordered, decoding remains

40

4.5 Hybrid Dictionary Design

efficient and deterministic.
Suppose the global dictionary contains ["A", "B", "C", "D", "E"], and the local dic-

tionary contains ["X", "Y"]. During writing, values are encoded as:

["A", "B", "X", "Y", "C"]→ [0, 1, 5, 6, 2]

Note that N = 5, meaning that local dictionary indices must start at 5 even though “D”
and “E” were never encoded.

At read time, the decoder rebuilds:

[0:"A", 1:"B", 2:"C", 3:"D", 4:"E", 5:"X", 6:"Y"]

ensuring correct decoding of hybrid-indexed values.
This mechanism allows hybrid chunks to remain compatible with readers aware of exter-

nal dictionaries and simplifies the fallback story. If no local dictionary exists for a given
chunk, the global dictionary alone suffices.

4.5.5 Compression Results

Experimental setup. We evaluated each dataset for the thresholds: 1, 2, 4, 8, and 16.
Each row corresponds to a different minimum count required for a value to be included in
the global dictionary.

Table 4.3 summarizes compression outcomes with hybrid dictionaries enabled, across
multiple datasets and varying minimum thresholds (i.e. minimum number of key occur-
rences) for global dictionary inclusion. We observe that the best overall compression ratios
are achieved at intermediate thresholds, specifically between ≥ 4 and ≥ 8, where both the
Parquet file size and the final total size (Parquet + dictionary) are well-optimized.

As the threshold increases to ≥ 16, compression performance deteriorates. This is pri-
marily because fewer values are included in the dictionary, resulting in more fallback to
plain encoding, which inflates the Parquet file size. Conversely, at the lowest thresh-
old (≥ 1), almost all values are included, minimizing fallback and achieving the smallest
Parquet size. However, the accompanying dictionary becomes substantially larger, which
increases the total storage footprint and slightly worsens the final compression ratio com-
pared to the optimal range.

Table 4.4 zooms in on this phenomenon by showing the impact of varying frequency
thresholds on compression performance for the CommonGovernment dataset.

This highlights a key tradeoff in dictionary design: lower thresholds reduce encoded
data size but inflate metadata overhead, while higher thresholds reduce dictionary cost
but trigger inefficient fallback. The optimal point lies in balancing the two.

An interesting phenomenon emerges at the lowest threshold (≥ 1): in some cases, the
column’s unique values happen to occupy a combined dictionary size between 1–3MB.
This size range exceeds what a local dictionary (typically capped at ∼1MB) could hold
but remains within the bounds of the hybrid dictionary capacity (up to ∼3MB). When

41

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

Table 4.3: Compression Ratios Across Thresholds for All Datasets. Threshold is the min-
imum frequency for a value to be included in the global dictionary. Higher ratios indicate
better compression. The highest ratio per dataset is bolded.

Min Count NYC Library Col-
lection

TPC-DS
10GB

Common
Gov.

≥ 16 1.012 1.085 1.211 1.034
≥ 8 1.014 1.086 1.245 1.037
≥ 4 1.011 1.086 1.260 1.044
≥ 2 1.008 1.084 1.257 1.045
≥ 1 1.005 1.084 1.250 1.044

Table 4.4: CommonGovernment: Compression Metrics at Different Frequency Thresholds
(GB)

Min Count Baseline
Size (GB)

Parquet
Size (GB)

Dict Size
(GB)

Total Size
(GB)

Ratio

≥ 16 7.670 7.355 0.059 7.414 1.034
≥ 8 7.670 7.299 0.096 7.395 1.037
≥ 4 7.670 7.186 0.160 7.347 1.044
≥ 2 7.670 7.148 0.198 7.346 1.045
≥ 1 7.670 7.122 0.225 7.347 1.044

this occurs, the column can be entirely dictionary-encoded without any fallback, leading
to substantial compression gains. By looking at column-level statistics, this sometimes
reduces space usage by 30–70%. This suggests that dynamically adjusting the global
dictionary limit based on the observed size of unique values may be a worthwhile strategy.
While such a heuristic might initially appear ad hoc, it is arguably justified in the context
of preprocessed datasets, where we already invest effort in extracting global statistics to
inform encoding strategies.

4.5.6 Byte Width Rounding Effects in Dictionary Encoding

Although hybrid and global dictionaries aim to reduce encoded data size by reusing shared
entries, an unexpected source of inefficiency arises from how Parquet encodes dictionary
indices. Internally, indices are stored using variable-width integer encodings. However,
these widths are not byte-exact but bucketed into fixed tiers:

• Tier 1: ≤ 8 bits → 1 byte (int8)
• Tier 2: ≤ 9–16 bits → 2 bytes (int16)
• Tier 3: ≤ 17–24 bits → 3 bytes (int24)
• Tier 4: ≤ 25–32 bits → 4 bytes (int32)

The assigned tier depends on the highest index written to the data page. For example,
a dictionary of size 600 requires ⌈log2(600)⌉ = 10 bits. Since 10 bits exceeds 8, the index

42

4.5 Hybrid Dictionary Design

Tier 1

(1 Byte)

Tier 2

(2 Bytes)

Tier 3

(3 Bytes)

Tier 4

(4 Bytes)
C

ardinality

0

28 = 256

216 ≈ 65k

224 ≈ 17m

232 ≈ 4b

Cardinality = 300
Cardinality = 200

Figure 4.8: Bitwidth tier assignment based on dictionary size. Values that fall within Tier 1
(≤ 256 entries) benefit from int8 encoding. Global or hybrid dictionaries with slightly higher
cardinality (e.g., 300) get bumped to int16, incurring overhead.

tier is bumped to Tier 2 (16 bits), wasting 6 bits per value.
Local dictionaries often operate over subdomains of the dataset, especially in sparse

or skewed distributions, leading to smaller effective cardinalities in specific row groups.
Suppose the full dataset has 600 distinct values (Tier 2), but a row group only observes
200 (Tier 1). In this case, the local dictionary index requires just 8 bits, saving 1 byte per
value compared to a global/hybrid encoding.

This can result in paradoxical outcomes: even though global or hybrid dictionaries pro-
vide broader reuse, the local dictionary encodes values more compactly due to lower tier
assignment. Figure 4.8 shows this rounding effect.

This effect is not due to suboptimal compression behavior per se, but a side-effect of
internal encoding tiering. Ideally, hybrid and global dictionaries would only store the
highest index used, allowing the encoder to assign a lower tier if usage permits. While
we implemented such an optimization to track the maximum used index, it rarely had
measurable impact, as the highest index tends to appear frequently in large datasets.

This issue points to an inherent tension between reuse (via large dictionaries) and local
efficiency (via smaller index tiers). In practice, this tradeoff must be accounted for when
tuning global dictionary thresholds.

4.5.7 Column-Level Analysis

To further investigate the effect of byte-width rounding described in Section 4.5.6, we
analyzed column-level compression statistics for several datasets. For each column, we
recorded:

43

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

1.0 1.1 1.2 1.3
Ratio (Hybrid + RLE / No Hybrid + RLE)

30

20

10

0

10

20

Sp
ac

e
Sa

vi
ng

 (%
)

Data Type
int
string
double
timestamp

Figure 4.9: Ratio of average RLE encoded value size (Hybrid vs. No Hybrid) against the
total compression improvement using the CommonGovernment dataset. Columns are grouped
by data type. Values above 1.0 on the x-axis suggest that hybrid encoding produced larger
value representations, even after RLE and bit-packing.

• Total number of unique values (i.e., dictionary size).
• Maximum index used in encoded data pages.
• Assigned byte-width (1–4).
• Total size of encoded data pages with hybrid/global dictionaries.
• Total size of same data pages under local dictionary encoding.

We found multiple cases where the global or hybrid dictionary exceeded the Tier 1 or 2
threshold, but local dictionaries for the same column remained within it. The consequence
was consistent: local dictionary pages used fewer bytes per value, as the global/hybrid
encoding habitually pushes the index space over key thresholds such as 28 = 256 or 216 =

65,536. Even a single value crossing such a boundary can inflate every encoded index in
the page. In the case of the boundary being crossed being 256 entries, the byte width
will double (thus, the page size could ostensibly double). In the case of 65,536, it would
increase by a factor of 1.5.

4.5.8 Byte-Width Analysis

To validate that this effect is not being mitigated by downstream encoding optimizations
(i.e., RLE/bit-packing), we computed the average encoded value size after both com-
pression steps for each column, once with hybrid dictionaries enabled, and once without.
As statistics of such specific nature are not naturally exposed by the Parquet metadata, it
was necessary to rig Parquet-mr to provide us these values. We then computed the ratio:

Avg Encoded Size (Hybrid) / Avg Encoded Size (No Hybrid)

The resulting values reflect the final size of each value after RLE and bit-packing, and
are shown in Figure 4.9. This allows us to isolate whether the inefficiencies in dictionary
byte-width tiers persist through encoding.

44

4.6 Indirection Dictionaries Design

We make several observations from the graph:

• Many columns cluster near x = 1.0, indicating equivalent per-value sizes under both
modes.

• A significant number of columns exceed x = 1.1, implying that hybrid dictionaries
inflated the encoded value size by 10% or more.

• All columns appearing at the far right (≥ 1.3) are timestamp columns (manually
verified), showing inflated RLE sizes with hybrid encoding and correlating with their
previously observed poor compression.

It is worth noting that there do not appear to be ratios greater than 2.0, as would be
expected with the byte width doubling from 1 to 2 in the 28 boundary case. This is caused
by fact that a) these are average values, meaning that local dictionaries do not always have
optimally sized dictionaries either and b) using local dictionaries, within a column chunk,
the data pages that benefit from smaller byte widths are often only the first ones, as the
dictionary is not yet fully constructed and has a lower cardinality. This last point is less
a facet of local dictionaries benefiting from only working with lower cardinalities within
subdomains of the dataset, and more a facet of the dictionary building algorithm (which
global/hybrid dictionaries cannot take advantage of either). Although, local dictionaries
deal with the final cardinality of the column chunk it is encoding, but the algorithm can
encode based on the currently observed cardinality which is slowly incremented during the
writing of the column chunk (until it reaches the final cardinality at some point).

Therefore, we confirm that the tier-based byte width expansion of dictionary indices is
not being entirely optimized away by RLE or bit-packing. Instead, the larger dictionary
domain introduced by global or hybrid dictionaries can lead to measurable post-encoding
bloat. This problem may be subtle but has meaningful impact, particularly when a col-
umn’s global cardinality is just above a width threshold like 256 or 65,536, while its local
subsets could have stayed below. Even though this does not affect the semantic correctness
of encoding, it suggests that better compression could be achieved by byte-width-tier-aware
dictionary allocation or smarter bit-width tracking during encoding.

4.6 Indirection Dictionaries Design

4.6.1 Usage Efficiency of Global Dictionaries

In the previous section, we examined how large dictionary domains can inflate the bitwidth
of encoded indices, leading to avoidable storage overhead. The problem is exacerbated
when only a fraction of the dictionary is actually used in a given column chunk, yet the
full domain size determines the index width.

To better understand this, we computed the average global dictionary usage proportion
per column. That is, for each column chunk, we measured what fraction of the global
dictionary entries were actually referenced, and then averaged this across all chunks.

45

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

0.2 0.4 0.6 0.8 1.0
Average Global Dictionary Usage Proportion

30

20

10

0

10

20

Sp
ac

e
Sa

vi
ng

 (%
)

Data Type
int
string
double
timestamp

Figure 4.10: Average global dictionary usage proportion vs compression ratio using the
CommonGovernment dataset. Usage proportion is averaged across all column chunks. Higher
values suggest a more efficient utilization of the dictionary space.

Figure 4.10 plots this proportion against the overall compression ratio. The aim is to
determine whether global dictionary size is being fully utilized, and whether high dictionary
occupancy correlates with better compression outcomes.

Several key observations emerge:

• A large cluster of columns achieves near 100% usage, often correlating with mod-
est but consistent compression benefits. This suggests that for these columns, the
dictionary is well-aligned with actual values and the cost of a larger index width is
amortized by high reuse.

• A sizable portion of columns has usage proportions between 0.3 and 0.6. These
exhibit a wide spread in compression results, including negative outcomes. This
reflects the overhead of maintaining a large dictionary index width (e.g., 2 bytes)
even when much of the dictionary is unused.

• Timestamp types once again underperform, clustering at low usage ratios with con-
sistently poor compression. This reinforces their previously noted issues with wide
value domains and limited redundancy.

4.6.2 Impact of Inflated Byte-Widths

While Figure 4.9 shows a generally weak correlation between the bytewidth ratio and the
overall compression ratio, it nonetheless reveals that a non-negligible number of columns
suffer meaningful regressions. Most columns cluster around neutral impact, but outliers,
particularly those with large index inflation, demonstrate substantial losses in compression
efficiency. Even if this phenomenon does not dominate overall compression outcomes,
addressing it remains worthwhile.

46

4.6 Indirection Dictionaries Design

0 20000 40000 60000 80000 100000 120000 140000 160000

Dictionary Index

O
cc

ur
re

nc
es

0

1

2

3

4

Figure 4.11: Example of a patternless or fragmented global dictionary index distribution
from a particular row group of the Closed_Date column in the NYC dataset. Usage appears
irregular and not strongly correlated with global frequency.

4.6.3 Visual Analysis of Global Dictionary Usage

To better understand how global dictionaries are utilized across column chunks, we per-
formed a visual inspection of the distributions of global dictionary indices used per chunk.
These plots aimed to expose patterns in index usage that could help explain compression
success or failure. We analyzed these distributions for columns that compressed well and
those that did not.

Three distinct shapes consistently emerged across column chunks:

1. Heavily right-skewed distributions: These are the most common and expected
pattern. A small set of low-index dictionary entries are reused heavily, while higher
indices are rarely referenced. These align with columns where a few values dominate.

2. Patternless or fragmented usage: These graphs appear scattered and incon-
sistent. While certain indices are reused, there is no clear correlation to overall
frequency in the dataset. These cases reflect local subdomain variation or data drift,
which global dictionaries fail to capture. An example of such a distribution is shown
in Figure 4.11.

3. Right-skewed with gaps: Similar to (1), but with noticeable holes in the index
space. That is, some dictionary indices within the expected active range are never
used. This suggests that global dictionaries overfit to a superset of values not uni-
formly distributed across all row groups. An illustration of this type is shown in
Figure 4.12.

Critically, we found no visible correlation between the shape of these index usage dis-
tributions and whether a column compressed well. Columns with the same distribution
shape (especially right-skewed) could yield both high compression and compression regres-
sions, depending on other factors such as fallback behavior, byte-width inflation, or value
sparsity.

This observation raises the important point: index distribution shape alone is not
a predictor of compression effectiveness. Even well-shaped usage profiles may lead
to poor results if fallback is triggered or if dictionary indices cross byte-width thresholds
unnecessarily.

47

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

0 250 500 750 1000 1250 1500 1750 2000
0

2500

5000

7500

10000

12500

15000

Dictionary Index

O
cc

ur
re

nc
es

Figure 4.12: Example of a right-skewed global index usage distribution with visible gaps from
a particular row group of the contract_signeddate column in the CommonGovernment dataset.
Several midrange indices are entirely unused despite proximity to frequently referenced entries.

These findings support several conclusions:

• Global dictionary efficiency is not just about which values are included, but how
often those values are actually used across chunks. A well-populated dictionary is
wasteful if large portions of it are never referenced.

• Compression regressions can result from minor differences in index usage. For exam-
ple, two chunks may differ only in using index 256 instead of staying under 256, thus
incurring a jump from 1-byte to 2-byte indices across the entire chunk.

• The need for smarter indexing mechanisms becomes apparent. The indirection dic-
tionary design (Section 4.6.4) is a direct response to these observations. It allows
selectively rewriting only high-index lookups while maintaining tight bit-width con-
straints for the rest, avoiding unnecessary bloat.

4.6.4 Indirection Dictionary Design

While global dictionaries improve compression by avoiding redundancy, they can suffer
from inefficiencies due to sparsity in index usage. In particular, encountering even a single
global dictionary ID with a high value (e.g., 1027) can inflate the required bit-width for
all values in a page, even if most fall under a tight range like 0–127. The indirection
dictionary is designed to address this by compressing and remapping global dictionary IDs
into a more compact, chunk-specific space.

The core idea is to introduce a local remapping layer between the global dictionary and
the encoded stream. This layer, the indirection dictionary, assigns new contiguous indices
to global IDs in a page, optimizing bit-width usage. The design supports three operational
modes:

1. Global Mode: As long as all global dictionary IDs used in a page fall below a chosen
threshold (e.g., 256 or 65536), values are directly encoded using those IDs.

2. Pointer Mode: If a value above the threshold is encountered, it is mapped into a
free slot below the threshold, and a mapping is recorded to its true global ID. This
allows continuing to encode all values using low-width IDs.

48

4.6 Indirection Dictionaries Design

3. Fallback Mode: If a value not found in the global dictionary is encountered, the
page transitions into a hybrid mode where the lower part of the ID space is reserved
for (remapped) global IDs and the upper part is used for locally encoded raw values.

4. Plain Fallback Mode: If a value not found in the global dictionary is encountered,
or an out-of-order global dictionary value is encountered (and a pointer needs to be
created for it), and there is no space left in the dictionary, fall back to plain encoding
for the column chunk.

Finally, data pages encoded with indirection dictionaries receive the encoding constant:

RLE_INDIRECTION_DICTIONARY

This similar to the global and hybrid dictionary designs, except for the fact that, whereas
hybrid and global could leave the dictionary page as PLAIN encoded, we now need to
specify in the dictionary page header that it is RLE_INDIRECTION_DICTIONARY encoded.
This is because the dictionary has a specialized structure that requires a separate decoding
algorithm.

Take, as example, Figure 4.13 and consider a page that uses values with global IDs {12,
77, 210, 300}. Without indirection, the presence of 300—being greater than the encoding
threshold of 256—forces all values to be encoded using 9 bits. With indirection, we remap
300 to an unused ID below the threshold (say, 0), allowing all values to be encoded using
8 bits. The indirection dictionary stores a pointer indicating that 0 maps to 300. Later,
we encounter a new value, “delta”, which is not present in the global dictionary. This value
cannot be encoded through indirection and instead triggers a fallback to plain encoding
using a new ID, such as 211. From now on, all codes ≥ 211 are exclusively designated for
plain encoding. This hybrid approach preserves encoding compactness for known values
while still supporting dynamic additions.

The encoding logic chooses between thresholds (e.g., 28 = 256, 216 = 65536) based on
the maximum ID in the global dictionary. This defines the maximum range for compact
encoding. Only values under this threshold can be directly represented; others must use
pointer remapping or trigger fallback.

Each page with indirection encoding stores:

• An integer offset: the index where fallback to local dictionary begins, or −1 if it
never happens.

• A bitmap of size T : indicates which remapped IDs are identity mappings (i.e.,
localID == globalID) and which are pointers.

• Pointer entries (i.e. the global ID they map to).
• Locally stored values (if fallback happened).

To efficiently encode the bitmap, we use a Roaring Bitmap format (37). A naive
bitmap of size 216 would consume 8 KB per page, even if very few bits are set. Roaring
Bitmaps mitigate this by partitioning the bitmap into 16-bit chunks and applying a com-
pact encoding per chunk based on its density. Sparse chunks are stored as sorted arrays

49

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

0

256

>500

Original Values Global Dict ID Remapped ID

"alpha" 12 12

"beta" 77 77

"gamma" 210 210

"omega" 300 0

"delta" N/A 211

Plain
Encoding

211

Bitmap

Figure 4.13: A three-stage indirection dictionary design. The indirection dictionary maps
chunk-local indices to global IDs or local raw values, depending on fallback status. A bitmap
indicates pointer vs identity mappings.

of set bit positions, while dense ones use run-length encoding or bitmaps. This offers both
high compression and fast membership queries during decoding, making it well-suited for
large-scale dictionary remapping.

To decode an entry:

1. Read the indirection ID from the encoded stream.
2. If id < fallbackStart, check the bitmap:

• If it’s a pointer, resolve to global ID and decode.
• Else, directly decode using global dictionary at that index.

3. If id ≥ fallbackStart, decode raw local value.

4.6.5 Decoder-Aware Dictionary Compaction Optimization

One subtle yet effective optimization targets dictionary space wastage introduced during
pointer remapping. Consider a case where values with global dictionary IDs {0, 1, . . . , 100}
are used directly, but then a value with ID 300 appears. Since it’s above the threshold
(e.g., 256), the system falls back to pointer mode and tries to map 300 to the next available
unused index under the threshold, say, 101.

Internally, the dictionary is represented as an array. Placing a pointer at index 101
implies that the decoder must find its value at offset 101 in the serialized dictionary array.
However, offsets 0–100 are now “garbage”: although they were never written (as no local
dictionary was yet needed), the decoder expects data there.

50

4.6 Indirection Dictionaries Design

Algorithm 4 Indirection Dictionary Encoding with Fallback
1: T ← threshold based on global dict size
2: used[T]← bitmap of used indices below threshold
3: mapping ← empty map from globalID to remappedID
4: fallbackStart← −1
5: for each value in column chunk do
6: globalID ← lookup(value, globalDict)
7: if globalID == −1 then ▷ Global dictionary miss
8: if fallbackStart == −1 then
9: fallbackStart← maxUsedIndirectionID + 1

10: end if
11: id← allocate next local ID
12: encode as raw local value at id
13: else if globalID < T then
14: mapping[globalID] ← globalID
15: mark used[globalID]
16: else ▷ Value above threshold
17: id← first unused index < T
18: mapping[globalID] ← id
19: mark used[id]
20: end if
21: add id to encoded stream
22: end for
23: write fallbackStart, mapping bitmap, and remap table to page header

A naïve solution is to pad indices 0–100 with zeroes so that the offset aligns. This relies
on compression algorithms like Snappy to compress away these redundant zero entries.

Instead of padding, we introduce a smarter decoder-side strategy that allows us to com-
pact the dictionary payload and eliminate unused prefix slots:

• We write only the compact set of pointer values, sequentially from index 0 in
the dictionary array.

• The decoder uses the bitmap to determine which indices are identity-mapped and
which are pointers.

• As it iterates from index 0 to threshold:

– If the bitmap entry is identity, it does not consume an entry from the dictionary
array, it uses the global dictionary directly.

– If the bitmap entry is a pointer, it consumes the next entry in the array.

This optimization: a) eliminates padding overhead in the dictionary array, b) reduces to-
tal page size (especially in pointer-heavy chunks), and c) leverages the decoder’s sequential
nature to reconstruct mappings with minimal state.

51

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Ratio (Indirection + RLE / No Indirection + RLE)

30

20

10

0

Sp
ac

e
Sa

vi
ng

 (%
)

Figure 4.14: Ratio of average encoded value sizes (Indirection + RLE vs. No Indirection +
RLE) versus compression ratio across data types using the CommonGovernment dataset.

4.6.6 Byte Width Optimization Verification

Figure 4.14 illustrates the comparative effectiveness of hybrid encoding versus non-hybrid
RLE encoding by plotting the encoded value size ratio against the compression ratio,
broken down by data type. Each point represents a distinct column chunk.

The key takeaway is that the ratios are tightly clustered around 1.0, indicating that the
bit-width padding inefficiency observed previously (where values had to be stored
using wider-than-necessary widths due to fragmentation or sparse distribution) has been
effectively mitigated. In other words, the encoding is now operating at near-optimal bit
widths, ensuring there is no unnecessary overhead in the value stream caused by sparsity
in dictionary IDs.

This reinforces the success of the indirection encoding strategy, which remaps sparse or
oversized dictionary IDs into a compact domain.

4.6.7 Indirection Compression Results

Experimental setup. We evaluated the impact of enabling indirect dictionary encoding
on four datasets, comparing it against the baseline where global dictionary encoding was
disabled. The comparison captures three key metrics: the size of the Parquet file with
indirect dictionary enabled, the size contribution from dictionary pages alone, and the
combined total. The ratio represents the total size with indirect dictionary enabled relative
to the baseline size.

The results demonstrate that indirect dictionary encoding performs competitively, yet
similarly to having the global dictionary disabled, yet in some cases, significantly better:

• Library Collection Inventory saw the greatest benefit, with a 3.6% size reduction.
This aligns with our hypothesis that indirect dictionaries are highly effective on

52

4.6 Indirection Dictionaries Design

Table 4.5: Final file sizes with indirect dictionary encoding enabled vs. global dictionary
disabled. Global Dict Total Size is broken down into Parquet and Dictionary components.
Higher ratios indicate better compression from indirect dictionaries.

Dataset
Baseline Size Parquet Size (Global Dict)

Dict Size Total Size Ratio
Space Saving

Library
Collection
Inventory

5.68 GB 5.47 GB 0.009 GB 5.48 GB 1.036 0.035

NYC 1.04 GB 1.06 GB 0.019 GB 1.08 GB 0.967 -0.034
TPC-DS
10GB

4.50 GB 4.44 GB 0.086 GB 4.53 GB 1.001 0.001

Common
Gov.

7.67 GB 7.69 GB 0.125 GB 7.82 GB 0.988 -0.012

datasets with fragmentation or sparse high-cardinality values, where fallback to local
dictionaries can be minimized.

• TPC-DS 10GB showed almost no change, with a ratio of 1.001. This suggests that
the dataset’s structure may not benefit from indirection, perhaps because its values
already lie well within the encoding threshold, or because fallback was frequent,
negating the benefits.

• NYC and Common Government exhibited small regressions (+3.4% and +1.2%,
respectively). In these datasets, the indirection mechanism likely caused overhead
due to a larger number of values exceeding the limit (e.g., 256 or 65,536), triggering
more fallback and expanding both dictionary and data sizes. Additionally, their
cardinality distributions may not have allowed effective reuse of IDs via the pointer
strategy.

4.6.8 Analysis of Indirection Dictionary Dynamics

The internal behavior of the indirection dictionary mechanism reveals several nuanced
dynamics that influence its overall effectiveness, particularly compared to traditional dic-
tionary or plain encoding strategies.

In principle, the indirection dictionary is designed to exploit situations where values
that are not frequent enough to remain in the core domain of dictionary IDs (e.g., under
256 or 65,536) can still be encoded efficiently by referencing them via remapped pointers.
This design intends to delay or avoid transitioning into local dictionary or plain encoding,
particularly when the global dictionary contains heavy entries like long strings or binary
blobs.

Under this assumption, indirection should outperform local dictionary encoding when:

• The raw values (e.g., strings or binary blobs) are significantly larger than the size of
the pointers (4-byte integers).

53

4. GLOBAL DICTIONARY COMPRESSION FOR STATIC DATASETS

• The remapped values are used across multiple column chunks, making the cost of
repeated raw storage high.

However, our results do not show a standout performance improvement for string or
binary types, which is counterintuitive given their size characteristics. This suggests two
possible contributing factors:

1. The repeated values stored in the global dictionary may not occur frequently enough
across chunks to amortize the pointer overhead.

2. The actual average size of strings and binary blobs in our dataset is small—sub-30
byte strings and 8–12 byte timestamps—so the savings from storing 4-byte pointers
rather than full values is modest at best.

One structural limitation of the indirection dictionary is its fallback design. The pointer
mapping section is terminated the moment an unknown (global-dictionary-absent) value
is encountered. At this point, encoding switches to a raw-value local dictionary region.
If such a value appears early in the column chunk, the indirection dictionary’s effective
domain is truncated before it can build up meaningful reuse, reducing its usefulness.

This creates a situation where the pointer section is sparsely utilized or sometimes barely
initialized before being cut off. While this fallback logic is essential to preserve the compact
index space, it reduces the potential benefits of the remapping mechanism. Some solutions
from the literature have tried to avoid similar problems by reserving a larger than necessary
domain (18). Unfortunately, it is still difficult to fully avoid this behavior without relaxing
the tight index-space constraints (e.g., extending the pointer range beyond 256/65536),
which reintroduces the same fragmentation problem the method aims to eliminate.

Empirically, the indirection dictionary behaves similarly to a local dictionary. When
fallback occurs early or frequently, the entire structure collapses into local dictionary en-
coding, and the performance ends up nearly identical to that of the original fallback-based
strategies. Thus, the expected hybrid efficiency does not always materialize, especially
when input distributions are not favorable.

While theoretically promising, the indirection dictionary’s real-world gains are marginal.
The most meaningful space savings come not from the remapping layer itself but from its
ability to a) extend the effective use of global dictionaries and delay plain encoding fallback
and b) avoid dictionary duplication across column chunks.

However, in datasets with relatively small or infrequent dictionary values, these advan-
tages are muted. Given its comparable performance to existing encodings and increased
implementation complexity, the indirection dictionary approach may not warrant produc-
tion deployment in its current form.

Future evaluations should consider datasets with:

• Longer and more repeated strings.

• Column chunks large enough to build substantial pointer sections before fallback.

• Deliberately fragmented or tiered value distributions.

54

4.7 Takeaways From Global Dictionaries on Static Datasets

Only under such conditions might the true promise of indirection-based remapping be
fully realized.

4.7 Takeaways From Global Dictionaries on Static Datasets

This chapter has explored the design, implementation, and evaluation of global dictionary
compression techniques for static datasets in Parquet-based Delta tables. Through exten-
sive empirical analysis across multiple datasets, we have shown that global dictionaries offer
strong compression benefits for columns with medium-cardinality domains and repeated
categorical values, particularly when redundancy is high across row groups.

Among the strategies examined, the hybrid dictionary approach emerges as the
most effective. It consistently delivers the best compression performance across datasets
while mitigating the primary weakness of pure global dictionary encoding: the risk of
all-or-nothing fallback when unseen values are encountered. Hybrid dictionaries preserve
compression gains by combining reuse of global entries with the adaptability of local dictio-
naries. This avoids performance regressions even when value distributions vary across row
groups. Importantly, hybrid encoding achieves these benefits without imposing significant
metadata overhead or complicating the read path beyond practical limits. It also reduces
the average encoded value size, thanks to more efficient byte-width usage.

However, this chapter has operated under the assumption that datasets are static, that
is, fully available a priori and written in bulk. This simplifies dictionary construction but
limits the applicability of the approach in many real-world scenarios where data is appended
incrementally. The challenge of supporting incremental updates, where new values must
be encoded without rewriting existing files or global dictionaries, is left unaddressed.

The next chapter tackles this challenge directly. We introduce mechanisms to extend or
adapt dictionary encoding strategies to evolving datasets without sacrificing compression
or correctness. In particular, we explore dictionary versioning, dynamic appends, and
approximate sketches for dictionary maintenance under incremental ingestion workloads.

55

5

Supporting Incremental and
Adaptive Use

The compression strategies discussed in the previous chapter assume a static dataset con-
text, one in which the entire table is available in advance, and files are rewritten in bulk.
While this is realistic for initial table construction or batch ETL pipelines, it does not
reflect the operational model of modern data lakes built on Delta Lake, where data is
appended continuously and snapshots evolve over time.

In such environments, dictionary-based compression must adapt to an evolving value
domain without sacrificing correctness, compatibility, or performance. Unlike static writes,
incremental appends introduce several challenges:

1. Evolving Value Domains New appends may introduce values not seen in the
original dictionary. In a static dictionary setup, this leads to failure or fallback to plain
encoding. For an incremental system, however, dictionary evolution must be managed
carefully to avoid invalidating previously encoded data. A viable system must support
either:

• Dynamic extension of dictionaries over time, or

• Versioning strategies to distinguish between multiple dictionary generations.

2. Snapshot Consistency Delta Lake guarantees snapshot isolation through its trans-
action log, meaning that every reader observes a consistent view of the table as of a specific
commit (14). This has critical implications for dictionary usage: encoded values must be
interpretable solely based on metadata available in that snapshot. This necessitates making
dictionary metadata fully discoverable and snapshot-scoped, while ensuring that appended
data encoded with new dictionary versions does not corrupt the semantic integrity of older
reads.

56

5.1 Delta Log Integration

3. Writer Scalability Incremental writes are often small and frequent. If dictionary
construction requires a full table scan or large memory footprint, it becomes impractical
in production environments. Therefore, dictionary construction must be computationally
efficient, ideally bounded in space and parallelizable across partitions or streaming micro-
batches.

4. Metadata Management This chapter addresses these challenges by extending the
dictionary compression design to support incremental and adaptive use. Our goals are
twofold:

1. Enable dictionary-based encoding to be applied to new data as it arrives, even when
the full dataset is no longer available for global analysis.

2. Make the system robust to changing column characteristics, allowing selective and
statistical decisions about when and where to apply dictionary compression.

We present a combination of metadata integration, lightweight sketching techniques, and
runtime heuristics that enable scalable and flexible global dictionary usage in dynamic data
lake scenarios.

The next sections explore the design implications of these requirements, beginning with
how dictionary awareness is embedded in the Delta transaction log.

5.1 Delta Log Integration

Delta log extension is essential to support dictionary-aware incremental writes. To ensure
consistent encoding and decoding across appends and table snapshots, writers must com-
municate which dictionary version was used in each data file. This requires tight integration
with the Delta transaction log, a key mechanism for maintaining atomicity, isolation, and
versioned metadata in Delta Lake.

5.1.1 Designing the Dictionary Metadata Layer

A central question in our design was: at what level of granularity should the mapping
between data files and dictionaries be maintained?

In Parquet, dictionary encoding is applied at the level of individual column chunks within
row groups, suggesting that it would be possible to record separate dictionary usage per
column or even per row group. However, this granularity quickly becomes problematic in a
production context, particularly in cloud-based data lakes with immutable object storage
such as S3.

First, while the Parquet format does support per-column dictionaries internally, Delta
Lake organizes its transactional state at the level of entire files. In practice, when appending
or rewriting data, we operate on full Parquet files (not partial chunks) making finer-grained
metadata difficult to enforce.

Second, tracking dictionary usage per column chunk or per row group would drastically
increase metadata volume. For each file, we would need to store a mapping from every

57

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

column to a corresponding dictionary version, resulting in O(N) metadata entries per file,
where N is the number of columns. Moreover, Delta’s current transaction log format
does not provide native support for per-file, per-column metadata. Supporting this would
require designing a new metadata structure and corresponding serialization logic, which
would add nontrivial implementation and performance overhead.

5.1.2 Choosing AddFile-Level Metadata

To avoid this complexity, we chose to record dictionary usage at the file level. Specifically,
we annotate each data file with a mapping from column names to the dictionary version
IDs used for encoding. This mapping is embedded directly into the AddFile entries in the
Delta transaction log.

This approach is grounded in the structure of Delta’s transaction log, which consists of
a sequence of versioned JSON or Parquet actions, including:

• AddFile – announces a newly written data file, including partitioning, stats, and
optional metadata.

• RemoveFile – indicates that a file has been logically deleted in a later snapshot.
• Metadata – captures the schema and configuration of the table at a given version.
• CommitInfo, Protocol, etc. – additional metadata used for versioning and concur-

rency control.

Of these, only AddFile supports per-file custom metadata annotations, making it the
natural place to attach dictionary version references. Our implementation introduces a
new optional field:

"globalDictionaryPath":"dict_v1"

This dictionary informs the reader which global dictionary version was used to encode all
columns in the file. Note, that we choose a “file-level” granularity because the append-only
nature of the underlying object storage mandates that any edit to a Parquet must trigger
an atomic rewrite of the entire file, anyway, meaning that they might as well all use the
newest dictionary.

5.1.3 Multi-Column Dictionary Packaging

Another practical consideration was how to store the actual dictionary data. Initially, we
stored each column’s dictionary in a separate file. While simple, this leads to poor scala-
bility in systems with large numbers of columns or frequent appends, as each dictionary
necessarily required its own I/O transaction and metadata reference.

It is important to realize that a Parquet file now points to a single dictionary path,
instead of pointing to a path per column per file (which would incur a significant storage
overhead in the transaction log).

This is because we transitioned to bundling all dictionary pages for a given write oper-
ation into a single dictionary file. Each file contains a sequence of binary dictionary pages

58

5.1 Delta Log Integration

Algorithm 5 Read Dictionary Page for a Column from Global Dictionary File
1: function ReadDictPageFromGlobalFile(columnPath, globalDictFilePath,

conf)
2: fs← GetFileSystem(globalDictF ilePath, conf)
3: inputStream← fs.open(globalDictF ilePath)
4: fileLength← fs.getFileStatus().getLen()
5: footerIndex← ReadFooterIndex(inputStream, fileLength)
6: offset← footerIndex[columnPath]
7: if offset = null then
8: throw MissingColumnException(columnPath)
9: end if

10: inputStream.seek(offset)
11: pageHeader ← ReadPageHeader(inputStream)
12: return ReadCompressedDictionary(pageHeader, inputStream)
13: end function
14: function ReadFooterIndex(inputStream, fileLength)
15: inputStream.seek(fileLength− 8) ▷ Read footer pointer
16: footerStart← inputStream.readLong()
17: inputStream.seek(footerStart)
18: index← EmptyMap()
19: while inputStream.getPos() < fileLength− 8 do
20: nameLength← readInt()
21: nameBytes← readBytes(nameLength)
22: colName← UTF8Decode(nameBytes)
23: offset← readLong()
24: index[colName]← offset
25: end while
26: return index
27: end function

corresponding to each encoded column. To enable a lookup during reads, we append a
compact footer at the end of the file, mapping each column name to its byte offset in the
file.

5.1.4 Reading a Column Dictionary from a Shared Dictionary File

Algorithm 5 outlines the complete procedure for locating and loading the dictionary page
for a given column path/name.

Given Delta Lake’s snapshot isolation model, readers must decode Parquet files using
only metadata available in the active snapshot. This is crucial for correctness as different
files in the same table version may have been written using different dictionary versions,
and using the wrong dictionary would result in corrupted decoding.

During a read operation, the system traverses the list of active files defined by the
current snapshot and groups them according to their declared dictionary metadata. If a

59

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

file includes a globalDictionaryPath field in its AddFile entry, the reader:

1. Loads the corresponding global dictionary file.

2. Uses the footer index (as described in Algorithm 5) to extract the dictionary page
for the required column.

3. Applies that dictionary to decode values in the Parquet column chunk.

Files that do not include a dictionary reference simply fall back to the default Parquet
decoding mechanism (typically plain or RLE encoding). This ensures backward compati-
bility and graceful degradation in the absence of dictionary metadata.

5.2 Decoupling Dictionary Creation from Writes

One of the key goals of supporting global dictionary compression in a scalable data lake
environment is to ensure that dictionary construction does not become a bottleneck for
data ingestion. In many real-world pipelines, write operations are latency-sensitive, small
in size, and frequent, making it impractical to build dictionaries on-the-fly for every write.

To address this, we decouple dictionary construction from the write path. Instead of
generating dictionaries as part of the write job itself, we enable dictionaries to be pro-
duced asynchronously by dedicated background processes. Writers then reference these
precomputed dictionaries by version ID when encoding new data.

This section outlines how dictionary generation can be externalized, how initial dictio-
naries can be bootstrapped when none exist, and how this architecture improves both
performance and usability.

5.2.1 Standalone Dictionary Jobs

We introduce a standalone job type, referred to as a dictionary builder job, that scans data
already written to the table to produce one or more global dictionaries. These jobs can be
scheduled periodically, or triggered manually after large ingests, and operate independently
of the write path.

The dictionary builder performs the following steps:

1. Frequency Estimation: Use either full scans or approximate sketches (e.g., Misra-
Gries) to determine the most frequent values in each column.

2. Dictionary Encoding: Construct dictionary pages from these top values and seri-
alize them using the shared dictionary file format (as described in Section 5.1.3).

3. Versioning and Output: Write the resulting dictionary file to a designated storage
path with a unique version identifier.

4. Metadata Registration: Update the Delta log’s DomainMetadata field with the
new dictionary path. This field acts as a canonical reference to the most recent
shared dictionary for the table.

60

5.2 Decoupling Dictionary Creation from Writes

The use of DomainMetadata provides a lightweight and snapshot-consistent way to pub-
lish the latest dictionary path. When a writer begins a new append, it reads the current
Delta table snapshot and extracts the latest dictionary path from the DomainMetadata.
This path is then passed into the writer logic as part of its configuration.

5.2.2 Integration into the Write Path

A key advantage of our design is that it does not require any changes to the Parquet
writer internals (parquet-mr). The dictionary path is passed via the standard Hadoop
Configuration object, which is already used to propagate encoding options and table-
specific metadata.

Initially, we were concerned about the possibility of race conditions such as a write
job might load one dictionary path from the configuration, while a concurrent dictionary
builder updates the DomainMetadata field and produces a new dictionary, resulting in an
inconsistency between the file content and the associated AddFile entry.

However, experimentation and inspection revealed that each Hadoop configuration is
treated as an immutable copy within the scope of a job. This means the value passed
into the write job is fixed at the time of configuration construction, and is not affected
by updates to the underlying table metadata that may occur during concurrent dictionary
builds. Consequently, the same value is safely used both for encoding the file and for
registering the correct dictionary version in the resulting AddFile entry.

This immutability property ensures consistency between the encoded data and its meta-
data declaration, without the need for additional locking or coordination logic. The result
is a clean and modular integration that enables dictionary reuse without coupling the
writer to dictionary lifecycle management.

5.2.3 Invoking Dictionary Generation Jobs

To make dictionary construction accessible and testable during development, we expose it
through a user-facing command interface. Users can explicitly trigger dictionary construc-
tion using either SQL or the programmatic API:

• SQL: GENERATE DICTIONARY my_delta_table

• Scala/Java API: DeltaTable.generateDictionary()

Internally, this command instantiates the dictionary builder job described above, scans
recent data in the specified Delta table, and produces an updated shared dictionary file. It
then updates the table’s DomainMetadata with the new dictionary path, making it available
to future write jobs.

Although this command is currently user-visible for debugging and demonstration pur-
poses, we expect that in most production scenarios, dictionary generation will be handled
automatically in the background. In particular:

• The logic behind GENERATE DICTIONARY may be triggered periodically by the system
based on ingestion volume or change detection.

61

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

• Alternatively, the dictionary builder could be invoked as part of existing maintenance
operations such as OPTIMIZE, ZORDER, or data compaction commands.

This architecture preserves flexibility: users and systems can both initiate dictionary
creation explicitly or implicitly, depending on workload requirements and operational poli-
cies. Over time, we envision dictionary generation becoming an invisible optimization step
entirely abstracted away from end users.

5.2.4 System Integration Overview

To illustrate the complete flow from dictionary generation to data writing, we include a
high-level system diagram in Figure 5.1.

This diagram shows how the dictionary generation job (which generates and “publishes”
new dictionary versions to the delta table’s DomainMetadata) and the delta table writes
(which reads this metadata) are decoupled from each other. They can both occur asyn-
chronously, dramatically reducing write times on the write path.

DomainMetadata
(Path to most recent

dictionary file)

Execute GENERATE
DICTIONARY

Increment most
recent dictionary

filename

Write dictionary file to
Delta table

Set most up-to-date
dictionary

Retrieve most recent
dictionary path

Execute Parquet-mr
write with dictionary

path

Commit file write to
Delta Log (include

dict path in AddEntry)

Dictionary Generation Job

Delta Table Write

Figure 5.1: Overview of Dictionary Generation and Usage in Delta Write Pipeline

5.3 Experimental Evaluation: Incremental Write Performance

To understand the performance implications of using global dictionaries in an incremental
ingestion setting, we designed a set of experiments that simulate how real-world data
lakes ingest data in discrete batches over time. It is important to note that as we have
seen in Chapter 4, hybrid dictionary encoding is the most effective in terms of storage
compression. For the remainder of this thesis, we solely test using this encoding. Global
and hybrid dictionary encoding are often used interchangeably.

62

5.3 Experimental Evaluation: Incremental Write Performance

Experimental setup: batch-based ingestion. In many production pipelines, large
datasets arrive in recurring intervals or are split across multiple ingestion streams. To
replicate this, we divide our datasets into evenly sized ingestion batches and evaluate the
effect of global dictionary compression across these batch writes. For each dataset, we split
the input data into n ∈ {3, 6, 9} ingestion batches. Each batch may span multiple source
files, but collectively the batches maintain the same overall row count. The batching logic
ensures that:

• For non-synthetic datasets (e.g., NYC, CommonGov, Library Inventory), we select
tables with identical schemas and evenly partition the union of all rows across all
such tables into n batches.

• For the TPC-DS synthetic dataset, we focus only on the largest table with a stable
schema (store_sales), as other tables vary significantly in row count and schema
complexity. This allows us to avoid the added complexity of cross-schema joins or
column mismatch handling.

Each batch is written independently to a Delta table, simulating incremental ingestion.
Between batch writes, we optionally enable the dictionary builder to update the global
dictionary used for encoding subsequent data.

In practice, it may also be the case that delta tables are updated constantly in smaller
increments each time. In this case, we would not propose generating new dictionaries
between each small write, as the overhead of generating dictionaries would become immense
and yield no additional benefit. Our experiment set-up remains valid in this case, as the
core utility of removing the dictionary generation out of the write path and into a separate
job, is we can wait until a sufficient volume of data has been written, or until the dataset
distribution has changed sufficiently to run the dictionary generation job.

We compare two configurations:

• Baseline (no dictionary): All batches are written using plain encoding or default
Parquet dictionary encoding. No global dictionaries are used.

• Hybrid Dictionary (enabled): After each batch is written, the GENERATE DICTIONARY
command is invoked to build a shared dictionary from the current table state. This
dictionary is then referenced in the Hadoop configuration and used to encode the
next batch.

Note that the first batch in the dictionary-enabled setting is always written without
compression, since no dictionary exists at that point. From batch 2 onward, each write
uses the most recently generated dictionary, ensuring a realistic approximation of evolving
ingestion pipelines.

As with all other compression tests, for each experiment, we collect the total output
size across all batches, including the Parquet and global dictionary size. Hybrid dictionary
encoding is used with a minimum key count of 6.

63

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

1 2 3 4 5 6 7 8 9
Batch Number

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

Si
ze

 (M
B)

Total space saving: 2.7%

Without Global Dict
With Global Dict (Total)

Figure 5.2: Cumulative storage footprint progression with and without hybrid dictionary
encoding for the CommonGovernment dataset. Results are based on writing 9 equal-sized
ingestion batches.

5.3.1 Storage Size Results

We begin our experimental evaluation by analyzing the storage behavior of the Common
Government dataset, which serves as a representative real-world case with structured tab-
ular data. This dataset contains a large number of rows distributed across multiple files
with the same schema, allowing us to divide it evenly into ingestion batches.

Figure 5.2 presents the results of writing this dataset in 9 sequential batches. Each batch
writes an approximately equal number of rows. We compare two configurations: one using
hybrid dictionary encoding (enabled after the first batch), and one using baseline Parquet
encoding without hybrid dictionaries.

As expected, both configurations produce identical storage sizes for the first batch. This
is because the hybrid dictionary mechanism has not yet been initialized since no prior data
exists from which to generate a dictionary. Consequently, the first batch is written using
default encoding in both cases.

From the second batch onward, we observe consistent space savings in the configuration
that employs hybrid dictionaries. Figure 5.2 shows per-batch percentage savings relative
to the baseline. These savings begin at 1.3% in batch 2 and gradually increase to approxi-
mately 2.7% by batch 9. The bottom panel displays cumulative storage usage, highlighting
the growing divergence between the two configurations over time. The total cumulative
space reduction is 2.7%.

These results reveal several key observations that hold across most datasets and batching
scenarios in our evaluation:

• Linear Storage Growth. The cumulative storage footprint grows linearly with the
number of ingestion batches in both configurations. This is an expected property due

64

5.3 Experimental Evaluation: Incremental Write Performance

to uniform row counts across batches. It also indicates that the presence of global
dictionaries does not introduce nonlinear behavior such as file compaction or data
skew.

• Compression Benefit/Loss Magnifies. The space savings due to global dictionar-
ies accumulate consistently across batches, without large fluctuations. This implies
that each new dictionary version retains enough representativeness from prior data
to capture recurring patterns effectively. However, while the space savings appear to
only grow after we observe positive space savings from the first batch, the inverse is
true for datasets that exhibit compression loss. For example, in Figure 5.3, we see
that the loss begins at -1.4% (at batch 2) and magnifies until it reaches -5.2% at batch
9. This is observation is critical for production systems as it means that, in cases
where we want to apply global dictionaries, we can observe their performance over a
single batch and compare the per-row compression statistics compared to a previous,
non-globally encoded batch. We can then reliably use these compression statistics to
decide if we want to continue.

• Predictable Behavior Across Batches. The fact that per-batch savings increase
smoothly without sharp drops or spikes indicates that the dataset does not exhibit
abrupt shifts in cardinality or value domains between partitions. This stability im-
proves the reliability of dictionary reuse across versions.

The consistent but moderate savings suggest that global dictionaries are beneficial even
in scenarios where data distributions are uniform or slowly evolving. The additive nature
of the savings further highlights the potential for long-running tables to gradually benefit
from dictionary reuse without requiring dramatic structural changes.

Although the Common Government dataset illustrates favorable and consistent results,
we note that not all datasets behave identically. In particular, the NYC dataset demon-
strates a more curved growth pattern. However, even in that case, the trend appears to
be driven more by inherent properties of the data than by the use of global dictionaries
themselves.

5.3.2 Space Savings and Asymptotic Behavior in TPC-DS

To better understand the long-term effect of hybrid dictionaries on storage efficiency, we
analyze the TPC-DS inventory table. The table is written in nine ingestion batches, and
Figure 5.4 shows the cumulative space savings achieved after each batch when using hybrid
dictionaries. It displays, by far, the largest space savings of any dataset, reaching up to
31% reduction in storage.

We define:

• f(n): the total storage size (in bytes) of the first n batches written without global
dictionaries,

• g(n): the total storage size of the first n batches written with global dictionaries, and
• S(n) = 1− g(n)

f(n) : the cumulative space savings function after batch n.

65

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

1 2 3 4 5 6 7 8 9
Batch Number

200

400

600

800

1000

Cu
m

ul
at

iv
e

Si
ze

 (M
B)

Total space saving: -5.2%

Without Global Dict
With Global Dict (Total)

Figure 5.3: Cumulative storage footprint progression with and without hybrid dictionary
encoding for the NYC dataset. Results are based on writing 9 equal-sized ingestion batches.

We observe a pattern seen in all trials across all datasets and batch counts. In the
first few batches, savings increase sharply from 0% to nearly 18% after just two batches.
However, this growth rate gradually slows down, with savings reaching approximately 31%
by the ninth batch. This trajectory is characteristic of an asymptotic convergence pattern,
where the difference in performance between two systems (in this case, hybrid dictionary
vs. non-dictionary writes) increases rapidly at first but approaches a limit over time.

Mathematically, this suggests:

lim
n→∞

S(n) = S∗ ≈ 31%

This implies that both f(n) and g(n) grow approximately linearly with batch count, but
that g(n) maintains a constant proportional advantage in terms of size. In asymptotic
terms, this means:

g(n) ∈ Θ(f(n)),

indicating that while global dictionaries improve compression, they do not change the
fundamental scaling behavior of storage growth.

This pattern reflects a natural saturation point in dictionary learning. Early batches
introduce the most common and compressible domain values, enabling significant gains.
Subsequent batches add incrementally less value to the dictionary as they begin to resemble
previously seen data. This leads to a flattening of the savings curve.

Interestingly, even though individual batches may differ in content, the relative effec-
tiveness of global dictionaries converges. The per-batch bars in Figure 5.4 also begin to
stabilize in height toward the right side of the plot, visually reinforcing this notion of
convergence.

66

5.3 Experimental Evaluation: Incremental Write Performance

2 4 6 8
Batch Number

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%
Sp

ac
e

Sa
vi

ng
s (

%
)

0.0%

17.8%

23.6%
26.3%

28.0%29.1%29.9%30.5%31.0%

Figure 5.4: Per-batch space savings using hybrid dictionaries on the inventory table from
TPC-DS.

From an engineering standpoint, this asymptotic behavior justifies frequent dictionary
refreshes in early stages of ingestion but suggests diminishing returns beyond a certain
point. For large-scale or continuous ingestion workflows, it may be optimal to update
the dictionary aggressively during early ingestion phases and then reduce the frequency of
regeneration as savings plateau.

5.3.3 Effect of Batch Count on Compression Effectiveness

To further understand the behavior of global dictionaries under incremental ingestion, we
analyze how the number of ingestion batches impacts compression effectiveness. Figure 5.5
plots the compression ratio, defined as the total size of files written using hybrid dictionaries
divided by the size of those written without, for 3, 6, and 9 batch configurations across
four representative datasets.

A clear pattern emerges: the number of ingestion batches amplifies the effect, either
positively or negatively, of global dictionaries. When dictionary encoding is beneficial,
as in the case of TPC-DS, the advantage becomes more pronounced as batches increase.
The compression ratio improves from approximately 1.32 at 3 batches to 1.45 at 9 batches.
Conversely, when dictionaries are detrimental, as observed in the nyc dataset, this negative
impact becomes more severe with more batches.

This trend is not coincidental. When a new dictionary is generated after every batch,
fewer rows are written using a stale dictionary that may no longer match the evolving
distribution of the data. If upcoming records include values not yet seen or sufficiently
frequent in earlier batches, using the older dictionary risks encoding them inefficiently or
not at all. By regenerating dictionaries more frequently, we reduce the number of rows
subject to such mismatch, and effectively limit the duration over which a suboptimal
dictionary is applied.

67

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

3 4 5 6 7 8 9
Number of Batches

1.0

1.1

1.2

1.3

1.4

Co
m

pr
es

sio
n

Ra
tio

Common Government
Library Collection
Inventory
TPC-DS 10GB
NYC

Figure 5.5: Compression ratio (Hybrid / Non-Hlobal) vs. Number of ingestion batches

In this light, the incremental update model acts as a distribution-aligned checkpointing
mechanism. Rather than committing to a single global vocabulary from the start, the
system adapts periodically, allowing each batch to calibrate its dictionary to the most
recently observed value distributions. Datasets with stable or slowly evolving domains, like
CommonGovernment and LibraryCollectionInventory, show modest but consistent gains
under this model. Their compression ratios remain above 1 and trend upward with more
batches, confirming that dictionaries increasingly capture repeated patterns as the dataset
grows.

For NYC, on the other hand, the compression ratio rises with batch count, indicating
that even frequent dictionary refreshes cannot keep up with shifting distributions. In such
cases, stale dictionaries introduce encoding inefficiencies that accumulate with each batch.
These results suggest that batch-based dictionary updates are highly effective when the
data distribution remains relatively stable but sorely need strategies to adaptively shut
global dictionary encoding off when inefficient.

5.4 Comparing Incremental vs. One-Shot Dictionary Gener-
ation

In earlier sections, we evaluated global dictionaries in a static setting, where dictionaries
were constructed from a batch of data and used immediately for encoding. We believe that,
while, unrealistic in practice, such an approach could provide the more optimal dictionaries
as they take the entire dataset’s value distribution into account beforehand. In this section,
we investigate if this is indeed the case, or if incremental dictionary generation benefits from
using localized value distributions. However, the static approach tightly couples dictionary

68

5.4 Comparing Incremental vs. One-Shot Dictionary Generation

generation with the write path, meaning the data must be available in full before any write
operation begins.

In realistic ingestion pipelines, especially those involving streaming or append-only batch
ingestion, this assumption no longer holds. The dictionary must be constructed incremen-
tally, based only on data that has already been ingested. Once new data arrives, a dic-
tionary can be refreshed to incorporate the updated domain knowledge. This motivates a
key shift in system design: global dictionaries are now decoupled from the data write path,
generated as a separate asynchronous job. As a result, it becomes infeasible to precompute
a dictionary over the entire dataset before ingestion begins.

5.4.1 Stealing a Dictionary from an Existing Table

To simulate a static, one-shot dictionary under this new asynchronous model, we introduce
a mechanism for dictionary stealing. The idea is simple: if a full dataset has already
been ingested and its global dictionary constructed incrementally, a second table can reuse
that dictionary for evaluation purposes.

Specifically, the second table updates its DomainMetadata field in the Delta transaction
log to point to the final dictionary file generated by the first table. As described in Sec-
tion 5.1, this metadata is read at the beginning of each write operation and passed into
the writer via Hadoop configuration. Since each write job receives a copy of the configu-
ration object, the metadata remains stable and isolated across jobs, even in the presence
of concurrent updates.

5.4.2 Implementation Considerations

There were multiple possible approaches to implementing this dictionary stealing protocol.

Symbolic Link Approach. The initial implementation used a lightweight symbolic link:
the second table’s DomainMetadata simply stored the path to the first table’s dictionary file.
This avoids any actual data copying and enables fast reuse. We implement and expose such
behavior through the Scala/Java API via DeltaTable.setSymbolicDictionary(sourceTablePath).

However, this approach suffers from long-term fragility. If the source table is vacuumed,
a common operation in Delta Lake that removes unused files, or deleted entirely, the
target table’s dictionary reference would become invalid. Worse, such failures would likely
manifest only during later read operations, resulting in brittle downstream behavior.

It is worth noting that Delta Lake’s SHALLOW CLONE feature uses a similar symbolic
referencing model, where a cloned table points to the original table’s data files. However,
such shallow clones are typically short-lived, used for testing or staging. In contrast, global
dictionaries are intended to persist throughout the lifetime of a production table and must
remain durable and consistent.

69

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

Physical Copy Approach. To avoid these issues, we implemented a more robust so-
lution: copying the dictionary file directly into the target table’s storage directory. This
guarantees isolation from upstream lifecycle events, ensuring that the copied dictionary
remains valid even if the source table is later vacuumed or deleted.

Upon copying, the receiving table updates its own DomainMetadata to reference the new
local dictionary file. From this point forward, the table operates entirely independently,
reading the dictionary as if it had generated it itself. We expose this functionality through
the Scala/Java API via DeltaTable.copyDictionaryFrom(sourceTablePath).

5.4.3 Experimental Design

To compare the effectiveness of incremental and one-shot global dictionary generation, we
conduct the following experiment:

1. We first ingest each dataset incrementally in 3, 6, and 9 batches, updating the dic-
tionary between each batch using the standard incremental workflow.

2. After all data has been ingested, we extract and save the final dictionary generated.
3. We then create a new table, copy the final dictionary into it using the physical copy

method described above, and update its DomainMetadata accordingly.
4. Finally, we write the same dataset again into this new table, using the copied (one-

shot) dictionary from the beginning of ingestion and not refreshing it across batches.

This setup allows for a controlled comparison between the two:

• Incremental Dictionary Mode, where the dictionary evolves and improves as
ingestion progresses,

• One-Shot Dictionary Mode, where a fixed dictionary, generated after full inges-
tion, is reused from the outset.

Each setting uses identical batch counts and input data. By measuring cumulative
and per-batch storage sizes, we can assess whether the one-shot dictionary approach yields
better compression, and whether the incremental approximation converges toward the one-
shot ideal as more data is ingested.

5.4.4 Evaluating Incremental vs. One-Shot Dictionary Approaches

In the final set of experiments, we compare the effectiveness of two dictionary generation
strategies: the incremental approach described earlier, where a new dictionary version is
generated after each batch, and a one-shot dictionary approach, in which a dictionary is
created using the full dataset and reused across all future batches via dictionary stealing.

Figure 5.6 presents the results for the Common Government dataset. The plot shows
per-batch cumulative file sizes as partitions are incrementally added to the dataset.

The overall trend is consistent and unsurprising: the one-shot dictionary consistently
outperforms the incremental strategy in terms of compression. The cumulative savings
reach approximately 2.3% in favor of the one-shot method. On a per-batch basis, we

70

5.5 Efficient Dictionary Estimation with Sketches

1 2 3 4 5 6 7 8 9
Number of Batches

1000

2000

3000

4000

5000

6000

7000
Cu

m
ul

at
iv

e
Si

ze
 (M

B)
Total space saving: 2.3% (Oneshot better)

Incremental Dictionary
Oneshot Dictionary

Figure 5.6: Comparison of Incremental vs. One-Shot Dictionary Cumulative Storage Sizes
for Common Government Dataset

observe that the initial batches benefit significantly from having access to a comprehensive
dictionary built on the full domain as batch 1 achieves a savings of 3.4%, compared to
essentially zero in the incremental setup (which lacks any prior dictionary at that point).

However, the relative difference between the two approaches narrows as more batches are
ingested. While the oneshot dictionary offers an initial “headstart”, this has no impact on its
future performance other than that the table’s size remains smaller by a relatively constant
(or slowly growing) difference. As both tables grow, this difference grows proportionally
less significant.

This pattern of strong initial performance gap followed by convergence is consistently
observed across the other datasets as well. It supports two key conclusions:

1. The one-shot strategy unsurprisingly has an advantage, since it encodes the entire
dataset with the most complete dictionary possible.

2. Incremental dictionaries, although slightly suboptimal, still achieve comparable com-
pression in the long run, with minimal overhead.

From a system design perspective, this is a favorable result: it indicates that even with-
out access to the full data up front, an unrealistic assumption in streaming or transactional
settings, Delta Lake can achieve nearly optimal compression using only incrementally gen-
erated dictionaries. The minor differences observed in early batches can often be tolerated
or amortized across the lifetime of the table.

5.5 Efficient Dictionary Estimation with Sketches

Throughout this thesis, we have focused solely on compression. However, to make this
solution viable in production systems, it becomes necessary to balance the compression
gains against the inevitable performance hit caused by generating the dictionaries.

71

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

The goal of this section is to formalize the problem of dictionary candidate estimation
under resource constraints and show how sketch-based methods can deliver scalable and ac-
curate approximations that serve as a drop-in replacement for exact frequency histograms.

5.5.1 Why Exact Frequency Computation is Expensive

The existing implementation for generating global dictionary candidates relies on com-
puting exact value frequencies using group-by aggregation (as explained in Section 4.2.1).
For each column, we perform an aggregation that groups all non-null values, counts the
occurrences of each unique value, filters those below a frequency threshold, and returns
the most common values in descending order.

This approach is executed in Spark as a multi-stage transformation involving a full data
shuffle. Each executor node first computes partial value counts, which are then shuffled
across the cluster for merging into global aggregates. Because the grouping key determines
the partitioning of data, this operation triggers a wide dependency, resulting in expensive
disk and network I/O.

Moreover, these group-by aggregations must be executed independently for each column.
Since each column’s values must be partitioned and grouped based on their own unique
values, there is no opportunity to share execution plans or reuse scans. This means that
writing a dataset with N columns can require N separate aggregation jobs, each scanning
and shuffling the data in full.

Figure 5.7 shows the physical execution plan Spark generates for a typical frequency
estimation query on a single column. This diagram represents a sequential dataflow through
Spark’s physical operators:

The plan starts with a Parquet scan, followed by a filter to exclude nulls. The data is
then grouped and counted using a hash aggregation, which builds an in-memory hash table
to track the count of each unique value. Once local aggregation is complete, the data is
shuffled via an exchange, meaning that partial results are redistributed across the cluster so
that values with the same key end up on the same node for global aggregation. Spark then
performs an AQEShuffleRead, a mechanism that dynamically optimizes shuffle partition
sizes at runtime to improve load balancing. Finally, the results are sorted and projected
to select the top values. While Spark’s internal optimization mechanisms attempt to fuse
stages where possible, this plan still incurs a large materialization and shuffle cost.

As datasets scale in size and column count, this cost becomes prohibitive. Recomputing
exact value counts for every column at every write is not sustainable for large-scale ingestion
pipelines. These limitations motivate the exploration of approximate algorithms that can
deliver similar value distributions with far less computational overhead. We explore this
direction in the following section.

5.5.2 Sketch Selection and Design Tradeoffs

To avoid the full materialization and shuffle costs associated with group-by aggregations,
we adopt an approximate frequency estimation method based on the Misra-Gries algorithm

72

5.5 Efficient Dictionary Estimation with Sketches

Filter

HashAggregate

AQEShuffleRead

Exchange

HashAggregate

Filter

ColumnarToRow

Scan Parquet

TakeOrdered
AndProject

Figure 5.7: Spark physical plan for group-by and count aggregation on one column.

(38). This sketching algorithm offers a scalable and memory-efficient alternative to exact
counting while still identifying the most common values in each column.

The core idea behind Misra-Gries is to maintain a bounded-size summary of the input
stream by keeping track of at most k item-count pairs. The algorithm processes data in a
single pass. For each incoming value, it checks if the value is already in the map:

• If it is, its count is incremented.
• If it is not and the sketch has fewer than k items, it is added with a count of one.

• If the sketch already tracks k items, the count of every item is decremented by one.
Items whose count reaches zero are evicted.

This mechanism ensures that any element with a frequency greater than 1
k+1 will be

present in the sketch at the end, albeit with some overestimation. The final output consists
of the top k items sorted by approximate count.

The actual implementation used in this thesis is the native approx_top_k function built
into the Databricks platform. Internally, this function augments the basic Misra-Gries
logic with an eviction policy that uses the median count of all tracked items to decide
which entries to prune and by how much. This approach is adapted from Reduce-By-
Median strategies that offer improved robustness for skewed data distributions. After
every insertion or merge, the sketch may run a compression step to evict half of the least
frequent items and decrement the others to stay within its target capacity.

73

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

ResultQueryStage

ObjectHashAggregate
(Final)

Exchange

ObjectHashAggregate

Filter

ColumnarToRow

Scan Parquet

Figure 5.8: Spark physical plan for sketch-based estimation across multiple columns.

Beyond its theoretical advantages, one of the most compelling benefits of sketch-based
estimation lies in its practical execution speed when deployed in distributed systems like
Spark.

With exact dictionary generation, each column requires its own group-by aggregation.
This means performing a full column scan and data shuffle N times for a table with N

columns. Because the grouping logic is specific to each column, Spark cannot reuse the
plan or combine aggregations across columns, resulting in duplicated compute and I/O.

In contrast, sketch-based estimation avoids this redundancy entirely. Because sketches
can be updated incrementally and independently for each row, the same input scan can
feed multiple sketches in parallel. This means that all columns can be processed in a single
pass over the dataset. Only one shuffle and aggregation stage is required, regardless of the
number of columns being processed. As the dataset will be too large for a single node,
we horizontally partition the rows such that each node gets their own range(s) of rows
containing all of the column data to process.

Figure 5.8 illustrates the physical execution plan used by Spark to apply approx_top_k
aggregations over multiple columns in a single job.

This plan begins with a Parquet scan, followed by a filter to remove nulls. The data
is then processed using an ObjectHashAggregate, which applies the sketch update logic
for each row and each column in the same stage. The intermediate results are exchanged
across the cluster for merging, followed by a final aggregation phase that produces the
top-k values per column.

74

5.5 Efficient Dictionary Estimation with Sketches

Unlike traditional hash aggregation, which must maintain and merge large, distinct hash
tables per grouping key, the sketch aggregation logic is constant-bounded in memory and
highly parallelizable. There is no need to materialize large intermediate state or coordinate
between columns.

In essence, sketch-based estimation:

• Requires only a single scan over the data, independent of column count.

• Incurs just one shuffle and merge step for all columns collectively.

• Uses compact in-memory data structures with bounded space guarantees.

• Eliminates the overhead of materializing complete group-by keys or counts.

This enables it to scale gracefully even for less-wide tables or streaming data pipelines,
offering a practical and performant solution to global dictionary candidate generation.

5.5.3 Experimental Evaluation: Efficiency Gains from Sketching

Experimental setup. To evaluate the performance benefits of sketch-based global dic-
tionary estimation, we benchmarked the runtime of our approach against the traditional
group-by method across multiple datasets. Each experiment was repeated 10 times on a
fixed compute environment to ensure consistency and eliminate external noise.

Cluster Configuration (AWS):

• Platform: Amazon Web Services (AWS)

• Instance Type: EC2 m6id.2xlarge

• Driver: 1 instance (8 vCPUs, 32 GiB memory, 474 GB NVMe SSD)

• Workers: 2 instances (same as driver), each with up to 12.5 Gbps network and 10
Gbps EBS bandwidth

These general-purpose instances are run Intel Xeon Scalable processors (Ice Lake 8375C),
with up to 3.5 GHz clock speed.

We ran the dictionary generation logic on five datasets of varying size and complexity.
For each dataset, we compared:

• The baseline method, which performs an exact group-by count on every column
individually.

• The sketch-based method using horizontal partitioning, which uses the Misra–Gries
approximation to estimate top values in all columns in a single pass.

The benchmark was conducted using the same logic and sampling parameters, with
k and maxItemsTracked equal to the estimate maximum number of elements (that fit
into a 2MB dictionary page). The key metric is total execution time in seconds for each
estimation job.

Observations:

• The sketch-based implementation was consistently faster across all datasets.

75

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

Table 5.1: Average execution time and speedup for baseline, horizontally partitioned, and
vertically partitioned sketches.

Dataset Baseline
Avg (s)

Horizont-
al Sketch
Avg (s)

%
Speedup
(Hori.)

Vertical
Sketch
Avg (s)

%
Speedup
(Vert.)

TPC-DS 1TB 95.72 59.48 37.85% 80.86 15.52%
TPC-DS 10GB 14.41 11.84 17.88% 14.07 2.36%
Library Inventory 52.36 49.41 5.63% 39.76 24.02%
NYC 58.59 51.29 12.46% 32.53 44.49%
Common Government 398.48 311.91 21.78% 260.36 34.71%

• The largest gains were observed on the 1TB TPC-DS dataset (nearly 38% faster),
where the baseline method took close to 100 seconds on average, versus under 60
seconds with sketches.

• Smaller datasets such as TPC-DS 10GB and Library Collection Inventory still ben-
efited, with up to 18% and 6% reductions in runtime respectively.

• The Common Government dataset, which is extremely wide, saw over 20% speedup,
highlighting the benefit of avoiding multiple passes over the data.

Larger datasets benefited more from sketching due to a combination of amortized over-
head (single scan over multiple columns), reduced shuffling, and more efficient parallel
execution. As the cost of exact group-by operations increases linearly with column count
and data volume, the one-pass sketch-based method scales much more favorably.

5.5.4 Sketch Optimization: Vertical Partitioning

We notice from running the horizontally partitioned sketch, that the network overhead
becomes large, especially with wider tables containing more columns. Therefore, in an
attempt to tackle this, we minimize the network overhead by vertically partitioning the
dataset.

This entails, instead of giving a particular process all the column data for a specific
range of rows, we give that process all of the data for a set of columns. Since the process
maintains complete ownership of these columns, they need exchange no intermediate data
over the network pertaining to any sketch passes. The drawback to this is that the dataset
now needs several passes over the dataset again.

Such a method can become useful in the event of selective column global dictionary
generation, where we only build dictionaries for columns we predict will compress well. In
such cases, we can eliminate a scan over that column, saving compute.

The results are also presented in Table 5.1. It can be seen that, in general, this approach
works better for the heavier datasets like NYC and Common Government. This makes
sense as they will likely have more data to send over the network and consider such latency
a bottleneck. For smaller datasets like TPC-DS 10GB, the network overhead is minimal,

76

5.5 Efficient Dictionary Estimation with Sketches

3 6 9 3 6 9 3 6 9 3 6 9

Dataset and Batch Count

1.0

1.1

1.2

1.3

1.4

1.5

Co
m

pr
es

sio
n

Ra
tio

Common Government Library Collection
Inventory

TPC-DS 10GB NYC

No Sketch
Sketch

Figure 5.9: Final compression ratio with and without sketches (higher is better).

and superfluous scans over the dataset becomes the bottleneck. In realistic scenarios, we
expect datasets to be far larger and heavier than what is presented here, making vertical
partitioning a sensible choice in our sketch design.

5.5.5 Compression Accuracy of Sketch-Based Dictionaries

While sketches significantly reduce the computational overhead of dictionary generation, it
is important to assess how this efficiency impacts final compression outcomes. In this sec-
tion, we compare the compression ratio achieved using approximate dictionaries (generated
with sketches) against exact dictionaries based on full-frequency histograms.

Figure 5.9 presents the final compression ratio for each dataset at each batch count.
Overall, we find that exact dictionaries consistently produce slightly smaller/better out-

puts. However, the degradation in space efficiency when using sketches is modest and
typically remains within a 1–3% range. In many cases, such as the Common Government
and Library Collection Inventory datasets, the differences are minimal suggesting that the
Misra-Gries sketch is able to recover the most frequent values sufficiently well to preserve
compression benefits.

Interestingly, in the NYC dataset, sketches even produce marginally better results than
the baseline. This is likely due to the inherently weak compressibility of the dataset with
either method, and small statistical fluctuations or selection artifacts may have led the
sketch to slightly favor compressible subsets.

In the case of the highly compressible TPC-DS 10GB dataset, sketches show neither
a decline nor improvement in performance relative to exact dictionaries. However, even
in this scenario, the benefit of using sketches must be weighed against the significantly
improved runtime and resource efficiency documented earlier. When deploying compression
pipelines in production environments, this tradeoff is likely to be well justified. Exact

77

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

dictionaries remain the gold standard for achieving maximum compression efficiency, but
sketches offer a practical and scalable approximation with only minor compression loss.
Especially in contexts where ingestion latency or resource usage is a concern, sketch-based
methods provide a compelling balance between performance and compression quality.

5.5.6 Further Optimizations

While the introduction of sketch-based frequency estimation significantly reduces the cost
of dictionary generation, there remain additional opportunities for improving efficiency fur-
ther, particularly when considering how and when data is sampled for dictionary creation.

First, as demonstrated in earlier sections, generating high-quality dictionaries does not
necessarily require scanning the entire dataset. In many cases, recent ingestion batches
alone offer a sufficient representation of the column value distribution. This observation
opens the door to partial estimation strategies, where only a sliding window of recent data
is analyzed to build or update dictionary candidates. Such a strategy would dramatically
reduce I/O and computation, especially in environments where older data is less relevant
to future distributions (e.g., in event logs or streaming append scenarios).

Second, the nature of the Misra-Gries algorithm itself presents a more powerful optimiza-
tion opportunity. Since the algorithm is designed for single-pass streaming scenarios, we
can model dictionary candidate estimation as a long-running aggregation over an infinite
data source, namely, the incoming ingestion stream. The state of the algorithm (i.e., its
internal count map) can be periodically suspended and persisted between batches. By stor-
ing this internal state structure, specifically, the key-count pairs that comprise the sketch
alongside the global dictionaries themselves within the Delta table or auxiliary metadata
files, we enable resumable estimation.

This means each new ingestion batch need only update the persisted sketch state with its
own data, rather than recomputing statistics from scratch. Operationally, this transforms
dictionary generation into an incremental, stateful process where each sketch update only
sees the delta of new data. By persisting and loading this sketch state efficiently, the sys-
tem can continue making frequency-based encoding decisions over long-running ingestion
pipelines without repeated full-table scans or aggregations.

Taken together, these optimizations could allow global dictionary systems to become vir-
tually invisible to the user in terms of runtime impact, offering near-constant-time updates
and continuously adaptive compression behavior in production environments.

5.5.7 Recovering Cardinality Awareness with HyperLogLog

While sketch-based estimation using Misra–Gries successfully replaces full-frequency his-
tograms for identifying high-frequency values, it comes with a notable limitation: it pro-
vides no information about column cardinality. This is a significant drawback, as potential
future compression heuristics, particularly the hybrid dictionary throttling logic discussed
in Section 4.5.5, depend heavily on cardinality signals to determine whether to throttle
the size of the global dictionary. An increase in dictionary storage size can accommodate

78

5.6 Read and Write Performance Analysis

an increase corresponding increase in cardinality in such a way that it matches/exceeds
that of the column. We found that in such cases, the column compression ratio improves
dramatically.

To address this, we propose augmenting the dictionary estimation pipeline with a second
sketch: HyperLogLog (HLL), a probabilistic algorithm for estimating the number of distinct
elements in a multiset (39). HLL works by hashing each element and recording the position
of the leftmost 1-bit in the hash value. The distribution of these positions across the dataset
forms the basis for an extremely compact estimate of the number of unique values. With
fixed-size memory (typically 1–2 KB per column), HLL achieves relative error rates below
2% in practice.

By pairing each Misra–Gries sketch with an HLL sketch, the system can recover cardinality-
aware behavior even under approximate estimation. The encoding planner can use the HLL
output to either estimate column uniqueness and compute the uniqueness ratio (a useful
heuristic as discussed in Section 4.4.6) or inform adaptive dictionary size tuning or fallback
tolerance thresholds.

5.6 Read and Write Performance Analysis

While the primary goal of using global dictionaries is to reduce storage space, it is im-
portant to evaluate the trade-offs this introduces in terms of read and write performance.
Specifically, since the dictionary is stored externally, both read and write operations re-
quire an additional access step to retrieve dictionary values. This introduces an additional
I/O step absent in standard Parquet encoding.

In this section, we evaluate the extent (or existence) of performance degradation during
typical data access scenarios. Dictionary generation is excluded from this analysis, as we
focus solely on the performance of writing values to disk and reading them back when the
external dictionary is already available.

Some level of degradation is expected due to the added I/O and lookup complexity.
However, the goal of this evaluation is to determine whether the performance loss is minor
and acceptable, or whether it poses a practical limitation to adoption.

To evaluate this impact, we benchmarked five datasets in two configurations: a baseline
without global/hybrid dictionaries and an initial implementation that uses global/hybrid
dictionaries (without any caching). Each test was run for 10 iterations, and the average
execution time was recorded for both read and write operations. The results for the initial
write and read performance are presented in Table 5.2 and Table 5.3 respectively.

The results show that performance degrades noticeably with hybrid dictionaries, even
for relatively small datasets. While the TPC-DS 10GB dataset shows only a mild increase
in execution time, larger datasets such as NYC and Common Gov exhibit slowdowns in
excess of 60%, with read performance degrading by over 100%. These results suggest
that the current implementation of global dictionaries introduces significant I/O overhead,
particularly in cases where dictionary files are large or when many dictionary pages are
accessed independently across columns.

79

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

Table 5.2: Adjusted write performance across baseline, global dictionary, and cached global
dictionary configurations. Each result is the average of 10 trials.

Dataset Baseline
Time (s)

Global
Time (s)

% Slower Cached
Time (s)

% Slower

TPC-DS 1TB 74.37 78.44 5.47% 77.03 4.93%
TPC-DS 10GB 15.86 17.07 7.61% 17.45 10.01%
Library Collection 34.01 39.99 17.57% 36.53 7.46%
NYC 43.55 70.81 62.59% 50.05 14.86%
Common Gov 352.64 574.96 63.05% 405.02 14.86%

Table 5.3: Adjusted read performance across baseline, global dictionary, and cached global
dictionary configurations. Each result is the average of 10 trials.

Dataset Baseline
Time (s)

Global
Time (s)

% Slower Cached
Time (s)

% Slower

TPC-DS 1TB 27.31 30.57 11.91% 26.04 -4.68%
TPC-DS 10GB 4.82 5.34 10.78% 5.03 4.25%
Library Collection 13.83 21.73 57.09% 15.06 8.96%
NYC 13.45 31.23 132.27% 15.00 11.57%
Common Gov 88.94 239.49 169.26% 100.46 12.91%

Initial attempts to diagnose the cause using Spark job statistics were inconclusive. Many
metrics relevant to I/O behavior—such as cache hit rates or read amplification—were either
unavailable or sparsely populated by parquet-mr. However, one consistent signal across
all jobs was the elevated network traffic associated with global dictionary reads. This
suggests that the performance bottleneck is likely due to the need to repeatedly fetch
dictionary content from remote storage during read and write operations. Because the
global dictionary is external, every lookup incurs additional latency compared to standard
inline dictionary encoding in Parquet.

5.6.1 Caching Optimization

To mitigate the I/O bottlenecks introduced by global dictionaries, we implemented a basic
caching strategy. We reason that the size of the global dictionary files is not the problem
(see Table 4.3), but rather the I/O wait time. This is because for each column in each row
group, we make a request to the dictionary file, incurring a roundtrip wait each time. To
fix this, instead of this repeated fetching, we prefetch the entire dictionary file once (per
node) and keep it in an in-memory Guava cache. This reduces the number of round trips
to cloud storage and significantly improves performance. The results for the cached write
and read performance are likewise presented in Table 5.2 and Table 5.3. It can be seen
that, relatively speaking, the read and write times reach a near parity with their non-global

80

5.7 Global Dictionary Cost/Benefit Analysis

counterparts. In the case of reading TPC-DS 1TB, we even see a slight improvement, which
is likely caused by the dramatically reduced storage size.

In the write path, prefetching the entire dictionary file is always a good idea, as we will
always need the dictionaries for all columns. For the read path, this may be wasteful, as
we may often need dictionary pages for only a few columns. This is naturally the whole
point of columnar storage in OLAP systems.

Nevertheless, this, albeit rudimentary, caching solution serves as a proof of concept.
A more integrated and performant alternative would be to leverage Databricks’ DBIO
cache, which is designed to fetch blocks at a time into memory for efficient reuse. This
could mean that when we grab a column’s dictionary page, we could also fortuitously
grab a nearby column’s dictionary. Unfortunately, this block-level caching system is not
currently supported by the open-source parquet-mr library we rely on (see Section 2.4).
As such, our solution avoids Databricks-specific enhancements to preserve compatibility
and reproducibility in broader open-source environments.

These results demonstrate that external global dictionaries can introduce measurable
overhead, particularly for datasets with large or complex dictionaries. However, this over-
head is not inherent to the concept—rather, it stems from the additional I/O roundtrips.
With even a minimal caching layer, much of the performance degradation can be allevi-
ated. In production-grade systems that integrate block-level caching natively, the remain-
ing overhead could likely be reduced further, making global dictionaries both a space- and
performance-efficient option.

5.7 Global Dictionary Cost/Benefit Analysis

While earlier sections focused on storage efficiency and performance tradeoffs, this section
evaluates the economic viability of global dictionaries by comparing their compute cost
against the storage cost savings they offer. The goal is to estimate how long it takes for
the savings from compression to recoup the cost of generating the dictionaries—i.e., the
breakeven time.

5.7.1 Point Estimate: Best-Case Breakeven Time

We begin by computing a basic breakeven estimate using the static, one-shot dictionary
approach. This assumes that the entire dataset is available up front and that a single dic-
tionary is built before writing the data. While not always realistic, this gives an optimistic
lower bound on breakeven time.

For each dataset, we calculate:

• The compute cost of generating the dictionary, based on measured job runtime, a
compute price of $0.40/hour, and a 3-node cluster.

• The monthly storage saving, by measuring the difference in output size between
hybrid-dictionary-encoded and baseline (non-dictionary) tables, and applying a cloud
storage price of $0.023/GB/month.

81

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

Table 5.4: Static breakeven analysis using one-shot dictionary generation. Compute cost is
a one-time cost, while savings are monthly.

Dataset Compute
Cost ($)

Storage
Saved
(GB)

Monthly
Saving ($)

Breakeven
(Months)

TPC-DS 10GB 0.0039 0.86 0.0199 0.20
Library Collection Inventory 0.0165 0.42 0.0097 1.70
NYC 0.0171 0.01 0.0003 53.57
Common Government 0.1040 0.30 0.0069 14.98

• The breakeven time in months, by dividing compute cost by monthly saving.

The compute time data is taken from the non-sketch dictionary generation job times in
Table 5.1 and the storage savings data is taken from the compression statistics in Section
4.5.5.

These results show that for datasets like TPC-DS 10GB, hybrid dictionaries become
cost-effective almost immediately. Others, such as Common Government, take longer, and
in the case of NYC, the space savings are so minimal that breakeven may never be reached.

5.7.2 Limitations of Static Estimates

The calculation above is intentionally optimistic and includes several simplifications:

• It assumes the dictionary is generated once over the full dataset, which is rare outside
of table initialization.

• In practice, dictionaries are built incrementally, meaning compute costs grow with
each generation.

• The compression gain also depends on how frequently the dictionary is regenerated
and how much the value distribution shifts between batches.

• Some tables might reuse dictionaries from others (e.g., via cloning or symbolic link-
ing), or integrate dictionary generation into other commands like OPTIMIZE, which
would amortize cost differently.

Given these variables, estimating real-world breakeven time requires a more dynamic
analysis including features not yet implemented (see Chapter 6).

5.7.3 Incremental Breakeven Evaluation

To simulate more realistic usage, we evaluate breakeven time as data is ingested incremen-
tally in multiple (9) batches. After each batch, a dictionary generation job is executed
using only the data seen so far, simulating a periodic background job. The compute cost
is accumulated across generations, and the cumulative storage saving is tracked. The com-
pute time data is taken from the sketches in Table 5.1 and the storage savings data is taken
from the compression statistics in Section 5.4.4.

82

5.7 Global Dictionary Cost/Benefit Analysis

Figure 5.10 shows the evolving breakeven time for each dataset as more batches are
ingested and more dictionary generations are performed. The NYC dataset is omitted
here, as it showed negative compression gains and therefore has infinite breakeven time.

1 2 3 4 5 6 7 8 9
Batch Number

0

10

20

30

40

Br
ea

ke
ve

n
Ti

m
e

(M
on

th
s)

Common Government
Library Collection
Inventory
TPC-DS 10GB

Figure 5.10: Breakeven time vs. batch number (cumulative compute cost model). NYC
omitted due to negative savings.

As shown, breakeven time generally increases with more batches. This is because ad-
ditional dictionary generation jobs add compute cost, while the storage savings do not
increase proportionately. For example, in the Common Government dataset, breakeven
time grows linearly with the number of batches, reaching over 40 months at 9 batches.

For highly compressible datasets like TPC-DS 10GB, hybrid dictionaries are cost-effective
in the static and incremental models. For the others, cost-effectiveness depends heavily on
how the dictionary job is run (e.g. full vs. incremental input, frequency of generation). In
all cases, it’s clear that recomputing dictionaries from scratch after every batch becomes
inefficient quickly and should be avoided.

5.7.4 Improving Efficiency via Incremental Dictionary Updates

We also simulate a more efficient model where each dictionary generation job processes only
the new data (rather than recomputing over the full dataset). This reflects a practical op-
timization where sketches or frequency estimations are stateful and updated incrementally
as discussed in Section 5.5.6.

Figure 5.11 illustrates the breakeven times under this model. Unlike the cumulative
compute cost model, the breakeven time remains much more stable, and even decreases
slightly, across batches.

83

5. SUPPORTING INCREMENTAL AND ADAPTIVE USE

1 2 3 4 5 6 7 8 9
Batch Number

0

2

4

6

8

10

Br
ea

ke
ve

n
Ti

m
e

(M
on

th
s)

Common Government
Library Collection
Inventory
TPC-DS 10GB

Figure 5.11: Breakeven time vs. batch number (individual compute cost per generation)
NYC omitted due to negative savings.

This suggests that implementing stateful or per-batch sketching strategies may signifi-
cantly reduce breakeven time and make global dictionaries more economically viable across
a wider range of datasets.

84

6

Open Issues and Future Work

While this thesis presents a functional implementation and evaluation of global dictionary
compression for static datasets in Delta Lake, several limitations remain. Furthermore,
there are multiple opportunities to extend and enhance the system in ways that improve
its applicability, performance, and integration within the broader data ecosystem.

This section outlines key open challenges and proposes directions for future work across
four areas: support for streaming and incremental sketching, limitations related to nested
data types, optimizations tied to the lifecycle of Delta tables, and potential query perfor-
mance improvements through better use of dictionary information.

6.1 Delta Table Lifecycle and Cross-Table Optimizations

There remains a broader set of opportunities for improving the usability, maintainability,
and performance of global dictionaries by considering them within the full lifecycle of a
Delta table, or even across multiple related tables. This section outlines several directions
where optimizations can occur either above the Delta layer or in coordination with it.

6.1.1 Dictionary Reuse via CREATE TABLE AS SELECT

A natural starting point is support for dictionary reuse in the context of table duplication
or derivation. Many data pipelines involve creating derived tables using SQL commands
like CREATE TABLE AS SELECT (CTAS), often replicating the schema and data of an
existing Delta table. In such scenarios, the new table may benefit from reusing the global
dictionary of its source table, especially when the data values are largely the same.

As discussed in Section 5.4, dictionaries can be directly copied or even referenced (via a
symbolic link), meaning the core functionality of such an operation already exists. Future
work therefore only needs to hook this functionality into existing pipelines. Such an op-
timization doesn’t simply cut down on compute time (like the sketches from Section 5.5),
but eliminates it entirely, potentially introducing storage savings with at no cost at all.

85

6. OPEN ISSUES AND FUTURE WORK

6.1.2 Integrating Dictionary Generation with Table Optimization

At present, dictionary generation is implemented as a standalone manual job. This makes
it flexible but also burdensome to operate, especially in production pipelines. A promising
direction is to integrate dictionary construction into existing Delta Lake commands that
already involve rewriting Parquet files, most notably the OPTIMIZE command.

OPTIMIZE rewrites files to improve layout and compaction, and since this is a naturally
expensive operation, it presents an ideal opportunity to share the cost of dictionary gener-
ation. The implementation could optionally scan the data for global dictionary candidates
and write the encoded output in the same pass. This co-location would reduce the input
and output overhead and ensure dictionary freshness in environments where OPTIMIZE
is routinely used.

6.1.3 Tracking and Exposing Dictionary Effectiveness via Metadata

A major barrier to effective dictionary usage is the lack of visibility into its performance
impact. However, it is abundantly clear that, although global dictionaries can be applied
very successfully, it is difficult to predict on which datasets before trying it out and collecting
the statistics. Currently, there is no persistent metadata stored that allows users or systems
to quantify the value of a global dictionary on a given table or column.

To address this, Delta Lake could be extended to maintain lightweight statistics that
capture:

• Compression size per row, and if this was with and without dictionary encoding
• The cardinality of dictionary-encoded columns. For example, we could apply a con-

dition that the uniqueness percentage of all the values in a column must be below
0.4 as these were seen to generally be the only columns with positive space savings
(see Section 4.4.6).

• The memory footprint of dictionary structures

Such metadata could be exposed via the Delta transaction log or through table-level
statistics APIs. It would enable informed decision-making, such as:

• Determining whether a table benefits from global dictionaries
• Identifying columns where dictionary encoding is unnecessary or counterproductive
• Deciding whether to regenerate dictionaries after schema or data drift

6.1.4 Column-Level Control of Dictionary Encoding

Building on the availability of column statistics, another optimization is to enable fine-
grained control over which columns are dictionary-encoded. Rather than applying a global
dictionary to all eligible columns, the system could use heuristics or thresholds to determine
suitability on a per-column basis.

For instance, a column with high cardinality but low repetition might offer little com-
pression benefit from a dictionary and could instead fall back to alternative compression

86

6.2 Query Optimization Opportunities

methods such as bit-packing or run-length encoding. This approach allows the storage
system to adaptively balance dictionary size, encoding complexity, and expected benefit.

6.1.5 Throttling Dictionary Sizes Based on Cardinality Profiles

Future implementations should also consider mechanisms for throttling or bounding global
dictionary size, particularly for columns with cardinalities outside of beyond what a local
dictionary could hold, but within what a hybrid dictionary could hold. This was already
discussed in Sections 4.5.5 and 5.5.7.

6.1.6 Managing Dictionary File Retention

As global dictionaries are stored as external files, their lifecycle must be properly coor-
dinated with the Delta table that references them. Currently, Delta’s vacuum operation
removes files that are no longer tracked by the transaction log. This introduces two related
challenges.

First, Delta must be aware not to vacuum dictionary files that are still in use by one or
more active Parquet files. Failure to do so could result in missing dictionary data during
read operations.

Second, dictionary files that are no longer referenced by any table version or Parquet
file should eventually be garbage collected to free storage space. Implementing safe and
efficient cleanup requires tracking dictionary usage across snapshots and coordinating this
with Delta’s retention logic.

Both problems require dictionary files to be included in the Delta table’s metadata model.
This could involve extending the transaction log to track dictionary file versions, reference
counts, or dependencies across data files. Doing so would allow Delta to distinguish between
live and obsolete dictionaries and maintain them accordingly.

Overall, these enhancements point toward a more intelligent and integrated model for
managing dictionary lifecycles. Global dictionaries should be treated not merely as com-
pression artifacts but as first-class metadata objects that participate fully in the evolution
and maintenance of Delta tables.

6.2 Query Optimization Opportunities

Beyond storage efficiency, global dictionaries also present compelling opportunities to op-
timize query execution, particularly in the domains of aggregation and caching. Since a
global dictionary inherently unifies the codes data pages use across file and captures a
column’s unique values and their frequencies, this structured representation can be ex-
ploited by query engines for more efficient data processing. In fact, even without any
significant storage improvement, global dictionaries have the potential to optimize com-
pute immensely. This makes it perhaps the most important future direction of
investigation.

87

6. OPEN ISSUES AND FUTURE WORK

6.2.1 Standardized Codes and Query Performance

Global dictionaries may benefit from the fact that they standardize the codes used to
represent values across the entire dataset. This property enables encoded values to be
directly comparable across column chunks and files, eliminating the need to decode and re-
map values during operations like joins, groupings, or distinct computations. Standardized
codes also allow query engines to operate entirely on compact integers during execution,
which can significantly reduce memory consumption and improve CPU efficiency compared
to operating on longer, variable-length strings.

To illustrate the potential benefits of working with standardized codes in Spark and
Delta Lake, we conducted a microbenchmark. In this benchmark, we created a large Delta
table with 100 million rows containing two columns: a string column and a corresponding
integer column representing the dictionary-encoded version of the same string values. The
string values were generated with a fixed length of 1024 characters to simulate high-cost
string comparisons. We varied the number of unique values in the column (10, 100, 1,000,
and 10,000) to observe the effect of cardinality on performance.

We then executed a simple SELECT COUNT(*) FROM table GROUP BY col query on each
column and measured the query runtimes across multiple iterations. Figure 6.1 presents
the results for the string length of 1024. It can be observed that the GROUP BY on the
integer column, which simulates a globally encoded dictionary representation, was able to
outperform the string column by a substantial margin. Depending on the cardinality of
the column, the speedup exceed 8x in some cases.

10 100 1,000 10,000
Number of Unique Values

0

1

2

3

4

5

6

7

8

S
pe

ed
up

Figure 6.1: Query speedup for GROUP BY on integer columns against baseline string columns
in a Delta table with 100M rows and string length 1024.

These results demonstrate that standardized codes from a global dictionary can mate-
rially improve query performance by replacing expensive string comparisons with more
efficient integer operations. This effect becomes especially pronounced in high-cardinality

88

6.2 Query Optimization Opportunities

datasets or when working with very long strings, where the cost of string processing dom-
inates execution time.

While global dictionaries enable standardized, comparable codes, this property is limited
when using hybrid schemes and dictionary versioning. In hybrid approaches, values not
present in the global dictionary are encoded with local, per-row-group dictionaries whose
codes are not comparable beyond that row group. Similarly, with versioning, codes are
only consistent within the set of files encoded with the same dictionary version. Comparing
data across different versions or beyond the range of the global dictionary requires decoding
and remapping, which reduces the efficiency gains. Developing mechanisms to extend
comparability across versions and hybrid boundaries remains an open challenge, but have
been partially addressed in other works (31).

6.2.2 Accelerating Aggregations with Precomputed Frequencies

Many analytical queries involve operations like GROUP BY, COUNT, SUM, and AVG, which
require scanning column values and grouping by their identities. If the global dictionary
stores not only the unique values but also frequency statistics (i.e., how often each value
appears across the table), then certain aggregate queries can be partially or fully resolved
using just the dictionary itself.

For example:

• A COUNT of each distinct category value (or similar GROUP BY operations) in a column
can be derived directly from the dictionary’s frequency map.

• A DISTINCT query on a column could leverage the set of unique values already main-
tained in the dictionary, avoiding the need to construct this set at query time.

Such dictionary-aware optimizations could dramatically reduce query latency, especially
for large tables with low-cardinality dimensions.

However, these opportunities come with challenges. In evolving datasets where new
values appear over time and old values become obsolete, the dictionary can become stale,
bloated, or less representative of the current data distribution. This reduces its effectiveness
for both compression and query acceleration. A global dictionary that does not adapt to
the dataset’s evolution may include many entries that no longer occur, wasting space and
weakening query optimizations.

Addressing this issue will require additional mechanisms, such as dictionary maintenance
policies, versioning strategies, or periodic rebuilding to ensure that the dictionary remains
compact and relevant.

6.2.3 Enhancing Cache Efficiency with Block-Aware Dictionaries

Another direction for performance gains lies in improved caching. Modern storage engines,
including Delta Lake’s DBIO layer, employ block-level caching to minimize disk reads. If
the presence of a global dictionary allows the engine to predict data access patterns or
compress data into more cache-friendly blocks, this can yield substantial I/O savings.

89

6. OPEN ISSUES AND FUTURE WORK

Furthermore, by co-locating dictionary-encoded columns with their associated dictionary
blocks, it becomes possible to cache only the minimal set of blocks needed to decode and
process a given query. For repeated queries over the same dimension column (e.g., region
or status), this can reduce memory pressure and boost responsiveness.

6.2.4 Toward Dictionary-Aware Query Planning

Realizing these benefits requires enhancements to the query planner, which must become
aware of dictionary availability and contents. Planners should:

• Detect when a dictionary can answer a query partially or fully.

• Avoid scanning base data when dictionary-level aggregates suffice.

• Choose physical plans that prioritize dictionary-optimized paths when available.

This opens an exciting line of future work at the intersection of storage and execution
layers, where dictionaries evolve from passive compression tools into active enablers of
faster, more intelligent query processing.

By extending global dictionary functionality beyond compression into query optimization
and caching, the system can achieve compound performance gains, shortening query times
and reducing resource usage.

6.3 Sketch Optimizations

6.3.1 Streaming and Incremental Sketches

One current limitation of the global dictionary generation process is its batch-oriented
nature. In its current form, the dictionary is created through a single-pass scan over
the entire table, requiring already used parts of the table (for dictionary generation) to
be read again. This becomes inefficient and impractical in scenarios where data arrives
incrementally or continuously, such as in streaming pipelines or frequently updated Delta
tables.

To address this, future work could explore the design and implementation of streaming-
compatible sketching algorithms. In particular, the Misra-Gries sketch used in 5.5, was
originally designed for streaming use cases. However, its current implementation in the
Databricks environment does not allow for this, particularly due to its inability to suspend
(and resume) the state of the algorithm. An exact description of how this might be tackled
is described in Section 5.5.6

Additionally, incremental sketches should support thresholding logic to decide whether
dictionary updates are beneficial based on observed value frequencies and cardinality drift.
The system could also leverage Delta’s change data feed (CDF) feature, if enabled, to more
efficiently isolate new data for sketch updates.

90

6.3 Sketch Optimizations

6.3.2 Limitations with Nested Data and Schema Flattening

The current implementation of global dictionary compression is designed for flattened,
tabular data structures. However, many real-world Parquet datasets contain nested types
such as struct, array, and map, which present additional complexity.

To support global dictionaries in such cases, it is often necessary to first flatten the
schema, transforming nested fields into separate top-level columns. While this enables
compatibility with dictionary encoding mechanisms, it introduces several complications:

• Schema explosion: Flattening can significantly increase the number of columns,
particularly in deeply nested schemas, making the data harder to manage and less
readable.

• Row misalignment: Flattening can break the assumption of consistent row counts
across columns. For instance, an array field may generate multiple entries per parent
row, while other fields remain single-valued. This undermines algorithms that might
depend on consistent row granularity, such as single-pass frequency sketches like
Misra-Gries.

• Complex dictionary mapping: Associating flattened columns back to their orig-
inal nested structure during decoding or analysis may require additional metadata
or transformation logic.

An illustrative example of schema flattening and its effects can be found in Section 4.1.
These challenges highlight the need for future work on native support for nested types
within the global dictionary framework, potentially by extending sketching algorithms and
dictionary encoding mechanisms to operate hierarchically or at the nested field level.

Until such support is developed, global dictionary compression remains most practical
and effective for already-flattened datasets, limiting its applicability to a subset of use
cases.

91

7

Conclusion

7.1 Conclusion

This thesis explored the feasibility and design of global dictionary compression techniques
for Parquet-based Delta Lake storage, aiming to improve storage efficiency while maintain-
ing compatibility with real-world data lake operations. The research was guided by five
core questions, each of which is answered below.

RQ1: How can a global dictionary be designed and managed across dis-
tributed systems, considering file immutability and evolving datasets? Can
global dictionaries coexist with local dictionaries in a complementary manner?

Global dictionaries can be effectively managed using Delta Lake’s transaction log and
metadata mechanisms, while the dictionaries themselves are stored in the regular data
portion of Delta tables. This allows centralized storage and versioning of dictionary files,
enabling consistent use across files. The hybrid design demonstrated in this thesis confirms
that global and local dictionaries can coexist, with global dictionaries handling common
values and local fallbacks covering rare or newly seen values.

RQ2: What are the trade-offs in write, read and storage performance when
using global dictionaries compared to local dictionaries?

Global dictionaries improve storage efficiency for suitable columns, especially those with
medium cardinality and frequent repetition. However, they introduce additional lookup
overhead and metadata management complexity. Write and read performance may be
impacted due to the need to preload dictionaries, the extent of which strongly depends
on efficient caching and lookup strategies. Nevertheless, space savings of over 10 percent
were occasionally observed in some datasets, validating the trade-off. However, careful
monitoring of the trade-off at runtime is necessary, in case space savings are too low or
overhead is too high.

RQ3: How does the system handle newly arriving data with previously un-
seen values, and how does this affect dictionary maintenance?

To handle newly arriving values, the system includes mechanisms for incremental dictio-
nary updates and fallback encoding. Values not present in the current global dictionary
can be encoded using a local dictionary or stored plainly, and the global dictionary can

92

7.2 Final Remarks

be expanded periodically through background jobs while previously written files still use
older dictionary versions. This ensures that compression benefits can be preserved even in
evolving datasets without rewriting existing files.

RQ4: How can global dictionaries be integrated with Delta Lake’s metadata
mechanisms, such as metadata and add actions?

Integration is achieved by extending Delta Lake’s metadata actions to reference external
dictionary files. Each file includes a pointer to the dictionary version it uses, and the global
dictionary directory is structured to allow consistent resolution by readers and writers. In
addition, a global (per-table) metadata field is maintained, pointing to the most recent
global dictionary version. This approach ensures that dictionary references are atomic,
versioned, and resilient to concurrent updates.

RQ5: Can global dictionaries be efficiently utilized during compaction or
checkpointing processes?

Yes, global dictionaries can be effectively leveraged during compaction. When small
Parquet files are rewritten as part of Delta Lake’s compaction process, the system can
re-encode data using an up-to-date global dictionary. This allows previously scattered or
inconsistently encoded values to be unified under a single dictionary version, improving
both compression and query efficiency. This reduces redundancy introduced by unused
older dictionary versions, local dictionaries and plain encodings in earlier files, leading to
long-term space savings and more consistent encoding across the dataset. This process can
be triggered periodically or adaptively based on storage metrics and column characteristics.

7.2 Final Remarks

This thesis has shown that global dictionary compression can serve as a powerful tool
for reducing storage overhead in data lake systems built on Parquet and Delta Lake. By
designing a practical and extensible implementation that supports both static and incre-
mental workloads, this work bridges a gap between theoretical compression techniques and
real-world system constraints.

Beyond the concrete storage savings achieved, this research contributes a reusable archi-
tecture and set of design principles that can inform future developments in data engineering
infrastructure. While some challenges remain, including compatibility, query optimization,
and adaptive dictionary management, the foundation laid here provides a solid basis for
continued innovation.

Global dictionaries represent more than just a compression technique. They offer a path-
way toward more intelligent, centralized data representation in distributed systems. As
data volumes continue to grow, such approaches will be critical to sustaining the perfor-
mance, scalability, and efficiency of modern data platforms.

93

References

[1] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, June 1970. 4

[2] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing
and OLAP technology. SIGMOD Rec., 26(1):65–74, March 1997. 4

[3] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating com-
pression and execution in column-oriented database systems. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’06, page 671–682, New York, NY, USA, 2006. Association for Computing
Machinery. 5, 8

[4] Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Cidr, 5, pages 225–237, 2005. 5

[5] Midhul Vuppalapati, Dan Truong, Justin Miron, Ashish Motivala,
Rachit Agarwal, and Thierry Cruanes. Building An Elastic Query Engine
on Disaggregated Storage. 5

[6] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai,
Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J.
Green, Monish Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy,
Jintian Liang, Michael McCreedy, Fabian Nagel, Ippokratis Pandis,
Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman,
Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian, and Doug
Terry. Amazon Redshift Re-invented. In Proceedings of the 2022 International
Conference on Management of Data, pages 2205–2217, Philadelphia PA USA, June
2022. ACM. 5

[7] Thomas Neumann. Efficiently compiling efficient query plans for modern
hardware. Proc. VLDB Endow., 4(9):539–550, June 2011. 5

[8] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark SQL: Relational Data Processing
in Spark. In Proceedings of the 2015 ACM SIGMOD International Conference on

94

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/248603.248616
https://doi.org/10.1145/248603.248616
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797

REFERENCES

Management of Data, SIGMOD ’15, page 1383–1394, New York, NY, USA, 2015.
Association for Computing Machinery. 5

[9] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes.
A Deep Dive into Common Open Formats for Analytical DBMSs. Proceed-
ings of the VLDB Endowment, 16(11):3044–3056, July 2023. 6

[10] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1998. 6

[11] Azim Afroozeh and Peter A. Boncz. The FastLanes Compression Layout:
Decoding >100 Billion Integers per Second with Scalar Code. Proc. VLDB
Endowment, 16(9):2132–2144, 2023. 6, 14, 15

[12] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor
Leis. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proceed-
ings of the ACM on Management of Data, 1(2):1–26, June 2023. 6

[13] Peter Boncz, Thomas Neumann, and Viktor Leis. FSST: Fast Random
Access String Compression. Proceedings of the VLDB Endowment, 13(12):2649–
2661, August 2020. 6, 13, 16

[14] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shix-
iong Zhu, Mukul Murthy, Joseph Torres, Herman Van Hovell, Adrian
Ionescu, Alicja Łuszczak, Michał Świtakowski, Michał Szafrański, Xiao
Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz, Ali Ghodsi, Sameer
Paranjpye, Pieter Senster, Reynold Xin, and Matei Zaharia. Delta Lake:
High-Performance ACID Table Storage over Cloud Object Stores. Proceed-
ings of the VLDB Endowment, 13(12):3411–3424, August 2020. 10, 14, 56

[15] Ingo Müller, Cornelius Ratsch, and Franz Färber. Adaptive String Dic-
tionary Compression in In-Memory Column-Store Database Systems, 2014.
13, 16

[16] Christoph Doblander. Compression in Publish/Subscribe Systems. 13, 16

[17] Jiancong Tong, Anthony Wirth, and Justin Zobel. Principled Dictionary
Pruning for Low-Memory Corpus Compression. In Proceedings of the 37th
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pages 283–292, Gold Coast Queensland Australia, July 2014. ACM. 13, 16

[18] Chunwei Liu, McKade Umbenhower, Hao Jiang, Pranav Subramaniam,
Jihong Ma, and Aaron J. Elmore. Mostly Order Preserving Dictionaries.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages
1214–1225, Macao, Macao, April 2019. IEEE. 13, 16, 17, 54

95

REFERENCES

[19] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-
Based Order-Preserving String Compression for Main Memory Column
Stores. In Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of Data, pages 283–296, Providence Rhode Island USA, June 2009. ACM.
13, 16

[20] Gennady Antoshenkov. Dictionary-Based Order-Preserving String Com-
pression. The VLDB Journal The International Journal on Very Large Data Bases,
6(1):26–39, February 1997. 13, 16

[21] Miguel A. Martínez-Prieto, Javier D. Fernández, and Rodrigo Cánovas.
Compression of RDF Dictionaries. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 340–347, Trento Italy, March 2012. ACM.
13, 16

[22] Yannis Foufoulas, Lefteris Sidirourgos, Eleftherios Stamatogiannakis,
and Yannis Ioannidis. Adaptive Compression for Fast Scans on String
Columns. In Proceedings of the 2021 International Conference on Management of
Data, pages 554–562, Virtual Event China, June 2021. ACM. 13, 17

[23] Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexander
Zeier. Speeding Up Queries in Column Stores. In Torben Bach Pedersen,
Mukesh K. Mohania, and A Min Tjoa, editors, Data Warehousing and Knowl-
edge Discovery, 6263, pages 117–129. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010. 13, 17

[24] Paras Jain, Peter Kraft, Conor Power, Tathagata Das, Ion Stoica, and
Matei Zaharia. Analyzing and Comparing Lakehouse Storage Systems. In
Proc. 13th Conf. on Innovative Data Systems Research (CIDR), 2023. 14

[25] Apache Hudi Project. Apache Hudi Metadata Table Documentation.
https://cwiki.apache.org/confluence/display/HUDI/Metadata+Table, 2022. 14

[26] Ted Gooch. Why and How Netflix Created and Migrated to a
New Table Format: Iceberg. https://www.dremio.com/subsurface/
why-and-how-netflix-created-and-migrated-to-a-new-table-format-iceberg/,
2020. 14

[27] Lindsay Clark. Industry reacts to DuckDB’s radical rethink of Lake-
house architecture. https://www.theregister.com/2025/06/05/ducklake_db_
industry_reacts/, 2025. 14

[28] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor
Leis. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc.
ACM Manage. Data, 1(2):118:1–118:26, 2023. 15

96

https://www.cidrdb.org/cidr2023/papers/p92-jain.pdf
https://cwiki.apache.org/confluence/display/HUDI/Metadata+Table
https://www.dremio.com/subsurface/why-and-how-netflix-created-and-migrated-to-a-new-table-format-iceberg/
https://www.dremio.com/subsurface/why-and-how-netflix-created-and-migrated-to-a-new-table-format-iceberg/
https://www.theregister.com/2025/06/05/ducklake_db_industry_reacts/
https://www.theregister.com/2025/06/05/ducklake_db_industry_reacts/

REFERENCES

[29] Spiral Data. Vortex: High-Performance Columnar Format (Specification
v0.36). https://docs.vortex.dev/specs/file-format, 2023. 15

[30] Weston Pace, Chang She, Lei Xu, Will Jones, Albert Lockett, Jun
Wang, and Raunak Shah. Lance: Efficient Random Access in Columnar
Storage through Adaptive Structural Encodings. CoRR, abs/2504.15247,
2025. arXiv preprint. 15, 16

[31] Tim Gubner, Viktor Leis, and Peter Boncz. Optimistically compressed
Hash Tables Strings in the USSR. ACM SIGMOD Record, 50(1):60–67, May
2021. 17, 89

[32] The Apache Software Foundation. Apache CarbonData. https://
carbondata.apache.org/, 2021. Accessed: 2025-07-06. 17

[33] Majid Saeedan and Ahmed Eldawy. Spatial Parquet: A Column File For-
mat for Geospatial Data Lakes. In Proceedings of the 30th International Confer-
ence on Advances in Geographic Information Systems, pages 1–4, Seattle Washington,
November 2022. ACM. 18

[34] Kil Joong Kim, Bohyoung Kim, Seung Wook Choi, Young Hoon Kim,
Seokyung Hahn, Tae Jung Kim, Soon Joo Cha, Vasundhara Bajpai, and
Kyoung Ho Lee. Definition of Compression Ratio: Difference Between
Two Commercial JPEG2000 Program Libraries. Telemedicine and e-Health,
14(4):350–354, 2008. PMID: 18570564. 19

[35] Alexander Van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wen-
jian Dong, Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, An-
dreas Kipf, and Tim Kraska. Why TPC Is Not Enough: An Analysis of the
Amazon Redshift Fleet. Proceedings of the VLDB Endowment, 17(11):3694–3706,
July 2024. 28

[36] E.A. Unger, L. Harn, and V. Kumar. Entropy as a measure of database in-
formation. In [1990] Proceedings of the Sixth Annual Computer Security Applications
Conference, pages 80–87, 1990. 31

[37] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. Better
bitmap performance with Roaring bitmaps. Software: Practice and Experience,
46(5):709–719, 2016. 49

[38] J. Misra and David Gries. Finding Repeated Elements. Science of Computer
Programming, 2(2):143–152, 1982. 73

[39] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
HyperLogLog: The Analysis of a Near-Optimal Cardinality Estimation Al-
gorithm. In Proceedings of the 2007 Conference on Analysis of Algorithms (AOFA),
pages 137–156, 2007. 79

97

https://docs.vortex.dev/specs/file-format
https://carbondata.apache.org/
https://carbondata.apache.org/
https://doi.org/10.1089/tmj.2007.0067
https://doi.org/10.1089/tmj.2007.0067
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2325
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2325
https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

	1 Introduction
	1.1 Research Objective
	1.2 Methodology Overview
	1.3 Contribution

	2 Background
	2.1 Database Fundamentals
	2.1.1 The Relational Model and SQL
	2.1.2 OLAP Workloads and Analytical Queries
	2.1.3 Query Execution
	2.1.4 Storage: Row-Oriented vs Column-Oriented

	2.2 Apache Parquet
	2.2.1 Logical Data Organization
	2.2.2 Physical Data Layout and Compression
	2.2.3 Dictionary Encoding in Detail
	2.2.4 Mechanics of RLE_DICTIONARY Encoding
	2.2.5 Parquet Specification Versions: V1 vs. V2

	2.3 Delta Lake and Metadata Management
	2.3.1 Architecture Overview
	2.3.2 Global Dictionary Storage in Delta Lake
	2.3.3 Challenges and Considerations

	2.4 Databricks Tooling

	3 Related Work
	3.1 Current Body of Literature
	3.1.1 Metadata Management in Data Lake Table Formats
	3.1.2 Emerging Columnar Formats and Compression Techniques
	3.1.3 Dictionary Compression in Columnar Formats
	3.1.4 Optimizing Dictionary Access and Lookup
	3.1.5 From Local to Global Dictionaries
	3.1.6 Summary and Gaps in Existing Work

	4 Global Dictionary Compression for Static Datasets
	4.0.1 Scope and Exclusions
	4.1 Constructing Global Dictionaries
	4.1.1 Value selection
	4.1.2 Value normalization
	4.1.3 Storage format
	4.1.4 Resource considerations

	4.2 Modifying the Write Path
	4.2.1 Dictionary Creation
	4.2.2 Encoding Control Flow
	4.2.3 Fallback Strategy
	4.2.4 Static Dictionary Lookups
	4.2.5 Encoding Type Identifier

	4.3 Reading with Global Dictionaries
	4.4 Compression Evaluation
	4.4.1 Benchmark Setup and Datasets
	4.4.2 Frequency Threshold Sensitivity (TPC-DS)
	4.4.3 Column-Level Compression Analysis
	4.4.4 Gathering Column-Level Statistics
	4.4.5 Correlation Analysis of Column Features
	4.4.6 Uniqueness Proportion Across Datasets
	4.4.7 Variance in Compression Outcomes
	4.4.8 Data Type–Level Compression Patterns

	4.5 Hybrid Dictionary Design
	4.5.1 Hybrid Mode Implementation
	4.5.2 Index Range Partitioning
	4.5.3 Control Flow and Layout
	4.5.4 Read Path
	4.5.5 Compression Results
	4.5.6 Byte Width Rounding Effects in Dictionary Encoding
	4.5.7 Column-Level Analysis
	4.5.8 Byte-Width Analysis

	4.6 Indirection Dictionaries Design
	4.6.1 Usage Efficiency of Global Dictionaries
	4.6.2 Impact of Inflated Byte-Widths
	4.6.3 Visual Analysis of Global Dictionary Usage
	4.6.4 Indirection Dictionary Design
	4.6.5 Decoder-Aware Dictionary Compaction Optimization
	4.6.6 Byte Width Optimization Verification
	4.6.7 Indirection Compression Results
	4.6.8 Analysis of Indirection Dictionary Dynamics

	4.7 Takeaways From Global Dictionaries on Static Datasets

	5 Supporting Incremental and Adaptive Use
	5.1 Delta Log Integration
	5.1.1 Designing the Dictionary Metadata Layer
	5.1.2 Choosing AddFile-Level Metadata
	5.1.3 Multi-Column Dictionary Packaging
	5.1.4 Reading a Column Dictionary from a Shared Dictionary File

	5.2 Decoupling Dictionary Creation from Writes
	5.2.1 Standalone Dictionary Jobs
	5.2.2 Integration into the Write Path
	5.2.3 Invoking Dictionary Generation Jobs
	5.2.4 System Integration Overview

	5.3 Experimental Evaluation: Incremental Write Performance
	5.3.1 Storage Size Results
	5.3.2 Space Savings and Asymptotic Behavior in TPC-DS
	5.3.3 Effect of Batch Count on Compression Effectiveness

	5.4 Comparing Incremental vs. One-Shot Dictionary Generation
	5.4.1 Stealing a Dictionary from an Existing Table
	5.4.2 Implementation Considerations
	5.4.3 Experimental Design
	5.4.4 Evaluating Incremental vs. One-Shot Dictionary Approaches

	5.5 Efficient Dictionary Estimation with Sketches
	5.5.1 Why Exact Frequency Computation is Expensive
	5.5.2 Sketch Selection and Design Tradeoffs
	5.5.3 Experimental Evaluation: Efficiency Gains from Sketching
	5.5.4 Sketch Optimization: Vertical Partitioning
	5.5.5 Compression Accuracy of Sketch-Based Dictionaries
	5.5.6 Further Optimizations
	5.5.7 Recovering Cardinality Awareness with HyperLogLog

	5.6 Read and Write Performance Analysis
	5.6.1 Caching Optimization

	5.7 Global Dictionary Cost/Benefit Analysis
	5.7.1 Point Estimate: Best-Case Breakeven Time
	5.7.2 Limitations of Static Estimates
	5.7.3 Incremental Breakeven Evaluation
	5.7.4 Improving Efficiency via Incremental Dictionary Updates

	6 Open Issues and Future Work
	6.1 Delta Table Lifecycle and Cross-Table Optimizations
	6.1.1 Dictionary Reuse via CREATE TABLE AS SELECT
	6.1.2 Integrating Dictionary Generation with Table Optimization
	6.1.3 Tracking and Exposing Dictionary Effectiveness via Metadata
	6.1.4 Column-Level Control of Dictionary Encoding
	6.1.5 Throttling Dictionary Sizes Based on Cardinality Profiles
	6.1.6 Managing Dictionary File Retention

	6.2 Query Optimization Opportunities
	6.2.1 Standardized Codes and Query Performance
	6.2.2 Accelerating Aggregations with Precomputed Frequencies
	6.2.3 Enhancing Cache Efficiency with Block-Aware Dictionaries
	6.2.4 Toward Dictionary-Aware Query Planning

	6.3 Sketch Optimizations
	6.3.1 Streaming and Incremental Sketches
	6.3.2 Limitations with Nested Data and Schema Flattening

	7 Conclusion
	7.1 Conclusion
	7.2 Final Remarks

	References

