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Abstract

The interactive experience of writing Structured Query Language (SQL) has not
kept up with the performance advancements of modern analytic engines. In particular,
analytical cloud services almost always incur Wide Area Network (WAN) latency, which
means that even short queries can feel slow to analysts. As a result, users are often left
in a “write–run–wait” cycle that hampers exploratory analysis. Newer features such as
MotherDuck’s Instant SQL [25c] seek to offer analysts a fluid exploratory experience
by providing real-time query previews. Powering this capability in a modern hybrid
architecture requires a new paradigm of caching.

A promising approach for these interactive functionalities is to work with partial,
client-side caches — which we call Results [NA23]. The primary contribution of this
dissertation is to go beyond basic caching to the composition of Results, treating query
previews as a form of Approximate Query Processing (AQP). However, this powerful
technique exposes a critical new problem that threatens the viability of the method:
insufficient result cardinality when results are computed on previous data samples.
Composing partial data samples can produce a result set that is too small to be useful,
compromising the interactive user experience.

This thesis develops and evaluates an intelligent recovery framework to efficiently
resolve these failures. Rather than recompute the entire resolved query on the server —
a potentially expensive operation — the framework deploys algorithms to intelligently
select and re-create a single upstream dependency, representing a far more efficient
approach. We develop and assess three novel heuristics to guide the selection of the
upstream dependency: one via optimizer Cardinality Estimation, another via empirical
Dynamic Sampling, and a third via analytical Data Lineage.

These strategies were benchmarked in a simulated environment with realistic, multi-
step analytical workloads generated by Large Language Models (LLMs) fed with both
the standard Transaction Processing Performance Council - H (TPC-H) and the skewed
Join Crossing Correlations - H (JCC-H) data. The experimental results demonstrate
that Data Lineage offers the best overall performance with reliable predictions, the
best response time, and the fewest number of user interruptions, with virtually no
additional computational cost for the client. In contrast, the optimizer’s cardinality
estimates proved highly unreliable, and the exhaustive sampling method was found to
be unfeasible due to its high local cost. This work demonstrates that it is possible to
provide a lightweight analytical heuristic based on data provenance to manage failures
caused by insufficient result cardinality, making real-time query previews a practical
reality in modern hybrid database systems.
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1 Introduction

1.1 Background and Foundational Concepts

This chapter provides the necessary background in database systems to understand
the context and contribution of this thesis. We begin with the foundational relational
model and query languages, then delve into the internal mechanics of query processing
and optimization, and conclude with the advanced techniques that directly inform the
strategies developed in this work.

1.1.1 The Relational Model and SQL

The relational data model is both the theoretical and practical basis for the vast majority
of modern database systems. The model was first proposed by Edgar F. Codd in 1970,
and while other data models have appeared, the principles established in this model
have shown remarkable longevity and have become dominant in the field [Cod70]. The
central abstraction in the model is the relation, which is physically represented as a
table. Data are organized into these two-dimensional structures, which are composed
of rows, formally known as tuples, and columns, or attributes. Each tuple represents
one related set of data points, while each attribute is defined over a domain of allowable
values. The relational model is particularly useful because it allows for the linkage of
distinct relations to one another based on common key values that establish logical
connections between different datasets. Thus, a relational database is defined as an
organized collection of interrelated relations [WE14a].

SQL was developed as the method of interacting with and manipulating data within
this model. SQL was first developed by IBM in the early 1970s under the name SEQUEL
and then further commercialized; it has now evolved into the common language for
relational database management systems [WE14b].

SQL is characterized as a high-level, declarative language. This allows users to
specify the intended effect when conducting an operation against the data contained
within this model, without specifying how the system should implement that operation.
For example, an operation that finds the names of all patients over 65 years of age
could be expressed as follows:

SELECT Name
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1 Introduction

FROM Patient
WHERE Age > 65;

This statement indicates what data are needed, but the details of implementation
(such as methods for scanning tables, use of indexes, or join algorithms) are left to
the database’s query optimizer. In short, SQL provides an important bridge between
the user and the abstract constructs of the relational model, allowing users to create
complex queries against table-structured data.

1.1.2 Relational Algebra and Query Trees

While SQL provides a declarative means of querying a database, relational algebra
is the theoretical, procedural basis for how those queries are executed. Relational
algebra (also defined by Codd) is a formal language that uses a finite number of known
operators to manipulate relations [Cod70]. Each operator takes one (or more) relations
as input and outputs another relation. This algebra provides a formal way of specifying
non-trivial operations for retrieving data. There are a number of operators that make up
the algebra, and we can classify these as unary (one relation) or binary (two relations)
operators. The main primitive operators are as follows:

• Selection (σ): Filters tuples based on a specified predicate or condition. It returns
a horizontal subset of the input relation containing only the tuples that satisfy the
condition.

• Projection (π): Selects a subset of attributes from a relation, discarding the others.
It produces a vertical subset of the input relation.

• Union (∪): Computes the set union of two union-compatible relations (i.e., having
the same number and type of attributes), returning all unique tuples present in
either relation.

• Set Difference (−): Returns all tuples that are present in the first of two union-
compatible relations but not in the second.

• Cartesian Product (×): Generates a new relation composed of all possible combi-
nations of tuples from two input relations. If relation R has n tuples and relation
S has m tuples, their Cartesian product R × S contains n · m tuples.

• Rename (ρ): Changes the name of a relation or its attributes, which is crucial for
resolving ambiguity, particularly in self-joins or complex products.
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1 Introduction

Many other operators can be defined with these fundamental operators, most sig-
nificantly the Join (▷◁) operator. A natural join, for example, is a composite operator
consisting of a Cartesian product, selection, and projection that take tuples from two
relations and combine them in accordance with the equality of their shared attributes.

The logical representation of a query is often expressed in the form of a query tree.
In such tree data structures, the leaves represent base relations found in the database to
which the query relates, and the internal nodes represent the various relational algebra
operations applied to combine those leaves. The data flow proceeds from the leaves to
the root, which returns the logical result for the query.

The query tree is a clear, manipulable representation of the steps necessary to
compute the query. This is important to the process of query optimization. A query
optimizer in a database can apply heuristic and/or cost-based rules to transform an
initial query tree into a logically equivalent but more efficient one. For example, a query
tree can be optimized by “pushing” selections and projections as low as possible to
minimize intermediate result sizes, while reordering joins to reduce computation costs.
This logical plan is then converted to a physical execution plan for the query engine.
This shows that relational algebra and query trees can provide theoretical and structural
understanding of the process by which a declarative SQL query is transformed into an
efficient, procedural execution plan.

1.1.3 The Query Processing Pipeline

The life of a query in a contemporary Relational Database Management System
(RDBMS) is defined by a series of steps performed in a formal pipeline structure.
This process is primarily responsible for transforming a high-level declarative SQL
statement into a low-level procedural execution plan that the system can run efficiently.
Typically, the architectural design of this pipeline, building on the foundational work
of Selinger et al. and Graefe, consists of four phases: parsing and semantic analysis,
logical optimization (rewriting), physical (cost-based) optimization, and execution
[Sel+79; Gra93].

1. Parsing and Semantic Analysis: The execution of a query begins once the
Database Management System (DBMS) receives a string that represents an SQL
query. The parser first checks the statement for syntactic correctness according
to the SQL grammar and converts it into an internal representation, typically
a parse tree. Once the parse phase has been completed, the semantic analysis
stage occurs, where the parser verifies the query against the DBMS’s system
catalog (or metadata). Specifically, the parser checks whether all relation and
attribute references are defined and whether attributes are type-compatible in

3
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predicates and expressions. The parser may also resolve any referenced views to
their definitions. The output of this phase is a valid initial logical query plan that
can be represented as a tree of relational algebra operators.

2. Logical Optimization (Query Rewriting): The initial logical plan of the query
may not always be optimal. The next phase is a series of heuristic, rule-based
transformations that put the plan into a logically equivalent, but more efficient
form. The transformations are based on the mathematical equivalences of rela-
tional algebra. They include common rewriting rules such as “pushing down”
selection predicates as far down in the plan as possible in order to reduce the vol-
ume of intermediate results, merging multiple operations together, and removing
unnecessary sub-expressions. Logical optimization may also involve reordering
operators, such as joins, based on logical cost metrics like the estimated number
of tuples produced by a query subtree. This stage of query processing operates at
the logical level. It will only change the structure of the plan, but it does not yet
define the physical costs to perform any of the physical operations.

3. Physical (Cost-Based) Optimization: Physical optimization focuses on choosing
among multiple physical algorithms that can implement a given relational op-
erator. The optimizer starts with the rewritten logical plan and explores a large
space of potential physical execution plans. For each logical operator in the plan
(i.e., join, sort, scan), it considers alternative physical algorithms (i.e., hash join vs.
nested-loop join; filesort vs. indexed retrieval). Using a cost model and statistics
about the data stored in the database, it estimates the resource cost (usually a
function of I/O and CPU) of running each physical plan. The goal is to select the
plan with the lowest estimated cost.

4. Execution: Once the optimal physical plan has been determined, the execution
engine of the database receives the plan. The execution engine takes the plan,
which is a sequence of specific physical operators, and executes the plan one
operator at a time. As a result, the data specified in the query are retrieved, and
the final result set is produced and returned to the user.

In conclusion, this pipeline is a systematic decomposition of the query processing
problem, from a high-level declarative specification to a more optimized, low-level
execution strategy. Understanding this process is essential to analyzing database
performance and the behavior of complex queries.
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1.1.4 Fundamentals of Cardinality Estimation

Reliable cardinality estimation is a fundamental requirement for any cost-based query
optimizer. The optimizer must decide which of a potentially very large set of alterna-
tives is likely to produce the most efficient execution plan. These cost estimates depend
critically on the estimated number of tuples (i.e., cardinality) produced by the interme-
diate operators in the query plan [Lei+15]. If the optimizer has inaccurate cardinality
estimates, it might select a seriously inefficient plan; for example, it could pick the
worst join ordering or even the wrong access method, degrading query performance by
many orders of magnitude [IC91; Poo+96].

In order to produce cardinality estimates, the optimizer must rely on statistical
metadata—also known as synopses—that summarize the data distributions of the
base relations. The metadata are precomputed from the base relations and stored in
the system catalog of the database. There are many types of synopses, but the most
common are:

• Histograms: These structures approximate the distribution of values within a
single column by partitioning the values into a set of buckets and storing frequency
counts for each. They are particularly useful for estimating the selectivity of range
predicates.

• Number of Distinct Values (NDV): A count of the unique values in a column,
essential for estimating the result size of grouping operations and joins. In
practice, NDV is often estimated using a HyperLogLog data structure, which is
compact and easy to maintain.

• Minimum and Maximum Values: These simple statistics allow the optimizer
to quickly determine whether a range predicate falls outside the bounds of the
data in a column. They are also used to skip reading parts of the table (such as
partitions or row groups), which can significantly reduce the number of tuples
that need to be processed.

• Most Frequent Values (MFVs): A list that stores the “heavy hitter” values and
their exact frequencies. This helps correct for data skew, where a small number of
values appear much more often than others.

These values are gathered through background processes executed periodically,
or explicitly triggered by a Database Administrator (DBA) (e.g., using an ANALYZE
command).

Even when estimates are generated from statistics, consistently estimating cardinality
is notoriously difficult because the probabilities are based on several simplifying
assumptions that are often incorrect in real-world data.
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One of the major assumptions made is that the attribute values are independent.
Consider the case of a cars table: predicates such as model=’ID.4’ and make=’VW’ are
clearly correlated, but a simple estimator may multiply their selectivities as if they were
independent, yielding very inaccurate probabilities about the result.

Ioannidis and Christodoulakis demonstrated how even very small estimation errors
from base relations get multiplied together exponentially as they move upward through
a query tree [IC91]. This is why continuing work on improving cardinality estimation
methods and metrics will always be necessary, and remains an important area of
research within databases.

1.1.5 Sampling-Based Cardinality Estimation

Synopsis-based methods using histograms and precomputed statistics form the cor-
nerstone of traditional query optimization; however, due to skewed data, correlated
attributes, and dynamic distributions, they can be considerably limited. A second
complementary approach is sampling-based estimation. Instead of only relying on
stored metadata, sampling-based estimation uses data to conduct statistical inferences.
The fundamental principle is to execute a query on a small, randomly selected sample
of the data and then extrapolate the observed cardinality to the full dataset.

This approach has been influential in the development of systems for online and
interactive analytics. An example is the work on Ripple Joins, which process joins
in a sampling-based, incremental fashion to provide users with progressively refined
estimates and confidence intervals [HH99]. More recently, the principles of sampling
have become central to the field of AQP. This can be seen in the systems BlinkDB
[Aga+13] and VerdictDB [Par+18b], which leverage precomputed data samples (strat-
ified or uniform) to provide responses to analytical queries with very low latency,
producing estimated results with defined bounds for potential error. Although the
premise behind AQP systems is often focused on providing data analysts with fast
approximate answers, the sampling-based estimation metrics defined in AQP are also
applicable to providing cardinality estimates for cost-based query optimization.

The primary strength of sampling-based systems is their resilience to complex
relationships in the data. By using a direct sample of the data, they can naturally
capture the effects of attribute correlation and value skew without the need for complex
multidimensional synopses or the restrictive assumptions of attribute independence.
This enables sampling-based systems to react to potentially dynamic environments,
where the data distributions could shift drastically.

However, sampling entails some inherent trade-offs:

• Runtime Overhead: Sampling requires accessing data at query time, which incurs
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I/O and CPU overhead. This cost must be balanced against the potential benefit
of a more accurate plan.

• Estimation Variance: The accuracy of a sampling-based estimate is a function of
the sample size. For queries with very high selectivity (i.e., those that match very
few tuples), a small random sample may fail to capture any qualifying tuples,
leading to a cardinality estimate of zero and high statistical variance.

Despite these challenges, sampling-based estimation is a powerful technique in the
query processing landscape. It naturally captures correlations: for instance, if the opti-
mizer evaluates a predicate such as model=’ID.4’ and make=’VW’ on the sample, the
resulting estimate will correctly reflect the effect of the correlation. Sampling-based esti-
mation now serves as a tool for modern analytical databases, distributed query engines,
and systems where providing fast, approximate results is a key requirement. While
in the early days predicate evaluation on samples was considered too costly—since
CPUs were slow and even scanning a few thousand tuples added overhead—on current
hardware this evaluation is fast enough to be practical during optimization.

1.1.6 Client-Side Caching of Query Results

In client-server database architectures—common in cloud-based computing—a consid-
erable aspect of query latency is attributable to network latency and server-side load
when generating data. One approach to reducing server-side load, and consequently
data retrieval latency, is to cache the results of previous queries on the client side. When
a new query is received, the first evaluation or verification for the system is whether
these results can be partially or fully synthesized from the previously cached data.
If the previous query results indicate that there is a partial or full answer that can
subsequently be served from the client-side cached data, it is beneficial to avoid the
round trip to the server to obtain results from the database, thus significantly reducing
the time to return a result set and decreasing the server infrastructure workload needed
to retrieve the data [KB96].

Implementing client-side result caching introduces two fundamental challenges:
cache completeness and cache consistency. Cache completeness relates to the problem
of deciding whether the local cache contains all the necessary data to answer a new
query without contacting the server. This often requires metadata that explain the
contents of the original query, e.g., the predicates present in the queries that populated
the cache [KB96]. Cache consistency, on the other hand, is the challenge of ensuring
that the data stored in the cache remain synchronized with the master data on the
server. Cached results could become stale if the data in the source server are modified,
resulting in cache invalidation and/or update propagation scheme requirements.

7
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Studies in this domain have extended the focus of caching not only to final query
results, but also to intermediate results [Iva+09]. By caching intermediate results
produced in the query plan of a query, the system can potentially take advantage
of those intermediate results to serve queries in the future, building more efficient
execution plans. Caching intermediate results presents the problem of co-locating the
caching subsystem with the query optimizer, leaving the optimizer in a position to
make cost-based decisions on what to cache and how to take advantage of cached data
when creating new execution plans [Roy+00]. While the details of caching methods are
beyond the scope of this background, the reuse of previous computations to accelerate
the time for subsequent queries is a central theme.

1.1.7 Approximate Query Processing

Building on the idea of reusing data in client-side caching, AQP provides a more
structured way to obtain fast answers from large datasets. Whereas a client’s cache
can be viewed as an ad hoc collection of data from past queries, AQP is intentional. It
formalizes the notion of representing the whole with a smaller portion by operating on
carefully designed summaries or statistical samples. The aim of AQP is straightforward:
give up perfect accuracy to achieve a large gain in query speed [HHW97].

AQP systems typically rely on precomputed, offline samples of the data; for instance,
systems such as BlinkDB and VerdictDB build small stratified samples intended to
approximate the entire dataset [Aga+13; Par+18a]. When a user issues a query (for
example, SELECT COUNT(*) or SELECT AVG(col)), the system evaluates it against the
sample rather than the full dataset. From the sample statistics, the system derives an
approximate answer and attaches a confidence interval. The user therefore gains both
a quick response and an indication of the possible error, which is often sufficient for
exploratory analysis and identifying trends.

This approach, however, introduces challenges distinct from cache management.
The guarantees of AQP are strongest for simple aggregate queries; accuracy is harder
to ensure when queries involve complex operations such as JOINs or subqueries. In
addition, if the underlying data are highly non-uniform—where some values appear
disproportionately often—or if the query targets a rare event, then even a well-chosen
sample may fail to be representative, leading to poor estimates. Addressing such cases
and extending AQP to more complex queries and distributions remains an active line
of database research.
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1.1.8 Lineage and Data Provenance

Although the previous chapters focused on query execution efficiency—whether in
terms of cost-based optimization or approximation—we now consider the semantics
of what a query’s result means. Data provenance, often used interchangeably with
data lineage, is the study of tracing data back to its origins and transformations. For
any particular query, the provenance of an output tuple is the set of input tuples from
the source tables that were responsible for its creation. In other words, it answers
the question: “Which pieces of the input data were used to generate this piece of the
output?”

A seminal paper in this line of work by Buneman et al. formally characterized two
broad kinds of provenance: why-provenance and where-provenance [BKT01]. Why-
provenance refers to which input tuples caused an output tuple to exist—for example,
in a JOIN operation it would identify the pair of source tuples from the input tables
that matched to produce a result. Where-provenance, on the other hand, concerns the
physical locations (e.g., table and column names) from which the data values in an
output tuple were copied.

There are several reasons why understanding data provenance is important in modern
database systems. It provides a foundation for:

• Debugging and Explanation: When a developer encounters unexpected or incor-
rect results from a query, provenance makes it possible to trace the problem back
to the specific input data that caused it [DG15].

• Data Quality and Trust: With an explicit audit trail of how the data was generated,
provenance supports assessing the trustworthiness and quality of the data used
in analytics and reporting [Dai+08].

• Scientific Reproducibility: In scientific settings, provenance not only documents
the original data and processes used in an experiment but also enables others to
validate and reproduce the research [Cra+15].

A full treatment of provenance-capture techniques lies beyond the scope of this
background. The key idea, however, is that query outputs can be mapped back to the
specific inputs that produced them—an idea central to the present thesis.

1.1.9 DuckDB and the Rise of Hybrid Execution with MotherDuck

DuckDB is an embeddable analytical database management system designed to run
analytical SQL queries while embedded in another process. It was created to address
the gap left by SQLite. While SQLite excels in transactional workloads, it suffers
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from inefficiencies in analytical processing. DuckDB, in contrast, is tailored for Online
Analytical Processing (OLAP) queries and is well suited to data science and analytics
workflows where analytical processes must handle large datasets efficiently [RM19].

Key features of DuckDB include:

• High Performance for Analytical Workloads: DuckDB uses a vectorized execu-
tion engine based on the MonetDB/X100 “Hyper-Pipelining Query Execution”
approach [BZN05], and processes data in batches, improving performance for
analytical queries compared to traditional row-based systems.

• Embeddability: DuckDB runs as part of the host process, meaning there is no
standalone database server to maintain. This design simplifies deployment and
avoids the overhead of transferring data to a separate server, a concern also
highlighted in the “Don’t Hold My Data Hostage” paper by Hellerstein and
Stonebraker [RM17].

• Portability: DuckDB is written in C++ and has no external dependencies, simpli-
fying integration across environments.

• Open Source: DuckDB is released under the MIT license, encouraging community
contributions and broad accessibility [25a].

DuckDB is built for analytical workloads and includes components such as a parser,
logical planner, optimizer, physical planner, execution engine, concurrency control, and
storage manager. The parser uses a modified version of PostgreSQL’s SQL parser for
robust query parsing. The optimizer is cost-based, and the storage implementation uses
a read-optimized columnar format with lightweight indexing to reduce unnecessary
data reads. DuckDB supports a wide range of SQL capabilities and effectively works
with large datasets in memory, even on devices with limited resources—making it well
suited for scenarios such as interactive data analysis and edge computing [RM19].

1.1.10 MotherDuck

MotherDuck is a serverless analytics platform built on top of DuckDB. Unlike traditional
systems that rely on “scale-out” clusters, it takes a “scale-up” approach, running most
analytical workloads on a single machine. The idea is that many real-world analytical
tasks are not as large as people assume and can be handled more effectively on a single
node [25d].

What makes MotherDuck distinctive is its dual, or hybrid, execution model. Queries
can be split so that some parts run on a local client machine while others are executed
in the cloud. This setup makes it possible to balance performance, cost, and data
locality by moving the work to wherever the data happens to be.
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Query Shipping vs. Data Shipping

Distributed database systems have long debated two strategies for moving queries and
data:

• Query Shipping: The query itself is sent to the server that holds the data.
This works well for large datasets and relatively simple queries, since it avoids
unnecessary data transfer.

• Data Shipping: The data is sent to the location where the query is running. This
can be useful when queries are more complex or when the dataset is small enough
to move without much overhead.

MotherDuck combines the two. By splitting a query plan between client and cloud,
it can decide case by case which operations should stay local and which are better
executed remotely [25d].

Dual (Hybrid) Execution

MotherDuck’s dual execution framework combines the fast, in-process analytical engine
of DuckDB with the flexibility of a cloud service. When a user connects a local DuckDB
instance to MotherDuck (for example, using the command ATTACH ’md:’;), the local
process effectively becomes a node in the larger MotherDuck ecosystem. Through this
connection, the local database can reach cloud-persisted data and take part in hybrid
query planning [25d].

Planning and executing a hybrid query involves a few main steps:

1. Query Decomposition: The query is parsed into a directed acyclic graph (DAG)
of relational operators.

2. Cost Estimation and Site Selection: The optimizer decides, based on data locality,
whether each operator should run locally or remotely.

3. Bridge Operator Insertion: Special “bridge” operators are placed in the plan to
move data between local and remote parts.

4. Result Materialization: The final result is produced in the most efficient location,
minimizing the amount of data transferred back to the user.

This framework supports different execution strategies—fully local, fully remote,
or hybrid—making it possible to build low-latency interactive applications that take
advantage of both local resources and the cloud [25d].
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WebAssembly (WASM)

WebAssembly (WASM) is a binary instruction format that serves as a compilation target
for languages such as C++. The main idea is to let high-level languages run inside a
web browser at speeds close to native. It does this by providing a compact, safe, and
efficient standard for executing code in the browser environment [25e].

For DuckDB and MotherDuck, WASM plays an important role. It makes it possible to
run DuckDB directly in the browser, which is especially useful when building interactive
applications that demand very low latency. With this setup, queries can be issued
against data that lives locally or in the cloud. By compiling DuckDB to WASM, users of
MotherDuck gain the ability to run SQL queries in the browser itself, while the hybrid
execution model decides what should be handled locally and what should be pushed
to the cloud.

1.1.11 Conclusion of Background

This chapter has outlined the core background needed for the rest of the thesis. We
began with the fundamentals of the relational model and SQL, then moved through
query processing and optimization, and finally looked at more advanced topics such
as cardinality estimation, approximate query processing, and the hybrid architecture
behind MotherDuck. Together, these ideas provide the context for the contributions that
follow.
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This chapter establishes the foundational context for this thesis. We begin by exploring
the architectural shifts in modern data analysis that motivate this work. We then
formalize the definition and mechanics of Results, a key building block. Finally, we
articulate the novel research problem that this thesis aims to solve: the composition of
Results.

2.1 The Rise of Interactive Data Applications

Modern data analysis increasingly relies on interactive data applications that provide
immediate insights through visualizations and dashboards. A key technology in this
space is DuckDB, a high-performance analytical database engine that can run directly
within a web browser’s WebAssembly (Wasm) environment. This capability allows
for complex analytical queries to be executed on the client device, enabling highly
responsive applications by eliminating network latency.

MotherDuck extends this paradigm into a serverless data warehouse by pioneering
a hybrid query execution model [AA23]. This model intelligently splits the processing
of a single query between the user’s local device and the powerful cloud backend. The
decision of where to execute specific query fragments depends on the location of the
data.

However, this powerful architecture presents two primary challenges:

1. Network Latency: Transferring data or query results between the MotherDuck
cloud and the browser introduces significant latency, which can undermine the
interactive feel of an application.

2. Data Locality Requirement: The benefits of local processing are only realized
when data is present on the client device. If all data resides in the cloud, the
user’s local compute resources remain idle, and every query incurs a network
roundtrip.

Addressing these issues is paramount for creating truly fluid and powerful interactive
data applications.
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2.1.1 Motivation: The Instant SQL Feature as a Motivating Application

Modern data analysis has seen tremendous performance gains in query engines, yet the
interactive experience of writing SQL has remained largely static. Analysts are often
trapped in a tedious “write–run–wait” cycle, partly due to the Wide Area Network
(WAN) latency inherent in cloud-based systems, which disrupts the cognitive flow
essential for deep data exploration. Despite the ability of engines like DuckDB to scan
billions of rows in seconds, the user experience is still gated by the latency between
authoring a query and observing its result.

To address this gap, MotherDuck developed Instant SQL [25c], a feature integrated
into its local UI that fundamentally changes the nature of query writing. This section
describes the Instant SQL feature and establishes it as the primary motivation for the
caching and query composition mechanisms explored in this thesis.

The MotherDuck UI and the Instant SQL Experience

The MotherDuck UI is a local, notebook-style SQL environment designed for interactive
data analysis. It allows users to connect to and explore data from various sources
simultaneously, including local files, remote object stores, and databases. Its interface
provides tools like a data catalog and a table explorer that offers immediate visual
diagnostics, such as column distributions and null percentages, without requiring users
to write boilerplate queries.

The flagship feature of this UI is Instant SQL. Instead of the traditional "write-
run-wait" paradigm, Instant SQL provides a real-time preview of a query’s result set
that updates as the user types. This transforms the static query editor into a live,
interactive canvas. An analyst can write a complex query with multiple Common
Table Expressions (CTEs) and see the output of each intermediate step instantly. This
immediate feedback loop makes it effortless to debug complex expressions, experiment
with different analytical approaches, and maintain a state of analytical flow.

When satisfied with the real-time preview, the user can then choose to run the query
to materialize the final, complete result.

It is important to emphasize that Instant SQL is a preview and exploration tool,
not a replacement for running the full query. Because it operates on partial, cached
samples of the data, the previews it generates are approximations. While excellent for
checking the logic of transformations and joins, they may not be numerically accurate,
especially for aggregate functions like COUNT(*) or SUM(). This is an intentional design
trade-off, prioritizing immediate feedback and workflow fluidity over the guaranteed
correctness required for final reporting.

This allows the analyst to perfect the query’s logic using the instant preview. Once
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Figure 2.1: An overview of the MotherDuck local UI, showing the SQL notebook, data
catalog, and table explorer panels.

the logic is confirmed, they then execute the full query against the complete dataset to
obtain the final, accurate results.

The Technical Challenge: Enabling Instantaneous Previews

Achieving this instant feedback loop presents a significant technical challenge. While
DuckDB is exceptionally fast, many real-world queries—especially those involving
joins, aggregations, or remote data sources—will take longer than the roughly 100ms
threshold for human perception of "instantaneous." Naively re-executing the full query
on every keystroke is therefore infeasible.

The solution requires a more sophisticated architecture capable of:

1. Local Data Caching: Intelligently caching partial samples of results.

2. Dynamic Query Rewriting: Programmatically parsing the user’s active query
text and rewriting it on-the-fly to point to these local, partial caches to generate a
preview.

The Result operator, which forms the basis of this thesis, was developed as the
foundational technology to solve this exact problem. While the current implementation
of Instant SQL relies on a more direct approach of caching data in temporary tables,
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Figure 2.2: The Instant SQL feature in action, providing a real-time result preview that
updates as the user types the query.

the Result operator represents the evolution of this concept into a more declarative,
powerful, and manageable framework. The mechanisms for creating, composing,
and intelligently managing these cached Results are precisely the "sophisticated local
caching strategies" required for the next generation of the Instant SQL feature. Therefore,
the research in this thesis on optimizing the composition of Results is directly driven
by the need to advance this real-world application, providing a fast, fluid, and powerful
interactive query experience for data analysts.

2.2 The Result: A Declarative Caching Mechanism

To tackle the challenges of latency and data locality, a declarative caching mechanism
called Result was introduced in prior work [NA23].

Conceptually, a Result can be understood as a specialized client-side, unmaintained
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materialized view that is designed to hold only a partial subset of its complete query
result.

These properties make a Result an ideal mechanism for accelerating interactive
data applications, providing the speed of materialized data without the maintenance
overhead or the requirement to transfer the complete dataset.

Users create these objects using an intuitive SQL-like syntax, such as CREATE RESULT
R AS Q, where R is the result name and Q is a query. Once a Result is defined, the
system populates it in the background with minimal impact on other running queries.
When a subsequent query accesses the Result, the query optimizer transparently
chooses one of three execution strategies:

1. Sufficient Cache: If the local cache already contains enough data to satisfy the
entire query (e.g., a SELECT * FROM R LIMIT 10 when the cache has at least 10
rows), the query is answered instantly from the local cache.

2. Pending Cache: If the cache does not yet contain sufficient data but is expected
to in a short time, the query can wait. This is only deemed safe if the query has
guaranteed satisfiability—meaning it explicitly states the number of tuples it
needs (e.g., via a LIMIT clause) and this number is below a resource-dependent
threshold.

3. Insufficient Cache: If the query cannot be guaranteed to be satisfied by the cache
(e.g., it has no LIMIT or a very large one), the optimizer bypasses the cache. It
rewrites the query to use the original Query(R) as a subquery, effectively treating
the Result like a standard view and executing the request against the server.

Note that Results are not maintained under updates. Users explicitly accept these
semantics by choosing to use the Result syntax.

While the Result operator is a powerful tool for increasing data locality, its initial
design is constrained by a fundamental principle: it must always provide complete
and correct results for the queries it can accelerate.

This strict completeness guarantee limits the scope of queries that can benefit from
the local cache. The optimizer can use the cache to answer an incoming query of the
form SELECT <projection> FROM R LIMIT N only if the number of requested rows,
N, is less than or equal to the number of rows either currently stored in Cache(R)
or that are guaranteed to be eventually available. For any other operation—such
as performing a JOIN between two Results, applying aggregations, filters, or other
complex transformations—the system must bypass the local cache and recompute the
fully resolved query on the server.

This thesis proposes a significant extension to this framework by adding new opti-
mizer rules that allow for the creation of a new Result, R, from a query D that operates
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on the existing caches of other Results (R1...Rn). The key innovation that enables this
is the relaxation of the completeness requirement.

The new cache, Cache(R), that we compute from these partial inputs does not have
to be a complete answer to the full Query(R). It only needs to be a valid subset of that
full result. For the purpose of generating an interactive preview, this partial result is
considered sufficient as long as its number of rows is above a given threshold. This
philosophical shift is powerful: it allows us to treat the local Cache(Ri) objects as
in-memory samples, greatly expanding the amount and complexity of queries that can
be executed instantly on the client side.

2.3 The Core Problem: Insufficient Cardinality from Composed
Caches

As established in the previous section, the central contribution of this thesis is to extend
the Result framework by relaxing the strict completeness guarantee. This powerful
shift enables the next logical frontier and the primary topic of this work: the ability to
compose Results by executing queries directly on the partial, local caches of existing
Results.

While this approach allows for complex, multi-stage analyses to be performed
instantly on the client, it also introduces a new and fundamental challenge: insufficient
result cardinality. When a query is executed over Cache objects, which are themselves
partial samples of the full data, the resulting dataset can be dramatically smaller than
the inputs. A JOIN between two small samples, for example, may yield very few rows
or even an empty set.

To make this approximate query processing practical for interactive use cases like
Instant SQL, we must be able to specify a minimum acceptable result size for a preview.
For this, we propose a MINROWS Y clause.

The recovery process follows a strategy that is reminiscent of Adaptive Query Processing.
Rather than committing to a single fixed plan, the system dynamically reacts to feedback
observed during execution.

Concretely, the process begins with the query plan that uses only cached Results
(Figure 2.3). This corresponds to the most optimistic case: if the cache contents are
sufficient, the query preview can be produced instantly without touching the base
tables. However, if during execution we observe that the number of tuples produced
falls below the required MINROWS, the system aborts and returns to the planning phase.

At this point, the query plan is revised by selectively replacing one or more cached
Results with their full underlying query definitions. The revised plan is then re-
executed in the hope of producing enough tuples to satisfy the MINROWS constraint. Two
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Figure 2.3: Initial plan using only cached Results (no base-table access). If the tuples
produced meet MINROWS, the preview completes without re-planning.

extremes define the space of recovery strategies. At one end, all caches can be bypassed
and substituted with their fully resolved queries down to the base tables. This “naive”
approach (Figure 2.4) guarantees completeness but incurs the highest cost. At the other
end, the system can attempt to re-create only a single cached Result whose expansion
is predicted to yield sufficient additional rows. This targeted approach (Figure 2.5) can
provide a much faster recovery while still meeting the MINROWS requirement.

In this way, the recovery mechanism combines speculative execution with adaptive
re-optimization. Like Adaptive Query Processing, it uses runtime feedback to refine
the query plan and balance efficiency with the need to maintain meaningful output
cardinality. This leads directly to the core research problem of this thesis:

What is the optimal recovery strategy when a Result composed from other caches yields a
result set with fewer rows than MINROWS Y?

2.4 Illustrative Example: The MINROWS Failure and Recovery

To illustrate the core problem addressed by this thesis, we will use a query sequence
from the tpch_19.sql session file used in our experiments. This example demonstrates
how a MINROWS failure occurs and contrasts the different recovery strategies the system
can employ.

19



2 Problem Statement

Figure 2.4: Naive recovery: bypass all caches and substitute fully resolved queries down
to base tables. This guarantees completeness but typically incurs the highest
cost.

Setting the Scene: An Analyst’s Workflow

In this session, an analyst first creates recent_lineitems from the base table lineitem.
Next, they create priority_orders from the base table orders. Since the base tables re-
side on the server, these initial queries are executed remotely, and a subset of each result
is cached on the client. The analyst then proceeds to build lineitems_with_order_details
by joining these cached results entirely on the client side. Then, a series of composed
Results are created, creating the dependency graph shown in Figure 2.6.

The analyst successfully creates lineitems_with_order_details, final_transactions_cte,
transactions_for_analysis, and filtered_parts, as each step yields more than the
session’s requirement of MINROWS 50.

The Failure Event

The problem arises when the final Result, transaction_part_details, is created. This
query, which joins filtered_parts and transactions_for_analysis, produces only
13 rows. This falls far below the minimal threshold of 50, triggering a MINROWS failure
and requiring the system to automatically find a recovery path.

Exploring Recovery Strategies

Faced with this failure, the system has several options:
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Figure 2.5: Targeted recovery: re-create only the selected cached Result predicted to
add enough rows quickly, then re-execute the revised plan. This aims to
satisfy MINROWS at lower cost than the naive approach.

1. The Baseline Approach: Full Replacement The simplest recovery method is to
bypass all local caches and re-write the query for transaction_part_details into its
fully resolved form. This involves expanding every Result in its dependency graph
into its underlying SQL definition as a subquery, as illustrated in Figure 2.7. This single,
monolithic query is then executed on the server.

• Final Rows: 50,000 (the maximum cache size)

• Response Time: 0.85 seconds

This approach is successful in meeting the threshold but is slow, representing the
"brute-force" performance baseline.

2. The Targeted Approach: Re-creating Dependencies A more intelligent approach
is to re-create one of the viable candidates (the transparent boxes) to increase its local
row count, and then re-execute the final query locally. Viable candidates refer to cached
results that are not fully populated and are expected to return additional rows upon
re-creation. The outcomes of targeting each candidate are:

• Candidate transactions_for_analysis: Re-creating this Result (visualized in
Figure 2.8) and then re-running the final query locally yields 655 rows with a
response time of 0.47 seconds.

• Candidate final_transactions_cte: This was the optimal choice. Re-creating it
(Figure 2.9) yields 641 rows with a response time of only 0.45 seconds.
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Figure 2.6: The initial dependency graph at the moment of the MINROWS failure. Dark
boxes are base tables, grey boxes are non-candidate Results, and transparent
boxes are viable candidates for re-creation.

• Candidate lineitems_with_order_details: This represents a poor choice, illus-
trated in Figure 2.10. Despite its lower re-creation cost, increasing its size did not
increase the final number of rows.
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Figure 2.7: Diagram illustrating the Full Replacement strategy, where the final query
resolves all dependencies back to the base tables.

The Central Research Question

This scenario crystallizes the core problem addressed by this thesis. The system must
choose between a slow but guaranteed baseline and several cheaper but uncertain
targeted re-creations. One candidate (final_transactions_cte) is optimal, while an-
other (lineitems_with_order_details) is ineffective. This leads to the central research
question:

How can the system automatically and intelligently predict the outcome of re-creating each
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Figure 2.8: Re-creation of transactions_for_analysis.

candidate to select the optimal one—the one that satisfies the MINROWS constraint at the lowest
possible cost—without resorting to the slow baseline or making an ineffective choice?

2.5 Competing Strategies

2.5.1 Strategy A: Full Replacement

The Full Replacement strategy serves as the ultimate fallback mechanism, guaranteeing
correctness at the expense of performance.

The mechanism involves a process of full query resolution. The system takes the
original query written against the Result objects and recursively expands each Result
identifier (Ri) into its full underlying Query(Ri). This expansion continues down the
dependency graph until the final query references only the base tables on the server.

This approach is characterized by several significant drawbacks:
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Figure 2.9: Re-creation of the optimal candidate, final_transactions_cte.

• Maximum Cost: It incurs the highest possible computational cost by running the
most complex version of the query on the server, performing no local computation.

• High Latency: It maximizes user-perceived latency, as it involves a full network
roundtrip for a potentially long-running query.

• Negation of Architecture: It completely negates the core benefits of the hybrid
architecture, rendering the local caches and compute capabilities useless for this
query.

Therefore, this strategy acts as a crucial but undesirable performance baseline.
It represents the "brute-force" approach, providing a benchmark against which the
efficiency and intelligence of the "Targeted Re-creation" strategy can be measured.
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Figure 2.10: Re-creation of the ineffective candidate, lineitems_with_order_details.

2.5.2 Strategy B: The Targeted Re-creation Approach

The targeted re-creation strategy is the intelligent alternative to the brute-force baseline.
Instead of re-computing the entire query, the system attempts a more surgical fix by
re-creating a single dependency (a candidate Result) to fix the MINROWS failure.

Using our example where transaction_part_details failed, the system first identi-
fies all viable candidates (the transparent boxes in Figure 2.6). For each one, it must
predict two key outcomes: the final number of rows it would produce and the cost
(response time) of the re-creation. In this scenario, the system’s analysis would yield
the following options:

• Option 1 (transactions_for_analysis): Predicted to yield 655 rows at a cost of
0.47s.

• Option 2 (final_transactions_cte): Predicted to yield 641 rows at a cost of
0.45s.
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• Option 3 (lineitems_with_order_details): Predicted to yield no increase in
rows, remaining at 13.

The system then applies its hierarchical decision-making logic:

1. Filter for Success: It first discards any option not predicted to meet the MINROWS
50 threshold. This immediately disqualifies lineitems_with_order_details.

2. Select Lowest Cost: It then compares the costs of the remaining successful candi-
dates. Since 0.45s is cheaper than 0.47s, the system selects final_transactions_cte
as the optimal choice.

Once the choice is made, the server re-computes final_transactions_cte and
returns the larger cache to the client. The client then performs a local cascad-
ing update, re-running the queries for transactions_for_analysis and the final
transaction_part_details. This successfully produces 641 rows, satisfying the con-
straint at nearly half the cost of the baseline approach.

This example demonstrates the power of the targeted approach. However, its success
is entirely dependent on the system’s ability to generate accurate predictions. Not only
must it estimate the final cardinality, but it must also correctly estimate the cost of each
potential re-creation to make the optimal choice. The following chapter will explore the
various strategies developed to produce these critical estimates.

2.6 Cost Estimation for Targeted Re-creation

The hierarchical selection model described previously relies on a crucial input: the
estimated cost of re-creating each candidate Result. Accurately predicting the execution
time of a query is a notoriously difficult problem, even for sophisticated database
optimizers with access to full table statistics. In our context, this challenge is amplified,
as the decision must be made on the client side with access only to partial, cached data.

However, for our selection heuristic, obtaining the exact execution cost in seconds
is not strictly necessary. The primary requirement is the ability to reliably sort the
candidates by their expected cost to identify the least expensive option. This insight
allows us to develop a simple yet effective heuristic based on a Result’s position within
the dependency graph.

2.6.1 Depth as a Proxy for Cost

We propose a heuristic that uses a Result’s depth as a proxy for its re-creation cost. We
define depth as the longest path from a Result back to a base table in the dependency
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graph. A Result created directly from a base table is at the deepest level, while the
final Result in a long chain is at the shallowest.

The logic is that the cost of re-creating a Result is proportional to the complexity
of its fully resolved query. A deeper Result (closer to a base table) has a simpler
resolved query with fewer transformations. A shallower Result (higher up the graph)
has a more complex resolved query that must incorporate all the transformations of its
ancestors. Therefore, we assume:

Deeper Result ⇒ Simpler Resolved Query ⇒ Lower Re-creation Cost

It is important to acknowledge that this heuristic is not infallible. A sophisticated
server-side optimizer could potentially take a complex query for a shallow Result and
push down a highly selective filter, making it execute faster than the query for a deeper
Result. However, as our experimental results demonstrate, this heuristic proves to be
an effective and reliable proxy for the majority of analytical workloads.

2.6.2 Comparing Across Lineages and The Final Selection Model

A critical constraint of this heuristic is that it can only be used to compare the costs of
Results that belong to the same lineage—that is, Results that trace back to the same
set of base tables. We cannot compare the depth of Results from different lineages, as
their query complexities are not comparable.

For example, in Figure 2.6, we can assume that re-creating final_transactions_cte
is more expensive than re-creating its ancestor, lineitems_with_order_details. How-
ever, we cannot make any cost assumption between lineitems_with_order_details
and nation_customers, as they belong to different lineages originating from different
base tables.

This constraint leads to a refinement of our final selection model:

1. Filter for Viability: First, identify all candidate Results that are predicted to
satisfy the MINROWS constraint (Y), forming the set of viable candidates, V .

V = {Ri ∈ Candidates | PredictedCard(R | re−createRi) ≥ Y}

2. Group by Lineage: Group these viable candidates by their lineage set, L.

3. Find Lineage Champions: For each lineage L ∈ L, select the cheapest candidate
using our depth-as-cost heuristic (i.e., the one with the greatest depth). This
produces a set of "finalist" candidates, C∗.

C∗ = {arg max
Ri∈VL

Depth(Ri) | L ∈ L}

where VL is the subset of viable candidates from lineage L.
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4. Select for Utility: From this set of finalists, the system selects the final winner,
R∗, that is predicted to produce the maximum number of rows.

R∗ = arg max
Rj∈C∗

PredictedCard(R | re−createRj)

This final step optimizes for utility. By choosing the candidate that most significantly
enriches the local cache, we increase the likelihood that future queries in the same
session can be answered without triggering another MINROWS failure, thereby reducing
the total number of re-creations over the entire session. Also, this approach minimizes
the risk of a "false positive," a scenario where our chosen candidate, upon re-creation,
still fails to meet the required threshold. A candidate predicted to produce a large
number of rows provides a greater buffer against estimation errors, making it a more
reliable choice for the immediate recovery.

If our estimates claim that no candidate can lead to the minimal number of rows upon
re-creation, we immediately fall back to the baseline strategy. Similarly, if our attempt
at re-creating a chosen candidate also fails to produce enough rows, we re-execute the
query again, this time using the baseline strategy.

This means that choosing the wrong candidate leads to significant overhead, as
more than one server-side execution is required. However, it is important to note that
selecting the wrong cached result is not a total waste. The failed attempt still enriches
the cache of the chosen dependency and its parents, increasing the utility of these
intermediate results for potential re-use in future queries.

Still, selecting the right candidate on the first try is crucial for preserving the user’s
perception of a fast, interactive system.

The optimization strategy is guided by a clear hierarchy of objectives, designed to
provide immediate responsiveness while also promoting long-term session efficiency.

Perceived Cost of a Single Re-creation Event

The perceived cost of a single recovery event, Cevent, is the total time a user must
wait. It is the sum of network latency (Tnetwork), server execution time (Tserver), and
the client-side computational overhead introduced by each strategy’s decision-making
process (Tclient).

Cevent = Tnetwork + Tserver + Tclient
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Total Session Cost

The total cost for an entire session, Csession, is the sum of all N individual recovery
events.

Csession =
N

∑
j=1

Cevent,j

Optimization Goals

Our model addresses two goals in hierarchical order:

1. Primary Goal: Minimize Immediate Cost The primary objective is to minimize
the cost of the current recovery event, Cevent. This directly addresses the immediate
user-perceived latency and is crucial for maintaining a responsive experience. Our
selection model targets this by using depth as a proxy to identify the set of lowest-cost
candidates from each lineage.

2. Secondary Goal: Minimize Total Session Cost The secondary objective is to
minimize the cumulative cost, Csession, by reducing the total number of re-creations, N,
throughout the session. Our model addresses this by applying the utility heuristic:
from the set of cheapest candidates, it selects the one predicted to produce the most
rows. This choice is intended to best enrich the local caches, reducing the likelihood of
future MINROWS failures.

30



3 Targeted Re-creation Strategies

The success of the "Targeted Re-creation" strategy, as defined in the previous chapter,
hinges entirely on the ability to accurately predict the outcome of a potential re-
creation. When faced with an insufficient result, the system must decide which single
dependency to re-create by executing its full query on the server. This decision is
guided by a heuristic that requires a reliable estimate of the final result’s cardinality for
each potential candidate.

Specifically, the core predictive challenge is to answer the question: "If we invest
the cost to re-create Cache(Ri), how many rows will the final Result, R, have after
the cascading client-side update?" An accurate answer allows the system to make an
informed, cost-effective decision. This chapter provides an overview of three distinct
approaches for generating these crucial cardinality estimates, each representing a
unique trade-off between speed, accuracy, and complexity.

3.1 Overview of Prediction Strategies

The success of targeted re-creation depends on accurately predicting the outcome of
potential re-creations. We identify three distinct approaches for generating cardinality
estimates:

• Strategy 1: Optimizer Cardinality Estimation - Leverages DuckDB’s internal
optimizer statistics for fast, but potentially inaccurate estimates.

• Strategy 2: Local Sampling and Regression - Uses local cache data with regres-
sion analysis to predict cardinality gains.

• Strategy 3: Data Provenance - Analyzes the influence of input tuples on the failed
computation to identify critical dependencies.

Each strategy represents a unique trade-off between speed, accuracy, and complexity,
as detailed in the following sections.

The strategies below are grounded in a formal definition of the state of each cached
result.

First, we define three mutually exclusive states for any given Result, R:
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• Not full and complete: The cache Cache(R) has not reached its maximum size
(MaxRows), and all its ancestor Results were themselves complete (or were created
from base tables). A Result in this state represents a complete query result.

• Full and incomplete: The cache Cache(R) is at its maximum size, so it cannot
grow further, regardless of the state of its ancestors.

• Not full and incomplete: The cache Cache(R) has space to grow, but it was
created from at least one ancestor that was incomplete. This means Cache(R) is
only a partial result of a partial result.

Under this model, the only viable candidates for a re-creation effort are Results in
the "Not full and incomplete" state. A "Not full and complete" result will not change,
and a "Full and incomplete" result has no space to store more tuples. Only the "Not
full and incomplete" results have both the potential to grow and a reason to do so.

3.2 Optimizer Cardinality Estimation

This approach leverages the internal mechanisms of the DuckDB query optimizer. For
each potential re-creation, we can construct a hypothetical query plan and ask the
optimizer to estimate the final cardinality based on its stored statistics and models. This
method is very fast as it processes no actual data, but its accuracy is subject to the
inherent limitations of cardinality estimation in complex queries.

3.2.1 Mechanism

The optimizer-based approach works by constructing a hypothetical query that repre-
sents the scenario where a specific Result Ri has been re-created with its full dataset.
This query is then submitted to DuckDB’s query optimizer, which applies its internal
cardinality estimation models to predict the final result size.

The key insight is that we can simulate the effect of re-creating Ri by replacing its
cache reference with the original query definition, limited by the cache size. For ex-
ample, if R1 was defined as SELECT * FROM users WHERE country = ’DE’, re-creating
it would be equivalent to running the final query with this subquery in place of the
cached result, constrained by the maximum tuple limit permitted for cached results.

Optimizer-Based Recovery (Cardinality + Cost Selection)

Idea. For each candidate cached Result Ri, we build a hypothetical query by inlining
Ri’s original definition (bounded by the cache tuple limit) into the final query. The

32



3 Targeted Re-creation Strategies

optimizer is then used to estimate the cardinality of the resulting plan, while the cost of
re-creating Ri is obtained from the cost function defined previously. Among candidates
whose estimated cardinality is at least MINROWS, we choose the one with the lowest cost.

Inputs.

• Q_final: the user’s final query (may reference cached Results {Ri}).

• Candidates = {Ri}: upstream Results eligible for re-creation.

• Def[Ri]: original SQL definition of each Ri (pre-caching).

• CACHE_LIMIT: max tuples allowed when re-creating a Result.

• MINROWS: minimum acceptable final cardinality after recovery.

• COST(Ri): cost function returning the cost of re-creating Ri.

Helper functions.

• INLINE_WITH_BOUND(Q, Ri): replace each reference to Ri in Q with

(SELECT * FROM (Def[Ri]) AS _ri LIMIT CACHE_LIMIT)

• ESTIMATE_CARD(Q) → est_rows: obtain the optimizer’s estimated output cardi-
nality for Q (e.g., via EXPLAIN / planner API).

Pseudo-code.

ALGORITHM CHOOSE_RECREATION_BY_CARD_AND_COST(Q_final, Candidates):

best_candidate := NULL
best_cost := +INF
best_est_rows := 0

for each Ri in Candidates:
Q_hat := INLINE_WITH_BOUND(Q_final, Ri)
est_rows := ESTIMATE_CARD(Q_hat)
est_cost := COST(Ri)

-- accept only candidates predicted to meet the minimum cardinality
if est_rows >= MINROWS then
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-- among feasible ones, prefer the lowest cost
if est_cost < best_cost then

best_candidate := Ri
best_cost := est_cost
best_est_rows := est_rows

end if
end if

end for

if best_candidate != NULL then
return (best_candidate, best_est_rows, best_cost)

else
-- no candidate predicted to meet MINROWS
return (NULL, 0, +INF)

end if

Example inline transformation. If R1 was SELECT * FROM users WHERE country=’DE’,
any reference to R1 in Q_final becomes:

(SELECT * FROM (SELECT * FROM users WHERE country=’DE’) AS _r1 LIMIT CACHE_LIMIT)

Decision rule. Select the candidate Ri whose hypothetical plan is estimated to produce
at least MINROWS rows and has the lowest cost according to the function COST(Ri). In
case of a cost tie, prefer the candidate with higher est_rows.

3.2.2 Advantages

• Speed: No data transfer or computation required; estimates are generated purely
from statistics.

• Integration: Leverages existing, well-tested cardinality estimation infrastructure.

• Consistency: Uses the same estimation models that guide query optimization
decisions.

3.2.3 Limitations

• Accuracy: Inherits the limitations of cardinality estimation in complex queries,
especially with joins and aggregations.
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• Statistics Dependency: Quality of estimates depends on the freshness and accu-
racy of table statistics.

• Model Assumptions: Relies on statistical models that may not capture complex
data correlations.

• Client-Side Statistics Requirement: For this approach to be feasible, table statis-
tics must be cached on the client side. Otherwise, requesting statistics from
the server would incur network latency, making the optimizer-based approach
impractical for interactive applications.

3.3 Estimation via Local Sampling and Regression

This strategy moves away from statistical estimates and instead proposes an empirical
method to predict cardinality. It uses the data already present in the local caches to
build a predictive model for each dependency’s influence on the final result.

3.3.1 Estimation Methodology

When an initial query fails to meet its MINROWS target, the system identifies all direct
children in the "Not full and incomplete" state. For each such candidate child, Ri, it
performs the following procedure to determine its influence:

1. Iterative Sub-sampling: The system takes multiple Bernoulli samples of the
existing local cache, Cache(Ri), at varying percentages (e.g., 25%, 50%, and 75%).

2. Re-computation: For each sample, it re-executes the final query D, using the
sampled Cache(Ri) and 100% of all other dependency caches. The number of
rows produced in the final result is recorded for each run.

3. Linear Regression: Using the data points from these runs, plus the point from
the original failed attempt (100% of Cache(Ri)), the system performs a linear
regression. The x-axis represents the number of input tuples from Cache(Ri), and
the y-axis represents the number of output tuples in the final result, R.

4. Influence as Slope: The slope of this regression line is a powerful indicator. It
represents the "yield" or "influence factor" of Ri, quantifying how many output
rows are produced in R for each single input row from Cache(Ri).

5. Extrapolation: The system then calculates the number of additional rows that
could be stored in Ri (Space_left = MaxRows(Ri) - |Cache(Ri)|). The total
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predicted gain in final cardinality is estimated as Predicted_gain = Space_left
* slope.

3.3.2 Recursive Application and Selection

This estimation process is applied recursively. The system expands the children in the
"Not full and incomplete" state and performs the same sampling and regression analysis
on their children. This allows it to evaluate the downstream impact of re-creating a
"grandchild" Result.

Once this recursive analysis is complete, the system possesses a set of potential re-
creation actions and their predicted cardinality gains. It can then apply the hierarchical
selection process defined previously: first, it filters this set down to only those actions
predicted to satisfy the MINROWS constraint, and then it applies the cost-based selection
logic to make the final, optimal choice.

Dynamic Sampling Recovery (Sub-Sampling + Regression + Cost Selection)

Idea. When a new cached Result is created, we also sample every cached result in its
dependency graph (both direct and transitive sources). To decide which upstream Ri to
re-create, we sub-sample Cache(Ri) at several rates, recompute the final query for each
sub-sample (keeping other caches at 100%), fit a simple linear regression of output vs.
input, and use the slope to estimate the predicted gain in final cardinality if Cache(Ri)
were expanded up to capacity. Among candidates predicted to reach at least MINROWS,
we choose the one with the lowest COST(Ri).

Inputs.

• Q_final: the user’s final query.

• Candidates = {Ri}: upstream Results eligible for re-creation.

• Cache(Ri): current tuples cached for Ri.

• MaxRows(Ri): capacity limit for Ri.

• MINROWS: minimum acceptable final cardinality after recovery.

• SAMPLE_RATES: e.g., {0.25, 0.50, 0.75}.

• COST(Ri): cost function returning the cost of re-creating Ri.
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Helper functions.

• BERNOULLI_SUBSAMPLE(Cache(Ri), p): return a Bernoulli p-sample of Cache(Ri).

• RUN_FINAL(Q_final, Override(Ri -> Sample)): execute Q_final with Cache(Ri)
replaced by Sample; return final output row count.

• LINEAR_REGRESSION(Points) → slope: fit y ≈ α + βx to the points (input rows
vs. output rows) and return β.

Pseudo-code.

ALGORITHM CHOOSE_RECREATION_BY_SAMPLING(Q_final, Candidates):

PredictedGain := {} -- map: Ri -> predicted additional rows
Feasible := {} -- map: Ri -> boolean

for each Ri in Candidates:

Points := [] -- (x = |sample of Cache(Ri)|, y = final rows)

-- 1) Iterative sub-sampling runs
for each p in SAMPLE_RATES:

SampleRi := BERNOULLI_SUBSAMPLE(Cache(Ri), p)
x := |SampleRi|
y := RUN_FINAL(Q_final, Override(Ri -> SampleRi))
append (x, y) to Points

end for

-- 2) Include the 100% point (failed attempt or recorded)
x0 := |Cache(Ri)|
y0 := RUN_FINAL(Q_final, Override(Ri -> Cache(Ri)))
append (x0, y0) to Points

-- 3) Linear regression: slope = influence of Ri
slope := LINEAR_REGRESSION(Points)

-- 4) Extrapolation to capacity
Space_left := MaxRows(Ri) - |Cache(Ri)|
if Space_left < 0 then Space_left := 0 end if
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PredictedGain[Ri] := Space_left * slope

-- 5) Feasibility: projected final >= MINROWS ?
CurrentFinal := y0
Feasible[Ri] := (CurrentFinal + PredictedGain[Ri] >= MINROWS)

end for

-- 6) Choose lowest-cost feasible candidate
best_candidate := NULL
best_cost := +INF
best_gain := 0

for each Ri in Candidates:
if Feasible[Ri] == TRUE then

est_cost := COST(Ri)
if est_cost < best_cost then

best_candidate := Ri
best_cost := est_cost
best_gain := PredictedGain[Ri]

end if
end if

end for

if best_candidate != NULL then
return (best_candidate, best_gain, best_cost)

else
return (NULL, 0, +INF)

end if

Interpretation.

• Slope as influence. The slope estimates yield (additional final rows per additional
input row from Cache(Ri)).

• Extrapolation. PredictedGain[Ri] = Space_left × slope estimates the extra
final rows if Cache(Ri) were expanded to capacity.

• Decision. Among candidates predicted to reach MINROWS, pick the one with the
lowest COST(Ri).
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3.3.3 Advantages

• High Accuracy: Predictions are derived empirically from the actual data distribu-
tions and correlations present in the local caches.

• No Network Overhead: Requires no additional network requests to the server.

• Data-Driven: Uses actual cache data rather than statistical models or external
samples.

3.3.4 Limitations

• Computational Intensity: Requires re-executing the final query multiple times
for each candidate in the dependency graph, which could be slow if the query is
complex or the local caches are large.

• Local Cache Dependency: Effectiveness depends on having sufficient data in
local caches to perform meaningful regression analysis.

• Linear Assumption: Relies on linear regression, which may not capture non-linear
relationships in complex queries.

3.4 Estimation via Tuple-Level Data Provenance

This third strategy takes an analytical approach, distinct from both statistical estimation
and dynamic sampling. It leverages data provenance to create a precise, tuple-level
map of how data flows from input caches to the final, insufficient result. By analyzing
this lineage, the system can quantify the "influence" of each dependency and predict
the impact of a re-creation.

3.4.1 The Provenance Tracking Mechanism

The foundation of this strategy is a built-in provenance tracking mechanism. When
any Result is created, its cache is augmented with an extra column that stores the
provenance for each row.

• Provenance Sets: For each tuple, this column contains a set of references pointing
to the exact source tuples that produced it. Each reference consists of a {cached
result identifier, row identifier} pair.
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• Propagation: As new Results are created from existing ones, this provenance is
propagated. For instance, when a tuple is created by a join between a row from
Cache(R1) and a row from Cache(R2), its provenance set becomes the union of
the provenance sets from those two input rows. This ensures that every tuple
carries its complete lineage, tracing back to the original source caches.

3.4.2 The Estimation Methodology

When a query fails to meet its MINROWS target, the system analyzes the provenance
data attached to the small set of resulting tuples. For each candidate dependency Ri (a
Result in the "Not full and incomplete" state), it computes two key metrics:

1. Selectivity: This measures the fraction of Ri’s cache that "survives" the query and
contributes to the final result. It’s calculated as the number of distinct tuples from
Cache(Ri) found in the final result’s provenance sets, divided by the total size of
Cache(Ri).

Selectivity =
|Distinct contributing tuples from Ri|

|Cache(Ri)|

2. Expansion Factor: This measures, on average, how many times each surviving
tuple from Ri is used to create an output tuple. This is particularly important for
joins where a single tuple can have multiple matches.

Expansion Factor =
Total references to tuples from Ri

|Distinct contributing tuples from Ri|

3.4.3 Extrapolation and Selection

With these two factors, the system can predict the number of additional rows that
would be generated by filling the remaining space in Cache(Ri):

Predicted_gain = Space_left(Ri)× Selectivity × Expansion Factor

It is important to note that when we expand the terms for Selectivity and Expansion
Factor, the "Distinct contributing tuples" term cancels out:

|Distinct contributing tuples from Ri|
|Cache(Ri)|

× Total references to tuples from Ri

|Distinct contributing tuples from Ri|

This leaves a much simpler and more efficient formula:

Predicted_gain = Space_left(Ri)×
Total references to Ri

|Cache(Ri)|
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This mathematical simplification has a crucial practical benefit. It means that to calculate
the predicted gain, the system only needs to count the total number of times a given
Result is referenced in the provenance of the final output. It does not need to track the
specific row indices to identify distinct tuples. This dramatically reduces the amount of
metadata that needs to be stored and propagated with each tuple, significantly lowering
the overhead of the provenance mechanism.

This process is applied recursively down the dependency graph to all eligible candi-
dates. Once all predictions are gathered, the system feeds them into the hierarchical
selection model described previously to make the final, cost-based decision.

3.4.4 Advantages

• High Accuracy: This method can be highly accurate as it is based on the precise,
observed behavior of every tuple in the query, under the assumption that the data
is uniformly distributed.

• No Network Overhead: The estimation phase itself requires no extra network
roundtrips or query re-executions.

• Precise Analysis: Provides exact information about which input tuples con-
tributed to the output.

• Query-Agnostic: Works regardless of the query structure or complexity.

3.4.5 Limitations

• Computational Overhead: Storing and propagating provenance sets for every
tuple can incur extra memory and CPU cost during the initial query execution,
regardless of whether a failure occurs.

• Memory Requirements: Requires additional memory to store provenance infor-
mation for every tuple in the cache.
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This chapter details the empirical evaluation of the three proposed "Targeted Re-
creation" strategies. The primary goal of these experiments is to quantitatively measure
and compare the efficiency of each approach in a simulated hybrid environment.

To benchmark our proposed heuristics, we also implemented an Oracle strategy
to establish a theoretical performance limit. For each MINROWS failure, the Oracle
strategy determines the exact number of rows each potential re-creation would yield
by executing a SELECT COUNT(*) query for every candidate. While this approach is too
computationally expensive for a real-world system due to its high overhead, it provides
perfect foresight. The results from the Oracle serve as the ideal benchmark for how
well any estimation-based strategy could possibly perform.

We also added a Random strategy where the cached result to be re-created is
selected randomly from the available candidates. This helps validate that our proposed
heuristics are truly capturing meaningful signals rather than benefiting from favorable
experimental conditions. Also, comparing against random selection demonstrates the
practical value of investing computational resources in more sophisticated strategies.

We begin by describing the experimental setup, including the hardware, software,
and the synthetic workload used. We then outline the key metrics for evaluation, which
focus on the cost and frequency of re-creation events.

4.1 Experimental Setup

To create a controlled and reproducible test environment, we emulated the hybrid
client-server architecture and the behavior of the Result caching mechanism.

4.1.1 Hardware and Software

All experiments were conducted on a MacBook Pro equipped with an Apple M4
Max processor and 36GB of RAM. The simulation environment was built in Python,
leveraging the DuckDB library [25b] (version 1.2.0, memory_limit=30GB, threads=8)
for all database operations and the sqlglot library [21] for programmatic parsing and
rewriting of SQL queries according to the logic of each re-creation strategy.
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4.1.2 Database and Data

The experimental database was built using the industry-standard TPC-H benchmark.
The schema and data were generated at Scale Factor 20, providing a rich and complex
dataset suitable for analytical query workloads.

4.1.3 Hybrid Environment Simulation

To evaluate the different strategies, all experiments were conducted within a Python-
based simulation framework1. This framework operates by emulating the logic of a real
system, programmatically rewriting pure SQL queries according to the rules of each
recovery heuristic. The goal of this simulation is to compare the approaches in a con-
trolled setting to identify the most effective strategy for a future native implementation
inside the database engine.

The hybrid architecture was simulated as follows:

• Remote Server: Any query that accessed the on-disk base tables was considered
a "remote" execution. To account for network overhead, a fixed 100ms latency
penalty was added to the measured execution time of every remote query.

• Client Cache: Client-side Cache objects were simulated using DuckDB’s in-
memory temporary tables.

4.1.4 Workload Generation

The Result feature is a recent development, meaning no real-world user session traces
are available for testing. Furthermore, due to the privacy-sensitive nature of user data,
we opted to generate a synthetic workload.

Using Large Language Models (LLMs), we generated 597 queries distributed across
20 distinct session files, each designed to simulate realistic data analysis workflows.
These queries were crafted to reflect common analytical patterns, including exploratory
data analysis, iterative refinement, and multi-step investigations typical of real-world
usage. Of these queries, over 98 triggered cache re-creation events, providing sufficient
instances to evaluate and compare the performance of each strategy under various
scenarios.

1The complete source code for the simulation and workload generation is available at:
[https://github.com/marciobbarbosa/results-benchmark]
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4.1.5 Workload Generation Methodology

We adopted a modern approach for workload generation inspired by recent research
in LLM-driven benchmarking, such as the SQLStorm methodology [Sch+25]. This
approach leverages the fact that Large Language Models (LLMs) have been trained on
vast public corpora of SQL code, giving them an implicit understanding of common
analytical patterns. By carefully prompting an LLM, we can generate complex, diverse,
and realistic query sessions that are well-suited for testing our system.

Interactive Session Generation Framework

We developed a Python-based generation framework that interacts with the Gemini
2.5 Flash API to create entire analytical sessions. This framework goes beyond simple
query generation by implementing an interactive validation and correction loop:

1. Prompt and Generation: The script sends a carefully engineered prompt to the
LLM to generate the first query in a session.

2. Local Validation: Upon receiving a query, the script immediately executes it
using a local DuckDB instance. This step serves two purposes:

• Syntax and Semantic Check: It validates that the query is executable and
syntactically correct.

• Non-Empty Result Check: It verifies that the query produces a non-empty
result. An interactive session where every query returns an empty set is not
representative of a real user’s workflow.

3. Automated Feedback Loop: If the query fails validation (syntax error or zero
rows), the framework automatically sends the error or a request to "relax the
conditions" back to the LLM, asking for a corrected version.

4. Incremental Session Building: Once a valid, non-empty query is produced, it is
saved as a step in the session. The framework then requests the next incremental
query for the session. This process is repeated until a complete, multi-step session
file is created.

Prompt Engineering and Result Emulation

The quality of LLM-generated output is highly dependent on careful prompt engineer-
ing. The master prompt, detailed below, was designed to provide the model with a
clear persona, objective, and context.
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Generate the first SQL query in an interactive session simulating a data analyst
working with a TPC-H schema in DuckDB. The session builds queries
incrementally using a sequence of materialized Common Table Expressions (CTEs).

The full TPC-H schema is provided below, including:
- Base table definitions
- Row counts per table
- Value ranges for selected columns

CTE Construction Rules:
- A CTE must select exclusively from either base tables or previously

defined CTEs, never both.
- Each CTE must be immediately followed by SELECT * FROM <cte_name>;

Session Objective:
Progressively narrow down the dataset toward a focused analytical result. Each
query should incrementally refine the data from the previous step.

Query Guidelines:
- Use typical data analyst patterns.
- Avoid correlated subqueries.
- Output only valid SQL code

Example:

WITH cte1 AS MATERIALIZED (
SELECT <columns>
FROM <base_table>
LIMIT 50000

)
SELECT * FROM cte1;

WITH cte2 AS MATERIALIZED (
SELECT <columns>
FROM cte1
LIMIT 50000

)
SELECT * FROM cte2;

TPC-H schema (rows uniformly and independently distributed):

-- Number of rows: 5
CREATE TABLE region (

R_REGIONKEY INTEGER NOT NULL PRIMARY KEY,
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R_NAME CHAR(25) NOT NULL,
R_COMMENT VARCHAR(152)

);

-- Number of rows: 2000000
CREATE TABLE part (

P_PARTKEY INTEGER NOT NULL PRIMARY KEY,
P_NAME VARCHAR(55) NOT NULL,
P_MFGR CHAR(25) NOT NULL,
P_BRAND CHAR(10) NOT NULL,
P_TYPE VARCHAR(25) NOT NULL,
P_SIZE INTEGER NOT NULL, -- min: 1, max: 50
P_CONTAINER CHAR(10) NOT NULL,
P_RETAILPRICE DECIMAL(15,2) NOT NULL, -- min: 900.91, max: 2098.99
P_COMMENT VARCHAR(23) NOT NULL

);

-- Number of rows: 25
CREATE TABLE nation (

N_NATIONKEY INTEGER NOT NULL PRIMARY KEY,
N_NAME CHAR(25) NOT NULL,
N_REGIONKEY INTEGER NOT NULL, -- min: 0, max: 4
N_COMMENT VARCHAR(152),
FOREIGN KEY (N_REGIONKEY) REFERENCES region(R_REGIONKEY)

);

-- Number of rows: 100000
CREATE TABLE supplier (

S_SUPPKEY INTEGER NOT NULL PRIMARY KEY,
S_NAME CHAR(25) NOT NULL,
S_ADDRESS VARCHAR(40) NOT NULL,
S_NATIONKEY INTEGER NOT NULL, -- min: 0, max: 24
S_PHONE CHAR(15) NOT NULL,
S_ACCTBAL DECIMAL(15,2) NOT NULL, -- min: -999.92, max: 9999.93
S_COMMENT VARCHAR(101) NOT NULL,
FOREIGN KEY (S_NATIONKEY) REFERENCES nation(N_NATIONKEY)

);

-- Number of rows: 8000000
CREATE TABLE partsupp (

PS_PARTKEY INTEGER NOT NULL,
PS_SUPPKEY INTEGER NOT NULL,
PS_AVAILQTY INTEGER NOT NULL, -- min: 1, max: 9999
PS_SUPPLYCOST DECIMAL(15,2) NOT NULL, -- min: 1.00, max: 1000.00
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PS_COMMENT VARCHAR(199) NOT NULL,
PRIMARY KEY(PS_PARTKEY, PS_SUPPKEY),
FOREIGN KEY (PS_SUPPKEY) REFERENCES supplier(S_SUPPKEY),
FOREIGN KEY (PS_PARTKEY) REFERENCES part(P_PARTKEY)

);

-- Number of rows: 1500000
CREATE TABLE customer (

C_CUSTKEY INTEGER NOT NULL PRIMARY KEY,
C_NAME VARCHAR(25) NOT NULL,
C_ADDRESS VARCHAR(40) NOT NULL,
C_NATIONKEY INTEGER NOT NULL, -- min: 0, max: 24
C_PHONE CHAR(15) NOT NULL,
C_ACCTBAL DECIMAL(15,2) NOT NULL, -- min: -999.99, max: 9999.99
-- segments: AUTOMOBILE, BUILDING, MACHINERY, FURNITURE, or HOUSEHOLD
C_MKTSEGMENT CHAR(10) NOT NULL,
C_COMMENT VARCHAR(117) NOT NULL,
FOREIGN KEY (C_NATIONKEY) REFERENCES nation(N_NATIONKEY)

);

-- Number of rows: 15000000
CREATE TABLE orders (

O_ORDERKEY INTEGER NOT NULL PRIMARY KEY,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL, -- status: F, O, or P
O_TOTALPRICE DECIMAL(15,2) NOT NULL, -- min: 838.05, max: 558822.56
O_ORDERDATE DATE NOT NULL, -- min: 1992-01-01, max: 1998-08-02
-- priorities: 1-URGENT, 2-HIGH, 3-MEDIUM, 4-NOT SPECIFIED, or 5-LOW
O_ORDERPRIORITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL, -- min: 0, max: 0
O_COMMENT VARCHAR(79) NOT NULL,
FOREIGN KEY (O_CUSTKEY) REFERENCES customer(C_CUSTKEY)

);

-- Number of rows: 60000000
CREATE TABLE lineitem (

L_ORDERKEY INTEGER NOT NULL,
L_PARTKEY INTEGER NOT NULL,
L_SUPPKEY INTEGER NOT NULL,
L_LINENUMBER INTEGER NOT NULL, -- min: 1, max: 7
L_QUANTITY DECIMAL(15,2) NOT NULL, -- min: 1.00, max: 50.00
L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL, -- min: 900.91, max: 104949.50
L_DISCOUNT DECIMAL(15,2) NOT NULL, -- min: 0.00, max: 0.10
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L_TAX DECIMAL(15,2) NOT NULL, -- min: 0.00, max: 0.08
L_RETURNFLAG CHAR(1) NOT NULL, -- flags: R, A, or N
L_LINESTATUS CHAR(1) NOT NULL, -- status: F or O
L_SHIPDATE DATE NOT NULL, -- min: 1992-01-02, max: 1998-12-01
L_COMMITDATE DATE NOT NULL, -- min: 1992-01-31, max: 1998-10-31
L_RECEIPTDATE DATE NOT NULL, -- min: 1992-01-03, max: 1998-12-31
L_SHIPINSTRUCT CHAR(25) NOT NULL,
L_SHIPMODE CHAR(10) NOT NULL, -- modes: REG AIR, MAIL, RAIL, AIR, TRUCK, SHIP, or FOB
L_COMMENT VARCHAR(44) NOT NULL,
PRIMARY KEY(L_ORDERKEY, L_LINENUMBER),
FOREIGN KEY (L_ORDERKEY) REFERENCES orders(O_ORDERKEY),
FOREIGN KEY (L_PARTKEY, L_SUPPKEY) REFERENCES partsupp(PS_PARTKEY, PS_SUPPKEY)

);

Since the Result operator is a novel feature unknown to pre-trained LLMs, we
designed a workaround to generate appropriate workloads. The prompt instructs
the model to generate a sequence of materialized Common Table Expressions (CTEs),
where each subsequent CTE builds upon the previous one. When parsing these
generated session files2, our simulation framework interprets each CTE as a CREATE
RESULT command. This effectively emulates the dependency graph structure created by
a user interactively building Results on top of each other.

The prompt was explicitly designed to generate queries that operate purely on other
cached results (i.e., previous CTEs). This was an intentional choice to isolate the specific
class of cache-only compositional queries that are the focus of this thesis’s recovery
strategies.

Hybrid queries—those that would access both local Result caches and remote base
tables simultaneously—were not considered for this optimization. Since caches exist
only on the client and base tables only on the server, such a query would force the
client to upload the (partial) cached data to the server for processing. Given the high
overhead of this data transfer and the risk of the query still failing to produce enough
rows (as it mixes partial and full data), it is often more practical to execute the fully
resolved query on the server directly. Therefore, for the purpose of this thesis, hybrid
queries are considered outside the scope of our recovery heuristics and are treated as
standard remote queries.

2The 20 synthetically generated session files are available at:
[https://github.com/marciobbarbosa/results-benchmark/tree/main/sessions]
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4.2 Methodology and Metrics

The core of the experiment involves running all 597 queries and, upon encountering a
MINROWS failure, applying each of the three proposed strategies to select a re-creation
candidate. The performance of each strategy is evaluated based on five primary metrics,
aggregated across all sessions:

1. Hit Ratio: The fraction of re-creation attempts that are successful. Formally,

HR =
Nsucc

Nattempts
.

A re-creation is successful if the strategy re-creates a cached result other than the
topmost baseline candidate and, after re-creation, produces ≥ MINROWS rows.

2. Total Remote Re-creation Cost (seconds): This is the sum of the remote execution
costs for every re-creation event across all sessions. Each remote execution
includes a fixed latency penalty of 100 ms, which models the typical Wide Area
Network (WAN) delay observed in cloud-based analytical systems.

3. Total Local Re-creation Cost (seconds): This metric captures the computational
overhead incurred on the client side when executing each strategy. It includes
the time spent on estimation calculations and strategy-specific decision-making
processes. This represents the additional processing burden that each approach
places on the client system.

4. Total Re-creation Cost (seconds): This is the sum of the Total Remote Re-creation
Cost and the Local Cost on Client, providing a comprehensive measure of the
overall computational expense for each strategy. This metric accounts for both
the database-side execution time and the client-side processing overhead, giving
a complete picture of the true cost of each cache management approach. It
represents the total "wall-clock time" a user would spend waiting for the system
to recover from MINROWS failures.

5. Total Number of Re-creations: This metric counts the total number of times a
server-side re-creation was triggered across all sessions. A lower number indicates
a more effective strategy at enriching the local cache to prevent future failures.

To ensure a fair and comprehensive comparison, our experiments used two distinct
methodologies tailored to the metric being measured.

For metrics evaluating the Hit Ratio and Re-creation Costs we reset the local cache
state after every recovery action. Following a MINROWS failure and the application
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of a given strategy, the local caches were reset to a common recovered state before
proceeding to the next query in the session. This ensured that all strategies encountered
the same MINROWS failure while processing identical queries, enabling a controlled,
head-to-head comparison of their immediate decision-making intelligence.

In contrast, for the Total Number of Re-creations metric, we did not reset the
cache state to a common recovered state . The effects of each recovery—the newly
enriched caches—were allowed to persist and influence subsequent queries. The goal
of this setup was to measure the long-term, cumulative impact of each strategy and
to determine which approach is best at "future-proofing" the session by preventing
subsequent failures.

4.3 Results and Analysis

This section presents and analyzes the results of our experiments. We will evaluate each
proposed strategy against both the Naive Full Replacement baseline and the theoretical
Oracle benchmark across the defined metrics.

The "Dynamic Sampling" strategy was implemented in two distinct variants to
explore the fundamental trade-off between predictive accuracy and computational
overhead. While both approaches aim to estimate the influence of dependencies by
sampling the local cache, they differ significantly in their scope and computational cost.

The first variant, labeled simply Sampling in our experiments, represents the most
thorough and theoretically pure version of the strategy. When a MINROWS failure occurs,
this method recursively traverses the dependency graph. For every potential candidate
(children, grandchildren, etc.) in the "Not full and incomplete" state, it performs the
full, expensive estimation process: it runs multiple sub-sample queries and computes
a fresh linear regression to derive the slope, or "influence factor," of that candidate
relative to the final failed result.

While this approach generates a more accurate, custom-tailored prediction for ev-
ery possible re-creation action, its primary drawback is the high computational cost.
Running numerous query variations for every node in the dependency subgraph can
be prohibitively expensive, even on local data, potentially stretching the "free local
computation" assumption to an infeasible degree in practice.

To address the performance concerns of the exhaustive approach, we developed a
second, more pragmatic variant labeled Sampling 2. This strategy drastically reduces
the computational workload by limiting the expensive slope calculation.

Instead of analyzing every candidate down the graph from scratch, this method only
performs the multi-step sampling and linear regression for the immediate children of
the failed Result. For any deeper dependency (e.g., a "grandchild"), it approximates its
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influence by re-using previously computed slopes in a hierarchical manner.
The logic is analogous to a chain rule of influence. The impact of a grandchild Rgc on

the final result R is estimated by multiplying the grandchild’s influence on its parent
Rc by the child’s influence on R:

Slope(Rgc → R) ≈ Slope(Rgc → Rc)× Slope(Rc → R)

This makes logical sense: the grandchild’s slope represents the impact of a unit increase
on its parent, which, when multiplied by the parent’s slope, represents the total impact
on the final result. This allows the system to generate predictions for deep dependencies
quickly, trading the precision of a full re-computation for significant performance gains.

4.3.1 Metric 1: Hit Ratio

This metric isolates the predictive reliability of each strategy. We define a "hit" as an
event where a strategy selects a candidate for re-creation that is not the baseline (the
top-most Result), and that choice successfully produces enough tuples to meet the
MINROWS requirement. The ratio is the total number of hits divided by the total number
of such attempts, measuring how often an "intelligent" choice pays off.

Figure 4.1: Predictive accuracy (Hit Ratio) of each strategy’s non-baseline choices.

The results show a clear hierarchy in predictive accuracy:

• Oracle: 100% (40 out of 40 attempts)
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• Sampling: 90.9% (30 out of 33 attempts)

• Sampling 2: 88.2% (30 out of 34 attempts)

• Lineage: 81.6% (31 out of 38 attempts)

• Random: 56.9% (33 out of 58 attempts)

• Cardinality: 41.4% (24 out of 58 attempts)

As expected, the Oracle achieved a perfect 100% hit rate, serving as the theoretical
benchmark. Among the practical heuristics, the Sampling strategy proved to be the
most reliable predictor, though Sampling 2 and Lineage were not far behind. All three
demonstrated a strong ability to make effective choices.

The most striking result is the poor performance of the Cardinality strategy. With a
hit rate of only 41.4%, it was significantly outperformed by a purely Random selection
(56.9%). This strongly suggests that for this type of complex, compositional query
workload, the optimizer’s internal cardinality estimates are not just unreliable but are
actually worse than making a random guess among the viable candidates.

The primary reason the Sampling strategy can have a better Hit Ratio than the
Lineage strategy, even on uniform data, is that its predictive model is more statistically
robust.

The Data Lineage strategy is akin to predicting an outcome based on a single roll of
the dice; it derives its entire forecast from the one, often small and statistically noisy,
result of the initial failed query. This makes its prediction brittle and highly sensitive to
random variance.

In contrast, the Sampling strategy effectively rolls the dice multiple times; by running
the query on several different sample sizes, it builds a linear regression model from
multiple data points. This process "smooths out" the noise from any single outcome
and captures the overall trend, resulting in a more reliable prediction, especially for
complex joins where its holistic, end-to-end measurement is a key advantage.

It is important to clarify the difference between the total attempts for different
strategies. For example, in our experiments, Sampling tried to find an intelligent
re-creation 33 times. The Oracle may have made more attempts overall. This does
not mean Sampling performed fewer re-creations in total, but rather that there were
scenarios where its prediction model was too conservative to identify a viable candidate,
forcing an immediate fallback to the baseline. The Oracle, with its perfect knowledge,
could find a solution in those cases.
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4.3.2 Metric 2: Total Remote Re-creation Cost (seconds)

This metric is the sum of the remote execution costs, including the 100ms latency
penalty, for every re-creation event across all sessions. Additionally, it includes the
overhead from fallback scenarios where our strategy selected a bad candidate and
the system had to revert to the baseline approach, capturing the real-world cost of
suboptimal decisions.

Figure 4.2: Total remote re-creation cost (in seconds) aggregated across all sessions for
each strategy.

The final ranking is as follows:

• Oracle: 25.31s

• Sampling: 27.10s

• Sampling 2: 27.45s

• Lineage: 27.52s

• Random: 31.09s

• Cardinality: 32.82s

• Baseline: 36.76s
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The Data Lineage, Sampling, and Sampling 2 strategies were the clear top per-
formers. Their total costs were not only close to each other but also stayed within a
reasonable margin of the Oracle’s theoretical optimum. This is a strong signal that
these heuristics are effective at keeping the cumulative user wait time down.

At the other end of the spectrum, the Baseline strategy was by far the worst performer
at 36.76s — significantly higher than that of the other strategies. This powerfully
validates the core premise of this thesis: that an intelligent recovery strategy is critical.

Interestingly, even the flawed heuristics provided a significant improvement over the
naive fallback. The Cardinality strategy (32.82s), despite its frequent prediction errors,
still beat the baseline. This indicates that the cost saved during its occasional correct
choices was enough to offset its mistakes. Even more striking is that a purely Random
selection strategy (31.09s) also comfortably outperformed the baseline, reinforcing the
conclusion that almost any targeted re-creation is better than the brute-force approach.

4.3.3 Metric 3: Total Local Execution Time (seconds)

This metric accounts for the client-side computational overhead introduced by each
strategy’s decision-making process. While client-side computation on in-memory
data is generally fast, some of the more complex heuristics may add non-negligible
processing time. This metric measures that overhead, aggregated across all sessions.

Figure 4.3: Total local execution time (in seconds) introduced by the decision-making
logic of each strategy.
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The results are as follows:

• Sampling: 8.12s

• Cardinality: 1.49s

• Sampling 2: 0.97s

• Lineage: 0.09s

• Oracle, Random, Baseline: Negligible (∼0s)

As expected, the Sampling strategy was by far the most expensive. This high
overhead is a direct consequence of its exhaustive methodology, which requires taking
multiple samples (25%, 50%, 75%) for every potential candidate and re-running the
query for each one.

In contrast, the Sampling 2 approach proved to be much more efficient. At 0.97s,
its hierarchical approximation method, which only samples immediate children and
reuses previously computed slopes, drastically reduces the local workload, making it a
more feasible option.

The Lineage strategy was exceptionally lightweight, incurring a negligible overhead
of only 0.09s. This is because its analysis—calculating selectivity and expansion factors—
is a simple operation that is linear in the size of the small failed result set.

The Cardinality strategy’s overhead of 1.49s stems from the cumulative cost of
requesting numerous cardinality estimates from the optimizer for every candidate
across all failures. Finally, the Oracle, Random, and Baseline strategies have no
significant decision-making logic, and thus their local processing time is effectively
zero.

4.3.4 Metric 4: Total Execution Time (seconds)

This metric provides the overall cost of each strategy by summing the Total Remote
Re-creation Cost and the Total Local Execution Time. It represents the complete time
overhead—both remote and local client-side processing—introduced by each recovery
approach across all sessions.

The final ranking is as follows:

• Oracle: 25.31s

• Lineage: 27.61s

• Sampling 2: 28.42s
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Figure 4.4: Final total execution time (remote + local) for each strategy.

• Random: 31.09s

• Cardinality: 34.31s

• Sampling: 35.21s

• Baseline: 36.76s

Among the feasible approaches, the Data Lineage strategy emerges as the overall
winner, followed closely by the Sampling 2 strategy. Lineage’s victory is due to its
superior balance: it achieves a very low remote execution cost while adding almost no
local overhead, making it the most efficient and well-rounded solution.

The most notable result here is the dramatic downfall of the exhaustive Sampling
strategy. Despite its strong predictive accuracy and good remote performance, its
extremely high local execution time (8.12s) proved to be its fatal flaw. This overhead
was so significant that it performed worse than even the Random and Cardinality
approaches, highlighting the critical importance of maintaining a lightweight client-side
footprint.

The Sampling 2 strategy, by effectively reducing this local overhead, proved to be
a far more viable approach, securing its place as the second-best heuristic. Finally,
the fact that even a pure Random approach provided a significant improvement over
the Baseline confirms that the targeted re-creation framework is fundamentally more
efficient than the naive fallback.
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4.3.5 Metric 5: Total Number of Re-creations

This metric measures the overall efficiency of each strategy by counting the total number
of server-side re-creations triggered across all 20 session files. A lower number suggests
that a strategy is more effective at making intelligent choices that enrich the local cache
ecosystem, thereby preventing subsequent failures.

Figure 4.5: Total number of re-creations needed across all 20 sessions for each strategy.

The aggregated results are as follows:

• Naive Baseline: 99 re-creations

• Cardinality Estimation: 114 re-creations

• Dynamic Sampling: 94 re-creations

• Dynamic Sampling 2: 96 re-creations

• Data Lineage: 96 re-creations

• Oracle: 91 re-creations

• Random: 106 re-creations

From these results, several key insights emerge. First, the Cardinality Estimation
approach performed worse than the naive baseline. This is attributed to prediction
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errors inherent in the optimizer’s statistical models. An inaccurate estimate can lead to
a suboptimal re-creation choice that fails to satisfy the MINROWS constraint, reverting to
the baseline method, while the baseline strategy succeeded with a single re-attempt.

In contrast, the Dynamic Sampling, Dynamic Sampling 2 and Data Lineage strate-
gies outperformed the baseline, although by a modest margin. Their success stems from
a fundamentally different recovery approach. These intelligent heuristics often identify
and select Results for re-creation that are deeper in the dependency graph—that is,
closer to the original base tables.

When such a deep Result is re-created, the new tuples trigger a cascading update on
the client. This process propagates the enrichment upwards through the dependency
graph, increasing the number of rows in all Results that depend on the re-created
one. This leads to a more evenly distributed and robust cache ecosystem, rather
than the baseline’s approach of only enriching the single Result that failed. This even
distribution is highly effective at preventing future MINROWS failures in workloads where
various previously created Results are re-used throughout the session.

However, in simple, linear sessions where a query only uses the result from the
immediately preceding step, the baseline’s "brute-force" re-creation can be more effective
by concentrating a high number of tuples exactly where they are needed next. The
fact that the intelligent strategies’ margin of victory was not wide suggests that our
synthetic session files had a strong tendency to reuse recently created results, a pattern
that partially favors the baseline’s simplistic approach.

It is crucial to note that this applies even to the Oracle strategy. The Oracle is locally
optimal—it always finds the cheapest solution for the current failure. However, it does
not have future knowledge of which cached results will be most valuable for subsequent
queries. Consequently, in linear session patterns, the Baseline’s brute-force approach of
fully enriching the most recent result can lead to fewer total re-creations over an entire
session than the locally-perfect choices made by the Oracle.

Finally, we analyze the total execution time under the cumulative-effect methodology,
where the cache state is not restored after a recovery. This metric represents the most
holistic measure of performance, as it captures how each strategy’s decisions compound
over the course of a long session. The total time is the sum of the cumulative remote
re-creation costs and the total local processing overhead.

By looking at the results, we see that the most effective strategies remain consistent.
The Data Lineage and Sampling 2 approaches still present the best overall perfor-
mance, demonstrating their strong balance of making intelligent remote choices while
maintaining a low client-side footprint.

The most revealing insight from this cumulative analysis comes from the exhaustive
Sampling strategy. In this scenario, its accurate, data-driven predictions led to a
lower total number of re-creations. However, its final total execution time was poor,
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Figure 4.6: Total execution time (remote + local) under the cumulative (no-reset) experi-
mental setup.

ranking even lower than strategies like Cardinality which had a much higher number
of remote re-creations. This paradox is explained by its local execution cost. The time
spent repeatedly running queries on local samples at each decision point ultimately
outweighed the time saved from fewer server interactions.

This result powerfully underscores the importance of a lightweight heuristic. For
an interactive system, a strategy is only viable if its decision-making process is itself
"instant." The Lineage and Sampling 2 approaches succeed because they provide this
balance, whereas the exhaustive Sampling strategy, despite its predictive intelligence,
fails the test of practical feasibility due to its high computational overhead.

4.3.6 Metric 6: Analysis of Re-creation Selection by Depth

This final metric examines the selection patterns of each strategy by analyzing the
distribution of re-creations across different "depths" in the dependency graph. We
define Depth 0 as the top-most Result that failed its MINROWS constraint. A decision to
re-create a Result at Depth 0 is therefore equivalent to a fallback to the naive baseline
strategy. A selection at Depth 1 represents choosing one of the direct children of the
failed Result, Depth 2 a "grandchild," and so on.

The goal of this experiment is to see how often each heuristic succeeds in finding an
"intelligent" solution (a selection at Depth > 0) versus how often it gives up and resorts
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to the baseline (a selection at Depth 0).

Figure 4.7: Distribution of re-creation selections by depth, where Depth 0 represents a
fallback to the baseline strategy.

The data reveals the intelligence and limitations of each strategy. The Oracle, with
its perfect knowledge, determines that in many instances, the optimal strategy is, in
fact, to fall back to the baseline (Depth 0). This establishes a crucial ground truth: in
some scenarios, there is no "clever" choice that is better than simply re-computing the
final result.

When comparing the practical strategies, we observe different behavioral patterns.
The Data Lineage and Cardinality strategies seem to be more prone to selecting
candidates from a deeper depth, whereas the exhaustive Sampling and Sampling 2
strategies appear more conservative in their choices.

This distribution pattern is not just an observation; it can serve as a powerful
reference for the development of better heuristics. For example, by noticing that the
Oracle strategy’s intelligent choices are heavily concentrated at the top levels of the
dependency graph, we could introduce a "depth penalty" into a selection model. Such
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a mechanism would punish the selection of deeper candidates, potentially improving a
heuristic by guiding it to favor choices that are more likely to be optimal.

4.4 Evaluation on Skewed and Correlated Data

The experiments presented thus far have been conducted using the standard TPC-H
data. A known characteristic of TPC-H is that its data generators produce uniformly
distributed data. While this provides a stable baseline for evaluation, it may not
reflect the characteristics of real-world datasets, which are often skewed and contain
complex correlations. The heuristics we have developed might be sensitive to these
data properties.

To test the robustness of our strategies under more challenging conditions, we
conducted a second set of experiments using skewed and correlated data.

4.4.1 Methodology and Data Generation with JCC-H

For this evaluation, we utilized the JCC-H Data Generator. As described by Boncz,
Anatiotis, and Klabe in "JCC-H: Adding Join Crossing Correlations with Skew to
TPC-H," JCC-H is a drop-in replacement for the standard TPC-H data generator that
introduces realistic skew and join-crossing-correlations into the dataset [BAK17]. This
provides a convenient way to assess how a system that is already tested with TPC-H
can handle more complex data distributions.

We used the same 20 synthetically generated session files as in the previous experi-
ments, but executed them against the JCC-H dataset. To ensure a fair, head-to-head
comparison of how each strategy’s prediction model copes with the difficult data, the
local cache states were reset after every recovery action to a common recovered state,
forcing all strategies to be evaluated on the very same queries that failed to produce
enough tuples.

The following sections present the results for four key metrics under these skewed
and correlated data conditions.

4.4.2 Metric 1: Hit Ratio on JCC-H Data

This metric isolates the predictive reliability of each strategy when faced with a more
realistic dataset containing skew and join-crossing-correlations. We define a "hit" as an
event where a strategy selects a candidate for re-creation (other than the baseline), and
that choice successfully produces enough tuples to meet the MINROWS requirement. The
ratio measures how often an "intelligent" choice is a correct one.
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Figure 4.8: Predictive accuracy (Hit Ratio) of each strategy’s non-baseline choices on
skewed JCC-H data.

The results show a clear hierarchy in predictive accuracy under these more challeng-
ing conditions:

• Oracle: 100% (34 out of 34 attempts)

• Sampling: 75% (21 out of 28 attempts)

• Sampling 2: 80.8% (21 out of 26 attempts)

• Lineage: 75% (24 out of 32 attempts)

• Random: 48.3% (28 out of 58 attempts)

• Cardinality: 43.1% (25 out of 58 attempts)

As expected, the Oracle achieved a perfect 100% hit rate, serving as the theoretical
benchmark. Among the practical heuristics, Sampling 2 emerged as the most reliable
predictor with an 80.8% hit rate, closely followed by Sampling and Lineage, both at
75%. The strong performance of all three strategies demonstrates their robustness, as
they maintained high predictive accuracy even when faced with skewed and correlated
data.

The most striking result is the continued poor performance of the Cardinality strategy.
With a hit rate of only 43.1%, it was once again outperformed by a purely Random
selection (48.3%).
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It is also important to consider the total number of attempts made by each strategy.
For example, Lineage attempted an intelligent re-creation 32 times, whereas Sampling
2 only did so 26 times. This indicates that some models are more "conservative" and
are quicker to fall back to the baseline if they cannot find a candidate that meets a
high confidence threshold. The Oracle, with its perfect knowledge, found the most
opportunities (34) for a successful non-baseline fix.

4.4.3 Metric 2: Total Remote Re-creation Cost on JCC-H Data

This metric is the sum of the remote execution costs, including the 100ms latency
penalty, for every re-creation event across all sessions. Additionally, it includes the
overhead from fallback scenarios where our strategy selected a bad candidate and
the system had to revert to the baseline approach, capturing the real-world cost of
suboptimal decisions.

Figure 4.9: Total remote re-creation cost (in seconds) on skewed JCC-H data.

The results show a clear performance hierarchy on the skewed dataset:

• Oracle: 30.19s

• Lineage: 38.38s

• Sampling: 39.67s

• Sampling 2: 39.79s
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• Random: 40.63s

• Cardinality: 41.56s

• Baseline: 42.88s

The Lineage, Sampling, and Sampling 2 strategies were the clear top performers.
However, unlike the experiments on uniform data, their total costs were not far ahead
of the less effective strategies like Random and Cardinality. Furthermore, a significant
performance gap still exists between these top heuristics and the theoretical optimum
set by the Oracle. This indicates that while they are the best practical options, there is
still margin for improvement, and the skewed, correlated data makes it fundamentally
more difficult for any heuristic to achieve optimal performance.

The Cardinality strategy was the least effective heuristic, reinforcing the findings
from the Hit Ratio metric. The fact that a purely Random selection strategy performed
slightly better again suggests that the optimizer’s internal cardinality estimates are not
well-suited for this task, especially on skewed data where such estimates are notoriously
difficult.

4.4.4 Metric 3: Total Local Execution Time on JCC-H Data

This metric accounts for the client-side computational overhead introduced by each
strategy’s decision-making process on the skewed dataset.

The results are as follows:

• Sampling: 7.37s

• Cardinality: 1.43s

• Sampling 2: 0.82s

• Lineage: 0.08s

• Oracle, Random, Baseline: Negligible (∼0s)

Confirming the results from our experiments on uniform data, the pattern of local
overhead costs remains consistent. The exhaustive Sampling strategy (7.37s) was
once again the most expensive by a wide margin due to its computationally intensive
methodology. As discussed earlier, the Lineage strategy (0.08s) proved exceptionally
lightweight, while the Sampling 2 approach (0.82s) offered a much more feasible
performance compromise. The overhead of the Cardinality strategy (1.43s) was also in
line with previous findings, and the remaining approaches had no significant local cost.
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Figure 4.10: Total local execution time (in seconds) introduced by the decision-making
logic of each strategy on skewed JCC-H data.

4.4.5 Metric 4: Total Execution Time on JCC-H Data

This metric provides the overall cost of each strategy by summing the Total Remote
Re-creation Cost and the Total Local Execution Time on the skewed dataset. It
represents the complete time overhead—both user-facing wait time and client-side
processing—introduced by each recovery approach.

The final ranking is as follows:

• Oracle: 30.19s

• Lineage: 38.46s

• Sampling 2: 40.61s

• Random: 40.63s

• Baseline: 42.88s

• Cardinality: 42.99s

• Sampling: 47.04s

The Data Lineage strategy emerges as the most well-rounded and effective heuristic
on the skewed dataset. However, its victory comes with two important caveats. First, the
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Figure 4.11: Final total execution time (remote + local) for each strategy on skewed
JCC-H data.

performance improvement over the Baseline is not as great as it was on uniform data.
Second, a significant gap remains between Lineage’s performance and the theoretical
optimum set by the Oracle, indicating that skewed data presents a difficult challenge
with a clear margin for future improvement.

As discussed in the previous section, the exhaustive Sampling strategy’s final ranking
is exceptionally poor due to its massive local overhead, which completely negated any
benefits from its remote re-creation choices. Its approximated counterpart, Sampling 2,
proved to be a far more viable approach. Its total time was competitive, though notably
very close to that of a purely Random strategy, highlighting the difficulty of making
consistently optimal choices on this dataset.

4.4.6 Analysis of Re-creation Selection by Depth on JCC-H Data

The distribution of re-creation selections by depth on the skewed JCC-H data reveals a
fundamentally more challenging environment than that of the uniform TPC-H data.

The most telling observation comes from the Oracle strategy. The graph shows that
even with perfect knowledge, the Oracle was forced to fall back to the baseline strategy
(Depth 0) in the vast majority of cases. This establishes a crucial ground truth: the
skewed and correlated nature of the data presented far fewer opportunities for an
intelligent, "surgical" re-creation choice to be effective. This directly explains why the
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Figure 4.12: Distribution of re-creation selections by depth on skewed JCC-H data,
where Depth 0 represents a fallback to the baseline strategy.

performance gains of the best heuristics over the baseline were smaller in this set of
experiments.

Furthermore, for the few cases where a non-baseline choice was viable, the selections
were heavily concentrated at Depth 1. There were very few opportunities to make
beneficial re-creations at deeper levels of the dependency graph, which further limited
the potential for significant cost savings.

It is important to point out that the JCC-H dataset, while valuable for stress-testing,
may represent an extreme level of skew that is not necessarily typical of all production
workloads. However, seeing how the strategies behave under these conditions is still
a valuable exercise. In reality, we expect the characteristics of most datasets to lie
somewhere on the spectrum between the perfectly uniform TPC-H distribution and
this highly skewed one.
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Modern data analysis demands interactive tools that provide immediate feedback, a
need addressed by features like MotherDuck’s Instant SQL. Powering this real-time
experience in a hybrid cloud/browser environment requires a sophisticated caching
system. This thesis tackled a critical challenge within such systems: how to intelligently
recover when a query on partial, cached data fails to produce a sufficiently large result.
We proposed and evaluated a "Targeted Re-creation" framework to intelligently recover
from MINROWS failures. Through extensive experimentation on both uniform and skewed
data, we compared three novel heuristics—Cardinality Estimation, Dynamic Sampling,
and Data Lineage—against a naive Baseline, an idealized Oracle, and a purely Random
approach.

Based on the comprehensive results, our final recommendation is the Data Lineage
strategy. This approach consistently demonstrated the best overall performance, provid-
ing a superior balance of low local execution overhead and efficient remote re-creation
choices. It proved to have a strong predictive ability, enabling it to select effective
re-creation candidates at a very low cost.

The minimal local overhead of the Lineage strategy is a particularly compelling
advantage. The target environment for this feature, DuckDB Wasm, is currently single-
threaded, making it imperative to keep the client-side computational load as low as
possible to ensure a responsive user interface. The exhaustive Sampling strategy, despite
its predictive power, was ultimately disqualified by its high local cost, while the Lineage
strategy’s overhead was negligible.

Furthermore, the implementation of the Data Lineage strategy is feasible and does
not introduce prohibitive complexity. It requires augmenting cached results with an
extra metadata column to store sets of origin Result identifiers. These sets are simply
propagated and unioned as new Results are composed. As demonstrated in our
analysis, the system only needs to track the source Results for each tuple, not the
specific source row indices, which significantly simplifies the mechanism and reduces
the metadata footprint.

Finally, it is crucial to emphasize that regardless of which intelligent heuristic is
chosen, the Naive Full Replacement (Baseline) strategy must be implemented along-
side it. It serves as the indispensable fallback mechanism for the two scenarios where
a targeted fix is not possible: when a chosen re-creation candidate fails to produce
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enough rows, or when the heuristic cannot identify any viable candidate in the first
place.

5.0.1 Future Work

The research presented in this thesis establishes a robust framework for managing com-
positional caches, but it also opens up several exciting avenues for future investigation.

Result Stability in Interactive Workflows This work focused on ensuring a sufficient
number of rows, but not on the stability of those rows between incremental query edits.
In an Instant SQL context, it is desirable for the tuples a user sees in a preview to
remain present and in a similar order as they refine their query. Future work could
introduce and evaluate metrics to measure this, such as result containment or top-k
stability. One could also explore recovery mechanisms that explicitly preserve stability,
for instance, by performing a UNION of the old, small result set with the new, re-created
one to guarantee that previously visible tuples are not lost.

Bidirectional and Server-Side Caching The current model treats Result caches as
a client-only phenomenon. A possible direction would be to make the server aware
of these caches, creating a bidirectional caching system. If the server maintains its
own copies of Results, it could open up significant optimization opportunities for
hybrid queries that mix base tables and cached results. Such queries could be executed
entirely and efficiently on the server side, eliminating the need to upload client data
and enabling a broader class of queries to be accelerated.

Heuristic Refinement from Experimental Insights The experimental results them-
selves can be used to develop more refined heuristics. The analysis of the re-creation
selections by depth, for instance, showed that the Oracle’s optimal choices were heavily
concentrated at shallow depths. This insight could be used to improve other strategies.
For example, one could introduce a "depth penalty" into the selection model, which
would programmatically punish the selection of deeper Results, thereby guiding a
heuristic’s behavior to be more similar to the Oracle’s without overfitting to a specific
workload.

Validation on Real-World Datasets While the use of LLM-generated workloads on
TPC-H and JCC-H data provided a controlled and challenging experimental environ-
ment, the final step would be to validate these findings on a large, real-world dataset.
Using a public dataset, such as the Stack Overflow data dump [14b; 14a], would allow
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us to evaluate how the strategies behave when faced with the organic skew, correlations,
and complexity of production data, further strengthening the conclusions of this work.
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