
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master’s Thesis

Unified String Dictionary in DuckDB

Author: Omid Afroozeh (2802676)

1st supervisor: Prof. Dr. Peter Boncz
daily supervisor: Paul Groß
2nd reader: Dr. Pedro Holanda

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 14, 2025

I dedicate this thesis to my family, Mom, Dad, Ali, Amir, and Azim, for their constant
support throughout the past two years.

ii

Abstract

Strings are the most common data type stored in real-world datasets, accounting
for up to 50% of all columns. Moreover, they are computationally expensive to
process due to their variable length and potentially large size. Compared to
fixed-size numerical data types, common operations such as hashing, checking
for equality, and copying are significantly more costly for strings. To address
this challenge in DuckDB, an analytical, high-performance database system,
we propose to implement the Unified String Dictionary (USD), a dictionary-
like data structure, which is constructed at runtime for each query. Inspired
by the Unique Strings Self-align Region (USSR), USD enables column-wide
compressed execution by unifying strings originating from different sources,
such as per-block dictionaries in storage. This leads to faster string processing,
particularly in materializing operators such as hash join and hash aggregate.
USD integration with DuckDB involves a dedicated operator, a custom optimizer
rule, and modifications to the execution engine. Our evaluation demonstrates
performance improvements of 1.3× to 7× on string-heavy workloads, especially
for low-domain cardinality columns. However, these benefits diminish as
cardinality increases, possibly leading to performance regression. To prevent
this, we enforce defensive constraints that disable USD when high-cardinality
columns are detected.

Acknowledgements

First and foremost, I would like to thank Professor Peter Boncz for his guidance
throughout the past 6 months and all the interesting conversations we had
during our meetings. Special thanks to my daily supervisor, Paul Groß, for his
support throughout this thesis. Our frequent discussions were incredibly helpful
in shaping this thesis. Finally, much gratitude to everyone at CWI database
architectures group for making it a wonderful place for research, especially the
table tennis crew!

Contents

List of Figures v

List of Tables vii

List of Listings ix

1 Introduction 1

1.1 Contribution . 2

1.2 Outline . 2

2 Background 5

2.1 Database management systems . 5

2.1.1 Relational database systems . 6

2.1.2 Query processing overview . 6

2.1.3 Materializing operators . 8

2.2 Compression . 9

2.2.1 General-purpose compression . 9

2.2.2 Lightweight compression . 9

2.3 DuckDB . 11

2.3.1 Execution engine . 11

2.3.2 Storage . 13

2.3.3 String representation . 14

2.3.4 Relevant optimizations . 15

2.4 Compressed execution . 16

2.5 Unique Strings Self-align Region . 16

i

CONTENTS

3 Literature Study and related works 19
3.1 Compressed execution . 19

3.1.1 Foundational works . 20
3.1.2 Predicate evaluation . 20
3.1.3 Materializing operators . 21
3.1.4 Query optimization . 22
3.1.5 Query executor and code explosion problem 23

3.2 Dictionary . 24
3.2.1 Global dictionary . 24
3.2.2 Per-block dictionary . 27
3.2.3 Differential dictionaries . 28

3.3 String specific data structures . 29
3.3.1 Umbra-inspired string representation 29
3.3.2 String hash table . 30

3.4 Summary . 31

4 Unified String Dictionary 33
4.1 USD core data structure . 34

4.1.1 Main components . 34
4.1.2 Insertion . 35
4.1.3 Concurrency control . 37
4.1.4 Candidate strings . 40

4.2 USD accelerated string processing . 41
4.2.1 Faster hashing . 41
4.2.2 Faster equality checks . 41
4.2.3 Reduce memory pressure and avoid copying 42

4.3 Integration design . 42
4.3.1 Target operator . 42
4.3.2 Proof of concept integration . 43
4.3.3 Design #1: Insert at individual operators 43
4.3.4 Design #2: Insert at storage layer 43
4.3.5 Design #3: USD insertion operator 44

4.4 USD insertion operator . 44
4.4.1 Logical operator . 45
4.4.2 Physical operator . 45

ii

CONTENTS

4.5 USD optimizer rule . 47
4.5.1 DuckDB optimizer . 47
4.5.2 Implementation . 48

4.6 USD string recognition . 50
4.6.1 Aligned memory location . 50
4.6.2 Pointer tagging . 51

4.7 USD lifetime . 52
4.7.1 Construction . 53
4.7.2 Destruction . 53

4.8 Preventing unnecessary copies . 53
4.8.1 ColumnDataCollection . 54
4.8.2 TupleDataCollection . 54
4.8.3 Out-of-core execution . 55

5 Evaluation 57
5.1 Experimental setup . 57
5.2 Standard benchmarks . 57

5.2.1 TPC-H . 57
5.2.2 TPC-DS . 59
5.2.3 IMDB . 59
5.2.4 ClickBench . 60
5.2.5 Public BI Benchmark . 60

5.3 Synthetic micro-benchmarks . 60
5.3.1 Variable length strings . 61
5.3.2 Low cardinality . 62
5.3.3 High cardinality . 62
5.3.4 String payloads in materializing operators 64

5.4 Results discussion . 64

6 Sampling-based approach 67
6.1 Clickbench study . 67
6.2 Sampling-enhanced USD . 69

6.2.1 Directly accessing column segments 69
6.2.2 Delaying vectors . 69
6.2.3 Streaming model . 70

6.3 Evaluation . 71

iii

CONTENTS

7 Conclusion and Future work 73
7.1 Conclusion . 73
7.2 Future work . 74

7.2.1 Multiple USDs . 74
7.2.2 Integration with hybrid execution model 74
7.2.3 Optimized sampling approach . 75
7.2.4 Compressed execution for sorting . 75
7.2.5 Cost-based optimizer rule . 76

References 77

iv

List of Figures

2.1 Query processing steps . 7
2.2 An example of dictionary encoding applied to the p_type column in TPC-H

[48] . 11
2.3 Unique Strings Self-aligned Region (image borrowed from [23]) 17

3.1 Data encoding with catch-all cell (image borrowed from [31]) 22
3.2 Data life cycle in SAP HANA (image borrowed from [47]) 24
3.3 Order-preserving dictionary requirements (image borrowed from [7]) 26
3.4 Shared leaves structure (image borrowed from [7]) 27
3.5 Adaptive dictionary encoding (image borrowed from [18]) 28
3.6 String header structure in Umbra (image borrowed from [38]) 29
3.7 SAHA architecture containing the dispatcher and multi-layered hash tables

(image borrowed from [58]) . 31

4.1 Unified String Dictionary components, including the linear probing hash
table and the data region. 34

4.2 Simplified DuckDB query plans with and without the Unified String Dic-
tionary. The query involves two materializing operators, both applied to
string columns. Plan (b) will insert the strings into the per-query dictionary,
affecting both join and aggregation operators. 49

4.3 DuckDB’s page layout for fixed-size rows and corresponding variable-size
rows (Image borrowed from Kuiper et al. [27]) 56

5.1 Performance results - Synthetic dataset, Variable length strings 61
5.2 Performance results - Synthetic dataset, Low cardinality domain 62
5.3 Performance results - Synthetic dataset, High cardinality domain 63

6.1 Frequency plot of most repeated URL values in Clickbench 68

v

LIST OF FIGURES

6.2 Performance results - Sampling evaluation, high cardinality columns 71

vi

List of Tables

3.1 Surveyed techniques’ benefits and their adoption status. 32

5.1 Performance results - Query 16 in TPC-H 58
5.2 Performance results - Simple join query on modified TPC-H columns 59
5.3 Performance results - CommonGovernment workbook 60
5.4 Performance results - String payload columns 64

6.1 Compression statistics for URL and Title columns in Clickbench 68

vii

List of Listings

2.1 Private attributes for DuckDB’s string type. Using C++ unions, both struct
data types for inlined and non-inlined variations share the same memory
layout. 14

ix

List of Algorithms

1 Simplified string_t hashing logic in DuckDB with the addition of USD . . . 41

xi

1

Introduction

Various studies on real-world workloads, such as "Get Real" [52], Redset [49], and SchemaPile
[16], have shown that strings are prevalent in data processing, containing more than half
of all table columns. However, strings are a much less researched subject compared to
numerical data [9], despite being more troublesome to process. For instance, strings have
a much larger memory footprint, which means that processing them typically results
in a significant number of cache misses, high memory usage, and even spillage to disk.
Furthermore, comparing strings requires iterating over each character as compared to a
single instruction for numerical comparisons. Moreover, their variable size makes them less
likely to be accelerated by modern hardware capabilities such as SIMD [23; 59]. Given all
the reasons discussed, if a database system could directly execute queries on the compressed
form of strings, it would gain a lot of benefit from less memory footprint and avoid the
decompression overhead [12; 20]. Yet, executing on the compressed strings is not trivial [2;
23], and changing already established execution engines requires significant engineering
effort across various layers of the system.

In this thesis, we focus on addressing the challenges of string processing within DuckDB
[42]. We are particularly interested in DuckDB since it is open-source, features a state-of-
the-art query execution engine, and is immensely popular. Specifically, we aim to improve
string processing by implementing a per-query dictionary similar to the approach used in
Unique Strings Self-aligned Region (USSR) [23] but in DuckDB. This dictionary will be
built at run-time, and it will contain the most common strings of a particular query. These
strings will benefit from faster operations, such as equality checks, applying hash functions,
and copying.

This leads us to the following research questions, which we aim to answer in the remainder
of this thesis:

1

1. INTRODUCTION

RQ1: How can we implement and integrate a per-query, global dictionary for strings in
DuckDB? Given that the USSR data structure was only implemented in Vectorwise,
how would this adaptation look in a more modern system such as DuckDB?

RQ2: Considering the multi-threaded execution environment of DuckDB, how can we
efficiently implement a global dictionary that achieves parallel efficiency?

RQ3: How much performance can be gained for string-heavy workloads by implementing
such a data structure in DuckDB? Is there a possible chance of performance regression?
If so, how to avoid it?

1.1 Contribution

• Literature review: We present a survey of dictionary usage, compressed execution,
and data structures specifically designed for string processing. We analyze the
adoption of these methods in popular database systems.

• Unified String Dictionary implementation: We contribute an open-source imple-
mentation of Unified String Dictionary, which is an adaptation of USSR implemented
in the closed-source database Vectorwise [62].

• Integration of Unified String Dictionary in DuckDB: We discuss in detail
how to integrate a query-wide dictionary in an already established execution engine
as non-intrusively as possible.

All of our proposed changes have been submitted in a Pull Request (PR) to DuckDB1.
Additionally, we fixed a minor issue that prevented dictionary vectors from being emitted2;
This fix has already been merged into the main branch.

1.2 Outline

In Chapter 2, we present the preliminary background required to understand the rest of the
thesis. This includes topics related to database management systems, compression methods,
DuckDB, and the Unique String Self-align Region. Chapter 3 presents our literature study
on various methods used in database systems to accelerate string processing. The Unified
String Dictionary is introduced in Chapter 4, where we detail how we implemented and

1https://github.com/duckdb/duckdb/pull/18184
2https://github.com/duckdb/duckdb/pull/17471

2

https://github.com/duckdb/duckdb/pull/18184
https://github.com/duckdb/duckdb/pull/17471

1.2 Outline

integrated this feature into DuckDB. Chapter 5 details our benchmarking results. Chapter
6 summarizes our attempts to adapt the limited-size per-query dictionary to datasets with
high domain cardinality. Finally, in Chapter 7, we conclude our work and discuss possible
directions for future research.

3

2

Background

2.1 Database management systems

Database Management Systems (DBMSs) are fundamental software systems designed to

efficiently manage, store, retrieve, and manipulate data. They are the backbone of modern

applications, from small-scale software systems to large-scale enterprise and cloud services.

A DBMS gives users a high-level abstraction of the data. It enables users and applications

to interact with data using declarative query languages, such as SQL. Users do not need

to worry about how the data is stored, how indexes are used, or how I/O operations are

optimized.

Database systems come in many forms, specialized for different workloads, data models,

and performance requirements. The traditional model is the relational database, where

data is stored in tables with a fixed schema and queried using SQL. Examples include

PostgreSQL [22], DuckDB [42], MySQL [36].

Database systems are optimized for different types of workloads, mainly Online trans-

action processing (OLTP) and Online analytical processing (OLAP). OLTP systems are

optimized for write-heavy workloads, handling many short, concurrent transactions, such

as inserts, updates, and deletes. In contrast, OLAP systems are designed for complex read-

heavy queries over large volumes of data, often used in reporting, analytics, and business

intelligence. These differences also influence storage formats: OLTP systems typically use

row-based storage, which is efficient for accessing entire records. OLAP systems often use

columnar storage, where data belonging to each column is stored together. This layout

speeds up analytical queries that scan only a few columns across many rows, making it

more efficient for read-heavy workloads. Hybrid systems also exist, combining features of

5

2. BACKGROUND

both OLTP and OLAP systems. Examples of such systems include SAP HANA [17] and
Hyper [26].

Database systems can also differ in how they are deployed and accessed. Server-based
databases like PostgreSQL and MySQL run as separate services and handle requests
from client applications over a network or local connection. They support multiple users,
concurrent queries, and are well-suited for large-scale or multi-user environments. On the
other hand, in-process databases such as SQLite or DuckDB run within the same process as
the application that accesses them. They do not require a separate server, are lightweight,
and easy to set up.

2.1.1 Relational database systems

In this thesis, we focus on DuckDB, a relational DBMS. The relational model is a founda-
tional concept in database theory and remains the dominant paradigm for data storage
and processing in analytical systems.

Edgar F. Codd first proposed the relational model in 1970 [14]. It organizes data into
relations, more commonly referred to as tables, where each relation consists of a set of
tuples and attributes. This model offers a high level of data abstraction, allowing users to
reason about data without needing to understand its physical storage.

The relational model relies on declarative querying using SQL, a special-purpose language
introduced in the 1970s. With SQL, users describe what data they want, not how to get it.
This separation allows the database to choose the most efficient way to execute the query.

The relational model also focuses on key concepts such as schemas, primary and foreign
keys, data normalization, and set-based operations, including joins, selections, and projec-
tions. These features make it well-suited for structured data with clear relationships and
constraints.

2.1.2 Query processing overview

Query processing refers to the steps a database system takes to turn a SQL query into
results. It involves parsing, binding, planning, and executing the query. These steps ensure
that the query runs efficiently and returns correct results. The required steps are depicted
in Figure 2.1.

When the user submits an SQL query, the system first parses it. The parser checks if the
query is valid and converts it into an internal tree structure called the logical plan. This

6

2.1 Database management systems

Figure 2.1: Query processing steps

plan describes the operations needed to produce the output, such as scans, filters, joins,

and aggregations.

Next, the system optimizes this logical plan. The goal is to find a more efficient version

of the query plan. The optimizer may push filters closer to scans, reorder joins, or rewrite

expressions. After optimization, the system generates a physical plan. This plan specifies

how each operation will be performed and in what order.

Finally, the system executes the physical plan, and the operators are run to process the

data. There are different paradigms for a DBMS’s execution engine. For analytical systems,

vectorized execution and Just-In-Time (JIT) compilation are the dominant, state-of-the-art

approaches.

Systems such as MonetDB/X100 [10], Vectorwise [62], and DuckDB take advantage of

the benefits provided by vectorized execution, where data is processed in small batches

called vectors. On the other hand, systems such as Hyper [26] and Umbra [38]apply JIT

compilation.

7

2. BACKGROUND

2.1.3 Materializing operators

A query plan can contain many different operators, each responsible for a part of the
query. Some operators scan data from tables, while others perform filter, join, or aggregate
operations on the data.

Some operators can start producing output as soon as they receive input. Others,
however, need to see all of the input data before they can emit any results. These are
known as materializing or blocking operators. They first materialize the data in memory,
storing it in different forms, before they can proceed. The materializing operators are
the main point of interest for this thesis, as most expensive operations on strings take
place there. In analytical systems, these operators can become the bottleneck for query
execution, as large volumes of data need to be processed, and the query intermediates can
quickly exceed the available memory space, leading to disk spillage [27].

In particular, we will discuss two specific algorithms used for the materializing operator
of join and aggregation: hash join and hash aggregate.

Hash join
Join operators combine rows from two or more tables based on a join condition. In
analytical queries, the most common algorithm used for this operator is the hash join. A
hash join builds a hash table on the smaller input table, called the build side.

A hash table is a data structure that maps keys to values for fast lookups. In the context
of a join, the keys are the values from the join column of the build side. To store a row in
the hash table, the system applies a hash function to the join key. A hash function takes
the key from an arbitrarily large domain and maps it to a fixed-size integer value, called a
hash value. This value can be used to determine where the key should be stored.

Once the hash table is built, the system reads the larger input, often referred to as the
probe side. For each row on the probe side, it applies the same hash function to the join
key and then checks the corresponding location in the hash table. If matching rows are
found, they are combined and added to the result. To confirm that the keys truly match,
an equality check is also performed.

In DuckDB, the hash table does not only store the join keys but also includes any
additional columns selected by the query. These are known as payload columns or non-key
columns, and they are materialized in memory alongside the keys. Under memory pressure,
for example, when the hash table grows past the available memory limit, the database can
spill the materialized data back to disk.

8

2.2 Compression

Hash aggregate
The group-by operator is used to compute aggregate functions, such as SUM, COUNT, or AVG,
often grouped by one or more columns. In analytical queries, the hash-based algorithm is
commonly used for this purpose, named hash_aggregate.

Just like in a hash join, the hash_aggregate operator uses a hash table. The system
applies a hash function to the group-by keys to determine where to store the aggregation
state. Each unique key creates an entry in the hash table.

As input rows are processed, the operator looks up the corresponding entry in the hash
table and updates the aggregate state, for example, by adding a value to the accumulated
sum or increasing the count.

2.2 Compression

Compression plays an important role in analytical database systems by reducing overall
storage footprint, memory usage, and I/O costs. It is especially important for string data,
which is often larger and more memory-intensive than numerical data. In this section, we
discuss general-purpose and lightweight compression techniques, with a particular focus on
lightweight techniques, as they are prominent in DuckDB and form the central focus of
this thesis.

2.2.1 General-purpose compression

This category of methods reduces data volume by identifying duplicate values within the
byte stream. Popular methods include Zstd 1, Snappy 2, and LZ43. These techniques often
achieve high compression ratios. However, due to their high CPU overhead during decom-
pression and their inability to provide access to individual values without decompressing
larger blocks of data, they are not used directly during query execution.

2.2.2 Lightweight compression

Unlike general-purpose methods, lightweight compression techniques attempt to find
patterns within the data itself to reduce data volume. They are particularly effective in
column-store databases, where data from the same domain [2]. These methods support

1https://github.com/facebook/zstd
2https://github.com/google/snappy
3https://lz4.org/

9

https://github.com/facebook/zstd
https://github.com/google/snappy
https://lz4.org/

2. BACKGROUND

fine-grained access to individual values, making them suitable candidates for use during
query execution.

Bit packing
Bit packing is a lightweight compression technique that reduces storage by representing
fixed-width values using the minimum number of bits required to store them. For example,
value 50 can be stored using only 6 bits (0b110010) instead of 32 or 64 bits.

Run-Length Encoding
Run-Length Encoding (RLE) compresses data by representing consecutive repeated values
as a single value paired with its run length. This method is especially effective for sorted
or low-cardinality columns, where long sequences of identical values are common.

Dictionary encoding
Dictionary encoding is perhaps the most common compression method used in databases
[2; 61; 25; 43]. The idea is to replace long, variable-length values with small integers, as
depicted in Figure 2.2. There are many variations of dictionary encoding regarding the
codes generated for unique values, such as order-preserving codes [7] or frequency-based
codes [43]. The implementation typically involves an array containing all the unique values
belonging to a domain, known as a dictionary. Each value in the column is assigned an
integer code, which can be used to index into the array. Dictionary encoding is highly
effective when the domain cardinality is low to medium, as it results in many repetitions and,
therefore, a better compression ratio. Typically, another layer of numerical compression
methods, such as run-length encoding and bit packing, is applied on top of the encoded
integer values.

Fast Static Symbol Table (FSST)
One limitation of dictionary compression is that it works best when strings are complete
duplicates; If two strings differ even slightly, the dictionary must store both entries at full
size, diminishing the benefits of compression. For datasets where strings are very similar
but not fully identical, FSST can be useful. This compression method, introduced by
Boncz et al. [9], is a lightweight string compression technique designed with database
workload in mind. It replaces frequently occurring substrings of 1–8 bytes with single-byte
codes, allowing for fast decompression and, crucially, random access to individual strings.
To encode and decode values with FSST, a symbol table is required. Since its introduction,

10

2.3 DuckDB

FSST has become a core string compression method in DuckDB, used both as a standalone
technique and in combination with dictionary compression (DICT_FSST4). FastLanes 5

file format has also adopted FSST compression.

Figure 2.2: An example of dictionary encoding applied to the p_type column in TPC-H [48]

2.3 DuckDB

DuckDB is a high-performance, analytical, columnar-storage Relational Database Manage-
ment System (RDBMS), supporting the Postgres SQL dialect. It is open-source under the
MIT license and popular among data scientists, with 15,162,132 monthly downloads for
its Python package [40]. In the following sections, we discuss various features available in
DuckDB as they pertain to this thesis.

2.3.1 Execution engine

DuckDB features a push-based, vectorized query execution engine, enabling fast execution
for analytical workloads. Like similar OLAP systems, it relies heavily on columnar storage
for its execution model. In the following, we will discuss key concepts available in DuckDB’s
execution engine.

Vectors
Vectors are the unit of data that flow through DuckDB’s execution engine. Each vector
typically contains 2048 values of the same data type and represents a batch of columnar
data. This vectorized model allows for efficient computation on blocks of data, reducing

4https://github.com/duckdb/duckdb/pull/15637
5https://github.com/cwida/FastLanes

11

https://github.com/duckdb/duckdb/pull/15637
https://github.com/cwida/FastLanes

2. BACKGROUND

the overhead of tuple-at-a-time processing [10]. DuckDB uses several specialized vector
types, each optimized for particular use cases and compression methods. These vector
types enable DuckDB to delay decompression as long as possible.

Each vector in DuckDB is generated from the Vector class 6. This class has a few key
attributes as described in the following:

• vector_type: Determines the type of the vector, specifying the physical representa-
tion of the data.

• type: Determines the primitive data type that the vector holds, such as integer, float,
or string.

• buffer: A shared pointer to a VectorBuffer class that holds the data related to
the vector itself.

• auxiliary: A shared pointer to a VectorBuffer class that holds the auxiliary data
of a vector.

The VectorBuffer base class is inherited by different vectors and used to store the
vector metadata.

Flat vector
This is the most common and straightforward vector type, where data is stored in a simple,
uncompressed flat array. DuckDB provides an extensive API to access the underlying data
in flat vectors using the FlatVector::GetData or FlatVector::GetValue.

Constant vector
A constant vector in DuckDB physically stores a single constant value, but logically
represents a vector of up to 2048 values, all of which are equal to that constant.

Dictionary vector
To represent the data that is encoded with dictionary compression, DuckDB makes use of
dictionary vectors. It uses the buffer attribute of the vector to store a DictionaryBuffer,
containing a SelectionVector, an optional integer value for dictionary size, and a string
value holding the dictionary ID. The SelectionVector contains the indices to the dictionary.
dictionary_size determines how many unique values are available in the dictionary. The

6https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/types/vector.hpp

12

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/vector.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/vector.hpp

2.3 DuckDB

dictionary_id uniquely identifies which dictionary a vector belongs to. This value is set
for dictionary vectors emitted from the storage for DuckDB’s database files and Parquet
reader.

Furthermore, this vector type uses the auxiliary attribute in the vector to store the
VectorChildBuffer. This special vector buffer stores the unique entries in the dictionary
in a flat vector. All of the described variables are accessible through an extensive API
provided by DuckDB.

Unified Vector Format
During query execution, DuckDB often converts vectors into the Unified Vector Format
(UVF). This representation of the data provides a consistent abstraction for all vector
types. Therefore, the execution operators can directly operate on the UVF, hiding away
the complexities of different compressions and data representations.

DataChunk
A DataChunk contains a set of vectors. This class represents the intermediate data moved
between physical operators. All of the vectors are the same length and contain a subset of
a relation. Physical operators in DuckDB use DataChunks as their primary interface: they
receive input chunks from upstream operators, perform computation over the data, and
write their output into another DataChunk that is then passed downstream.

Pipeline Execution
The physical query plan is divided into different pipelines that are executed by DuckDB’s
execution engine. Each pipeline starts with a source operator (e.g., a table scan) that
produces data, and ends with a sink operator that generates the final results. DuckDB’s
push-based execution engine relies on the pipeline executor. This component pushes data
from one operator to the next when ready. Individual operators themselves are passive;
they only report their status, such as whether they require more data or have finished
executing.

2.3.2 Storage

DuckDB has its own database file format for data storage. It is somewhat similar to
Parquet in the way that data is laid out in horizontal cuts of 120k values, called row groups.
Each row group can be comprised of several fixed-size blocks of 256KB, referred to as
Column Segments. DuckDB applies compression per column segment.

13

2. BACKGROUND

In terms of compression methods, DuckDB heavily relies on light-weight compression

techniques[41], such as bit packing, FSST, and dictionary encoding.

2.3.3 String representation

DuckDB follows Umbra in its string representation [27], implemented as the string_t 7

class in DuckDB. This class represents immutable strings that are used in the execution

engine. The string type in DuckDB is a 16-byte header containing the length and the first

four bytes of the string, known as the prefix. Moreover, based on the string length, the

last 8 bytes can be used for inlining the rest of the string or containing a pointer to the

full string in the heap.

Implementation

DuckDB has two variations of strings: inlined and non-inlined. These variations are

implemented using C++ unions. As a result, both categories share the same memory

layout. Thus, any code path that operates on strings must carefully check whether a string

is inlined or not before performing operations. Furthermore, DuckDB provides an extensive

API to access the relevant attributes for both string variations, depending on their length.

Listing 2.1 specifies the private members of string_t for both variations.

1 private :
2 union {
3 struct {
4 uint32_t length ;
5 char prefix [4];
6 char *ptr;
7 } pointer ;
8 struct {
9 uint32_t length ;

10 char inlined [12];
11 } inlined ;
12 } value;

Listing 2.1: Private attributes for DuckDB’s string type. Using C++ unions, both struct
data types for inlined and non-inlined variations share the same memory layout.

7https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/types/string_type.hpp

14

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/string_type.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/string_type.hpp

2.3 DuckDB

Equality check
To check for equality between two strings, DuckDB loads the first 8 bytes of both strings
into a uint64_t. These variables now contain both the string length and the prefix. By
comparing these integers, DuckDB already prunes the majority of equality checks that
result in negatives without needing to dereference the pointers or perform a memcmp on
possibly long strings.

If the lengths and prefixes are equal, DuckDB performs the same operation on the next
8 bytes. Since the string lengths are already known to be equal, this comparison will
either be between the rest of the inlined strings or between the pointers to the heap-backed
strings. If this comparison is not equal, the system first checks whether one of the strings
is not inlined. If so, a full memcmp is performed on the pointers stored in string_t. The
other code paths all lead to strings not being equal.

2.3.4 Relevant optimizations

DuckDB features many optimizations to enable its high-performance execution engine.
Two specific optimizations in particular influence the design decisions and implementation
aspects of this thesis: TryAddCompressedGroups and Compressed Materialization.

TryAddCompressedGroups
This optimization was recently added to DuckDB’s hash_aggregate operator 8. TryAd-
dCompressedGroups enables executing aggregation directly on the unique values in the
per-block dictionaries. Instead of applying hash functions on the indices in the selec-
tion vector, unique values are used to probe the hash table directly. Furthermore, this
optimization caches the groups found for each unique value to be used for subsequent
vectors. Although limited to single-column group-by and bounded by the total number of
dictionary values, TryAddCompressedGroups leads to a considerable performance gain by
not requiring hashing and probing every value.

Compressed Materialization (CM)
Added back in 2023, this optimization 9places projection operators before and after each
materializing operator, such as join and aggregation. The goal of this optimization is to
represent integer and string values in different forms that require less memory footprint
and enable faster operations. For example, if CM detects that strings in an attribute are

8https://github.com/duckdb/duckdb/pull/15152
9https://github.com/duckdb/duckdb/pull/7644

15

https://github.com/duckdb/duckdb/pull/15152
https://github.com/duckdb/duckdb/pull/7644

2. BACKGROUND

all less than 15 characters long, it will store them in a hugeint (16-byte) datatype alongside
the string length. By doing this, operations such as hashing applied to the data in the
materializing operator are significantly faster, as they need to deal with integer values
instead of strings. After the materializing operator is finished, CM will decompress the
data to its original form for the rest of the execution.

2.4 Compressed execution

Compressed execution is the ability of a query engine to directly operate on compressed
data during query execution [2], without requiring full decompression beforehand. This
approach is particularly beneficial in analytical systems, where the volume of data can
be large and decompression costs can become a bottleneck. By preserving compression
throughout the execution pipeline, the system reduces memory footprint, leads to less
spillage to disk, and minimizes the amount of computation needed by operating on simpler
or more compact representations of the data.

2.5 Unique Strings Self-align Region

The USSR is a data structure proposed by Gubner et al. [23], which is created on the fly
for each query, containing the most common strings. The strings contained within the
USSR are unique. As the scan operator iterates through the storage, it inserts strings into
the USSR until it is full. Once full, strings have to be allocated the same way as before
on the heap. By removing duplicate strings in this manner, the peak memory usage is
reduced. One benefit of USSR is that it can be integrated into existing systems without
much trouble since the strings are still represented as pointers whether they are backed by
the heap or the USSR. This data structure would also solve the problem of dictionaries
being a local feature for each row group, and would enable execution across the entire
relation.

The size of the USSR is limited to 768 kB to remain small, efficient, and most importantly,
cache-resident. USSR is composed of two regions, as depicted by Figure 2.3, Data Region
(512 kB) and a linear probing hash table (256 kB). The data region contains the materialized
strings and their precomputed hash. The data is stored in 64k slots of 8 bytes in a memory-
aligned location. For efficient lookup, a fast linear probing hash table is used. Having such
a data structure can help accelerate hash and comparison operations for the most common
strings. After verifying whether a string resides in the USSR or not, by applying a mask on

16

2.5 Unique Strings Self-align Region

the pointer, the pre-computed hash can be accessed directly by simple pointer arithmetic.
Furthermore, exploiting the fact that only unique strings reside in USSR, equal pointers
into the USSR mean the strings themselves are guaranteed to be equal.

Figure 2.3: Unique Strings Self-aligned Region (image borrowed from [23])

To maximize the gains from having a global dictionary, only the strings in storage that
are already dictionary-compressed should be inserted. Other primary candidates can be
the string constants in the query text, such as the filter predicates.

17

3

Literature Study and related works

In this chapter, we review the available literature on topics related to string processing in

analytical database systems. These include: compressed execution, use of dictionaries, and

data structures designed specifically for strings. The structure is as follows: Section 3.1

explores compressed execution. Section 3.2 discusses various types of dictionaries used in

databases for both storage and execution. Section 3.3 discusses various data structures

that are designed specifically for strings in databases. Finally, we summarize our work

regarding the explored methods, their benefits, and their adoption status.

3.1 Compressed execution

Historically, compression has been used to reduce the data storage size and minimize the

I/O cost of processing large volumes of data. Different compression methods and their

benefits for database performance have been extensively studied [3; 44; 2; 45]. Some

systems eagerly decompress data upon loading it into memory, either to evaluate filter

predicates or to populate internal data structures. This approach simplifies the database

system’s architecture and abstracts away all complications to the storage layer. However,

literature suggests that significant performance gain is possible if the decompression is

delayed as much as possible. This concept is further elevated for strings as they dominate

query execution with their large and variable size. If a database could delay decompression

and perform various query processing steps on the encoded string data, considerable

performance gain could be expected.

19

3. LITERATURE STUDY AND RELATED WORKS

3.1.1 Foundational works

One of the first papers that discusses the idea of executing queries on compressed data is
Graefe and Shapiro [20]. They state that the performance of database systems relies on
the available memory, whether in buffer pages or the memory used for operators’ internal
data structures, which is used for query processing. For the sake of simplicity, it was
assumed that each domain is compressed with the same scheme. This paper primarily
adopts a theoretical perspective, with evaluation based on an analysis of the number of
I/O operations required, rather than a concrete implementation.

Moreover, Westmann et al. [53] also explored the idea of compressed databases. This
work is significant since it was one of the first papers to implement the proposed ideas in
their experimental database system, AODB, and report the performance results. They
specify the importance of using lightweight compression on the finest granular level possible,
field-level compression, to reduce the CPU cost of decompression. Furthermore, they assume
a single compression scheme for the entire attribute. Regarding changes required for the
query executor, they propose to extend the traditional next() function in the iterator
model. To this end, next() will return pointers to an array of tuples rather than a single
tuple. Moreover, to avoid decompression of the same field multiple times during query
execution, next() is also extended to return already decompressed values.

In their influential work, Abadi et al. [2] explored the integration of compression into
the query execution layer of columnar databases. While earlier works [8; 10] had already
demonstrated the performance advantages of columnar storage and lazy decompression
in read-heavy workloads, Abadi et al. focused specifically on lightweight compression
schemes. Their work highlighted how columnar storage further increases the effectiveness
of compression by increasing data similarity within columns and enabling encodings like
run-length encoding, dictionary encoding, and bit-vector representations. They emphasized
that compression should not be a storage feature alone but rather as an integral part
of the execution engine. To achieve this goal, they extended the C-Store system with a
compression submodule to perform various operations on compressed data.

3.1.2 Predicate evaluation

The table scan operator can be regarded as the baseline performance of an analytical
database system, as OLAP workloads typically involve reading large volumes of data. To
this end, the role of predicate evaluation is further elevated, and performing the evaluation
on compressed forms of data has been extensively studied in the context of scans by [24;

20

3.1 Compressed execution

33; 29; 55]. Furthermore, the following systems also support applying filter predicates on
compressed data: IBM DB2 with BLU acceleration [43], SQL Server with its columnstore
index (CSI) [30], QuickStep [39], and DuckDB. The general approach used in these systems
is to push the predicate evaluation down to the storage layer. By doing so, they can apply
the predicate directly to the compressed data, avoiding the need to decode unnecessary
values.

This strategy applies to various string compression techniques, such as FSST and
dictionary encoding. For FSST, Boncz et al. [9] describe how their technique was integrated
into the Umbra [38] database as a proof of concept, enabling compressed execution of
equality predicates without the need for full decompression. In the case of dictionary
encoding, exact-match predicates can be efficiently evaluated by scanning the dictionary
for matching raw strings and returning the corresponding integer codes.

3.1.3 Materializing operators

Materializing operators, such as join and aggregation, are where the most expensive
operations on strings happen. These operators could potentially produce large query
intermediate results that would require spillage to disk. It is highly desirable to reduce the
memory footprint of these operators and perform various operations on the compressed
data.

The paper by Lee et al. [31] introduces methods for executing joins directly on compressed
data. Instead of requiring shared dictionaries across all join columns, the system dynamically
translates encoded values from one domain into another at runtime. This is necessary
because using the same dictionary for both sides of the join often results in limited
compression, as it assumes all join relationships are known ahead of time and cannot
leverage differences in data distribution between columns. The translation can be applied
on either side of the join, depending on which is more efficient.

Their system also uses a catch-all cell to store rows containing values that cannot be
encoded using the current dictionary. Even if only one column in the row is unencodable,
the full row is stored uncompressed. This design improves flexibility for handling evolving
data but complicates translation, as the same value might appear in both encoded and
unencoded form during a join. Figure 3.1 depicts an example of their domain partitioning
in the presence of a catch-all cell.

In addition to join columns, the paper extends compression to payload data using on-
the-fly (OTF) encoding, which dynamically encodes payload values during query execution.

21

3. LITERATURE STUDY AND RELATED WORKS

Figure 3.1: Data encoding with catch-all cell (image borrowed from [31])

This reduces hash table sizes and improves memory efficiency. All of the proposed ideas
have been implemented and evaluated in IBM’s Informix Warehouse Accelerator (IWA).

Regarding the group-by operation, systems such as SAP HANA [17] and IBM DB2 [43]
support executing aggregation on the compressed column. DuckDB has also recently added
limited support for dictionary and constant compressed data in its aggregate hash table
operator.

3.1.4 Query optimization

The role of the query optimizer in compressed databases has been extensively studied.
Westmann et al. [53] argue that the query optimizer should be made compression-aware
by modifying the cost model to account for both the CPU overhead of decompression
and the reduced I/O costs associated with compressed data. In doing so, the optimizer
can more accurately estimate the performance trade-offs of different execution strategies.
One important implication of this enhanced cost model is its impact on join ordering.
For example, the optimizer can choose join methods and orders that exploit the smaller
memory footprint of compressed relations.

Chen et al. [12] further investigate how a cost-based optimizer should handle compressed
string attributes. They demonstrate that applying eager or lazy decompression uniformly
can result in suboptimal plans for strings. To address this, they introduce transient
decompression: an operator decompresses an attribute only for its local computation and
still outputs the value in compressed form. This approach has the benefit of keeping
intermediate results small. While transient decompression typically outperforms the other

22

3.1 Compressed execution

strategies for numerical attributes, since they are cheap to decompress, its benefit for
strings depends on the trade-off between I/O savings and the repeated decompression
cost. Hence, the optimizer must choose, per operator, if and where to decompress. The
authors offload solving this problem to a compression-aware query optimizer and propose
one provably optimal dynamic programming algorithm, along with two faster heuristic
approaches.

3.1.5 Query executor and code explosion problem

As stated by Abadi et al. [2], enhancing the query executor to operate on data that might
be compressed with different encodings will lead to a code explosion in operators. To
illustrate this, they provide pseudocode for a nested-loop join that can operate directly on
compressed data. Although this would result in many useful optimizations, maintenance
and binary size are real issues. That is why they propose an abstraction that hides many
of the specific complexities. To this end, each compressed block exposes an API for
different properties of the stored data. Furthermore, methods to get direct access to the
underlying data and various information about the block are provided. This design allows
execution operators to leverage a common interface for different compression formats,
enabling compressed execution while keeping the code maintainable. They implemented
their work in the C-Store database [11]. Another example of this problem can be seen in
DuckDB’s execution engine. DuckDB supports various lightweight compression techniques
[41] along with specific Vector types to support them during execution. In this approach,
the data does not need to be readily decompressed when brought into memory. This
form of lazy decompression is excellent in providing various benefits for the entire system.
However, this poses the same challenge faced by Abadi, as the code for each operator needs
to take into account what type of Vector is currently being executed on and to enforce
compression-specific optimizations. This can be further worsened by the join operator, as
different columns may be compressed with different encodings. To remedy this, DuckDB
resorts to Unified Vector Format. The operator can access the underlying data without
needing to consider the specific Vector type. This is a rather good middle ground, as
it avoids completely flattening the data for certain Vector types while keeping the code
small and maintainable. However, this approach will deny the operator the opportunity
to use compression-specific optimizations. The issue of finding simple methods to enable
compressed execution without requiring significant changes to existing engines has also
been studied by [35] for Vectowise [62].

23

3. LITERATURE STUDY AND RELATED WORKS

3.2 Dictionary

One of the most common forms of enabling compressed execution is the use of dictionaries. If
a mapping exists between different uniques values and their corresponding integer codes, the
database can attempt to execute entire operations on the encoded data. Joins, aggregations,
applying filter predicates, range queries, and sorting can all be exceedingly accelerated
using dictionaries. Given the relevance of dictionary encoding and its widespread use for
string columns, we aim to discuss the various flavors of dictionaries widely integrated into
database systems.

Figure 3.2: Data life cycle in SAP HANA (image borrowed from [47])

3.2.1 Global dictionary

Global dictionaries provide a single mapping between integer codes and unique values
for an entire column domain. SAP HANA [17] is an in-memory database that makes
full use of global dictionaries [47]within its system for lower storage size and faster query
execution. This database enables write-heavy workloads and is also highly efficient in
analytical queries. To understand how SAP HANA makes use of dictionaries, first, we need
to discuss their data life cycles. Data in SAP HANA is managed through a multi-stage life
cycle, as shown in Figure 3.2. It first enters the system via a write-optimized, row-major
structure known as the L1-delta. It then propagates to a partially compressed columnar
L2-delta structure, and finally reaches the main store, which is a fully compressed and
highly optimized for read-heavy queries. Dictionaries are central to this architecture. While

24

3.2 Dictionary

the L1-delta holds raw values without compression, the L2-delta uses unsorted dictionaries
to encode values, providing moderate compression and efficient update operations. As data
is transitioned to the main store, a global, sorted dictionary is constructed for each column.
Every value in the main store is represented by its position in the sorted dictionary.

The use of a unified global dictionary across stages supports efficient query execution
by allowing consistent and compact value representation. Operators such as joins, filters,
and aggregates can operate directly on encoded values without requiring decompression,
resulting in faster query execution. Furthermore, the system dynamically merges and
reorganizes dictionaries throughout different stages during asynchronous merge operations.

SAP HANA is not the only major database that utilizes global dictionaries for storage
and query execution. DB2 with BLU acceleration [43]is yet another example of a columnar
storage database that exploits dictionaries. It uses order-preserving, frequency-based
dictionaries to perform all major SQL operations. Equality, range, and in-list predicates are
directly applied to compressed values. Moreover, join and aggregations are also supported
by this system. Another advantage of dictionary compression for them is being able to
leverage SIMD instructions on multiple aligned, bit-packed values simultaneously.

The frequency compression used in DB2 BLU exploits skew in data by assigning the
smallest codes to the most frequent values in the column. To further reduce the storage size,
page-level compression is applied to make use of local clustering of data. Mini-dictionaries
are stored on each page which can benefit from finer-granular compression.

To enable compressed execution on a column level, DB2 BLU provides partition-
independent encoding, which is called Global Coding. Join and group by operations
make use of this encoding for compressed execution.

Order-preserving dictionary There has been numerous works done on order-preserving
dictionaries [4]. The goal of these dictionaries is to enable efficient range queries in addition
to all the benefits that are provided by having a global dictionary. Binnig et al. [7] is
perhaps the most influential work in this area, which exclusively focuses on string data
type. They model a dictionary as a small table that specifies a mapping between string
values and integer codes. Then, they propose solutions on how to build indexes on top
of this table for efficient access for both encoding and decoding operations. In a data
warehousing situation, they model a dictionary as a structure that can support efficient
data loading, which requires encoding bulk string values with integer codes. Furthermore,
to enable execution on sorted dictionary values, the data structure should support efficient
lookups to rewrite the query predicates. Finally, the dictionary should support efficient

25

3. LITERATURE STUDY AND RELATED WORKS

decoding in cases where query intermediates need to be materialized or the final result is
provided to the users. Figure 3.3 depicts the different requirements for a dictionary-based
order-preserving string compression: data loading, query compilation, and query execution.

Furthermore, they propose a shared leaf structure for the index structures used in
encoding and decoding. Instead of maintaining two completely separate indexes, they
suggest reusing the same leaf pages for both indexes. This is illustrated in Figure 3.4.
Each leaf is a cache-sized chunk that stores variable-length strings and their codes. This
layout supports efficient access for both encoding and decoding. To save space, strings
are compressed incrementally using delta-prefix compression. The authors also propose
two cache-conscious index structures that can utilize the leaf design: CS-Prefix-Tree and
CS-Array-Trie.

Overall, this work introduces a possible direction for the efficient use of dictionaries in
high cardinality columns when the total domain size is unknown in advance, which can be
the case in data warehousing.

Figure 3.3: Order-preserving dictionary requirements (image borrowed from [7])

Another recent addition to this field is the work of Lue et al.[34], which attempts to bridge
the gap between unsorted dictionaries and fully order-preserving dictionaries. Mostly Order
Preserving Dictionaries (MOP) introduce a novel approach to dictionary encoding that
supports efficient range queries without requiring complete knowledge of the dataset’s value
domain in advance. MOP tries to estimate the domain through sampling and pre-allocating
a key space for the most frequent values. Values that fit within this ordered space benefit
from fast, decoding-free range queries, while less common or late-arriving values spill over

26

3.2 Dictionary

Figure 3.4: Shared leaves structure (image borrowed from [7])

into a disordered section. They also propose the idea of Cascading MOP, which contains
multiple ordered sections.

Issues with global dictionaries There are major problems with using global dictionaries
in database systems, as pointed out by [9; 23; 18]. First, random access to the dictionary is
common throughout the query execution, requiring the dictionary to be memory-resident.
However, this can be a considerable hurdle for analytical data systems that must manage
datasets larger than main memory. Secondly, managing the global dictionary in a parallel
or distributed setting is extremely cumbersome. This is because synchronization between
different nodes is required to maintain a consistent mapping between codes and values.
Finally, in use cases where inserts, updates, or deletes occur frequently, there is a significant
overhead associated with global dictionary maintenance. For example, if new values are
added and cannot be represented with the already allocated number of bits for integer
codes, the entire dictionary needs to be re-encoded. These issues have precluded their wide
adoption.

Given all the problems with global dictionaries for execution, the authors of [23] propose
a dynamic dictionary. We have already discussed USSR in full detail in Section 2.5

3.2.2 Per-block dictionary

Given all the issues that a global dictionary can cause, many databases and open file
formats resort to using per-block dictionaries. Therefore, dictionaries are seen as a local
feature of data that is mainly used to reduce storage size [23]. Unfortunately, the use of a
local dictionary for column-wide compressed execution is not possible. Apache Parquet

27

3. LITERATURE STUDY AND RELATED WORKS

and ORC file formats both utilize local dictionaries [57]. The encountered values of each
column are used to build a dictionary. They are stored as integers using typical lightweight
encoding schemes commonly used for numerical data such as Run-length encoding with
bit-packing used on top. Moreover, DuckDB also uses per-segment dictionaries similar to
Parquet [41]. DuckDB deduplicates string values until it reaches the size of each segment,
which is 256KB. Then, it will store the dictionary-encoded segment on disk. Data Blocks
[29] makes use of per-block sorted dictionaries. Furthermore, they mention the downside
of this approach in terms of redundancy for strings appearing in different blocks.

3.2.3 Differential dictionaries

Recent work by Foufoulas et al. [18] has explored adaptive schemes that aim to balance
the trade-offs between local and global dictionary encoding in columnar storage. Local
dictionaries enable fast random access and smaller offset sizes, while global dictionaries
reduce redundancy across blocks but can be memory-intensive and slower in random access.
To address the limitations of both, the authors propose adaptive dictionary compression.
The method selectively applies either local or differential dictionaries based on a cost
function that considers data distribution, offset sizes, and compression gains. Differential
dictionaries encode only the new values relative to previous blocks. Higher compression
rates are achieved by eliminating duplicate values across different blocks, and reduced
dictionary look-up overhead is another key benefit of this scheme. Figure 3.5 depicts an
adaptively encoded attribute.

Figure 3.5: Adaptive dictionary encoding (image borrowed from [18])

28

3.3 String specific data structures

3.3 String specific data structures

Figure 3.6: String header structure in Umbra (image borrowed from [38])

3.3.1 Umbra-inspired string representation

In the paper [38], which describes TUM’s high-performance database system Umbra, the
authors describe their string representation. Strings in Umbra are represented using two
separate entities: The fixed-sized metadata and the variable-length body. The fixed-sized
metadata or header is a 16-byte representation of the string that can be stored like any
other data type. The first 4 bytes are used to store the string length. Thus, systems that
use such a string representation can only store strings up to 4 GiB. Furthermore, the
next 4 bytes are used to store the first four characters of the string. If the overall string
length is equal to or below twelve, the rest of the string is stored in the remaining 8 bytes.
However, if it is longer than twelve, a pointer is stored in the next 8 bytes, indicating
where to find the entire string. The layout of the header is shown in Figure 3.6. This
string representation does not include a capacity part in its layout, unlike std::string in
C++, for example. To this end, it saves 8 bytes per string, but it also means that it is not
possible to mutate or extend the string directly. Nevertheless, this representation suits the
database use case very well. In databases, data is rarely modified in place, yet is read many
times. This representation has already been adopted by major analytical data systems
such as DuckDB[27], Polars[51], Facebook’s Velox engine[50], and Apache Arrow[5]. In the
following, we discuss the main benefits and key ideas behind its specific design.

Short-string optimization
Many strings in real-world datasets are short strings [58; 54]. Therefore, it is crucial to
optimize for them whenever possible. The inlining property of Umbra strings greatly helps
in this case, as short strings are stored in-place and no pointer dereference is required.
Furthermore, it is more memory-efficient to store the rest of the string inlined rather than
storing a 64-bit pointer.

29

3. LITERATURE STUDY AND RELATED WORKS

Early-exit optimization
Traditionally, checking whether two strings are equal requires a memcmp operation, which
may need to examine most of the string. With the Umbra-inspired strings, it is possible to
first compare the length and the prefix before opting for the full string comparison. The
majority of the strings in databases are typically not equal in length and do not share
the same prefix. Thus, by utilizing this early-exit optimization, string operations can
be performed much faster. Furthermore, we can avoid pointer dereferencing as much as
possible with this property.

Copy in registers
The main reason behind this string representation being 16 bytes is that it is possible to
pass this struct data type to function calls in two registers instead of passing it on the
stack. According to CedarDB’s blog post [1], it only takes four instructions to pass such a
data type in the function call if it is 16 bytes, as compared to 37 instructions for the larger
std::string.

3.3.2 String hash table

The paper "SAHA: A String Adaptive Hash Table for Analytical Databases" [58] proposes
a highly specialized hash table design tailored for efficient string processing in analytical
database systems. The authors argue that traditional state-of-the-art hash tables are
ill-suited for string-heavy workloads because they ignore critical string characteristics, such
as length. To address this, SAHA introduces a multi-layered hash table architecture. A
highly optimized length-aware dispatcher is used to route incoming keys to one of five
sub-tables based on their string length without causing regression. Figure 3.7 depicts the
main constructs of SAHA.

Four of these sub-tables (S0–S3) are optimized for short strings, inlining up to 2, 8,
16, and 24 bytes of the string directly inside the hash table slot. This design eliminates
the need for pointer dereferencing, significantly reducing cache misses. Hash table S0 is
an array lookup table that supports up to 65536 values without storing the key. S1–S3

hash tables use a linear probing hash table. For string values longer than 24 bytes, hash
table L is utilized, which stores the full hash value along with the pointer. This hash
value serves as a salt that is first compared during lookup, reducing the likelihood of
unnecessary full string comparisons by filtering out non-matching candidates early. Many
other optimizations, such as hashing strings in batches and utilizing a specialized memory
layout, are used to further enhance its suitability for analytical database systems. They

30

3.4 Summary

found that their proposed hash table outperformed other state-of-the-art hash tables by a
factor of 1 to 5 based on the workload. This work has been merged into the analytical
DBMS ClickHouse and is in full production [46].

Figure 3.7: SAHA architecture containing the dispatcher and multi-layered hash tables
(image borrowed from [58])

3.4 Summary

So far, we have discussed various database techniques and data structures that directly and
indirectly aid in improving string processing in analytical workloads. Table 3.1 summarizes
our survey by highlighting the benefits of each discussed topic and analyzing their adoption
in widely used data management systems.

31

3. LITERATURE STUDY AND RELATED WORKS

Method Benefit Adoption status
Compressed
execution

Greatly beneficial for analyti-
cal workloads as large volumes
of data need to be processed.
Delaying decompression and
executing on compressed data
increases performance notice-
ably, especially for string val-
ues

It is widely used in various systems such as
DuckDB, C-Store/Vertica, SAP-HANA, DB2
BLU, etc. However, it does require building
the entire database architecture around the idea
and is not easy to integrate into already existing
engines without major overhauls. Its ultimate
potential is held back by the code explosion prob-
lem

Global Dic-
tionary

They enable consistent en-
coding for entire columns,
which is particularly powerful
for join-heavy and group-by-
heavy workloads. Its order-
preserving variant enables the
efficient execution of range
queries.

They are used in some in-memory databases,
such as SAP HANA. However, they need to al-
ways remain in memory, which is highly undesir-
able for systems that require processing larger
than main memory workloads. Furthermore,
maintaining them in workloads that are ever-
increasing in terms of domain cardinality is a
major challenge. Due to these problems, their
wide usage has been precluded.

Local Dic-
tionary

They are mainly used as a fea-
ture in the storage to get bet-
ter compression ratios. They
also enable faster data scans.

They are widely used in open file formats, such
as ORC and Parquet, as well as in database
files like DuckDB. Their use in query execution
is extremely limited since they are applied per
block and do not enable column-wide encoding.

Umbra
string repre-
sentation

Novel string representation
highly suitable for database
strings during query execu-
tion. Its benefits for short
strings and early-exit optimiza-
tion greatly helps string pro-
cessing.

It has been adopted widely for string represen-
tation in modern analytical database systems.
It provides many benefits for execution engines
on top of being easy to integrate into already
existing engines.

String adap-
tive hash ta-
ble

It provides a flexible and
highly specialized hash table
design for strings.

It is only implemented in Clickhouse. The added
complexity of different tiers of hash tables makes
integration in engines rather troublesome.

Table 3.1: Surveyed techniques’ benefits and their adoption status.

32

4

Unified String Dictionary

To address the challenging problem of processing strings in DuckDB, we adapted and inte-
grated USSR [23] into this analytical database system. We refer to this new data structure
as the Unified String Dictionary (USD). There are features and requirements specific to
DuckDB that make a one-to-one adoption impossible. Different string representations
and the restriction on using global memory are the main challenges posed by the new
environment.

This chapter provides a comprehensive overview of the implemented data structure,
covering its benefits, core components, specific implementation details, and the various
designs considered for integration into DuckDB’s execution engine. It should be noted that
all references to DuckDB’s implementations are based on the latest features in the main
branch, which are up-to-date as of July 8th, 2025 1.
The remainder of this chapter is organized as follows. Section 4.1 provides a detailed
overview of the USD data structure, including its memory layout, the underlying hash
table design, and the mechanisms used to support concurrent insertions. Section 4.2
outlines the advantages of using USD, such as faster hashing and equality checks, reduced
memory usage, and minimized copying for strings. Section 4.3 discusses the various design
alternatives considered for inserting strings into USD and justifies the introduction of a
new operator. Section 4.4 describes the implementation of this operator, and Section 4.5
explains the optimizer rule responsible for inserting the operator into query plans. Section
4.6 evaluates two different approaches for determining whether a string resides in USD,
which is essential to fully leverage its benefits. Section 4.7 examines the lifecycle of USD,
detailing when it is instantiated and destroyed during query execution. Finally, Section

1https://github.com/duckdb/duckdb/tree/223ff0a7dba7900039d5910a009247ef097fff3c

33

https://github.com/duckdb/duckdb/tree/223ff0a7dba7900039d5910a009247ef097fff3c

4. UNIFIED STRING DICTIONARY

4.8 describes the engine-level modifications required to eliminate unnecessary string copies
once data has been inserted into USD.

4.1 USD core data structure

4.1.1 Main components

Figure 4.1 depicts a high-level overview of the implemented data structure. Similar to
USSR implementation, there are two main components that form the core of this data
structure. In the following, we briefly describe them as they pertain to USD and detail
how they differ from the original paper.

Figure 4.1: Unified String Dictionary components, including the linear probing hash table
and the data region.

Data region
The data region contains the materialized strings alongside their pre-computed hash value.
The overall layout of the data region consists of 8-byte chunks, and they will contain the
string values. Although this memory layout could lead to fragmentation and inefficient
memory use, it provides several important benefits.

First, we can use fewer bits to address a memory section in the data region. In other
words, instead of using a pointer or an offset, we can simply use the slot index. By doing
so, we can utilize the remaining bits in the hash table buckets to store a compact identifier
derived from the string’s hash value, referred to as a salt. Second, the hash value of each

34

4.1 USD core data structure

string in USD is stored physically before the string itself. By doing so, we can directly
access the hash value if we have access to the start of the string. Finally, by storing hash
and string values in 8-byte-aligned chunks, we avoid crashes on platforms that require
memory alignment for accesses.

In our design, the dictionary can be initialized with larger capacities to allow more string
values to be inserted. This is achieved by passing a scale factor parameter when creating
an instance of the USD. The scale factor, which must be a power of two, determines the
static size of the data structure for the remaining duration of the current query. If no
parameter is provided, the default size of 512 KB is used, similar to the original design.

Linear probing hash table
A linear probing hash table is used for fast lookup of strings within the data region. The
hash table consists of 32-bit buckets. The total number of buckets is equal to the 8-byte
slots available in the data region. Each 32-bit bucket is composed of two individual sections:
the hash salt and a slot number within the data region. The slot number identifies a
specific slot in the data region where the materialized string resides. The hash salt, on the
other hand, is checked before resorting to a full string comparison during lookups.

Since we store the precomputed hash values in the data region, and in DuckDB the
hash_t type is 64 bits, only half of the Data Region’s slots contain string values. To this
end, in the original USSR implementation, the hash table was always at a 50% load factor
and below. This is further reinforced in our adaptation by inserting only non-inlined strings,
due to the reliance on pointers for USD. Therefore, our USD hash table will always operate
below a 33% load factor. The maximum load factor is mostly a worst-case scenario where
all strings are between 12 and 16 characters in length. In real-world scenarios, the hash
table operates in far less load factors, and the data region mostly contains string values.

Although we have not encountered use cases in our tests where the number of rejections
for probing is noticeable, following the original implementation, we enforce a probing limit
of sixteen to avoid long negative lookups. This will limit the maximum number of hash
table slots to check in case of collisions.

4.1.2 Insertion

The main operation for the Unified String Dictionary is the insertion of strings. If the
string does not already exist, the mechanism attempts to insert it as a new entry. However,
if a string is already present in the dictionary, the insertion mechanism modifies the input

35

4. UNIFIED STRING DICTIONARY

string_t to point to the existing materialized string. In the following, we discuss the
step-by-step process of inserting strings into USD.

Preparation
The first operation done on the string is to use DuckDB’s hash function for string_t on
the input. There are two main reasons for this: Pre-computed hash values for strings are
stored alongside the strings themselves in the data structure. Furthermore, we need to
hash the input string to utilize our linear-probing hash table. The resulting hash value’s
first 32 bits are loaded in a variable, called hash prefix, to be used for probing the hash
table. We apply a mask on the hash prefix to determine the hash table slot in which we
should begin our probing. We refer to the remaining bits as the salt. Since comparing
strings is an expensive operation, we would ideally like to be very confident that the value
stored in the hash table and our input are equal before performing a full comparison. To
this end, we will eventually store the salt in the hash table slot and compare it against the
salt computed from the input string for future USD insert operations.

Probing
Once the required variables have been acquired from the input string, we begin probing
the hash table to determine whether the string already exists or should be inserted. This is
implemented as a for-loop that iterates up to a predefined probing limit. In each iteration,
we compute a candidate bucket index based on the base index, which is derived from the
hash prefix, and the current probe count. Depending on the value of the loaded hash table
bucket, the following cases might occur:

Case 1: Empty Slot
If the hash table bucket value is zero, it indicates that the slot is unclaimed. In this case,
we attempt to insert the string into USD. First, we check that the data region has sufficient
space left. To achieve this, we can make use of the current_empty_slot variable, which
keeps track of the next available slot in the data region for storing a new string. Using
this variable, we can calculate the remaining space left in the data region and compare
it against the required space by the input string and its hash value. If enough space
is available, the insertion begins as follows: the string is copied into the next available
8-byte-aligned location in the data region, as indicated by current_empty_slot, and a
null terminator (’\0’) is appended to mark the end of the string. The precomputed string
hash is stored in the 8-byte chunk immediately before the string itself. Furthermore, a new

36

4.1 USD core data structure

hash table bucket value is constructed, encoding both the hash salt and the data region
slot index. This value is written into the hash table bucket to finalize the insertion. Finally,
current_empty_slot is incremented by the number of 8-byte chunks used.

At this point, the input string has been materialized and can be referenced directly. We
update the input string_t to point to the newly inserted string.

Case 2: Occupied Slot
If the loaded bucket value is non-zero, the slot is already claimed. This could mean either
that it already holds a fully materialized string, or that another thread is attempting to
insert a string into the same slot. Since handling concurrent insertions involves additional
complexity, we postpone that discussion to the next section and, for now, assume that the
slot holds a fully inserted string.

Under this assumption, we proceed by comparing the salt stored in the bucket with the
salt of our input string. If the salts match, we extract the slot index encoded in the bucket
and use it to locate the candidate string in the data region. A full string comparison is
then performed to verify equality of the input string and the materialized entry in the
dictionary. If a match is found, we update the input string_t using the SetPointer

function to reference the existing materialized string.
If the salts do not match or the strings differ, we continue the probing sequence.

4.1.3 Concurrency control

For the sake of simplicity, the previous sections avoided the concurrency problems raised
from having a dictionary where multiple threads can insert into simultaneously. Yet, it
is crucial to discuss how USD functions in multi-threaded execution. Insertion is the
primary operation that requires careful use of concurrency control methods to prevent data
corruption or loss. This is because both the hash table and the data region need to be
modified. The number of threads, average string length, and unique cardinality all play
important roles in determining the performance penalty incurred. On the other hand, if
the input string already exists in USD, the operation is a simple lookup up which consists
of a series of read operations, and concurrency control can be avoided. In the following, we
discuss possible concurrency control designs to allow for efficient insertion into USD.

Locking approach
A straightforward way to implement concurrency control in USD is to use locks. In C++,
this can be done using std::mutex in combination with std::lock_guard, offering a

37

4. UNIFIED STRING DICTIONARY

simple and safe mechanism. However, locks can block other threads from making progress
and quickly become a performance bottleneck. To minimize contention, it is crucial to
make locking as fine-grained as possible.

As discussed earlier, the primary point of contention in multi-threaded access to USD
is during the insertion process. This operation involves modifying shared data structures
and consists of the following steps: (1) Constructing and updating the hash table bucket
value. (2) Incrementing the current_empty_slot counter to reserve space. (3) Copying
the string and its hash into the data region.

All of these operations must be performed atomically, as they each modify the internal
state of the data structure. In our implementation, we use a single mutex to guard the
entire insertion sequence, including modifications to the hash table, the data region, and
the current_empty_slot counter.

An important implementation detail is the need to suppress ThreadSanitizer 2warnings
for this data structure. Without suppression, DuckDB’s continuous integration (CI)
pipeline would flag normal reads during the probing phase as potential data races. This
is because another thread might be concurrently modifying the same hash table bucket.
Although our logic guarantees correctness by rechecking the bucket after acquiring the
lock, ThreadSanitizer cannot detect this pattern. As a result, it flags the reads as potential
data races unless we use slower atomic operations or explicitly suppress the warnings.

Lock-free approach
Our first implementation used locks to maintain concurrency control. However, during
testing, we observed that when both the cardinality of the data and the average string
length are high, the locking strategy incurs significant performance overhead. This is
primarily because multiple threads are forced to wait behind long string-copying operations.
To address this issue, we began exploring lock-free alternatives. The remainder of this
section explains how we implemented a lock-free version of the USD.

A lock-free data structure avoids traditional synchronization primitives like mutexes,
spinlocks, or semaphores. Instead, it relies on atomic operations such as compare-and-swap
(CAS) and fetch-and-add to coordinate between threads while maintaining correctness.
Our goal is to apply these atomic primitives to key variables within the data structure,
thereby achieving even finer-grained concurrency control than possible with locks.

2https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/
.sanitizer-thread-suppressions.txt

38

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/.sanitizer-thread-suppressions.txt
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/.sanitizer-thread-suppressions.txt

4.1 USD core data structure

Insertion – Winner
In the first scenario, two threads attempt to insert a string and concurrently probe the
same hash table bucket. They will compete for the right to update that bucket. We use
the compare_and_exchange_strong primitive in C++, which atomically compares the
current value of a memory location with an expected value and, if they match, replaces it
with a new one. This ensures that only one thread "wins" the race to update the bucket.
Both threads expect the bucket to be zero. The winner updates the bucket with a value
consisting of the string salt value and a sentinel slot value.

This sentinel marks the bucket as "dirtied" and indicates that insertion is in progress.
We reserve slot number one in the data region as the sentinel, meaning that actual string
insertions must begin from slot two onward. We avoid using zero as a sentinel value. This
is because a string with a hash salt of zero could make the bucket appear empty and lead
to data corruption.

Once the winner dirties the bucket, it must reserve the required number of slots in the data
region. We use the fetch_add primitive to atomically increment the current_empty_slot

counter. This ensures that no other thread can claim the same region and that the memory
remains consistent.

A capacity check is then performed to verify that enough space remains in the data
region. If the check fails, the counter is rolled back to its previous value. This rollback is
safe, as only one thread can increment the atomic counter past the region’s end.

If space is available, the winner proceeds to copy the input string and its hash value
into the reserved memory location. Once the copying is complete, the thread finalizes the
bucket by replacing the sentinel value with the actual slot number used during insertion.

Insertion – Loser
The thread that loses the CAS operation will see that the bucket has been dirtied by
another thread. It compares the salt stored in the bucket with its own string_hash_salt.
If the salts do not match, the thread simply continues probing. However, if they match,
there is a high chance that the same string is being inserted. In this case, the loser enters
a wait loop until the dirty bucket is finalized. Once finalized, it performs a full equality
check and, if the strings match, updates its pointer to reference the materialized string.

Insertion – Dirtied
If a thread encounters a dirtied bucket during probing, it performs the same salt check as

39

4. UNIFIED STRING DICTIONARY

described above. Depending on the result, it either waits for the bucket to become finalized
or continues probing.

Insertion – Finalized
If a finalized bucket is encountered during probing, the thread performs a full string
comparison to determine whether the input matches the materialized value.

Overall, we found this lock-free approach to be significantly more performant. By
removing the need for locks that hinder all participant threads, concurrency control
becomes even more fine-grained. Now, only threads that are operating on the same hash
table bucket need to wait, while other threads can continue execution.

4.1.4 Candidate strings

There are costs with regard to inserting strings in USD, such as hashing the input values to
be utilized by the linear-probing hash table or paying for concurrency control. Therefore,
it is reasonable to only put strings in the data structure that would benefit from being
there, and the upfront cost of insertion is returned by the benefits provided later on. The
following includes the possible candidates:

• Dictionary vectors: If the dictionary vectors are emitted from storage, we can be
reasonably sure that it has already been determined that many duplicate values exist
in this column. Thus, strings in the dictionary-encoded blocks are prime candidates
to be put into our data structure.

• Constant vectors: Constant vectors are also valid candidates for insertion into USD.
Since it is guaranteed to have duplicated values for the entire size of the vector. It
should be noted that DuckDB does not emit constant vectors of strings from storage.
However, there could be other use cases that will generate such vectors.

• Flat vectors: In most cases, if flat vectors are emitted from the storage, it signals
that the column is not compressible and, thus, not a suitable candidate for USD.
However, in the case of a join operation on primary and foreign keys, the primary
keys might be a good candidate for insertion. This is because it is possible that these
values are repeating on the probe side.

• Query Constants: Another prime candidate for insertion into USD are the query
constants used as filter predicates. The goal is to simply accelerate the exact-match
predicates.

40

4.2 USD accelerated string processing

In our implementation, we only consider strings longer than 12 characters, since they
only store a pointer to the full string. We rely on the pointer to determine whether a string
is backed by the USD or simply stored on the heap. The details of how we encode this
information in the pointer will be discussed in later sections.

4.2 USD accelerated string processing

In the previous section, we described the internals of USD. In the following, we explain
the benefits provided by the per-query dictionary and how queries can be executed faster
when strings are stored in the USD.

4.2.1 Faster hashing

Following the design of the original paper, USD also stores the hash value alongside the
materialized string right before it. This careful layout of the data enables accessing hash
values for long, variable-length strings in constant time. It only requires the following
instructions: (1) Check if the string resides in USD. (2) Perform a pointer arithmetic to
obtain the location of the stored hash value, which is exactly 8 bytes before the start of
the string. (3) Load the hash value directly.

The simplified logic of the hash function for string_t is shown in Algorithm 1.

Algorithm 1 Simplified string_t hashing logic in DuckDB with the addition of USD
1: function Hash(string_t input)
2: if IsInlined(input) then
3: return ComputeInlineHash(input)
4: else if IsInUSD(input) then ▷ (1) Check if backed by USD
5: return LoadPrecomputedHash(input)
6: else
7: return ComputeNonInlinedHash(input)

8: function LoadPrecomputedHash(string_t input)
9: string_ptr ← GetPointer(input)

10: hash_ptr ← string_ptr −sizeof(hash_t) ▷ (2) Pointer arithmetic
11: return *hash_ptr ▷ (3) Directly load hash value

4.2.2 Faster equality checks

Equality checks on strings that reside in the USD are accelerated. Typically, equal strings
in a column or across different columns, such as in a join operation, originate from different

41

4. UNIFIED STRING DICTIONARY

sources. This is because of the way data is stored on different blocks on the disk and how
DuckDB’s scan operator brings them into the execution engine. Having different sources
for equal strings will result in different memory backing them, and therefore, different
string_t values for them. As a result, equality checks on equal strings will require a full
memcmp over the entire string value, which can be expensive. However, if those strings are
inserted into USD before the expensive equality checks happen, those strings will have the
same representation throughout the rest of the query execution. Consequently, equality
checks for them will be evaluated only on the string_t as described in Section 2.3.3. This
would, in essence, enable execution on the compressed form of data that resides in the
per-query dictionary.

4.2.3 Reduce memory pressure and avoid copying

Another major benefit of USD is that strings that reside in it only need to be allocated
once during the entire query execution. Without such a data structure, duplicated strings
might need to be allocated on the heap many times in different materializing operators.

For example, the intermediate result of a join operation will allocate memory on the
heap for the payload columns, which might include many repeating values. Furthermore,
full copies of strings need to be made, as the original values may reside on buffer pages
that could become invalid during query execution.

However, if strings reside in USD, they will remain there for the entire duration of the
query’s execution. Therefore, making full copies of strings in the materializing operators
can be avoided by simply referring back to the already materialized strings in the dictionary.

4.3 Integration design

In the previous sections, we discussed the internals of USD and outlined its potential
benefits. In this section, we focus on the various design decisions regarding where to
intercept the flow of strings emitted from storage and insert them into the USD. The
general goal is to make sure that strings are inserted into the USD before they reach any
target operators.

4.3.1 Target operator

We define target operators as those in the query plan that interact with strings in ways that
inserting them into the Unified String Dictionary (USD) could result in performance gains.
The following is the set of target operators we have identified, along with the rationale for

42

4.3 Integration design

each: LOGICAL_AGGREGATE_GROUP_BY, LOGICAL_DISTINCT, and COMPARISON_JOIN perform
hash and equality checks on strings. These materializing operators may also incur significant
memory pressure due to large string payloads. Finally, LOGICAL_FILTER may evaluate
string equality conditions but does not materialize its input.

4.3.2 Proof of concept integration

The first attempt at integrating USD in DuckDB utilized a singleton approach. A singleton
is a class that has a private constructor. This way, it cannot be created by other methods.
Instead, it provides a static GetInstance API to acquire the object. When it is called
by other methods, it first checks if the object exists or not. If not, it will initialize the
static object. This way, it is ensured that only one instance of the class is ever created. A
singleton class is essentially a global object that any other methods can access by calling
the GetInstance function. This approach allowed us to bypass DuckDB interfaces and
integrate USD as quickly as possible. We used it to build a proof-of-concept to verify that
DuckDB is able to benefit from USD. However, allocating global memory in an embedded
database such as DuckDB is not possible, as it will lead to symbol conflicts. To this end,
we explored other ways to properly integrate it with the system.

4.3.3 Design #1: Insert at individual operators

The first approach inserts strings into the USD at the level of individual target operators.
Each operator’s logic is modified to enforce additional checks and insertion routines for the
valuable incoming strings.

The main advantage of this design is that it delays string insertion as long as possible, so
that only strings actually used by the operator are inserted. This minimizes unnecessary
overhead.

However, the major downside is that it requires duplicating similar logic across multiple
operators, which reduces maintainability and increases the possibility of inconsistencies.

4.3.4 Design #2: Insert at storage layer

The second approach is the other side of the spectrum and attempts to insert strings at
the storage level. One major issue with this approach is that we might be inserting strings
in the USD that do not reach the target operators. Furthermore, this approach would
have the same problem of code modification as the previous approach. This is because
valuable strings could be flat, dictionary-encoded, or constant, all of which are emitted

43

4. UNIFIED STRING DICTIONARY

from different interfaces and abstractions. Moreover, this approach is limited in its support
for different data sources, as it only works with DuckDB-native files and does not extend
to external formats such as Parquet.

4.3.5 Design #3: USD insertion operator

The other approach would be to create a new operator with the sole purpose of inserting
strings into USD. It can be placed anywhere in the query plan and will control the flow of
strings into USD.

The new operator design is highly inspired by the Compressed Materialization optimiza-
tion in DuckDB (Section 2.3.4), as that also inserts logical projection operators into the
query plan.

There is one important consideration with this design with regard to dictionary vectors.
As mentioned in Section 2, dictionary encoding is applied on individual blocks within a
column. Thus, the operators could receive multiple dictionary-encoded vectors that use
the same underlying dictionary to encode their values.

It is of utmost importance to only insert the dictionary values once for each dictionary.
To this end, we need to keep track of each dictionary’s unique ID. This way, we can insert
a dictionary upon encountering its unique ID for the first time.

Due to how parallelism works in DuckDB, we do not need to maintain a set of already
seen dictionary IDs and can be sure that we will never encounter the previous dictionary
again. Full details of how this can be achieved is discussed in the next section.

4.4 USD insertion operator

We chose to add a new operator to DuckDB for our per-query dictionary. This operator
is responsible for handling string insertions into the USD during query execution and
integrates directly into DuckDB’s query pipeline.

Each operator in DuckDB consists of two variations: a logical operator and a corre-
sponding physical operator. The logical operator is part of the logical query plan and is
later used by the PhysicalPlanGenerator3 to produce the corresponding physical plan.
Therefore, our new operator requires two main components: Logical_USD_Insertion and
Physical_USD_Insertion

3https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/execution/physical_plan_generator.hpp

44

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/physical_plan_generator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/physical_plan_generator.hpp

4.4 USD insertion operator

4.4.1 Logical operator

Logical_USD_Insertion inherits from the LogicalOperator4 class, which serves as the
base class for all logical operators in DuckDB. Each logical operator is associated with a
unique LogicalOperatorType5, which identifies the kind of logical operation it represents.
Hence, we introduced a new entry, LogicalOperatorType::LOGICAL_USD_INSERTION, to
represent our new custom operator.

Attributes specific to the new logical operator are insert_to_usd and insert_flat_vectors.
The former indicates which incoming columns should be inserted into the USD by the
operator. The latter is a boolean flag that is set when flat vector values are to be inserted
into the dictionary. The values of these attributes are determined according to the query
being executed.

4.4.2 Physical operator

Just like the logical operator, our new physical operator inherits from DuckDB’s PhysicalOperator

base class.6 Additionally, a corresponding entry is added to the PhysicalOperatorType

enum class7 to register our operator within DuckDB’s execution engine.

Since the USD insertion operator is designed as an intermediate, parallel operator in the
pipeline, we configure its execution properties as follows:

• ParallelOperator() returns true, signaling to the execution engine that the oper-
ator can be parallelized.

• IsSource() and IsSink() both return false, as this operator does not generate
input nor is a sink operator.

During physical plan generation, the two configuration variables discussed in the previ-
ous section, insert_to_usd and insert_flat_vectors, are transferred from the logical
operator to the physical operator.

4https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/planner/logical_operator.hpp

5https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/enums/logical_operator_type.hpp

6https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/execution/physical_operator.hpp

7https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/enums/physical_operator_type.hpp

45

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/planner/logical_operator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/planner/logical_operator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/enums/logical_operator_type.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/enums/logical_operator_type.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/physical_operator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/physical_operator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/enums/physical_operator_type.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/enums/physical_operator_type.hpp

4. UNIFIED STRING DICTIONARY

Execution interface
Our physical operator overrides three main methods from the PhysicalOperator interface:
GetOperatorState, GetGlobalOperatorState, and Execute. These are used by the
PipelineExecutor class8 for execution.

• GetOperatorState() returns a thread-local execution state. We implement this
using a USDInsertionState class, inheriting from OperatorState9. It stores thread-
specific data such as dictionary IDs and insertion outcomes.

• GetGlobalOperatorState() returns a global context shared across all threads, imple-
mented as a new class USDInsertionGState inheriting from GlobalOperatorState.
It tracks global variables such as locks, statistics, and shared execution flags.

• Execute() is called on every incoming DataChunk. It performs the USD insertion
logic and returns OperatorResultType::NEED_MORE_INPUT10 to indicate that the
operator is ready for more data.

Insertion logic
Each incoming DataChunk is processed column-by-column. For each column, we first check
if its data type is VARCHAR, and then verify whether it is marked in insert_to_usd. If
these conditions hold, we insert the column’s string data into the USD using different
functions depending on its vector type, such as flat, constant, or dictionary. Flat vector
insertion is skipped unless insert_flat_vectors is enabled.

Handling dictionary vectors
Dictionary-encoded vectors require extra care. This type of vector is mainly com-
prised of a SelectionVector containing the indices that point into a per-block dic-
tionary. The actual string values reside in an auxiliary flat vector, accessible via the
DictionaryVector::Child() API.

To avoid repeated insertions, we track which per-block dictionaries have already been
inserted using the dictionary IDs associated with each dictionary-encoded vector. When a
new dictionary ID is observed, we discard the previously stored ID and track the new one.

8https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/parallel/pipeline_executor.hpp

9https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/execution/physical_operator_states.hpp

10https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/enums/operator_result_type.hpp

46

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/parallel/pipeline_executor.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/parallel/pipeline_executor.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/physical_operator_states.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/physical_operator_states.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/enums/operator_result_type.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/enums/operator_result_type.hpp

4.5 USD optimizer rule

This is consistent with how DuckDB processes dictionary vectors in hash_aggregate in
its TryAddCompressedGroups code path as discussed in Section 2.3.4.

Control insertion flow
The operator also allows us to monitor and control the flow of strings into USD. Each string
insertion into USD returns a status code indicating the result of the insertion operation.
By collecting these results, we can (1) track how many values are accepted versus rejected,
(2) estimate when the USD is becoming full, and (3) detect high-cardinality columns that
quickly exhaust the dictionary’s limited capacity. For instance, our experiments show that
USD performs poorly with high-cardinality columns, as they quickly exhaust the available
USD capacity. To stop this, we use a simple heuristic based on the average growth rate. If
high cardinality is detected after observing 10 per-block dictionaries, the operator halts
insertions for that column. Further static defensive constraints, such as maximum number
of unique strings per columns and maximum number of unique values per dictionary block,
are also used to avoid performance regression at all costs.

4.5 USD optimizer rule

In the previous sections, we detailed our reasoning for having a USD insertion operator.
We believe the most suitable place to insert this operator into the query plan is within the
DuckDB optimizer, as it has access to the entire logical query plan before any physical
plans are generated. Beyond this, there are important practical reasons for implementing
an optimizer rule. The USD may be assigned a noticeable amount of memory, which can
be undesirable under high memory pressure, such as in embedded systems. At the same
time, not all queries benefit from using the per-query dictionary. For example, if a query
only scans the data and applies a filter, the overhead introduced by hashing, extra equality
checks, and concurrency control may outweigh any potential benefits. Therefore, the goal
is to activate this data structure only for queries that are likely to benefit from it.

In the following, we first discuss DuckDB’s query optimizer and its important classes.
Then, we delve into how we implemented the USD optimizer rule.

4.5.1 DuckDB optimizer

The DuckDB optimizer is invoked in the CreatePreparedStatementInternal function
within the ClientContext, provided that the optimizer is enabled in the configuration.
It takes the logical plan produced by the query planner as input and applies a set of

47

4. UNIFIED STRING DICTIONARY

optimization rules to it. DuckDB includes many built-in rules for different optimization
tasks, such as filter pushdown and join reordering. Some rules modify the query plan
by inserting or replacing operators, while others reorder existing operators to improve
performance.

Expressions
An expression is an abstract representation of a computation in a query. It is part of the
logical query plan and can later be transformed into a physical operator. Each logical
operator contains a set of expressions.

ColumnBinding
A column binding is a combination of a table index and a column index, used to uniquely
identify a column within a query. Each LogicalOperator in the query plan implements
the GetColumnBinding function, returning the set of column bindings related to its output
columns.

ColumnBoundRefExpression
This expression type represents a ColumnRef that has been bound to an actual column from
a table. The ColumnBindingResolver transforms this into a BoundExpression, which
refers to an index in the physical DataChunk that is passed to physical operators in the
execution engine.

4.5.2 Implementation

In this optimizer rule, we traverse the query plan in a depth-first search post-order manner.
For each logical operator in the query during our traversal, we check if it is a target
operator. To do this, we first check if the logical operator type is included in the set
of target operators we discussed before in Section 4.3.1. Then, for each target operator,
we check for additional conditions to determine if they actually operate on string values.
For the group-by operator, we check if expressions used as the group-by columns are
BOUND_COLUMN_REF and if their return type is VARCHAR. Similar logic applies to other
target operators. For materializing operators such as join, we also check if the return types
for payload columns include strings.

Once we have found a target operator, we create a new USD insertion operator and
place it below the target operator. An example of a simple query plan before and after is
depicted by Figure 4.2. Our goal is to add only one USD insertion operator between each

48

4.5 USD optimizer rule

HASH_GROUP_BY
count_star()

PROJECTION
string_col

HASH JOIN
varchars_a.id = varchars_b.id

SEQ SCAN
varchars_a

SEQ SCAN
varchars_b

(a) Baseline Plan

HASH_GROUP_BY
count_star()

PROJECTION
string_col

HASH JOIN
varchars_a.id = varchars_b.id

USD_INSERTION

SEQ SCAN
varchars_a

USD_INSERTION

SEQ SCAN
varchars_b

(b) Plan with USD Insertion

Figure 4.2: Simplified DuckDB query plans with and without the Unified String Dictionary.
The query involves two materializing operators, both applied to string columns. Plan (b) will
insert the strings into the per-query dictionary, affecting both join and aggregation operators.

leaf and the nearest target operator. The remaining logical operators on the path to the

root will also benefit from strings in USD if they operate on them. This is because once

strings are inserted into USD, they will remain there for the rest of the query execution.

To ensure that at most one USD insertion operator is placed between any leaf node

and the root, the logical plan is rewritten while propagating a single Boolean flag along

different paths. Each recursive call returns both the possibly modified subtree and this

flag, which records whether a USD insertion operator already exists beneath the current

node. After processing all children, the parent examines their flags: if any child reports

true, the parent skips insertion to avoid duplication; if all children report false, the

parent determines whether it is itself a target operator and continue to propagate the result

through the rest of the call stack.

49

4. UNIFIED STRING DICTIONARY

4.6 USD string recognition

This section discusses how DuckDB can fully leverage the benefits provided by USD. One of
the core arguments of the original USSR paper and, in extension, USD, is that it is possible
to integrate this feature in existing engines without major overhauls of the execution
engine. It does this by not modifying the string representation. However, this has the
downside that the system needs to recognize the strings that are backed by the per-query
dictionary. In the remainder of this section, we will discuss two possible approaches that
we implemented to achieve this. Both approaches require access to pointers, and therefore,
only non-inlined strings are considered for USD insertion.

4.6.1 Aligned memory location

In the first approach, which is identical to how the USSR paper was implemented, strings
are recognized by the memory area to which they point. In essence, if the strings are
pointing into the memory location belonging to the data region of USD, we consider
them to be USD-backed strings. To achieve this, we ensure the data region starts at a
memory-aligned address. For example, if the data region is 512 KB, we choose a memory
address that is 512 KB-aligned. Thus, the start of the region contains 19 zeros as the
starting bits in its memory address.

By positioning the data region in this specific way, all the strings within the region can
be recognized by examining their pointers. To achieve this, we required two variables:
USD_MASK and USD_PREFIX. The USD_MASK will be applied to the string pointer
in an AND operation, zeroing out the lower bits. USD_PREFIX is the aligned address
where the data region is located. To recognize if a string resides in USD, we apply the
USD_MASK to its pointer and then compare it against the USD_PREFIX. If equal, it
means that the string undoubtedly is backed by USD and benefits such as faster hashing
and single allocation can be applied to it.

Finding aligned memory location
The most important requirement for this approach is allocating a memory-aligned buffer
for our data region. However, since DuckDB is built with C++11, it is not possible to
allocate memory at a specific alignment with a specific size without relying on the operating
system’s API. This feature is somewhat supported by C++17 11. Therefore, we need to

11https://en.cppreference.com/w/cpp/memory/c/aligned_alloc

50

https://en.cppreference.com/w/cpp/memory/c/aligned_alloc

4.6 USD string recognition

allocate extra memory and find our aligned region within the allocated buffer. We used
the same tactic that was described in the USSR paper. We will allocate double the size of
our data region. In this allocated buffer, we can always find an aligned address to store
strings and their hash values, and also have enough memory to place the linear probing
hash table either before or after the data region.

System modification
In terms of system modification, in every instance that the system may want to perform a
hash operation or copy the string in whatever form, it needs access to the two variables
discussed above, USD_MASK and USD_PREFIX. Another important note is that these
variables cannot be allocated globally because DuckDB does not allow global memory
as one of its core fundamentals. The specific reason can be attributed to the fact that
multiple DuckDB instances can run in the same user space and process. By not allowing
global memory, the system avoids symbol conflicts.

A suitable location to host these variables is the ClientContext, which contains key
attributes related to the entire database. More importantly, every execution class and
operator in DuckDB that may perform one of the actions that may benefit from USD-
strings has access to ClientContext. However, even with the smart placement of the
required variables in the ClientContext, many DuckDB interfaces have to be changed
for this approach. This is because the core subsystems that the operators rely on for
performing vectorized hash operations, materializing query intermediates in row format,
and collecting the final results in columnar format do not have access to ClientContext. In
our implementation, propagation of ClientContext through the engine required hundreds
of interface changes, which is undesirable.

4.6.2 Pointer tagging

The second approach is to encode the fact that a string is backed by the Unified String
Dictionary in the string representation itself. However, it is not possible to change the
layout of string_t as increasing it would negate its benefits. Furthermore, if we wanted
to use one bit in the length portion of the layout, it would halve the maximum length of
strings that can be stored in DuckDB. This in itself would not be a significant issue, since
currently strings of up to 4 GiB can be stored; however, it can cause compatibility problems.
Finally, taking a bit away from the prefix would only limit the early-exit optimization of
this string representation.

51

4. UNIFIED STRING DICTIONARY

There is one more place where we can still borrow the one bit we need to recognize if
a string is backed by USD or not, the upper bits in the pointer. In most architectures,
only up to 48 bits out of 64 are used. This is because there are no systems available today
that possess enough memory to require more than 48 bits to address their memory space.
Therefore, we can simply set the highest bit in the pointer when strings are inserted into
USD. At the moment of writing this thesis, there are no other use cases for the upper bits
of pointers in string_t in DuckDB.

It should be noted that this approach would not work for Android devices. DuckDB
also disables its salt usage in the upper bits of the pointers in its hash tables [21] when
compiling for Android 12.

There are, however, different considerations regarding this change. Each specific CPU
requires different properties for the pointers. For example, x86-64 processors require
that pointers must be in their canonical form [56]. To avoid any problems caused by
inconsistency in pointer values, the added tag to each USD-string pointer must be cleared
before dereferencing. This is further complicated by the fact that the system may not
always use the string_t API to modify the string attributes. Thus, all of these instances
need to be modified to clear the tag by applying a mask value to the pointer, setting the
upper 16 bits to zero. Furthermore, the string_t API 13 itself needs to be modified as
described in the following:

• GetTaggedPointer: A new function is added to return the raw pointer in string_t

without clearing the tag.

• Tag clearance: GetPointer, GetDataWriteable, GetData, and Equals are the func-
tions that need to be modified to first remove the tag before returning the pointer
value

4.7 USD lifetime

USD is a per-query data structure that is built at runtime with the valuable strings used
in a query. This section details when it is created and when it should be destroyed.

12https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/execution/ht_entry.hpp

13https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/types/string_type.hpp

52

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/ht_entry.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/execution/ht_entry.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/string_type.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/string_type.hpp

4.8 Preventing unnecessary copies

4.7.1 Construction

The decision to activate USD is up to DuckDB’s optimizer. After the planning and binding
section of query processing, the optimizer applies its rules to the query plan to further
optimize the execution plan. We believe this is the perfect place to decide whether a query
can benefit from USD. If the optimizer rule we discussed in Section 4.5 observes specific
operators that operate on strings, it will activate USD. It does so by creating a USD object
and placing it in the ClientContext. As this class is widely available throughout the system,
particularly on the execution side, we found it to be the perfect location to host USD.

4.7.2 Destruction

USD will contain the materialized strings for an entire query. Therefore, to avoid use-after-
free errors, it must remain alive until it can be assured that none of the strings within it
are required anymore. We choose the moment when the query result is fully fetched by
the user as the precise time to destroy USD and free the allocated memory to the system.
DuckDB uses the QueryResult 14 class as the base class to represent the result of a query.
When the user executes a query, the ClientContext is provided with a QueryResult to
store the final result. After the query execution is finished, the ClientContext stores the
result and is then destroyed. Since ClientContext hosts USD, we will move the USD class
to the QueryResult. This can be done efficiently in C++ by using the move semantics
(std::move). This movement of USD ensures that the string within USD is valid until
the query result is fully retrieved by the user. USD is destroyed at the same time as the
corresponding QueryResult class.

4.8 Preventing unnecessary copies

One of the main promises of USD is the zero-copy benefit it offers for strings. As a general
rule, DuckDB copies the values backed by buffer pages when it needs to materialize them
within internal data structures used for query processing. This is because it cannot simply
rely on those pages being in memory for the entire duration of the execution, as the buffer
manager might evict them to disk. However, if strings reside in USD, they are already
materialized in memory and will remain there throughout the entire execution of the
query. Therefore, there is no need to further make full copies of string values. In other
words, the execution engine can get away with copying only the string_t header, which

14https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/main/query_result.hpp

53

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/main/query_result.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/main/query_result.hpp

4. UNIFIED STRING DICTIONARY

contains pointers that refer within the USD. However, to enable the system to utilize this
benefit, multiple changes are required. Primarily, we need to adjust the various DuckDB
subsystems handling strings to treat non-inlined strings residing in USD as if they were
inlined ones. By doing so, only string_t headers are copied and deep copies of the full
string are avoided. We outline the necessary changes in the following.

4.8.1 ColumnDataCollection

According to the DuckDB documentation, ColumnDataCollection 15 represents data
stored in columnar format, which is backed by the buffer manager subsystem of DuckDB.
Many use cases require the data to be stored in columnar format during execution. For
example, when DuckDB returns the result of a query, it uses the ColumnDataCollection to
represent the output, as it is far more efficient than row storage.
Modifications:
There are specific code paths in the column_data_collection.cpp file which handles the
complexities of the string type in DuckDB. One specific change that needs to be made
in this subsystem is the handling of how strings are copied. In the StringValueCopy16

function, some metadata along with the string that needs to be copied is provided to
the function. If the string is inlined, the function simply returns the input as no extra
modification is required. However, if the string is non-inlined, it will allocate memory on
the heap and store the full string there. We have made changes to this function so that it
also checks if the non-inlined string is backed by USD or not. If backed, it simply returns
the input just like the inlined string code path. Similar changes are made to different parts
of the same file to treat non-inlined strings in the same way as inlined strings to prevent
extra copying and heap allocation.

4.8.2 TupleDataCollection

This class17 represents the data stored in row format, which is backed by the buffer manager.
Example use cases of this class include storing intermediate results in materializing operators,
such as joins and aggregations. In these cases, it is much faster to access data in a row
format rather than the columnar format [27].

15https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/types/column/column_data_collection.hpp

16https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
common/types/column/column_data_collection.cpp

17https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/types/row/tuple_data_collection.hpp

54

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/column/column_data_collection.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/column/column_data_collection.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/common/types/column/column_data_collection.cpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/common/types/column/column_data_collection.cpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/row/tuple_data_collection.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/row/tuple_data_collection.hpp

4.8 Preventing unnecessary copies

Modifications:
The changes to this subsystem are mainly applied to tuple_data_scatter_gather.cpp18,
which is used to store values, previously available in columnar format, in row major format
and vice versa.

• StringHeapSize: This function calculates the heap size required to store a string
value in the TupleDataCollection. If inlined, the string does not require any heap
memory. Otherwise, it is allocated heap memory equal to its length. We made the
changes so that USD strings are also treated like inlined strings.

• TupleDataValueStore: This function is used to store different values in the Tuple-
DataCollection and is called during the scatter phase, where data in columnar format
is stored in row-major format. The changes to this function allow USD strings to be
copied by only storing the string_t header instead of the full string.

Although not related to TupleDataCollection, very similar logic for strings exists at
the ComputeStringEntrySizes and ScatterStringVector in the row_scatter.cpp file.
We made similar changes in the mentioned places as well.

4.8.3 Out-of-core execution

DuckDB can efficiently process workloads that produce larger-than-memory intermediates
[27]. It does so by using the same page layout for both query intermediates and persistent
data. This way, both can be efficiently spilled to disk. In this page layout, fixed-size rows
are stored together in one page, while their corresponding variable-size rows are stored
in another page. With regard to strings, the 16-byte header of string_t is stored in the
fixed-size row. If the string is not inlined, the pointer residing in string_t points to the
complete string in the variable-size page. During disk spillage, pages are taken to disk and
brought back when required. However, they may be loaded back into memory in a different
location. This results in the pointer in the fixed-size layout becoming invalid. DuckDB’s
workaround for this problem is to swap the pointers with offsets into the variable-size
page. This operation is called pointer swizzling, and the reverse of it is called pointer
unswizzling. Extra metadata is required to be maintained to compute the new pointers
based on the offsets and the base address of the new page. Figure 4.3 illustrates the
structure of DuckDB’s page layout.

18https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
common/types/row/tuple_data_scatter_gather.cpp

55

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/common/types/row/tuple_data_scatter_gather.cpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/common/types/row/tuple_data_scatter_gather.cpp

4. UNIFIED STRING DICTIONARY

Figure 4.3: DuckDB’s page layout for fixed-size rows and corresponding variable-size rows
(Image borrowed from Kuiper et al. [27])

With the addition of USD to DuckDB’s execution engine, changes are required to
treat non-inlined strings as inlined strings, which do not require the operations discussed
previously.

Modifications:
As the changes required are exactly like the ones mentioned for ColumnDataCollection

and TupleDataCollection with regards to logic, we simply mention the main functions
that were modified. These include RecomputeHeapPointers and FindHeapPointers in
TupleDataAllocator19, as well as SwizzleColumns, UnswizzlePointers, and GatherVarchar

in RowOperations20.

19https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/types/row/tuple_data_allocator.hpp

20https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
include/duckdb/common/row_operations/row_operations.hpp

56

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/row/tuple_data_allocator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/types/row/tuple_data_allocator.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/row_operations/row_operations.hpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/include/duckdb/common/row_operations/row_operations.hpp

5

Evaluation

5.1 Experimental setup

As DuckDB is mainly used by users with high-end laptops, we conducted our evaluations
using a MacBook Air M2 with 16GB of memory. This machine features eight cores, divided
equally between performance and efficiency cores. To measure performance, we opted to
use end-to-end query execution times, since singling out individual performance factors in
such a complex system is both difficult and unreliable. We compare DuckDB enhanced
with USD and DuckDB’s main branch against different workloads and report the results.
Regarding the workloads, we used both standard benchmarks typically used for evaluating
analytical database systems and synthetically generated datasets and queries.

5.2 Standard benchmarks

5.2.1 TPC-H

TPC-H [48] is a standardized decision-support benchmark developed by the Transaction
Processing Performance Council (TPC) that models a business environment with complex
queries. This benchmark focuses on measuring how efficiently a database can process large
volumes of data through ad-hoc queries, aggregation, joins, and sorting operations. TPC-H
is widely used in both academia and industry to compare the performance of different
database engines under analytical workloads. In our experiments, we relied on DuckDB’s
TPC-H extension 1, which provides the complete suite of 22 read-only queries for TPC-H.

Results: The only query that could make use of the Unified String Dictionary in this
benchmark is query number sixteen. This query features a triple column group by, and

1https://duckdb.org/docs/stable/core_extensions/tpch.html

57

https://duckdb.org/docs/stable/core_extensions/tpch.html

5. EVALUATION

one of these columns is p_type, which contains strings between 16 and 25 characters.
Furthermore, it only has 150 unique values in its entirety. This makes it a perfect candidate
for USD. The speed up for this query at different scaling factors is shown in Table 5.1. The
other queries in the benchmark suite either did not contain operations on string columns
that our optimizer rule would recognize, or the strings themselves were not qualified as
candidates for USD.

Scale factor DUCKDB_MAIN DUCKDB_USD
1 0.0147 0.0132
10 0.0890 0.0708
30 0.251 0.201

Table 5.1: Performance results - Query 16 in TPC-H

It should be noted that queries 7, 8, and 19 in TPC-H apply filter predicates on potentially
large strings that can be inserted into USD. However, our final USD implementation does
not result in speed-ups for the mentioned queries since most of the filters are pushed down
to the storage layer. In our earlier implementations (Section 4.3.2), the mentioned queries
got faster by 10 to 15% depending on the scale factors. However, it is important to note
that the achieved speed-up for filters pushed to storage should not be as noticeable if
DuckDB applied the filter predicate on the unique values in the dictionary. In the current
implementation, DuckDB resorts to UnifiedVectorFormat for ColumnData 2, potentially
computing the same predicate evaluation for many duplicate values.

Other than the filters that are pushed down to storage, certain filters still remain in the
query plan (query 7). These queries can still benefit from USD. Although the effect of USD
is less noticeable due to the low number of values that are actually evaluated, particularly
on smaller scale factors.

Finally, query 4 was one of the queries that got faster in the original USSR paper by about
30%. However, in DuckDB, Compressed Materialization is applied to the o_orderpriority

columns, nullifying the benefits of USD.

TPC-H with string keys
As stated by the "Get Real" workload study [52], it is very common for real-world database
tables to have strings as keys. Thus, in this experiment, we decided to change the integer
keys in the nation and customer tables of TPC-H to Universally Unique Identifier (UUID)

2https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
storage/table/column_segment.cpp#L294

58

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/storage/table/column_segment.cpp##L294
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/storage/table/column_segment.cpp##L294

5.2 Standard benchmarks

and convert them to strings. As a result, these tables will have 36 character strings as
keys. We will then perform simple join queries on these modified tables. Our goal with this
experiment is to test whether USD is also suitable for join operations on string columns.

Results: We can see from the performance results depicted in Table 5.2 that USD
can also speed up queries containing join operations on string keys. In the two modified
tables, the nation table only contains a total of 25 rows. Thus, the string key column is
not compressed and is emitted as a flat Vector in DuckDB. However, due to our optimizer
rule, we can use heuristics, such as the estimated cardinality of join columns, to detect
join operations that can still benefit from USD. Therefore, we also insert the strings on
the build side of the join, allowing for the full performance benefits of the Unified String
Dictionary to be achieved.

Scale factor DUCKDB_MAIN DUCKDB_USD
1 0.025 0.020
10 0.072 0.060
30 0.203 0.160

Table 5.2: Performance results - Simple join query on modified TPC-H columns

5.2.2 TPC-DS

TPC-DS [37]builds on and extends the ideas of TPC-H, offering a more realistic and
comprehensive benchmark for evaluating decision support systems. While TPC-H uses a
relatively simple schema with a single fact table and eight tables overall, TPC-DS features
a more complex data model. Furthermore, TPC-DS also includes 99 diverse SQL queries
that are exceedingly more complicated than TPC-H queries, covering a broader range of
scenarios.

Results: No queries in TPC-DS slowed down or sped up as a result of USD. This could
be attributed to the queries themselves not using USD target operators or the data within
the columns not meeting the requirements to gain considerable benefit from being inserted
into USD.

5.2.3 IMDB

We also ran the IMDB join order benchmark used in [32]. The queries in this benchmark suit
heavily involve joins on integer keys. There are string payloads in the join operations, yet

59

5. EVALUATION

they are typically either from high domain cardinality or inlined. Overall, no performance
gain or loss was observed in this benchmark.

5.2.4 ClickBench

Clickbench is yet another highly used benchmark for analytical database systems. Similar
to IMDB, no performance gain or loss was seen in this benchmark. Other than a few
specific queries that perform aggregation on high domain cardinality columns such as URL
and Title, no other query will be recognized by the optimizer rule. We will discuss this
benchmark in more detail in the next chapter.

5.2.5 Public BI Benchmark

Similar to the original paper, we decided to test our implementation on the CommonGover-
ment workbook, which is part of the Public BI Benchmark [15; 19]. This benchmark’s
queries and data are gathered from 46 of the biggest Tableau Public workbooks used in the
"Get Real" workload study[52]. The CommonGovernment workbook specifically contains
many strings, making it an excellent choice for our use case. The vast majority of the
queries are simple group-by operations on string columns.

Results: All queries were run on their specified subset of the data. The vast majority
of the queries contained single-column group-by, which is already covered by DuckDB’s
optimization as discussed in Section 2.3.4. However, there was considerable speedup
regarding a few double-column group-by queries, as the results show in Table 5.3. The rest
of the queries did not speed up or slow down.

Query number DUCKDB_MAIN DUCKDB_USD
2 0.133 0.112
3 0.048 0.039
21 0.085 0.078

Table 5.3: Performance results - CommonGovernment workbook

5.3 Synthetic micro-benchmarks

We also decided to make use of synthetically generated datasets. With these workloads, it
is possible to control every aspect of the input, such as string length, alphabet set, domain
cardinality of values within a column, and distribution of values. Our main goal with

60

5.3 Synthetic micro-benchmarks

these experiments is to limit-test the Unified String Dictionary with regard to different

workloads. We generated the datasets using Python scripts 3.

In the following, we detail the various experiments we ran using synthetic datasets.

5.3.1 Variable length strings

In this experiment, our goal is to assess the performance result with regard to string

length. To this end, we chose a small domain cardinality of 200 unique values per string

column. Thus, every unique value can fit in USD without requiring a larger capacity. We

aim to replicate a similar experiment done in the original USSR paper, but in DuckDB.

The only variable in this experiment is the length of the strings in each workload. The

microbenchmark query is a simple group-by operation on two string columns.

Results: As shown in Figure 5.1, USD will result in more performance gain as the

string length increases. This can simply be explained by the fact that as strings get longer,

typical operations such as applying a hash function, checking for equality, or copying them

require more computation. Since USD accelerates the mentioned operations, it results in

significant performance gains.

Figure 5.1: Performance results - Synthetic dataset, Variable length strings

3https://github.com/OmidAfroozeh/benchmarker

61

https://github.com/OmidAfroozeh/benchmarker

5. EVALUATION

5.3.2 Low cardinality

Other than the effect of string length on the performance, it is important to limit-test
USD with regard to different domain cardinalities. In this experiment, we aim to assess
how this data structure deals with low domain cardinality. We define a column to be low
cardinality if USD is able to fit all of its unique values without requiring its size to be
increased beyond the typical L2 cache size. To this end, we run the same microbenchmark
as the previous experiment on string columns containing 150, 300, 600, 1200, and 2400
unique values, respectively.

Results: Figure 5.2 showcases the results for low cardinality columns. As all unique
values are able to fit easily within the small data region, this results in considerable
performance gains.

Figure 5.2: Performance results - Synthetic dataset, Low cardinality domain

5.3.3 High cardinality

Our main goal with this experiment is to test the data structure on much higher cardinalities.
To this end, we decided to increase the data region size of USD to 256MB so that all unique
values would be able to fit. Furthermore, the values in the column follow a Zipfian [60]
distribution. The reason behind choosing this distribution is twofold: First, we wanted
to replicate strings in real-world datasets and the English language. Second, a skewed
distribution will cause the majority of the storage blocks to be dictionary encoded due

62

5.3 Synthetic micro-benchmarks

to the many repeating values. Therefore, they will be considered as candidate strings for
insertion into USD. We also removed all constraints regarding the insertion of dictionary
strings. Our primary goal is to determine the potential performance gain achievable with
higher domain cardinality.

Results: In contrast to low cardinality columns, we observe that USD can be inconsistent
with regard to high cardinality columns as depicted in Figure 5.3. From the results, we draw
the conclusion that it is possible to gain some performance for high domain cardinality, but
to a certain point. In general, when the data cardinality is high, our overall performance
gain reduces since we need to invest more computation to insert every unique value in each
per-block dictionary into USD. For example, in the synthetic dataset generated for 120,000
unique values, a single column is contained within 660 Column Segments. Each segment
contains 15151 values on average. The per-block dictionary for each segment contains
around 6561 unique values. During insertion, we add every single value in the per-block
dictionaries to USD. Since the ratio between the number of unique values and encoded
values is not high enough, it is unclear whether performance can be improved, considering
the overhead of insertion and concurrency control. Furthermore, as random access to this
large memory region is common throughout query execution, cache misses will accumulate
and potentially result in performance regression.

Figure 5.3: Performance results - Synthetic dataset, High cardinality domain

Luckily, it is very simple to avoid performance loss by simply avoiding high cardinality

63

5. EVALUATION

columns as discussed in Section 4.4.

5.3.4 String payloads in materializing operators

In this experiment, we aim to show that the zero-copy benefit of the Unified String
Dictionary affects materializing operators. To this end, we perform join operations on
integer keys from tables that contain one string column each, and those are included in
the select statement. The string payload columns in the tables are from a 100 domain
cardinality and are 32 characters long.

Result: As depicted in Table 5.4, considerable performance gain is expected. Beyond
this simple microbenchmark, the single-allocation benefit of USD is potentially beneficial
for reducing the amount of data that is spilled to disk.

DUCKDB_MAIN DUCKDB_USD
0.0147 0.0132

Table 5.4: Performance results - String payload columns

5.4 Results discussion

In the previous sections, we discussed evaluation results for USD on various standard and
synthetic benchmarks. In the following, we aim to analyze and summarize the overall
performance impact of USD for DuckDB.

Unified String Dictionary for DuckDB can result in performance gains if the following
conditions regarding the workload are met. The query itself must contain materializing
operators that are recognized by the optimizer rule. The string columns being operated on
in the query need to be eligible to be inserted into USD. Finally, various statistics about the
string values, such as the average length, domain, and overall cardinality, play important
roles in how much performance is achieved. For workloads that satisfy the discussed
conditions, the query can benefit from faster hashing and equality checks. Furthermore,
duplicate values in the materializing operators can be allocated once, leading to less memory
pressure and less copying.

An interesting observation is the difference in performance gain on various queries in
standard benchmarks, such as TPC-H and the CommonGovernment workbook, when
compared to the USSR paper results. DuckDB poses three main challenges that could
potentially nullify the role of USD in achieving performance gains. These challenges are as
follows:

64

5.4 Results discussion

Compressed Materialization effect
This optimization is one of the main features in DuckDB that can speed up operations
on strings for materializing operators. For example, in queries 4 and 5 of TPC-H, the
CM optimization inserts projection operators before and after the hash join and converts
the strings into integers. USD would simply be an unnecessary addition to a query if
CM is already applied to the string columns. However, Compressed Materialization is
quite limited with regard to real-world data. This is because the existence of even a single
outlier string value in the column with lengths longer than what is supported by CM would
disable this optimization. Furthermore, since CM is dependent on the metadata stored in
DuckDB’s native file format, other data sources, such as Parquet, currently do not benefit
from CM.

TryAddCompressedGroups effect
Many queries, both in TPC-H and the CommonGovernment workbook, involve a single-
column group-by. For these queries, the majority of the benefits that were provided by
USSR in Vectorwise do not translate to Unified String Dictionary in DuckDB. This is
because of the TryAddCompressedGroups optimization in the hash aggregate operator,
which renders USD completely ineffective.

DuckDB string representation
To make USD work, we had to make the design decision to only insert non-inlined strings.
This design decision will lead to fewer possible candidates as many strings in real-world
data are short [52]. This is perhaps the biggest change required in our adoption that results
in less performance gain compared to the USSR in Vectorwise.

Despite the challenges and optimizations available in DuckDB, many potential workloads
can be made faster, as demonstrated in our synthetic microbenchmarks.

65

6

Sampling-based approach

In the previous chapter, we discussed the internals of the Unified String Dictionary (USD)

and explained how we implemented and integrated it into DuckDB’s execution engine. Our

evaluation of USD in DuckDB showed that USD could be a promising addition for efficient

string processing, especially for low-cardinality columns. However, as observed in various

experiments, USD performs poorly with high cardinality columns. As a result, we decided

to disable this feature for these columns early in the execution pipeline.

In this chapter, we explore the idea of sampling the per-block dictionaries to investigate

whether USD could still improve performance by inserting the most repeated values in

high-cardinality columns. First, we motivate this idea by studying specific columns from

the Clickbench dataset and their unique properties. Then, we present our hypothesis

regarding leveraging frequent strings in datasets with considerable distribution skew. Next,

we describe our sampling method and its integration into DuckDB’s execution engine.

Finally, we evaluate the results.

6.1 Clickbench study

The Clickbench benchmark [13] simulates workloads common in clickstream analysis, web

analytics, machine-generated data, structured logs, and event data. It focuses on queries

typically used in ad-hoc analytics and real-time dashboards. The dataset is based on

real traffic from a major web analytics platform, anonymized while preserving key data

distributions. The queries are designed to reflect realistic usage patterns, although not

directly taken from production environments.

The Clickbench dataset contains two columns of particular interest: URL and Title.

67

6. SAMPLING-BASED APPROACH

These columns consist of long strings, and several Clickbench queries 1 (33, 34, 36, and 37)
perform aggregations over them, making them suitable columns for USD. More interesting
is the way DuckDB compresses these columns. For example, despite the URL column
containing an extremely large number of unique values, most of the values are dictionary-
encoded. We provide a simple data analysis below.

Clickbench’s hits table contains 100 million tuples. The URL and Title columns have
18,342,019 and 9,425,424 unique values, respectively. Table 6.1 shows how DuckDB applies
different compression methods to these columns, along with the percentage of values
compressed by each.

Compression URL Title

FSST 28.8% 22.7%
DICT 69.6% 77.2%
Uncompressed 1.4% 0

Table 6.1: Compression statistics for URL and Title columns in Clickbench

From the frequency plot of the most repeated values in the URL column (Figure 6.1), we
observe the highly skewed nature of the data. This skew explains why such a significant
portion of the column is dictionary-encoded.

Figure 6.1: Frequency plot of most repeated URL values in Clickbench

1https://github.com/ClickHouse/ClickBench/blob/main/mysql/queries.sql

68

https://github.com/ClickHouse/ClickBench/blob/main/mysql/queries.sql

6.2 Sampling-enhanced USD

Hypothesis
Although the USD has limited capacity and cannot accommodate every unique value, we
can still leverage it by focusing on the most valuable strings within a skewed dataset. By
prioritizing these high-frequency strings, we can minimize insertion costs while getting the
maximum performance benefits for the majority of the data. To achieve this, we identify the
most frequently occurring values in each dictionary block and insert only these values into
the USD. To efficiently determine these high-frequency strings, we employ a sampling-based
approach. The following sections detail the implementation of this sampling strategy.

6.2 Sampling-enhanced USD

In this approach, our goal is to decide at run-time which unique strings within a per-block
dictionary are the most valuable, thus generalizing to the entire dataset. To this end, we
need to access the encoded values and build a frequency counter for each unique value. We
considered three possible approaches, which we will explore and compare in the following.

6.2.1 Directly accessing column segments

This implementation aims to access the buffer-managed page that contains the entire
dictionary-encoded block. This way, we have direct access to all the encoded values of
each block. However, since we decided not to insert strings at the storage layer and opted
for the USD insertion operator design, we do not have direct and easy access to this data.
Fortunately, when DuckDB builds a dictionary vector from a dictionary-encoded segment,
it encodes the pointer to this segment as the dictionary ID 2. Therefore, we can use this
indirection, and cast the dictionary ID to a pointer and access the page containing the
segment. This is a rather limited approach, since the page might already be evicted by the
time we try to access it. Furthermore, this approach is not supported by Parquet files as
they use different interfaces. Additionally, we need to cover the extra cost of bit-unpacking,
as all dictionary-encoded blocks in DuckDB are encoded.

6.2.2 Delaying vectors

As the previous approach has glaring issues, we decided to utilize the USD insertion
operator. The idea is to delay vector progress in the query plan until a certain number of
vectors have been seen. Then, we can perform our sampling and insert the most repeated

2https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
storage/compression/dictionary/decompression.cpp

69

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/storage/compression/dictionary/decompression.cpp
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/storage/compression/dictionary/decompression.cpp

6. SAMPLING-BASED APPROACH

strings within each dictionary. The main reason we need to delay the vectors is to prevent

them from being materialized in the hash tables that some materializing operators build.

If strings are materialized without being inserted into USD first, we lose the performance

benefit of faster equality checks, since equal strings will have different memory backing

them. Unfortunately, DuckDB’s execution engine does not support such delaying operators.

Therefore, we need to make copies of the vectors, which might require flattening them as

currently implemented in the DataChunk::Copy function 3.

6.2.3 Streaming model

To address the limitations of previous approaches, we implemented a sampling method

based on the streaming model. In this model, we make sampling decisions based solely

on the incoming vectors emitted directly from storage. Unlike previous methods, we do

not attempt to delay or buffer vectors; instead, we continue to evaluate the frequency of

strings as they arrive.

We start by analyzing an initial sample of 2048 values. As more vectors arrive, we

incrementally update the frequency counts for each encountered string. This process

continues until an arbitrary percentage of the total values encoded with a single dictionary

is processed, typically around 10-25%. To ensure that we capture the most valuable strings

early, we initially set a low threshold for frequency, allowing frequently occurring strings

to quickly enter the USD. This prevents valuable strings from being materialized without

first being inserted into the per-query dictionary.

However, since this sampling is performed incrementally and without direct access to the

entire set of encoded values, it operates on a best-effort basis. Therefore, its effectiveness

varies depending on the characteristics of the data and the distribution of strings within

each dictionary block.

The implementation is straightforward. For each new dictionary, two arrays are allocated,

each sized to the number of unique values in the block. The first array tracks the frequency

of each unique value, while the second indicates whether a value has already been inserted

into the USD. These arrays are reallocated whenever a new dictionary is encountered and

are updated throughout the sampling process.

3https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/
common/types/data_chunk.cpp#L152

70

https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/common/types/data_chunk.cpp##L152
https://github.com/duckdb/duckdb/blob/223ff0a7dba7900039d5910a009247ef097fff3c/src/common/types/data_chunk.cpp##L152

6.3 Evaluation

6.3 Evaluation

To test our hypothesis, we reran the experiment from the previous chapter, focusing on
high-cardinality columns. This time, we introduced a third system: DuckDB enhanced
with sampling-based USD. The results are shown in Figure 6.2. Since we only insert the
most frequent values from each per-block dictionary, no additional constraints were needed
to filter out high-cardinality columns. Despite this, the approach did not lead to any
performance improvements.

Across all workloads, between 25% and 50% of the total tuples were admitted into USD
while inserting as few strings as possible. However, the added overhead from sampling
and allocating memory for large dictionaries, combined with the best-effort nature of our
strategy, may have canceled out the potential gains. Another possible factor is branch
misprediction. The USD integration introduces extra checks in the critical execution path
to determine whether a string is backed by USD. In low-cardinality columns, where all
values fit in USD, these checks do not cause overhead. However, when only a subset of
values is stored in USD, these branches become more challenging for the CPU to predict,
potentially leading to frequent mispredictions and degraded performance.

Figure 6.2: Performance results - Sampling evaluation, high cardinality columns

71

7

Conclusion and Future work

7.1 Conclusion

First, to answer the initial research questions we had at the beginning of this thesis:

RQ1: How can we implement and integrate a per-query, global dictionary for strings in
DuckDB? Given that the USSR data structure was only implemented in Vectorwise,
how would this adaptation look in a more modern system such as DuckDB?
The core data structure itself follows the USSR design as described in the paper
with two major modifications. First, we allow the initialization of larger data regions
for USD, allowing more unique strings to be inserted. Second, our implementation
does not necessarily require the alignment of the memory region since we can encode
whether a string is backed by the per-query dictionary in the upper bits of the pointer.
To properly integrate this feature in DuckDB, we propose an optimizer rule that
will determine whether USD should be activated for a particular query and which
columns should be inserted. To carry out this task, we implemented an insertion
operator that can be placed before materializing operators. Finally, several changes
are required to the core execution engine of DuckDB to properly handle USD-backed
strings during query execution.

RQ2: Considering the multi-threaded execution environment of DuckDB, how can we
efficiently implement a global dictionary that achieves parallel efficiency?
We enforced the correctness of our data structure under concurrent insertion by
implementing both locking and lock-free approaches. The locking approach initially
used fine-grained mutex locks to ensure atomicity during insertions, but it became a
bottleneck under specific workloads. To address this, a lock-free method using atomic

73

7. CONCLUSION AND FUTURE WORK

primitives, such as compare-and-swap and fetch-and-add operations, was developed,
which achieves less contention and improves performance in concurrent execution.

RQ3: How much performance can be gained for string-heavy workloads by implementing
such a data structure in DuckDB? Is there a possible chance of performance regression?
If so, how to avoid it?
We evaluated USD on a wide range of benchmarks, including real-world and synthetic
datasets. These evaluations showed that USD brings substantial benefits for low-
cardinality columns. In these cases, compressed execution is possible across multiple
operators, including joins and aggregations, resulting in performance gains of 1.3x to
7x. However, we also analyzed the limitations of USD in high-cardinality workloads,
where the benefits drop off due to capacity limits and increased overhead. To avoid
regression, we attempted sampling approaches and introduced defensive constraints
that disable insertion into USD when high-cardinality columns are encountered.

Overall, this thesis shows that the Unified String Dictionary is a practical and effective
tool for column-wide compressed execution on strings. It delivers notable performance
improvements for specific workloads and integrates seamlessly with DuckDB.

7.2 Future work

7.2.1 Multiple USDs

Our current design assigns one per-query dictionary for all columns used in a query.
Although this simplifies the implementation and integration, it does not lead to ideal data
locality since values from different columns are stored together in the data region. A sensible
approach is to assign a per-query dictionary to each column. This is especially feasible
due to the pointer tagging approach, which provides a uniform solution for USD-string
recognition. Furthermore, we can further utilize the optimizer rule to guarantee that join
columns are inserted into the same USD.

7.2.2 Integration with hybrid execution model

In systems that utilize the hybrid query execution model [6], some parts of the query are
executed on the cloud, while the rest are executed on the client’s local machine. The data is
serialized and transmitted over the network. A simple integration of USD in such systems
could be achieved by using the per-query dictionary either exclusively on the cloud side
or the client side. The other approach would be to reinsert the newly transmitted strings

74

7.2 Future work

into the per-query dictionary when the data is transferred. Whether this would lead to
performance gain or not requires further benchmarking and careful modification of the
optimizer rule.

7.2.3 Optimized sampling approach

One problem encountered during our attempts for the sampling-based strategy was
DuckDB’s limitation in terms of support for operator types. The USD insertion op-
erator is an intermediate operator that cannot delay the vectors without causing extra
overhead. It would be interesting to introduce a new operator class in DuckDB, in addition
to source, sink, and intermediate operators. A so-called sampling operator. This operator
is suitable for runtime and will need to observe the first few vectors without emitting any
outputs. This should be supported by the pipeline executor so that no extra overhead, such
as copying the first few vectors emitted from each dictionary block, is incurred. Further-
more, we believe that through further optimizations and the use of additional heuristics, it
may still be possible to achieve even greater performance than we have currently attained.

Finally, an interesting direction for future improvement is to enhance the per-block
dictionaries used during compression to store unique values while sorted by their fre-
quency. Having access to such per-block dictionaries would eliminate the need for sampling
altogether.

7.2.4 Compressed execution for sorting

USD will enable executing various operations, such as hashing, checking for equality, and
copying, on the compressed form of the data. We believe it is also possible to enable
comparison for sorting on the compressed data. To achieve this, a few key changes are
required. First, a new API call must be added to USD to create a mapping between the
unsorted offsets of strings in the data region, which correspond to the start of each string,
and the sorted codes. Second, the optimizer rule must be modified to set a new flag in
the insertion operator. This new flag will determine if the new API is called or not. The
flag is set if the optimizer rule detects that a LOGICAL_ORDER_BY operator in the
query operates on string columns. Once the flag is set, after an arbitrary number of values
have been inserted into USD, the new API is called. The new mapping is created and can
be used by the sort operator. In terms of changes to the execution engine, extra logic is
required to detect USD-backed strings and perform the sort operation on the sorted codes
rather than string values. Due to how sorting is implemented in DuckDB with the use of

75

7. CONCLUSION AND FUTURE WORK

key normalization [28], string_t API is not utilized, leading to further engine changes.
Extensive benchmarking is also required to verify that no performance regression is caused
as a result of inserting sort keys into USD.

7.2.5 Cost-based optimizer rule

Currently, strings are inserted into USD without considering any statistics or heuristics
beyond checking for high cardinality. DuckDB files provide extra information about
the data stored in each segment or column. The optimizer rule could be modified with
additional heuristics to take into account domain-cardinality or string lengths to set limits
for columns that have a lower chance of resulting in performance gains. Other heuristics,
such as the ratio of encoded values to the unique values, are other options for consideration.

76

References

[1] A Deep Dive into German Strings. en-us. Section: blog. July 2024. url: https:
//cedardb.com/blog/strings_deep_dive/ (visited on 02/23/2025) (30).

[2] Daniel Abadi, Samuel Madden, and Miguel Ferreira. “Integrating compression and
execution in column-oriented database systems.” en. In: Proceedings of the 2006
ACM SIGMOD international conference on Management of data. Chicago IL USA:
ACM, June 2006, pp. 671–682. url: https://dl.acm.org/doi/10.1145/1142473.
1142548 (visited on 02/06/2025) (1, 9, 10, 16, 19, 20, 23).

[3] Daniel J Abadi. “Query Execution in Column-Oriented Database Systems.” en. In: ()
(19).

[4] Gennady Antoshenkov. “Dictionary-based order-preserving string compression.” en.
In: The VLDB Journal The International Journal on Very Large Data Bases 6.1
(Feb. 1997), pp. 26–39. url: http://link.springer.com/10.1007/s007780050031
(visited on 07/07/2025) (25).

[5] Arrow Columnar Format: Variable-Size Binary View Layout. https : / / arrow .
apache . org / docs / format / Columnar . html # variable - size - binary - view -
layout. Specification page, accessed 2025-07-11. Apache Software Foundation, 2025
(29).

[6] RJ Atwal, Peter Boncz, Ryan Boyd, Antony Courtney, Till Döhmen, Florian Ger-
linghoff, Jeff Huang, Joseph Hwang, Raphael Hyde, Elena Felder, Jacob Lacouture,
Yves LeMaout, Boaz Leskes, Yao Liu, Dan Perkins, Tino Tereshko, Jordan Tigani,
Nick Ursa, Stephanie Wang, and Yannick Welsch. “MotherDuck: DuckDB in the
cloud and in the client.” en. In: (2024) (74).

[7] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. “Dictionary-based order-
preserving string compression for main memory column stores.” en. In: Proceedings
of the 2009 ACM SIGMOD International Conference on Management of data. Prov-
idence Rhode Island USA: ACM, June 2009, pp. 283–296. url: https://dl.acm.
org/doi/10.1145/1559845.1559877 (visited on 06/23/2025) (10, 25–27).

77

https://cedardb.com/blog/strings_deep_dive/
https://cedardb.com/blog/strings_deep_dive/
https://dl.acm.org/doi/10.1145/1142473.1142548
https://dl.acm.org/doi/10.1145/1142473.1142548
http://link.springer.com/10.1007/s007780050031
https://arrow.apache.org/docs/format/Columnar.html##variable-size-binary-view-layout
https://arrow.apache.org/docs/format/Columnar.html##variable-size-binary-view-layout
https://arrow.apache.org/docs/format/Columnar.html##variable-size-binary-view-layout
https://dl.acm.org/doi/10.1145/1559845.1559877
https://dl.acm.org/doi/10.1145/1559845.1559877

REFERENCES

[8] Peter Boncz, Stefan Manegold, and Martin L Kersten. “Database Architecture
Optimized for the new Bottleneck: Memory Access.” en. In: () (20).

[9] Peter Boncz, Thomas Neumann, and Viktor Leis. “FSST: fast random access string
compression.” en. In: Proceedings of the VLDB Endowment 13.12 (Aug. 2020),
pp. 2649–2661. url: https://dl.acm.org/doi/10.14778/3407790.3407851
(visited on 02/04/2025) (1, 10, 21, 27).

[10] Peter Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100: Hyper-Pipelining
Query Execution.” en. In: () (7, 12, 20).

[11] “C-store: a column-oriented DBMS.” en. In: Making Databases Work: the Pragmatic
Wisdom of Michael Stonebraker. 1st ed. Association for Computing Machinery, Dec.
2018, pp. 491–518. url: https://dl.acm.org/citation.cfm?id=3226638 (visited
on 07/08/2025) (23).

[12] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. “Query optimization in compressed
database systems.” en. In: Proceedings of the 2001 ACM SIGMOD international
conference on Management of data. Santa Barbara California USA: ACM, May 2001,
pp. 271–282. url: https://dl.acm.org/doi/10.1145/375663.375692 (visited on
02/17/2025) (1, 22).

[13] ClickHouse/ClickBench. original-date: 2022-07-11T20:36:51Z. July 2025. url: https:
//github.com/ClickHouse/ClickBench (visited on 07/28/2025) (67).

[14] E F Codd. “A Relational Model of Data for Large Shared Data Banks.” en. In: ()
(6).

[15] cwida/public_bi_benchmark. original-date: 2019-02-04T10:00:26Z. Feb. 2025. url:
https://github.com/cwida/public_bi_benchmark (visited on 02/14/2025) (60).

[16] Till Döhmen, Radu Geacu, Madelon Hulsebos, and Sebastian Schelter. “SchemaPile:
A Large Collection of Relational Database Schemas.” en. In: Proceedings of the ACM
on Management of Data 2.3 (May 2024), pp. 1–25. url: https://dl.acm.org/doi/
10.1145/3654975 (visited on 06/25/2025) (1).

[17] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and
Wolfgang Lehner. “SAP HANA database: data management for modern business
applications.” en. In: ACM SIGMOD Record 40.4 (Jan. 2012), pp. 45–51. url:
https://dl.acm.org/doi/10.1145/2094114.2094126 (visited on 03/01/2025) (6,
22, 24).

[18] Yannis Foufoulas, Lefteris Sidirourgos, Eleftherios Stamatogiannakis, and Yannis
Ioannidis. “Adaptive Compression for Fast Scans on String Columns.” en. In: Pro-
ceedings of the 2021 International Conference on Management of Data. Virtual Event

78

https://dl.acm.org/doi/10.14778/3407790.3407851
https://dl.acm.org/citation.cfm?id=3226638
https://dl.acm.org/doi/10.1145/375663.375692
https://github.com/ClickHouse/ClickBench
https://github.com/ClickHouse/ClickBench
https://github.com/cwida/public_bi_benchmark
https://dl.acm.org/doi/10.1145/3654975
https://dl.acm.org/doi/10.1145/3654975
https://dl.acm.org/doi/10.1145/2094114.2094126

REFERENCES

China: ACM, June 2021, pp. 554–562. url: https://dl.acm.org/doi/10.1145/
3448016.3452798 (visited on 06/30/2025) (27, 28).

[19] Bogdan Ghit, Diego Tomé, and Peter Boncz. “White-box Compression: Learning and
Exploiting Compact Table Representations.” en. In: () (60).

[20] G. Graefe and L.D. Shapiro. “Data compression and database performance.” en.
In: [Proceedings] 1991 Symposium on Applied Computing. Kansas City, MO, USA:
IEEE Comput. Soc. Press, 1991, pp. 22–27. url: http://ieeexplore.ieee.org/
document/143840/ (visited on 06/27/2025) (1, 20).

[21] Paul Groß and Peter Boncz. “Adaptive Factorization Using Linear-Chained Hash
Tables.” en. In: (2025) (52).

[22] PostgreSQL Global Development Group. PostgreSQL. en. July 2025. url: https:
//www.postgresql.org/ (visited on 07/30/2025) (5).

[23] Tim Gubner, Viktor Leis, and Peter Boncz. “Optimistically Compressed Hash Tables
& Strings in theUSSR.” en. In: ACM SIGMOD Record 50.1 (June 2021), pp. 60–
67. url: https : / / dl . acm . org / doi / 10 . 1145 / 3471485 . 3471500 (visited on
02/04/2025) (1, 16, 17, 27, 33).

[24] Brian Hentschel, Michael S. Kester, and Stratos Idreos. “Column Sketches: A Scan
Accelerator for Rapid and Robust Predicate Evaluation.” en. In: Proceedings of the
2018 International Conference on Management of Data. Houston TX USA: ACM, May
2018, pp. 857–872. url: https://dl.acm.org/doi/10.1145/3183713.3196911
(visited on 07/20/2025) (20).

[25] Allison L. Holloway, Vijayshankar Raman, Garret Swart, and David J. DeWitt.
“How to barter bits for chronons: compression and bandwidth trade offs for database
scans.” en. In: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. Beijing China: ACM, June 2007, pp. 389–400. url: https:
//dl.acm.org/doi/10.1145/1247480.1247525 (visited on 06/23/2025) (10).

[26] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots.” en. In: 2011 IEEE
27th International Conference on Data Engineering. Hannover, Germany: IEEE,
Apr. 2011, pp. 195–206. url: http://ieeexplore.ieee.org/document/5767867/
(visited on 07/20/2025) (6, 7).

[27] Laurens Kuiper, Peter Boncz, and Hannes Mühleisen. “Robust External Hash Ag-
gregation in the Solid State Age.” en. In: 2024 IEEE 40th International Conference
on Data Engineering (ICDE). Utrecht, Netherlands: IEEE, May 2024, pp. 3753–
3766. url: https://ieeexplore.ieee.org/document/10597735/ (visited on
03/31/2025) (8, 14, 29, 54–56).

79

https://dl.acm.org/doi/10.1145/3448016.3452798
https://dl.acm.org/doi/10.1145/3448016.3452798
http://ieeexplore.ieee.org/document/143840/
http://ieeexplore.ieee.org/document/143840/
https://www.postgresql.org/
https://www.postgresql.org/
https://dl.acm.org/doi/10.1145/3471485.3471500
https://dl.acm.org/doi/10.1145/3183713.3196911
https://dl.acm.org/doi/10.1145/1247480.1247525
https://dl.acm.org/doi/10.1145/1247480.1247525
http://ieeexplore.ieee.org/document/5767867/
https://ieeexplore.ieee.org/document/10597735/

REFERENCES

[28] Laurens Kuiper and Hannes Mühleisen. “These Rows Are Made for Sorting and That’s
Just What We’ll Do.” en. In: 2023 IEEE 39th International Conference on Data
Engineering (ICDE). Anaheim, CA, USA: IEEE, Apr. 2023, pp. 2050–2062. url:
https://ieeexplore.ieee.org/document/10184754/ (visited on 08/12/2025)
(76).

[29] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. “Data Blocks: Hybrid OLTP and OLAP on Compressed Storage
using both Vectorization and Compilation.” en. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data. San Francisco California USA: ACM, June
2016, pp. 311–326. url: https://dl.acm.org/doi/10.1145/2882903.2882925
(visited on 06/23/2025) (21, 28).

[30] Per-Åke Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal Nowakiewicz,
and Vassilis Papadimos. “Real-time analytical processing with SQL server.” en. In:
Proceedings of the VLDB Endowment 8.12 (Aug. 2015). Publisher: Association for
Computing Machinery (ACM), pp. 1740–1751. url: https://dl.acm.org/doi/10.
14778/2824032.2824071 (visited on 07/11/2025) (21).

[31] Jae-Gil Lee, Gopi Attaluri, Ronald Barber, Naresh Chainani, Oliver Draese, Frederick
Ho, Stratos Idreos, Min-Soo Kim, Sam Lightstone, Guy Lohman, Konstantinos
Morfonios, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Raman,
Vincent Kulandai Samy, Richard Sidle, Knut Stolze, and Liping Zhang. “Joins on
encoded and partitioned data.” en. In: Proceedings of the VLDB Endowment 7.13 (Aug.
2014), pp. 1355–1366. url: https://dl.acm.org/doi/10.14778/2733004.2733008
(visited on 02/06/2025) (21, 22).

[32] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. “How good are query optimizers, really?” en. In: Proceedings of the
VLDB Endowment 9.3 (Nov. 2015). Publisher: Association for Computing Machinery
(ACM), pp. 204–215. url: https://dl.acm.org/doi/10.14778/2850583.2850594
(visited on 07/22/2025) (59).

[33] Yinan Li and Jignesh M. Patel. “BitWeaving: fast scans for main memory data
processing.” en. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. New York New York USA: ACM, June 2013, pp. 289–
300. url: https://dl.acm.org/doi/10.1145/2463676.2465322 (visited on
06/27/2025) (21).

[34] Chunwei Liu, McKade Umbenhower, Hao Jiang, Pranav Subramaniam, Jihong Ma,
and Aaron J. Elmore. “Mostly Order Preserving Dictionaries.” en. In: 2019 IEEE 35th
International Conference on Data Engineering (ICDE). Macao, Macao: IEEE, Apr.

80

https://ieeexplore.ieee.org/document/10184754/
https://dl.acm.org/doi/10.1145/2882903.2882925
https://dl.acm.org/doi/10.14778/2824032.2824071
https://dl.acm.org/doi/10.14778/2824032.2824071
https://dl.acm.org/doi/10.14778/2733004.2733008
https://dl.acm.org/doi/10.14778/2850583.2850594
https://dl.acm.org/doi/10.1145/2463676.2465322

REFERENCES

2019, pp. 1214–1225. url: https://ieeexplore.ieee.org/document/8731521/
(visited on 06/04/2025) (26).

[35] Alicja Luszczak. “Simple Solutions for Compressed Execution in Vectorized Database
System.” Master’s thesis. Vrije Universiteit Amsterdam, 2011 (23).

[36] MySQL. url: https://www.mysql.com/ (visited on 07/30/2025) (5).

[37] Raghunath Othayoth Nambiar and Meikel Poess. “The making of TPC-DS.” In:
Proceedings of the 32nd International Conference on Very Large Data Bases. VLDB
’06. Seoul, Korea: VLDB Endowment, 2006, pp. 1049–1058 (59).

[38] Thomas Neumann and Michael Freitag. “Umbra: A Disk-Based System with In-
Memory Performance.” en. In: () (7, 21, 29).

[39] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. “Quickstep: a data platform
based on the scaling-up approach.” en. In: Proceedings of the VLDB Endowment
11.6 (Feb. 2018). Publisher: Association for Computing Machinery (ACM), pp. 663–
676. url: https://dl.acm.org/doi/10.14778/3184470.3184471 (visited on
07/20/2025) (21).

[40] PyPI Download Stats. url: https://pypistats.org/packages/duckdb (visited on
07/25/2025) (11).

[41] Mark Raasveldt. Lightweight Compression in DuckDB. en. Oct. 2022. url: https://
duckdb.org/2022/10/28/lightweight-compression.html (visited on 02/13/2025)
(14, 23, 28).

[42] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analytical
Database.” en. In: Proceedings of the 2019 International Conference on Manage-
ment of Data. Amsterdam Netherlands: ACM, June 2019, pp. 1981–1984. url:
https://dl.acm.org/doi/10.1145/3299869.3320212 (visited on 02/08/2025) (1,
5).

[43] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk,
Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M.
Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer, David
Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. “DB2 with BLU acceleration:
so much more than just a column store.” en. In: Proceedings of the VLDB Endowment
6.11 (Aug. 2013), pp. 1080–1091. url: https://dl.acm.org/doi/10.14778/
2536222.2536233 (visited on 06/23/2025) (10, 21, 22, 25).

[44] Gautam Ray, Jayant Haritsa, and Sunita Seshadri. “Database Compression: A
Performance Enhancement Tool.” In: (Sept. 2004) (19).

81

https://ieeexplore.ieee.org/document/8731521/
https://www.mysql.com/
https://dl.acm.org/doi/10.14778/3184470.3184471
https://pypistats.org/packages/duckdb
https://duckdb.org/2022/10/28/lightweight-compression.html
https://duckdb.org/2022/10/28/lightweight-compression.html
https://dl.acm.org/doi/10.1145/3299869.3320212
https://dl.acm.org/doi/10.14778/2536222.2536233
https://dl.acm.org/doi/10.14778/2536222.2536233

REFERENCES

[45] Mark A. Roth and Scott J. Van Horn. “Database compression.” en. In: ACM SIGMOD
Record 22.3 (Sept. 1993). Publisher: Association for Computing Machinery (ACM),
pp. 31–39. url: https://dl.acm.org/doi/10.1145/163090.163096 (visited on
07/22/2025) (19).

[46] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey Milovi-
dov. “ClickHouse - Lightning Fast Analytics for Everyone.” en. In: Proceedings of
the VLDB Endowment 17.12 (Aug. 2024). Publisher: Association for Computing
Machinery (ACM), pp. 3731–3744. url: https://dl.acm.org/doi/10.14778/
3685800.3685802 (visited on 07/11/2025) (31).

[47] Vishal Sikka, Franz Färber, and Wolfgang Lehner. “Efficient transaction processing
in SAP HANA database: the end of a column store myth.” en. In: () (24).

[48] TPC-H Homepage. url: https://www.tpc.org/tpch/ (visited on 07/24/2025) (11,
57).

[49] Alexander Van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. “Why TPC is Not Enough: An Analysis of the Amazon Redshift Fleet.” en.
In: Proceedings of the VLDB Endowment 17.11 (July 2024), pp. 3694–3706. url:
https://dl.acm.org/doi/10.14778/3681954.3682031 (visited on 07/05/2025)
(1).

[50] Vectors — Velox documentation. url: https://facebookincubator.github.io/
velox/develop/vectors.html (visited on 07/11/2025) (29).

[51] Ritchie Vink. Why We Have Rewritten the String Data Type. https://pola.rs/
posts/polars-string-type/. Blog post, accessed 2025-07-11. Jan. 2024 (29).

[52] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. “Get Real: How
Benchmarks Fail to Represent the Real World.” en. In: Proceedings of the Workshop
on Testing Database Systems. Houston TX USA: ACM, June 2018, pp. 1–6. url:
https://dl.acm.org/doi/10.1145/3209950.3209952 (visited on 02/04/2025) (1,
58, 60, 65).

[53] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. “The imple-
mentation and performance of compressed databases.” en. In: ACM SIGMOD Record
29.3 (Sept. 2000), pp. 55–67. url: https://dl.acm.org/doi/10.1145/362084.
362137 (visited on 07/07/2025) (20, 22).

[54] Why German Strings are Everywhere. en-us. Section: blog. July 2024. url: https:
//cedardb.com/blog/german_strings/ (visited on 02/13/2025) (29).

82

https://dl.acm.org/doi/10.1145/163090.163096
https://dl.acm.org/doi/10.14778/3685800.3685802
https://dl.acm.org/doi/10.14778/3685800.3685802
https://www.tpc.org/tpch/
https://dl.acm.org/doi/10.14778/3681954.3682031
https://facebookincubator.github.io/velox/develop/vectors.html
https://facebookincubator.github.io/velox/develop/vectors.html
https://pola.rs/posts/polars-string-type/
https://pola.rs/posts/polars-string-type/
https://dl.acm.org/doi/10.1145/3209950.3209952
https://dl.acm.org/doi/10.1145/362084.362137
https://dl.acm.org/doi/10.1145/362084.362137
https://cedardb.com/blog/german_strings/
https://cedardb.com/blog/german_strings/

REFERENCES

[55] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. “SIMD-scan: ultra fast in-memory table scan using on-chip
vector processing units.” en. In: Proceedings of the VLDB Endowment 2.1 (Aug.
2009). Publisher: Association for Computing Machinery (ACM), pp. 385–394. url:
https://dl.acm.org/doi/10.14778/1687627.1687671 (visited on 07/20/2025)
(21).

[56] x86-64. en. Page Version ID: 1301541626. July 2025. url: https://en.wikipedia.
org / w / index . php ? title = X86 - 64 & oldid = 1301541626 # Canonical _ form _
addresses (visited on 07/24/2025) (52).

[57] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and Huanchen
Zhang. “An Empirical Evaluation of Columnar Storage Formats.” en. In: Proceedings
of the VLDB Endowment 17.2 (Oct. 2023). Publisher: Association for Computing
Machinery (ACM), pp. 148–161. url: https://dl.acm.org/doi/10.14778/
3626292.3626298 (visited on 07/11/2025) (28).

[58] Tianqi Zheng, Zhibin Zhang, and Xueqi Cheng. “SAHA: A String Adaptive Hash
Table for Analytical Databases.” en. In: Applied Sciences 10.6 (Mar. 2020), p. 1915.
url: https://www.mdpi.com/2076- 3417/10/6/1915 (visited on 06/10/2025)
(29–31).

[59] Jingren Zhou and Kenneth A Ross. “Implementing Database Operations Using SIMD
Instructions.” en. In: () (1).

[60] Zipf’s law. en. Page Version ID: 1302941732. July 2025. url: https://en.wikipedia.
org/w/index.php?title=Zipf%27s_law&oldid=1302941732 (visited on 08/01/2025)
(62).

[61] M. Zukowski, S. Heman, N. Nes, and P. Boncz. “Super-Scalar RAM-CPU Cache
Compression.” en. In: 22nd International Conference on Data Engineering (ICDE’06).
Atlanta, GA, USA: IEEE, 2006, pp. 59–59. url: http://ieeexplore.ieee.org/
document/1617427/ (visited on 02/05/2025) (10).

[62] Marcin Zukowski, Mark Van De Wiel, and Peter Boncz. “Vectorwise: A Vector-
ized Analytical DBMS.” en. In: 2012 IEEE 28th International Conference on Data
Engineering. Arlington, VA, USA: IEEE, Apr. 2012, pp. 1349–1350. url: http:
//ieeexplore.ieee.org/document/6228203/ (visited on 02/20/2025) (2, 7, 23).

83

https://dl.acm.org/doi/10.14778/1687627.1687671
https://en.wikipedia.org/w/index.php?title=X86-64&oldid=1301541626#Canonical_form_addresses
https://en.wikipedia.org/w/index.php?title=X86-64&oldid=1301541626#Canonical_form_addresses
https://en.wikipedia.org/w/index.php?title=X86-64&oldid=1301541626#Canonical_form_addresses
https://dl.acm.org/doi/10.14778/3626292.3626298
https://dl.acm.org/doi/10.14778/3626292.3626298
https://www.mdpi.com/2076-3417/10/6/1915
https://en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=1302941732
https://en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=1302941732
http://ieeexplore.ieee.org/document/1617427/
http://ieeexplore.ieee.org/document/1617427/
http://ieeexplore.ieee.org/document/6228203/
http://ieeexplore.ieee.org/document/6228203/

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Background
	2.1 Database management systems
	2.1.1 Relational database systems
	2.1.2 Query processing overview
	2.1.3 Materializing operators

	2.2 Compression
	2.2.1 General-purpose compression
	2.2.2 Lightweight compression

	2.3 DuckDB
	2.3.1 Execution engine
	2.3.2 Storage
	2.3.3 String representation
	2.3.4 Relevant optimizations

	2.4 Compressed execution
	2.5 Unique Strings Self-align Region

	3 Literature Study and related works
	3.1 Compressed execution
	3.1.1 Foundational works
	3.1.2 Predicate evaluation
	3.1.3 Materializing operators
	3.1.4 Query optimization
	3.1.5 Query executor and code explosion problem

	3.2 Dictionary
	3.2.1 Global dictionary
	3.2.2 Per-block dictionary
	3.2.3 Differential dictionaries

	3.3 String specific data structures
	3.3.1 Umbra-inspired string representation
	3.3.2 String hash table

	3.4 Summary

	4 Unified String Dictionary
	4.1 USD core data structure
	4.1.1 Main components
	4.1.2 Insertion
	4.1.3 Concurrency control
	4.1.4 Candidate strings

	4.2 USD accelerated string processing
	4.2.1 Faster hashing
	4.2.2 Faster equality checks
	4.2.3 Reduce memory pressure and avoid copying

	4.3 Integration design
	4.3.1 Target operator
	4.3.2 Proof of concept integration
	4.3.3 Design #1: Insert at individual operators
	4.3.4 Design #2: Insert at storage layer
	4.3.5 Design #3: USD insertion operator

	4.4 USD insertion operator
	4.4.1 Logical operator
	4.4.2 Physical operator

	4.5 USD optimizer rule
	4.5.1 DuckDB optimizer
	4.5.2 Implementation

	4.6 USD string recognition
	4.6.1 Aligned memory location
	4.6.2 Pointer tagging

	4.7 USD lifetime
	4.7.1 Construction
	4.7.2 Destruction

	4.8 Preventing unnecessary copies
	4.8.1 ColumnDataCollection
	4.8.2 TupleDataCollection
	4.8.3 Out-of-core execution

	5 Evaluation
	5.1 Experimental setup
	5.2 Standard benchmarks
	5.2.1 TPC-H
	5.2.2 TPC-DS
	5.2.3 IMDB
	5.2.4 ClickBench
	5.2.5 Public BI Benchmark

	5.3 Synthetic micro-benchmarks
	5.3.1 Variable length strings
	5.3.2 Low cardinality
	5.3.3 High cardinality
	5.3.4 String payloads in materializing operators

	5.4 Results discussion

	6 Sampling-based approach
	6.1 Clickbench study
	6.2 Sampling-enhanced USD
	6.2.1 Directly accessing column segments
	6.2.2 Delaying vectors
	6.2.3 Streaming model

	6.3 Evaluation

	7 Conclusion and Future work
	7.1 Conclusion
	7.2 Future work
	7.2.1 Multiple USDs
	7.2.2 Integration with hybrid execution model
	7.2.3 Optimized sampling approach
	7.2.4 Compressed execution for sorting
	7.2.5 Cost-based optimizer rule

	References

