
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Path-finding on GPUs for Database
Systems

Author: Thijs Dreef (2764266)

1st supervisor: Peter Boncz
daily supervisor: Daniel ten Wolde (Centrum Wiskunde & Informatica)
2nd reader: Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 8, 2025

“Never judge a function by its size”
by Casey Muratori

ii

Abstract

Graphs are becoming an increasingly popular way to model real-world
relationships due to their ability to represent complex connections in data.
As the volume of graph-structured data continues to grow, it has captured the
attention of database researchers and developers. DuckPGQ is an extension for
DuckDB that introduces support for SQL/PGQ, enabling users to construct
graphs directly from relational data and perform advanced graph operations
such as shortest path computation, pattern matching, and more.

DuckPGQ uses MS-BFS (Multi-Source Breadth-First Search) to compute the
length of the shortest path between large sets of source-destination pairs.
Executing this algorithm takes up the majority of the query execution time,
making it a target for optimization. The CPU version of this algorithm is
bandwidth-bound. GPUs have a higher memory bandwidth; thus, offloading
the execution to the GPU is expected to result in a significant speedup.

In this thesis, we develop a GPU implementation of the MS-BFS algorithm
using WebGPU, enabling our implementation to run on any system that
supports a modern web browser. We implement optimizations using GPU
subgroup operations, direction switching, and different parallelization schemes.
The GPU algorithm is built into a library, which allows for easy integration
with DuckPGQ

We evaluate the performance and scalability of the GPU version of the
algorithm using the Linked Data Benchmark Council’s Social Network (LDBC)
Social Network Benchmark (SNB) dataset. The experiments demonstrate that,
depending on the available hardware, a GPU version of the algorithm can
outperform the CPU version by up to 2.25 times. Using subgroup operations
allows for better scaling. Direction optimization can provide minor speedups
on larger graphs, but it can slightly degrade performance on smaller graphs.
The GPU version does not perform orders of magnitude faster due to the low
computational cost. Without computation, there is no way to perform latency
hiding, resulting in the GPU stalling while waiting for data to arrive, which
leads to underutilization of the GPU.

iv

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2

1.2.1 Research questions . 3

2 Background 5
2.1 DuckDB . 5

2.1.1 Morsel-driven parallelism . 5
2.1.2 DuckPGQ . 5
2.1.3 Compressed sparse row (CSR) . 6
2.1.4 Multi-Source Breadth-First Search 6
2.1.5 IBFS . 7

2.2 Graphics processing unit (GPU) . 8
2.2.1 Programming model . 9

2.2.1.1 GPU programming paradigms 10
2.2.1.2 WebGPU . 11
2.2.1.3 Compute shaders . 12
2.2.1.4 The C++ driver code . 13
2.2.1.5 Features and limitations . 13

2.2.2 Data transfers . 14

3 Related Work 15
3.1 GPUs in database systems . 15

3.1.1 Accelerating GPU operators . 15
3.1.2 Crystal . 15
3.1.3 PG-Strom . 16
3.1.4 HeavyDB (MapD, OmniSciDB) . 17
3.1.5 BlazingSQL / RAPIDS . 18
3.1.6 TQP . 18
3.1.7 HetExchange . 18

3.2 Breadth-First Search . 20
3.2.1 Single Source . 20

i

CONTENTS

3.2.2 Multi-Source . 21
3.2.2.1 MS-PBFS . 23

3.3 BFS on the GPU . 24
3.3.1 IBFS . 24
3.3.2 Fused Probabilistic Breadth-First Search 24
3.3.3 Mix and match A model driven runtime optimization for BFS on GPU 25

3.4 WebGPU usage in science . 25
3.4.1 Security . 25
3.4.2 Portability . 26

4 Design & Implementation 29
4.1 Moving away from MS-BFS . 29
4.2 Implementing IBFS . 30

4.2.1 Set first BSAK . 31
4.2.2 Identify . 31
4.2.3 Expand . 32
4.2.4 Combining all steps . 32

4.3 Parallezation schemes . 33
4.3.1 Naive solutions . 34
4.3.2 Workgroups . 35
4.3.3 Coalesced access . 38

4.3.3.1 Direction switching . 40
4.4 Implementation difference between CUDA and WebGPU 41

5 Evaluation 45
5.1 Experiment setup . 45

5.1.1 Dataset: LDBC Social Network Benchmark 45
5.1.2 Environment . 46

5.2 Comparing approaches . 47
5.3 Comparison of different backends . 51
5.4 Operating systems impact . 53
5.5 Executing in a web browser . 54
5.6 Comparison with DuckPGQ multi-threaded CPU 56
5.7 Comparison with Mix and Match (Belewitte) 58
5.8 Underutilization . 58

6 Future Work 61
6.1 Comparison between GPU APIs . 61
6.2 Extending current approach . 61

6.2.1 Improving workload balance . 61
6.2.2 Computing full path . 61

6.3 Heterogeneous path length computation . 62
6.4 Optimizing query performance of DuckPGQ 62

7 Conclusion 63

References 65

ii

CONTENTS

A Metal shader sources 73
A.1 Set First BSAK Dawn . 73
A.2 Set First BSAK WGPU . 74
A.3 Frontier expansion Dawn . 76
A.4 Frontier expansion WGPU . 79
A.5 Frontier identification Dawn . 82
A.6 Frontier identification WGPU . 86

iii

CONTENTS

iv

List of Figures

2.1 Compressed Sparse Row (CSR) example . 6
2.2 IBFS example . 8
2.3 Two figures about GPU architecture, figure (a) shows the internal workings

of a Tesla V100 GPU. Figure (b) shows a schematic overview of the GPU
architecture, which shows how different components interact with each
other. 9

2.4 On the left, we illustrate the partitioned access for the CPU, while on the
right, we demonstrate the coalesced access, which is optimal for the GPU. . 11

2.5 Shows the possible impact of thread divergence on active threads within
workgroup . 11

3.1 Illustration of tile based execution as shown in (79) 16
3.2 Illustration of GPU direct storage access as shown by NVIDIA (65) 17
3.3 Percentage of vertex exploration that is shared per iteration across 512

concurrent BFSs (86) . 22
3.4 MS-BFS example where ω is 2, note that the expansion of node 2, 3 and 5,

6 are shared . 23

4.1 Showcase of thread divergence within MS-BFS 29
4.2 shows the execution time of the workgroups method using one workgroup

with a varying workgroup size y component ranging from 1 - 32 using powers
of two. 36

4.3 Depicts the data-layout of the workgroups approach where i is the number
of instances. We have i number of search info objects, BSA and BSAK
are laid out consecutively by the number of instances and there are i JFQ
instances also laid out consecutively. 37

4.4 Depicts the data layout for the coalesced access method, where ω denotes
the amount of concurrent searches and x denotes the amount of instances
executed. Note that there is only one search info struct for all ω ∗x searches
and all these searches share one JFQ. 39

5.1 Shows the normalized execution times of all approaches ran on the Laptop
with the NVIDIA 2080 RTX mobile. Execution times are normalized to the
fastest algorithm. 48

v

LIST OF FIGURES

5.2 Shows the normalized execution times of all approaches ran on the Desktop
with the NVIDIA 2060. Execution times are normalized to the fastest
algorithm. 48

5.3 Shows the normalized execution times of all approaches ran on the M1
MacBook with the M1 GPU. Execution times are normalized to the fastest
algorithm. 49

5.4 Shows the execution times of the coalesced approaches ran on the Laptop
with the NVIDIA 2080 RTX mobile. 49

5.5 Shows the execution times of the coalesced approaches ran on the Desktop
with the NVIDIA 2060 RTX mobile. 50

5.6 Shows the normalized execution times of all approaches ran on the M1
MacBook with the M1 GPU. 50

5.7 Shows the normalized execution times of all backends executing the
coalesced bottom up method ran on the laptop with the NVIDIA RTX
2080 mobile. 52

5.8 Shows the normalized execution times of all backends executing the
coalesced bottom up method ran on the desktop running Windows with
the NVIDIA RTX 2060. 52

5.9 Shows the normalized execution times of all backends executing the
coalesced bottom up method ran on the MacBook with the M1 GPU. . . . 53

5.10 Shows the normalized execution times of all backends executing the
coalesced bottom up method ran on the desktop with the NVIDIA RTX
2060 on both Windows 10 and Linux Ubuntu 24.04. 54

5.11 Illustrates the web based benchmarking and correctness testing setup. By
pressing the buttons one can start correctness testing or benchmarking, after
which the results can be downloaded in a JSON format. 55

5.12 Gives a flame chart description of the execution of one run of the IBFS
algorithm in the Firefox browser. Note barely any time is spent in
WebGPU calls and most time is spent in timeouts waiting for results to
be communicated back to the CPU. 55

5.13 Shows the profiler trace for one run of the IBFS algorithm. Note that there
are long pauses between any GPU work being executed. These pauses are
there due to the added overhead of communication between WebGPU and
the CPU, resulting from the browser’s event loop. 55

5.14 Shows the normalized execution times of laptop with the NVIDIA RTX 2080
GPU executing on both WebGPU backends natively and in browser. 56

5.15 Shows the execution times of the M1 MacBook executing the experimental
optimized CPU version used by DuckPGQ and our GPU approach ran on
the M1 GPU. 57

5.16 Shows the execution times of the M1 MacBook executing the experimental
optimized CPU version used by DuckPGQ and our GPU approach on all
systems. 57

5.17 Shows the execution times of Mix and Match papers implementation
(Belewitte) compared to our coalesced access bottom up and workgroups
with one workgroup. 58

vi

List of Tables

2.1 Support table for the different Graphics/Compute APIs, where X shows
support, E means emulated support . 10

5.1 Number of vertices and edges for all scale factors used in the experiments. . 46
5.2 Table depicting the specifications of the machines that ran the experiments 46

vii

LIST OF TABLES

viii

Introduction

1.1 Context

There is an increasing amount of data that needs to be analyzed, and this data is often
highly interconnected, allowing it to be represented as a graph (80). Executing graph
workloads in traditional Relational Database Management Systems (RDBMS) requires
users to write large and complex SQL queries (28). In contrast, Graph Database
Management Systems (GDBMS) offer a more user-friendly approach. This difference
has led to the rise of specialized databases, such as Neo4j (2) and ArangoDB (1). With
the introduction of Property Graph Queries (PGQ) in SQL:2023 (28), formulating graph
queries within an RDBMS has become simpler. DuckPGQ implements the SQL PGQ
within DuckDB.

DuckDB (74) is an in-process, high performance analytical database system known for
its efficient columnar storage (3) and vectorized execution engine (83). DuckPGQ is an
extension for DuckDB that implements the execution of various graph-based operations,
including traversals, shortest path calculations, and pattern matching.

Path-finding, also known as the shortest path problem, is a fundamental operation
in graph databases (73), required for shortest path queries, network analysis, and
recommendation systems. Computing the shortest path in DuckPGQ utilizes the Multi-
Source Breadth-First Search) (MS-BFS) algorithm, a specialization of the Breadth-First
Search (BFS) algorithm designed to efficiently handle multiple source-destination pairs,
as proposed by Then (86). DuckPGQ’s initial implementation of the MS-BFS algorithm
was sequential and utilized a User Defined Function (UDF) (85). The work by Ren (76)
enables the use of a custom operator, which allows for a custom multi-threading model (76).
This work was further continued by Daniël ten Wolde using thread-local CSRs and MS-
PBFS1. These efforts significantly improved the performance of path-finding operations in
DuckPGQ. However, path-finding remains a costly operation for DuckPGQ.

A Graphics Processing Unit (GPU) is available on most systems in the form of a discrete
GPU or an Integrated Graphics Processing Unit (IGPU). The intended use of a GPU is
to render computer graphics, but it has evolved to also accelerate compute-intensive tasks
such as machine learning (23). The GPU is better suited to handle compute-intensive tasks
than the CPU, as it has more cores and higher bandwidth memory. These higher core
counts come at the tradeoff of having less complex cores and a different execution model.
The execution model used by GPUs is Single Instruction Multiple Threads (SIMT), which
executes the same instruction on multiple cores, sacrificing flexibility for higher throughput.

1https://github.com/cwida/duckpgq-extension/tree/pathfindingoperator-two-phase-csr-lock-free

1

1. INTRODUCTION

Research projects that aim to run algorithms on the GPU often utilize NVIDIA’s GPU
programming model named CUDA (18, 49, 56, 95), which limits the algorithm to run only
on NVIDIA hardware. WebGPU is a new GPU programming model originating from a
web specification, intending to bring GPU compute to the web (16). Since it is used for
the web, it should run on all hardware that can run a browser. Thus, a WebGPU-based
algorithm can run on nearly all devices that have a GPU.

Several studies have been conducted on accelerating path-finding algorithms using the
GPU, such as A* (18) and IBFS (56). These studies report a significant performance
improvement when using a GPU to run the algorithm instead of a CPU, indicating that
utilizing a GPU to the path-finding operator in DuckPGQ could be worthwhile.

Accelerating path-finding operations on the GPU has been done before, but integrating
these GPU-accelerated operations into a complete system’s execution engine remains an
open problem, according to Bonifati et al. (20). The primary aim of this thesis is to improve
the efficiency of path-finding operations in DuckPGQ by implementing a GPU-based path-
finding operator using WebGPU. The research involves developing and optimizing a GPU
path-finding algorithm that executes on a multitude of devices, evaluating the performance
of different systems and operating systems. By addressing these objectives, this thesis aims
to provide insight into the performance characteristics of different hardware and when to
offload computation to the GPU.

1.2 Goals

The goal of this thesis is to improve the performance of path-finding in DuckPGQ by
developing a GPU implementation of the MS-BFS path-finding algorithm. DuckPGQ
utilizes this algorithm to compute both the shortest path and its length. These two
objectives produce different outputs, allowing for use-case optimizations. Developing an
algorithm using CUDA would eliminate a significant portion of the DuckDB/DuckPGQ
user base, as it is utilized in various setups, ranging from laptops and desktops to server
hardware. Not all of these devices have access to an NVIDIA GPU, but most have access to
some form of a GPU, ranging from integrated graphics to discrete cards from any vendor.
To support the wide range of hardware used by DuckDB users, WebGPU will be used.
WebGPU enables all GPU and OS combinations that support either DirectX12, Vulkan,
or Metal to execute the GPU-accelerated MS-BFS algorithm.

The secondary goal of this thesis is to provide insight into the performance characteristics
of different GPU hardware. Most GPU acceleration studies focus on performance
insights using server-grade NVIDIA hardware using CUDA. By benchmarking these
multiple systems with varying hardware configurations, we aim to provide insight into the
performance of these algorithms on consumer-grade hardware. Slower hardware can also
exacerbate performance bottlenecks in a GPU implementation, such as synchronization
costs, data transfers, and driver overhead.

By documenting the bottlenecks identified during the development of a WebGPU path-
finding algorithm, we aim to provide insights into the challenges and best practices when
developing GPU-based algorithms.

2

1.2 Goals

1.2.1 Research questions

We aim to answer the following research questions with this thesis

1. How to design a GPU based path-finding algorithm?

2. How can GPUs be used to accelerate the path-finding algorithm in DuckPGQ?

• What are the bottlenecks of a GPU path-finding algorithm?

• When does the GPU provide a speedup compared to a CPU?

• How to optimize a GPU based path-finding algorithm?

3. How do different system configurations influence performance?

• How do performance characteristics differ between integrated and discrete
cards?

• How do performance characteristics differ between Operating Systems?

• How does WebGPU compare to a CUDA implementation?

3

1. INTRODUCTION

4

Background

2.1 DuckDB

DuckDB (74) is an open-source, in-process high-performance analytical database that runs
on hardware ranging from server-grade to consumer-grade hardware. The design goals
are to be fast, reliable, portable, and user-friendly. It uses a columnar storage layout (3)
and vectorized (19) execution model, to allow for high throughput and low-latency query
execution. Being in-process allows DuckDB to avoid data transfers between the host
and database processes, unlike a typical client-server architecture. These properties make
DuckDB ideal for embedded analytics and interactive data analysis. These design choices
simplify deployment and enable better data locality, resulting in faster query evaluation.

DuckDB allows for extensions to add functionality; these extensions are separate
components that provide new data types, functions, or storage formats. These extensions
can be dynamically loaded at runtime by the user.

2.1.1 Morsel-driven parallelism

Traditional databases processes records one tuple at a time, Boncz et al. (19)
popularized vectorized execution. With vectorized execution, multiple tuples are processed
simultaneously, enabling the CPU to apply loop pipelining and other optimizations. By
storing tuples in a columnar layout, it becomes faster to read a subset of a row, but more
costly to update a row (3).

DuckDB employs a technique called morsel-driven parallelism (55) to distribute query
execution efficiently across multiple CPU cores. By partitioning the workload into small
chunks called "morsels", each core can work on one morsel independently. Using these
morsels enables fine-grained parallelism and dynamic load balancing, even on NUMA
machines.

DuckDB’s vectorized query engine treats 2048 tuples as one vector. Morsels have a size
of 60 * 2048 ≈122,000 tuples. It then follows that a thread works on 122,000 tuples at a
time. The scheduler ensures that each thread receives a new morsel as soon as it completes
its current one, providing a constant flow of work and minimizing idle time.

2.1.2 DuckPGQ

DuckPGQ (91) is an extension for DuckDB that brings the SQL:2023 PGQ (28) (Property
Graph Queries) into DuckDB. DuckPGQ supports complex graph queries typically found in
graph databases by utilizing path-finding algorithms to handle shortest paths and cheapest

5

2. BACKGROUND

paths efficiently. Allowing for analytical querying and management of graph data within
a unified SQL-based system.

DuckPGQ utilizes Batched Bellman-Ford (86) for weighted graphs and MS-BFS (86) for
unweighted graphs (i.e., where the weight is 1 for all edges). Combined with the morsel-
driven parallelism model, executing the algorithm on the tuples within a morsel allows users
to benefit from the multiple CPU cores in their system when the workload is sufficiently
large.

2.1.3 Compressed sparse row (CSR)

DuckPGQ uses the Compressed Sparse Row (CSR) data structure to represent graphs.
The CSR data structure consists of two arrays: the edge array and the vertex array. The
vertex array contains the offset into the edge array for each vertex ID, while the edge array
contains the edges for each vertex, as illustrated in Figure 2.1. To associate a tuple with
its vertex, the row ID is used as a dense, sequential identifier.

1

4 3

2

0

2

1

3

3

4

4

4 1

Vertex Array

Edge Array

0 1 2 3 4Position

Figure 2.1: CSR example

To loop over the outgoing edges of a vertex n we use the algorithm depicted in
Algorithm 1 where E is the edge array and V is the vertex array. The benefit of using a
CSR is that we benefit from cache locality, as V [n] and V [n+ 1] are sequential, as well as
the loop over the edge array.

Algorithm 1 Looping over edges of CSR
function outgoingEdges(V, E, n)

edges ← ∅
offset ← V [n]
while offset < V [n+ 1] do

edges ← edges ∪ E[offset]
offset ← offset + 1

return edges

2.1.4 Multi-Source Breadth-First Search

DuckPGQ uses the MS-BFS algorithm as proposed by Then (86). This algorithm
expands upon the single source BFS by executing it on multiple source-destination pairs

6

2.1 DuckDB

concurrently. The number of pairs evaluated by the algorithm at once is denoted by ω.
This factor depends on the maximum bit width of the available Single Instruction Multiple
Data (SIMD) instructions. For example, with AVX-512 (48) we can scale up ω to 512 as
we can execute bit operations of width 512 efficiently. Reducing the number of times the
path-finding algorithm needs to be run by a factor ω. The benefit of using MS-BFS can
be observed when doing path-finding for x sources, where a single source BFS needs to
run x times, where MS-BFS runs ceil(x/ω) times. As long as MS-BFS is not slower than
a factor ω compared to the single-source algorithm, we will see a performance benefit.

The algorithm works like a regular BFS except that the frontier contains the nodes which
are to be visited by any active BFS, effectively only exploring nodes once at each level. We
start by adding ω source nodes to our visit and seen set in their respective BFS instance,
using the search index to determine the bit to set. We then loop over the visit set, where
we mark the nodes corresponding to the outgoing edges as seen. When such a node has
not been seen previously by any search, it is added to the visitNext set, marked as seen,
and the BFS callback function is called with this node, which can be used to construct the
BFS search tree. The algorithm is depicted in Algorithm 2.

Algorithm 2 MS BFS
function MSBFS(V, E, sources, func)

visit ← (00, ..., 0|V |)
seen ← (00, ..., 0|V |)
visitNext ← (00, ..., 0|V |)
for each sourcei ∈ sources do

visit[source]← 1 << i
seen[source]← 1 << i

while visit ̸= ∅ do
for i = 0, ..., |V | − 1 do

if visit[i] = ∅ then continue
for each v ∈ outGoingEdges(V,E, source) do

d← visit[source] & ∼ seen[v]
if d ̸= ∅ then

visitNext[v]← visitNext[v] | d
seen[v]← seen[v] | d
func(v)

visit← visitNext
visitNext← (00, ..., 0|V |)

2.1.5 IBFS

IBFS, as proposed by Liu et al. (56) is a specialization of the MS-BFS algorithm for GPUs.
IBFS aims to minimize branch divergence by moving the visit[i] ̸= ∅ to a separate step.
In the identification step, the algorithm determines the frontier for all concurrent searches
and adds it to a queue, which we refer to as the joint frontier queue. During the expand
step, it propagates the seen state of the frontier to all neighboring nodes. The algorithm

7

2. BACKGROUND

Figure 2.2: IBFS example

alternates between these steps until the joint frontier queue is empty. Once the queue is
empty, it indicates that all traversals have visited all nodes, and the algorithm terminates.

IBFS maintains the status of all nodes in Bitwise Status Arrays (BSA); these arrays
contain the seen status of all nodes for a given iteration. To find the frontiers for the next
iteration, the identify step does an ⊕ (XOR) between the status arrays of the current level
and the last. Any node that differs between two iterations is in the current frontier and is
thus appended to the joint frontier queue (JFQ). This algorithm is depicted in Algorithm 3;
an illustration of the algorithm is shown in Figure 2.2.

Algorithm 3 Top down IBFS
function Identify(V, bsa, bsa+1, jfq)

jfq = ∅
for i = 0, ..., |V | − 1 do

if bsa[i]⊕ bsa+1[i] then
jfq.enqueue(i)

function Expand(V, E, bsa, bsa+1 jfq)
for source ∈ jfq do

for neighbour ∈ outGoingEdges(V,E, source) do
bsa+1[source]← bsa+1[source] ORatomic bsa[neighbour]

function IBFS(V, E, sources, destinations)
bsa← (00, ..., 0|V |)
bsa+1 ← (00, ..., 0|V |)
jfq ← sources
while jfq ̸= ∅ do

bsa← bsa+1

Expand(V, E, bsa, bsa+1, jfq)
Identify(V, bsa, bsa+1, jfq)

2.2 Graphics processing unit (GPU)

The graphics processing unit has become an integral part of today’s computing systems
(71). The modern GPU is more than just a graphics accelerator, as it is also used for
general-purpose compute tasks (GPGPU) (66). Where CPUs are task-parallel latency-

8

2.2 Graphics processing unit (GPU)

(a) GPU SM architecture as described
for the Tesla V100 (NVIDIA). Each SM
contains four execution units, which share
L1 Cache and texture units. Each execution
unit has its own ALUs, scheduler, register
file, instruction cache and dispatch unit.

CPU

Host memory

 Execution queue

SM SM SMSM

 L2 Cache

DMA/PCIE
 Global memory

Control

(b) Schematic overview of GPU device architecture. A
CPU has control over an execution queue from which tasks
get executed on the GPU. Memory transfers to GPU local
memory are performed from CPU main memory using DMA
or PCIe transfers. The L2 cache is shared between streaming
multiprocessors.

Figure 2.3: Two figures about GPU architecture, figure (a) shows the internal workings of
a Tesla V100 GPU. Figure (b) shows a schematic overview of the GPU architecture, which
shows how different components interact with each other.

oriented processors, GPUs are data parallel and throughput-oriented (61). Therefore,
GPUs specialize in data- and compute-intensive tasks, such as image processing,
computational physics, protein folding, graphics, machine learning, and more (58).

To achieve a speedup for these data-parallel tasks, the Single Instruction Multiple
Threads (SIMT) execution model is used. For NVIDIA hardware, the control for multiple
threads is placed in an Streaming Multiprocessor (SM), which is responsible for scheduling,
dispatching, and caching. NVIDIA’s hardware architecture is depicted in Figure 2.3. All
GPUs have a certain number of cores that share the same control logic, which we refer
to as a workgroup for AMD and WebGPU, or a warp for NVIDIA. These groups share a
small amount of shared memory that is significantly faster than global memory, but it is
only accessible by cores within a workgroup.

2.2.1 Programming model

Programmable GPUs were first introduced to give programmers control over the vertex
and fragment stages of the fixed-function pipeline (57). These programmable features
could be addressed by using graphics APIs such as OpenGL (52) or DirectX (60). As
more functionality was exposed to programmers, the GPU began to be used for compute
workloads.

9

2. BACKGROUND

OS OpenGL DirectX Vulkan Metal OpenCL CUDA WebGPU
Windows x x x - x x x
Linux x E x - x x x
MacOS - - E x - - x
Web E - - - - - x

Table 2.1: Support table for the different Graphics/Compute APIs, where X shows support,
E means emulated support

Due to the requirements of GPGPU tasks, the Compute Unified Device Architecture
(CUDA) was launched in 2006 by NVIDIA (66). The goal of CUDA was to make it easier
to use GPUs for general compute tasks by integrating with programming languages such
as C, C++, Fortran, and Python. The major downside is that it only works on NVIDIA
GPUs. CUDA is used extensively by both academia and industry (18, 49, 56, 95). Giving
a biased view of the performance results, as most studies only have metrics for NVIDIA
hardware (49, 56, 95).

OpenCL is the Open Computing Language, which specifies a C-like programming
language for writing GPU compute kernels. The benefit of OpenCL is that it supports
computation on all GPU vendors, including integrated GPUs, and even execution on a
CPU. There are tools to convert CUDA to OpenCL, such as ZLUDA (88), chipStar (25),
and Orochi (6). The downside of using OpenCL is that it is no longer supported on Apple
systems since macOS 10.14 (11). The OS vendors all have their preferences for different
Graphics APIs, as shown in Table 2.1. WebGPU is a new GPU programming model
intended for the web, thus requiring support for all major operating systems and system
configurations.

2.2.1.1 GPU programming paradigms

The programming paradigms between CPU and GPU differ the most in the utilization of
threads and memory accesses. When multithreading on a CPU you have to avoid modifying
data that is in the cache of other cores thus each core works on a seperate part of sequential
data. Where a GPU cache is shared among multiple cores thus we want data access to
be coalesced to best utilize the cache. For example, if four threads want to access eight
elements, a GPU would let thread one access elements 1 and 5, thread two access elements
2 and 6, and so on. While a CPU would have thread one access elements 1 and 2, thread
two accesses elements 3 and 4, and so on. The previous example is illustrated in Figure 2.4.

Each thread in a CPU is capable of branching individually. The control logic of GPU
threads is much more limited, as this logic is shared within a workgroup, which can result
in thread divergence when different threads execute different branches. When a specific
branch is executed, all threads in a workgroup that should not execute that branch become
inactive. These threads are reactivated when the control flow converges. Divergence results
in low GPU utilization, as threads are stalled waiting for the other threads to converge
again. An example of thread divergence is given in Figure 2.5.

10

2.2 Graphics processing unit (GPU)

1 2 43

1 2 43 5 6 87

1 2 43

1 2 43 5 6 87

Threads

Items

Threads

Items

CPU GPU

Figure 2.4: On the left, we illustrate the partitioned access for the CPU, while on the right,
we demonstrate the coalesced access, which is optimal for the GPU.

Figure 2.5: Shows the possible impact of thread divergence on active threads within
workgroup

2.2.1.2 WebGPU

WebGPU (16) was designed efficiently map to post-2014 native GPU APIs, such as
DirectX12 (60), Vulkan (53), and Metal (10). The goal of WebGPU is to bring the power
of GPUs to the web for both rendering and compute. WebGPU is a specification of how
the API should work, while the implementation is left to the browser vendors. Google has
its implementation, used by Chrome, called Dawn. Firefox relies on the open-source Rust
implementation called WGPU. Both implementations support the WebGPU specification
through a C header, which is exposed by the browser through JavaScript. Due to Dawn
and WGPU being developed as a standalone library, one can link their native application
to either WGPU or Dawn as a native graphics/compute API without requiring a browser.
WGPU or Dawn effectively translates the WebGPU calls to the graphics/compute API
that is available natively on the platform.

@group(0)
@binding(0)
var<storage, read_write> to_reduce: array<u32>;

@group(1)
@binding(0)
var<uniform> stride: u32;

11

2. BACKGROUND

@compute
@workgroup_size(32)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {

var first : u32 = global_id.x * (stride * 2);
var second : u32 = first + stride;
to_reduce[first] = to_reduce[first] + to_reduce[second];

}

Source Code 2.1: Example of a WGPU reduce sum kernel

2.2.1.3 Compute shaders

Programming the GPU is done using shaders written in WGSL (Web GPU Shading
Language). An example of such a shader is given in Source Code 2.1. This shader
requires two resources to be provided, the stride and to_reduce array. Both resources
are annotated with both the group and binding annotations. These annotations provide an
index-based grouping, which is used by the driving C code to provide the correct resource.
All resources in the same group must be provided at once; it is not possible to update
individual bindings within a group. For the use case in this example, the to_reduce array
is not changed between invocations of this shader, while the stride value is updated
between invocations, hence it is in a different group. WebGPU optimizes for the order of
changes to these bind groups. WebGPU expects groups with a higher ID to change more
frequently than those with a lower ID.

Both these resources have qualifiers for their storage; the ones used in this example
are uniform, storage, and read_write. These flags signal usage to the driver allowing
for optimizations. The uniform qualifier is a faster read-only type of storage that has a
lower maximum size and no write access. The storage qualifier has a high maximum size
and can have write access. WebGPU validates the flags of a buffer before it is used. For
example, a GPU buffer that is mappable on the CPU cannot be used by a shader.

The main function is annotated with two properties, @compute and @workgroup_size.
The @compute is used to signal that it is an entry point for a compute pipeline.
The @workgroup_size signals how many threads should execute this shader at a time.
The example demonstrates the use of a shorthand for specifying the work group
size. Workgroup size is specified using a 3D vector, so the example is interpreted as
@workgroup_size(32, 1, 1). The work group size signals to the SM how many threads
should be executed in lockstep. A lower workgroup size provides more flexibility but
sacrifices performance as not all workgroup sizes can be efficiently executed by an SM. A
low number of threads can result in threads being underutilized, while too high a number
of threads causes the shader execution to be split up across multiple SM’s.

In the function signature, we see another annotation @builtin, the possible values for
this annotation in compute shader the following:

• local_invocation_id is a vector containing the position of the executing thread
within the current running workgroup.

• local_invocation_index is a linearized index of the invocation’s position within
the wokrgroup

12

2.2 Graphics processing unit (GPU)

• workgroup_id contains the current workgroups position in the compute shader grid.

• num_workgroups contains the size of the dispatch call from the driver side.

2.2.1.4 The C++ driver code

To use the compute shader in Source Code 2.1, we need some driver code that initializes
the resources and instructs the GPU on what to execute. This driver code is shown in
Source Code 2.2. The initialization of resources is not shown in this listing for simplicity.

Submitting commands to the GPU is done using command buffers. These buffers cannot
be created by the user but are made using a command encoder. A command encoder
can start a compute pass or execute copy operations. A compute pass contains zero
or more invocations of a pipeline, where a pipeline describes the shader to be executed
and the types of resources used. The actual invocation of the shader is done using the
function dispatchToWorkgroups. This function takes three arguments: x, y, and z. The
arguments denote the dimensions of the grid of workgroups that we want to dispatch.
Recall that in our example in Source Code 2.1 we have defined our workgroup_size
as 32, which is shorthand for (32, 1, 1). Thus, for 32 invocations of our shader, we
call dispatchToWorkGroup(1, 1, 1) which will be run on one SM with 32 cores in
lockstep (depending on the hardware). To call 64 invocations on two SMs, we call
dispatchToWorkGroup(2, 1, 1). Due to this behavior, developers need to consider how
to partition the work to maximize the use of the hardware.

After the compute pass ends, we encode a copy command to copy the results from the
writable storage buffer to the staging buffer. The staging buffer can be CPU-mapped,
allowing the CPU to read the results of our compute shader.

wgpu::CommandEncoder encoder = device.createCommandEncoder({});
wgpu::ComputePassEncoder compute_pass = encoder.beginComputePass({});
compute_pass.setPipeline(pipeline);
compute_pass.setBindGroup(0, bind_groups[0], 0, nullptr);
compute_pass.setBindGroup(1, bind_groups[1], 0, nullptr);
compute_pass.dispatchWorkgroups(length / 2 / WORKGROUP_SIZE, 1, 1);
compute_pass.end();
compute_pass.release();
encoder.copyBufferToBuffer(storage_buffer, 0, staging_buffer, 0, sizeof(uint32_t) * length);
wgpu::CommandBuffer commands = encoder.finish();
queue.submit(commands);

Source Code 2.2: Simplified example of WebGPU reduce sum kernel driving code in C++

2.2.1.5 Features and limitations

Since WebGPU was designed to work on a multitude of devices with varying performance
characteristics, not all features are available on every device. To allow the use of features
that may not be present, one can request specific features when requesting an Adapter.
These features range from support for timestamping on the GPU to reading compressed
textures. A WebGPU context is aware of a set of limits, such as the maximum buffer
size, the maximum number of bind groups, and the maximum dimension for compute
workgroups. When the WebGPU adapter is requested, you can specify the limits required

13

2. BACKGROUND

for your application to function. If no adapter can satisfy the requirements, none will be
returned.

WGSL has a set of supported types i32, u32, and f32. There is also support for f16, but
this requires the shader-f16 feature to be available. There are additional WGSL limits,
such as the maximum combined byte size of all variables within a shader and the maximum
number of members in a structure type. A complete overview of all these limits can be
found in Section 2.4 of (89).

The usage of synchronization barriers requires a WGSL shader to be uniform in terms of
control flow (meaning no divergence can occur up until the barrier). When a WGSL shader
is transpiled, it is automatically checked for uniformity. The automatic check is overly strict
to ensure uniformity between invocations in the same workgroup. As a developer, we can
ensure that a load will always be uniform (meaning all threads in a workgroup receive the
same value); to enforce this, the workgroupUniformLoad is used.

2.2.2 Data transfers

The initial cost of executing any workload on the GPU is copying the data from the host
to the GPU (32). The cost of copying data means that before we can observe any speedup,
the cost of computation must be higher than the cost of copying to the GPU. Not all
workloads that are suited to GPU computation will see any speedup, as the computational
complexity might be too low.

The limiting factor in copying data to the GPU is the PCIe link that connects the host
system to the GPU. In the case of an integrated GPU, no PCIe link separates the CPU
and the GPU, which means the driver does not have to transmit data over the PCIe link.
When an integrated GPU is sufficiently fast, it can be slower to execute on a discrete
graphics card due to these transfer costs.

14

Related Work

3.1 GPUs in database systems

GPUs offer parallelism and high-bandwidth memory access, making them an attractive
option for accelerating data analytics in database systems. In this section, prior work
using GPUs for database systems is discussed.

3.1.1 Accelerating GPU operators

GPU-accelerated database operators such as Selection (82), Joins (38, 50, 77, 81, 90, 93),
and Sorts (35, 84) work by executing one or multiple GPU kernels to produce the
desired result. An example of this is the work done by He et al. (38), which proposes
using four relational algebra primitives, implemented as GPU kernels, to design join
algorithms. Executing a sequence of such primitives incurs overhead due to the need
to store intermediate results in memory. To address this, Wu et al. (92) developed a
system that automatically fuses separate GPU kernels into a single operator. The fusing
of these kernels reduces PCIe traffic, eliminates intermediate data, frees up GPU memory,
and enables more effective compiler optimizations. The drawback of fusing kernels is that
it increases register pressure, which can reduce the number of concurrently active threads.
The system fuses operators until the required registers go above a certain threshold.

One of the first GPU query co-processing systems was proposed by He et al. (39). They
used the algorithms from He et al. (38) to create a database system called GDB (GPU
Database). Their system utilizes a cost estimation model to determine whether a query
should be executed on the GPU, CPU, or both. Their cost model is based on three factors:
transfer time to the GPU, GPU computation time, and transfer time to the CPU. The
limiting factor in their system is GPU memory; when GPU memory requirements become
too large, the workload is partitioned. They claim that partitioning this workload on the
CPU is a significant performance cost.

The study by He et al. (39) got revisited in 2015 by Rui et al. (78), where it is shown
that even greater performance gains can be obtained by utilizing new hardware features
(such as shuffle instruction). This results in older GPUs not being able to run the modified
algorithms due to a lack of features. They show that compute grew faster than bandwidth,
13 times vs 3 times, respectively.

3.1.2 Crystal

Crystal is a library of data processing primitives that can be composed to implement SQL
queries on the GPU (79). Crystal claims to be faster than its predecessors by abandoning

15

3. RELATED WORK

the co-processor model and keeping the complete working set on the GPU. Crystal requires
a developer to implement SQL queries using its primitives, which currently limits Crystal
to just executing the Sample Star Schema Benchmark (SSB) queries (70).

Traditional GPU query execution executes multiple kernels, which produce and consume
intermediary results. An example of this is a selection query that uses three kernels: the
first to evaluate a predicate and count the number of matches, a second to perform a
sum over all counts, and a third to produce the output vector. This results in multiple
scans over global GPU memory. Crystal aims to avoid these scans by using a Tile-based
execution model. A tile-based execution model expands upon vector-based processing on
the CPU by assigning each thread a vector instead of a single value, creating a tile, as
illustrated in Figure 3.1. Instead of data being stored in global memory, tiles are stored
in shared memory, which provides higher bandwidth and enables synchronization between
threads working on the same tile. After executing on such a tile, the results are written
back to global memory.

Figure 3.1: Illustration of tile based execution as shown in (79)

The primitives provided by Crystal either fetch or store from global memory or operate
on a tile in shared memory. Coordination between blocks is done by combining Crystal’s
primitives with an atomic operation on some global structure. Instead of synchronization
between threads, there is synchronization between each tile, which significantly reduces
overhead.

Crystal demonstrated that running queries on the GPU, compared to the CPU, yields
roughly 1.5 times the bandwidth ratio as a speedup. The cost ratio of renting a top-end
GPU compared to a CPU is approximately six times as expensive, while the performance
gap is about 25x. According to their evaluation, executing queries on a GPU could not
only be faster but also more cost-efficient. Future work considered by Crystal includes
multi-GPU execution, compression, handling strings, and non-scalar data types.

3.1.3 PG-Strom

PG-Strom is an extension for PostgreSQL which provides GPU-accelerated operators
for WHERE, JOIN, SORT, and GROUP BY (45). Where applicable, these operators provide
transparent speedups for PostgreSQL users. A hybrid CPU/GPU query plan is used to
ensure that operators are executed on the fastest hardware available.

16

3.1 GPUs in database systems

GPUDirect storage enables GPUs to access NVMe SSDs directly without CPU
intervention, as shown in Figure 3.2. PG-Strom utilizes GPUDirect storage to implement
“GPU Direct SQL” execution. During normal execution of analytical workloads, the WHERE
clause in filtering, joins, or groupings limits the size of the output set. To filter the input
set, a significant amount of irrelevant data needs to be transferred from disk to RAM, to
the GPU, and back to RAM. GPU Direct SQL execution changes this flow to load data
blocks directly to the GPU. Allowing the GPU to filter the input set and move the relevant
data back to the CPU to execute more complex SQL operators (44). GPU Direct SQL is
essentially using the GPU as a data preprocessor for CPU execution. Using GPU Direct
storage is only supported on a limited set of systems due to the software and hardware
requirements.

Figure 3.2: Illustration of GPU direct storage access as shown by NVIDIA (65)

3.1.4 HeavyDB (MapD, OmniSciDB)

MapD was introduced by Mostak (62) to perform data processing and visualization on
the GPU, avoiding the need for data reformatting and data transfers in and out of GPU
memory. MapD is a hybrid multi-CPU/GPU columnar relational database with a three-
level memory model. The three-level memory model is arranged in a pyramid, where each
successive level of memory is slower but has a larger capacity. The fastest and smallest
level is GPU memory, followed by CPU memory, and the last level is data on disk. The
unit of memory management in MapD is a chunk, which is a user-definable subsection of
a column. The size of the chunk determines the rate at which a query can be partitioned
across multiple devices; smaller chunks allow for better partitioning but result in higher
overhead.

Mostak (62) claims that previous GPU database research has only seen modest
speedups due to data being transferred mindlessly to and from GPU memory, resulting in
disproportionate time spent on transfers over the PCIe bus. MapD aims to minimize this
by only sending compressed bitmaps, index maps, or post-filtered results across the PCIe
bus.

Later, MapD was rebranded to OmniSciDB (41), during which it gained support for

17

3. RELATED WORK

other architectures, as well as a JIT query compilation framework using LLVM. For CPU
code generation, LLVM MCJIT is used; for GPU, NVIDIA PTX is generated instead. The
PTX code is handed to the CUDA driver to produce an executable kernel. This code
generation is combined with a cache for both the GPU and CPU to avoid regenerating the
same code too often.

OmniSciDB was then rebranded to HeavyDB in 2022 (42). The rebrand into
HeavyDB sparked the creation of new commercial products utilizing HeavyDB, such as
HeavyImmerse, HeavyRender, HeavyIQ, HeavyConnect, and HeavyML. Where they claim
to be 50x faster than Snowflake and being able to query 10 billion rows in less than
100ms (43)

3.1.5 BlazingSQL / RAPIDS

BlazingSQL (17) is a GPU-accelerated SQL engine built on top of the RAPIDS (75)
ecosystem. RAPIDS is an open-source GPU-acceleration platform for large-scale data
analytics and machine learning, introduced by NVIDIA (64). It consists of GPU-
accelerated Python packages, including cuDF, cuML, and cuGraph. These packages
help speed up existing data science tooling by either serving as a drop-in replacement or
providing transparent integration. The GPU acceleration for these packages is implemented
using CUDA and is compatible with NVIDIA GPUs on both Linux and Windows, utilizing
WSL 2.0 (Windows Subsystem for Linux).

These data science libraries also offer GPU-accelerated UDFs and UDAFs (user-defined
aggregate functions). The implementation of UDAF suffers from a large number of kernel
launches. Yogatama et al. (94) propose switching to a block-oriented approach, as seen
in Shanbhag et al. (79), which reduces the number of kernel invocations and lowers the
amount of synchronization required.

3.1.6 TQP

TQP is a system developed by He et al. (40) which transforms SQL queries into tensor
programs and executes them in a tensor computation runtime such as PyTorch. TQP
can run the complete TPC-H benchmark on a wide range of hardware due to its use of
portable and optimized tensor routines. They claim that TQP’s performance is comparable
or superior to that of specialized CPU and GPU query processing systems.

The workflow consists of two phases: compilation and execution. First, an input query
is transformed into an executable tensor program. Then, during execution, the data is
converted into tensors that are fed into the compiled program to generate the query result.
The compilation step allows TQP to apply operator fusion to minimize data materialization
across operators. TQP uses either interpreted PyTorch or compiled TorchScript to execute
the tensor programs.

3.1.7 HetExchange

Query parallelization techniques used by analytical database engines are designed for
homogeneous multicore servers. The state-of-the-art approach utilizes the Exchange
framework, as proposed by Volcano (36), to enable parallelization. By using the Exchange
operators injected into a query plan, it is possible to achieve horizontal, vertical, and

18

3.1 GPUs in database systems

bushy parallelism. HetExchange, as proposed by Chrysogelos et al. (26) improves upon
Exchange by encapsulating the heterogeneity of multi-CPU and GPU systems, providing
a uniform interface to connect producers and consumers in a pipelined plan together with
memory infrastructure. HetExchange extends the Exchange framework by adding control
flow operators and data flow operators.

The control flow operators enable efficient parallelization, allowing for seamless
movement of execution between the CPU and GPU, and vice versa. The control flow
operators are the following:

• Device crossing operators enable pipelining across heterogenoeous hardware.
Apart from these operators, all other operators are unaware of hardware
heterogeneity and execute on a single device. HetExchange has two of these device
crossing operators being: gpu2cpu and cpu2gpu. These operators are responsible
for copying data between the CPU and GPU.

• The router operator encapsulates parallelism across multiple processors. Vertical
parallelism is achieved by creating an asynchronous queue between a producer and
a consumer. Horizontal parallelism is achieved by instantiating multiple instances of
consumers and producers. Each router’s parent and child are instantiated numerous
times to achieve the required degree of parallelism for each device type.

Combining these operators provides all the necessary control flow manipulations required
for all three forms of parallelism across multiple heterogeneous compute units. Device
crossing operators are placed between heterogeneous producers and consumers to move
execution across device types. Routers are placed at strategic points before device crossing
operators to parallelize query plans.

To handle the availability of data in a heterogeneous system, data flow operators are used.
By placing these operators after routers, it is ensured that data is in the correct form and
available on the executing node. The data flow operators available are the following:

• The mem-move operator is responsible for ensuring that data is transferred and
accessible before its client, the consumer, is executed. Encapsulating the logic to drive
the transfers over the different interconnects, as well as to make decisions based on
topology and the initial location of the data. When a transfer completes, it pushes
the block to the consumer.

• The pack and unpack operator reduces the cost of moving data. It packs and
unpacks tuples into blocks. Tuples can be packed to create blocks with specific
properties. When a block is consumed by a GPU operator, properties such as
coalesced access can be enforced.

Query execution on heterogeneous hardware has four fundamental traits: target device,
degree of parallelism, data locality, and data packing. HetExchange gives a query optimizer
the tools to influence all four. The device crossing operators change the target device, the
router changes the degree of parallelism, the mem-move operator changes the data locality,
and the pack/unpack operator changes the packing. HetExchange can be used for both
interpreted and compiled engines. The work by Chrysogelos et al. (26) integrates with

19

3. RELATED WORK

Proteus (27) a compiled database engine. The generated physical plan is extended using
the HetExchange operators to create a heterogeneous-aware plan. Based on this extended
plan, code is generated to execute the query. These changes result in a 2 - 10x improvement
over CPU and GPU-based alternatives.

HetExchange provides three key insights into the design of heterogeneous database
systems. Due to the vast design space that a heterogeneous system provides, separating
concerns helps manage complexity. HetExchange can be used in both vectorized execution
models and compiled execution models. However, it lends itself more towards code
generation infrastructure as it allows the system to have a single unified code base of
pipelined operators. The compiler sometimes knows better; writing code to be executed
on the GPU must account for thread block size, thread divergence, and atomic operations,
among others. Implementing a code-generating engine that has to fine-tune all these
device-specific numbers is a burden for a developer.

3.2 Breadth-First Search

3.2.1 Single Source

BFS is a fundamental building block in many other graph algorithms, commonly used to
test for connectivity or compute the single-source shortest path in an unweighted graph.
The algorithm operates by maintaining two key data structures: a visited set to track
nodes that have already been explored, and a frontier queue that stores the nodes to be
examined in the upcoming iteration. Initially, the frontier contains only the source node.
In each subsequent iteration, the algorithm finds all unvisited neighbors of the current
frontier nodes, marks them as visited, and appends them to the next frontier. This process
continues until the frontier remains empty. BFS guarantees that each node is expanded
exactly once, in order of increasing distance from the source node.

Due to a lack of locality, graph applications are often memory-bound on shared-memory
systems or communication-bound on clusters (13). Due to the lack of computational
complexity in BFS, these issues are exacerbated (13). Nevertheless, BFS has been
extensively optimized (13) and adapted for various computational environments, with
parallel (12, 54), distributed (21), and GPU-based (31, 59) implementations to enhance
performance on large-scale graphs.

In standard BFS, the search begins from a single source node and explores its neighbors
level by level, a process known as top-down. Beamer et al. (13) shows that there are cases
where performing a bottom-up iteration is faster than the traditional top-down approach.
A bottom-up iteration is performed by checking all unvisited nodes and determining if
any of their incoming edges have been encountered. Performing a bottom-up iteration can
reduce the number of edges that need to be checked when the frontier is larger than the
unvisited set of nodes, depending on the graph’s structure (13). Deciding when to switch
between top-down and bottom-up is done using a heuristic. Beamer et al. (13) shows that
using direction switching a speedup of 2.5x - 8x can be gained.

Parallel and distributed BFS implementations utilize multiple threads or machines to
process the same graph. This requires coordination and synchronization between these
workers. Work is often distributed using a partition scheme where each worker expands
a subset of the graph. A naive way to partition this on a distributed system is a 1D

20

3.2 Breadth-First Search

partition where each worker owns n/|V | vertices as described by (21). Beamer et al. (14)
use a simple 2D partition scheme on an adjacency matrix to partition a matrix A into
R× C sub-matrices, which are assigned to a worker. Buluç and Madduri (22) shows that
this does not scale up to the extreme scale of supercomputers, due to communication and
synchronization overhead. To scale up to supercomputers, they propose using a Bitmap-
Based Sparse Matrix representation instead of adjacency matrices or a CSR to reduce the
memory footprint. This approach also reorders the vertex IDs for better load balancing.
A block-cyclic distribution is used to reduce the required communication.

3.2.2 Multi-Source

Most efforts to improve the speed of a BFS were done using parallel methods (21, 54).
Parallel methods focus on utilizing multiple threads or machines to accelerate a single BFS
over a graph. Then (86) proposed to use Multi-Source Breadth-First search (MS-BFS)
when an algorithm executes more than one BFS on the same graph. An example of such a
problem is computing the closeness centrality for a graph. This algorithm executes a BFS
for each vertex in the graph as shown in Algorithm 4.

Algorithm 4 Simplified closeness centrality for unweighted graphs with a single connected
component without normalization

function ClosenessCentrality(Graph)
for v ∈ Graph do

for (x, distance) ∈ bfs(v) do
Sum[v] += distance

A small-world network is a graph where the typical distance between two nodes grows
proportionally to the logarithm of the network’s node count. Many real-world networks
are classified as small-world networks, such as social networks. MS-BFS accelerates BFS in
the case of multiple searches by leveraging two key characteristics of small-world networks.
First, the distance between any two vertices is typically very short, even in large graphs.
Second, the number of vertices discovered in each iteration increases rapidly. As a result,
most vertices are discovered in just a few iterations, making it likely that concurrent BFS
processes will overlap in terms of the vertices they explore during the same iteration. MS-
BFS capitalizes on this overlap by sharing the access cost of the edges for multiple BFSs.
The cost of accessing these edges is thus amortized over all shared vertices in an iteration.
Then (86) shows that for the SNB LDBC (8) graph with 1 million vertices, a significant
amount of vertices are shared in the 3rd and 4th iteration, as seen in Figure 3.3.

The algorithm proposed by Then (86) performs multiple BFS traversals on the same
graph at the same time to optimize performance for single-server, in-memory processing.
MS-BFS employs bitsets of size ω to represent the state of concurrent BFSs. It uses three
arrays visit, seen, and visitNext, each of size |V |, where each array entry is a bitset of
size ω.

The algorithm begins by initializing the seen and visit arrays by setting the seen bit
using its respective search index for all searches up to ω. Both seen and visit have their
bitset set by the respective index of that source. The algorithm then scans the visit array
for any active vertices, where non-zero entries represent vertices that are currently active

21

3. RELATED WORK

Figure 3.3: Percentage of vertex exploration that is shared per iteration across 512 concurrent
BFSs (86)

in one or more searches. The outgoing edges of the active vertices should remain active in
the next iteration; thus, we loop over the outgoing edges and check if this outgoing edge
has not yet been seen in any active search in the source vertex. If this is the case, we mark
the vertex in both the seen and the visitNext with the searches for which this outgoing
edge should be active. Finally, we switch the visit and the visitNext arrays and clear
the visitNext. These iterations continue until there are no remaining active bitsets in
the visit array. A visual illustration of this algorithm is shown in Figure 3.4, and a code
listing is provided in Algorithm 5.

Algorithm 5 MS-BFS using bit operations(86)
for source, index ∈ Sources do

seen[source] ← 1 << index
visit[source] ← 1 << index

while visit ̸= ∅ do
for i = 1, ..., |V | do

if visit[i] = ∅ then
continue

for n ∈ neighbors[i] do
state ← visit[i] & (∼ seen[n])
if state ̸= ∅ then

visitNext[n] ← visitNext[n] | state
seen[n] ← seen[n] | state

visit ← visitNext
reset visitNext

Cache usage can be further improved by utilizing a technique called aggregated neighbor
processing (ANP). Instead of updating the seen state of outgoing edges in the inner loop,

22

3.2 Breadth-First Search

1

2 3

4

65

S1 S2

1

2

3

4

5

6

S1 S2

Visit Seen

1

2 3

4

65

S1 S2

1

2

3

4

5

6

S1 S2

Visit Seen

1

2 3

4

65

S1 S2

1

2

3

4

5

6

S1 S2

Visit Seen

1

2 3

4

65

S1 S2

1

2

3

4

5

6

S1 S2

Visit Seen

Initial Iteration 1 Iteration 2 Done

Figure 3.4: MS-BFS example where ω is 2, note that the expansion of node 2, 3 and 5, 6
are shared

only the visitNext array is updated. A second loop over visitNext is used to mask out
any search that has already been seen by this search, updates the seen array and calls
the BFS traversal callback. All accesses in the scan over visitNext are sequential, which
improves the utilization of the low-level cache. This optimization improves the runtime
of MS-BFS by 60-110% (86). Additionally, the use of direction switching in MS-BFS was
tested, which provided a further improvement of up to 30%, significantly lower than the
2.5-8.5x claimed by Beamer et al. (13).

3.2.2.1 MS-PBFS

Since MS-BFS is limited to sequential execution, the only way to saturate a multicore
system is to run one instance of the algorithm per core. Scaling this way requires a large
number of source nodes to run efficiently. To overcome this limitation Kaufmann et al. (51)
proposes an extension of the algorithm called Multi-Source Parallel Breadth-First search
(MS-PBFS), which aims to speed up a single instance of MS-BFS using multiple cores.

The parallelization strategy behind MS-PBFS involves partitioning the vertices into a
disjunct subset and processing them in parallel. The top-down traversal of MS-PBFS is
based upon the ANP method from MS-BFS, which results in two separate loops. These two
loops are divided into two phases for MS-PBFS, with a barrier separating them. Atomic
operations are required in the first loop, as the neighbors of active vertices are used to set
the next array, which results in random writes. The second phase does not require any
atomic operations, as the writes are only to the vertex that is currently being processed,
which means no synchronization between threads is needed. With the bottom-up version
of MS-PBFS, there is only one phase, as writes are always directed to the vertex being
processed, and reads from neighbors are simply random reads.

MS-PBFS divides the graph’s vertices into partitions of at least 256 vertices. With
partitions smaller than 256 vertices Kaufmann et al. (51) claim they encounter scheduling
overhead. Each worker has its own queue of partitions, assigned using a round-robin
scheduler, which means there is at most a one-task difference between workers. When a
worker finishes, they can steal work from other workers. When all the queues are exhausted,
the main thread is signaled, and the next phase or iteration can start.

The partitions are distributed based on the number of outgoing edges in a round-robin
fashion. The highest out-degree vertex is placed at the start of the first task for worker
one. The second-highest out-degree vertex is at the beginning of worker two, and so on.

23

3. RELATED WORK

With this approach, each worker has approximately the same amount of work. Because
the highest-degree vertices are assigned first, the most expansive tasks will be executed
first, resulting in less wait time when no more work stealing is possible.

3.3 BFS on the GPU

3.3.1 IBFS

Iterative Breadth-First Search (IBFS) (56) is a variant of MS-BFS, specifically designed
for GPUs. IBFS uses three unique techniques: joint traversal, GroupBy, and bitwise-
optimizations. The data structures used by IBFS are shared among all ω BFS instances.
The Joint Status Arrays (JSA) store the lowest iteration number at which a vertex was
encountered for any given search. The Joint Frontier Queue (JFQ) contains the frontiers
of all concurrent BFS instances.

IBFS consists of two distinct steps: identify and expand. In the identify step, the JFQ
is generated. A scan over all vertices is used to check if there is a difference between the
current JSA and the previous JSA; if so, that vertex is added to the JFQ. In the expand
step, each outgoing edge of all entries in the JFQ is traversed, and the lowest iteration
number for that edge is stored in the JSA for this iteration.

Ideally, the best performance for IBFS would be achieved by running all instances of BFS
concurrently without requiring GroupBy rules. However, GPU resources limit the number
of concurrent BFS instances that can be run in a single instance of IBFS. To optimize
sharing IBFS groups, source vertices with similar outdegrees, which improves the sharing
ratio up to 10 times.

To further optimize, the JSA is replaced with a Bitwise Status Array (BSA) that contains
a bitset of size ω. The bitset is used to store the seen state of a vertex given an index. The
bitset enables the algorithm to use a binary OR operation instead of a minimum to set the
status arrays. The speed up from this approach ranges from 11x to 36x as claimed by Liu
et al. (56).

3.3.2 Fused Probabilistic Breadth-First Search

Probabilistic Breadth-First traversals (BPT) are used in network science and graph
machine learning applications. Instead of adding all unseen neighbors to the frontier,
BPT only adds the neighbor with a given probability. Neff et al. (63) shows that the
significant sampling complexity for these traversals makes it hard to parallelize efficiently.
They present a new algorithm to fuse BPTs by combining separate traversals executing
on distributed multi-GPU systems. The fusing of different BPT traversals is based upon
the work of Then (86) and Liu et al. (56). Due to the probabilistic nature of a BPT, no
direction-switching or early-abort techniques can be used to speed up traversal, as this
would compromise correctness.

When working with heterogeneous CPU-GPU systems, Neff et al. (63) found that
performance was lacking compared to a GPU-only setup. CPU workers caused workload
starvation at the end of an iteration. Their CPU implementation could be up to 16 times
slower than the GPU implementation. To solve this, they execute microbenchmarks to
dynamically adjust the partition size for the CPU workers based on their results. With

24

3.4 WebGPU usage in science

large graphs, this could leave the CPU with no work. To solve this, they group CPU
workers in clusters that share L3 cache regions to collaborate on one BPT group. To
further speed up the execution, they apply vertex reordering to ensure the vertices with a
high out-degree are spread evenly among workers.

3.3.3 Mix and match A model driven runtime optimization for BFS on
GPU

Deciding which BFS variant to execute can heavily impact performance. Picking the
BFS variant that performs best on a specific graph remains challenging to predict.
Verstraaten et al. (87) proposes using a machine learning model to select from 5 GPU
BFS implementations dynamically. Their five implementations are Edge List, Reverse
Edge List, Vertex Pull, Vertex Push, and Vertex Push Warp.

The Edge list methods launch one CUDA thread per edge to check if the depth of the
origin vertex equals the current BFS level. The level of the destination vertex is then
updated to the minimum of its current depth and the BFS level plus one. Vertex Push &
Vertex Pull use a vertex-centric parallelization scheme; for each vertex, one CUDA thread
is launched. The push method is comparable to the top-down approach (13), and the pull
method is similar to the bottom-up approach (13). For the Vertex Push Warp method,
the concept of virtual warps (46) is employed to mitigate the workload imbalance between
threads.

Verstraaten et al. (87) claim that instead of relying on heuristics to pick a variation, as
done in (13, 56, 86), instead the choice of algorithm should be left to a predictive model.
The features used by their predictive model include: Graph size, Frontier size, Discovered
vertex count, and degree distribution. Using this model, they claim that a 40% performance
improvement can be obtained compared to the fastest non-switching implementation. The
speed-up could be even greater in practical applications, as it is not guaranteed that the
optimal non-switching implementation is used.

3.4 WebGPU usage in science

3.4.1 Security

WebGPU provides more access to GPU resources compared to the previous standard for
GPU acceleration on the web (WebGL)(30). Providing more access results in a larger
attack surface for malicious software, allowing untrusted web content to be passed to the
GPU driver stack, which is optimized for performance rather than security. WebGPU
cannot be run in a tightly sandboxed process, worsening the problem. The work by
Ferguson et al. (30) showcases this using a GPU cache attack to fingerprint devices.
Fingerprinting on the web is used to identify a user uniquely. The key components for
identifying a user include device attributes, cookies, browser, and plugins.

The attack vector used by Ferguson et al. (30) uses the GPU’s internal L3 cache. Intel’s
integrated GPUs have three levels of cache, as well as an LLC shared with the CPU. The
internal L3 cache is shared across all sub-slices within the slice and supports caching all
memory accesses. Their method, Compute Spy, allows monitoring of the L3 cache from a
compute context. By executing a compute shader and atomically incrementing a counter in

25

3. RELATED WORK

one set of workgroups while another workgroup with one thread reads the counter. Using
these counter values, they were able to identify which integrated GPU the website is visited
on. To mitigate this, they propose partitioning the L3 cache between security domains for
different processes.

The work by Bernhard et al. (15) raises attention for attack vectors in the processing of
WebGPU shaders. They built a fuzzer for WGSL shaders, which has been used to find 39
bugs in the two WGSL transpilers Tint (Dawn) and Naga (WGPU).

3.4.2 Portability

WebGPU enables users to target GPU capabilities in a portable manner, making it
an attractive target for development. The work by Paarmann (72) illustrates this by
implementing a WebGPU backend for the Futhark language. Futhark is a functional array
programming language with the goal of compiling to efficient parallel code.

Directly translating these Futhark kernels to WebGPU is not as straightforward due to
WebGPU’s limitations. WGSL explicitly deviates from the typical IEEE-754 (47) floating-
point standard, as it does not require support for exceptions. Any expression resulting in
a floating-point exceptionsuch as, infinity or NaN is allowed to produce incorrect results.
Implementations of WGSL may assume that no exceptions are present at runtime. Any
expressions that are evaluated before runtime, such as constant expressions resulting in
any of floating-point exceptions, should throw an error during shader creation.

They also note the following limitations to support Futharks concepts in WebGPU.

• Primitive types

– f64, i64, u64 types

– Built-in arithmetic and conversion functions

– Full support floating point exceptions

• In-kernel error handling

• Atomic for types other than 32-bit integers

• Uniform control flow analysis violations

• Memory fences

The benchmarks run by Paarmann (72) show that CUDA is 46 times faster than their
WebGPU implementation for a mapping operation. They do state that their backend
is not production-ready. Futhark programs that contain fences are often correct but are
not deterministic. Some correct Futhark programs produce internal compiler issues, while
others create a WGSL shader that does not compile.

Han et al. (37) demonstrates that by dynamically mapping WebGL to WebGPU, a
significant performance increase can be achieved. They create an intermediate JavaScript
layer to perform the mapping between WebGL and WebGPU. Their motivation is to avoid
manually migrating old WebGL code to WebGPU, as this is a labor-intensive task. With
this approach, they see a decrease in frame times compared to running the code in WebGL.
Their approach can accelerate existing WebGL programs up to five times.

26

3.4 WebGPU usage in science

The work by Chen et al. (24) brings LLM inference to web clients using WebGPU. They
propose two innovations: buffer reuse strategies that reduce the overhead associated with
resource preparation and an asynchronous pipeline that decouples resource preparation
from GPU execution, enabling parallelized computation with deferred result fetching. They
implement these optimizations on top of WebLLM (4). With these optimizations, they see
up to a 3x performance increase. Additionally, they use up to 20% less GPU memory.

27

3. RELATED WORK

28

Design & Implementation

The goal of this project is to design and implement a GPU-based path-finding algorithm
using WebGPU. We utilize WebGPU to support a wide range of graphics hardware, from
integrated GPUs to discrete GPUs. We implement our algorithms in both CUDA and
WebGPU, allowing us to compare WebGPU’s performance with CUDA. We expect that
a GPU implementation outperforms the current DuckPGQ implementation. This chapter
details how we built a library that performs path-finding operations using CUDA, WGPU,
and Dawn. First, we will discuss why we do not implement the CPU-optimized MS-BFS
on the GPU. We then discuss some of the parallelization schemes we have tried, and finally,
we discuss the implementation differences between WebGPU and CUDA.

4.1 Moving away from MS-BFS

The current implementation used by DuckPGQ is based on MS-BFS (86). MS-BFS
enables DuckPGQ to execute searches from multiple sources within a single traversal of the
graph. Porting MS-BFS to the GPU using a thread-per-vertex parallelization scheme would
underperform due to thread divergence. The divergence occurs within the if branch of
the for all vertices loop, causing the entire workgroup to stall until the threads currently
expanding are finished. This problem is further exacerbated by the cost of iterating over
all neighbors, as each thread works on a different set of neighbors. As a result, all threads
will wait for the longest-running loop to complete. An illustration of this top-level thread
divergence in MS-BFS is shown in Figure 4.1. A GPU would not perform to its best ability
when executing MS-BFS due to this thread divergence, so instead, we shift our focus and
optimization efforts towards IBFS.

Figure 4.1: Showcase of thread divergence within MS-BFS

Recall that IBFS is a specialized version of MS-BFS (56) optimized for the GPU, which

29

4. DESIGN & IMPLEMENTATION

executes ω BFSs concurrently. IBFS (Algorithm 3) splits MS-BFS into two steps identify
and expand. In the identify step, the frontier is identified and appended to the JFQ. The
cost of divergence is minimized as the work to append a vertex to the queue is significantly
lower than traversing all outgoing edges. In the expand step, we loop over the queue to
expand each frontier node. This expansion is done by propagating the seen state of the
frontier node to all outgoing edges. The expand step still suffers from thread divergence
as not all vertices have the same number of outgoing edges.

IBFS with bitwise operations requires two data structures, the BSA (Bitwise Status Array)
and the JFQ (Joint Frontier Queue). We need to store two instances of the BSA array, one
for the previous iteration and one for the current iteration. The size of the BSA array is
determined by |V | and the size of the bitset ω. The length of the JFQ array is bound by
the length of the V array, as at most all vertices can be in the frontier.

4.2 Implementing IBFS

We implement our IBFS version as a library to integrate our efforts with correctness testing,
benchmarking, and possibly DuckPGQ. Our implementation is limited to unweighted path
length. The signature of our library is depicted in Source Code 4.1. We provide both a
WebGPU implementation and a reference CUDA implementation for this library. Selecting
a backend can be done at compile time using the cmake flag -DBACKEND=CUDA|WGPU|DAWN.
A web version can also be compiled using -DBACKEND=EMDAWNWEBGPU, although this requires
additional JavaScript glue code to be used.

struct IterativeLengthResult {
uint32_t src;
uint32_t dst;
uint32_t length;

};
struct PathFindingRequest {

uint32_t *src;
uint32_t *dst;
uint64_t length;

};
struct CSR {

uint32_t *v;
uint32_t *e;
uint64_t v_length;
uint64_t e_length;

};
std::vector<IterativeLengthResult> iterative_length(PathFindingRequest request, CSR csr);

Source Code 4.1: Interface implemented by our library
Before a kernel can be executed on the GPU, its resources must be allocated. We make

a distinction between resources that require data from the CPU and GPU local resources.
The GPU local resources are the JFQ, BSA, BSAK, and path_lengths; all of these are
allocated as zero-initialized memory. The CSR, sources, and destinations need to be
transferred from CPU to GPU memory over the PCIe link. The data that needs to be
pushed to the GPU is thus limited to the total size of CSR, sources, and destinations.
The only data that needs to be transferred back to the CPU is the path_lengths array.

30

4.2 Implementing IBFS

Our IBFS implementation uses three GPU kernels to execute the algorithm. Both
identify and expand are implemented in a separate kernel, and the initial state of the
algorithm is set using a third kernel. The implementation of these kernels varies depending
on which parallelization scheme is used, which we discuss in Section 4.3. We provide a
pseudocode version of all three kernels in the following sections. These pseudocode versions
need to be modified to fit a parallelization scheme.

4.2.1 Set first BSAK

The initial step of the algorithm is to set the seen state of all ω sources in BSAK. A
kernel is used to set the initial state, thereby avoiding multiple small transfers from the
CPU to the GPU. Pseudocode for this kernel is given in Algorithm 6, where threadIndex
depends on the parallelization scheme used. The atomic OR is used because there is no
requirement for sources to be unique. When two non-unique sources are set at the same
time, an update could get lost without the atomic operation.

Algorithm 6 Pseudocode of set first bsak kernel
function SetFirstBSAK(sources, bsak)

atomicOr(&bsak[sources[threadIndex]], 1 << threadIndex)

4.2.2 Identify

The original version of IBFS only traverses the graph in a breadth-first manner. As
we compute the path length for multiple source-destination pairs, we need to check if
a destination has been reached. In the identify step, each node is appended to the search
exactly once for each search. We use this observation to extend the identify step to write
out the path length when the destination is reached. After the destination of a search
is reached, the search should become inactive. To accomplish this, we use a mask to
determine which searches are still active. By masking out the bits in the difference found
in the identify step, we avoid further expanding inactive searches.

The inner loop shown on line 8 in Algorithm 7 uses bitwise operations to gain information
about which search is active. Counting the one bits tells us how many searches have first
discovered this vertex. We can then check for each search if it is the destination for that
search. On line 9, we count the trailing zeros in the current diff. Counting the number
of trailing zeros gives us the index of the search. We then turn off that bit in the diff and
use the index to check if this vertex was the destination for that search. If this node is the
destination, we modify our mask and write out the iteration number as the path length.

These bitwise operations are available in WebGPU through WGSL functions of the same
name. CUDA has the __popc compiler intrinsic, which returns the number of one bits in a
variable. Finding the trailing zeros in CUDA can be done using the __clz intrinsic, which
returns the number of leading zeros. By subtracting 31 from the result of __clz, we have
the index for the search.

31

4. DESIGN & IMPLEMENTATION

Algorithm 7 Pseudocode of identify kernel
1: function identify(jfq, destinations, bsak, bsa, mask, lengths, iteration)
2: for each vertex ∈ V in parallel do
3: diff← bsak[vertex]⊕ bsa[vertex]
4: if diff == 0 then continue
5: bsak[vertex] ← bsak[vertex] | bsa[vertex]
6: jfq.enqueue(vertex)
7: activeSearches ← countOneBits(diff)
8: for x ∈ activeSearches do
9: index ← countTrailingZeros(diff)

10: diff ← diff ⊕ (1 << index)
11: if destinations[index] != vertex then continue
12: lengths[index] ← iteration
13: mask ← mask ⊕ (1 << index)

4.2.3 Expand

We leave the expand step unmodified as compared to the IBFS implementation (56). Do
note that we use a CSR to represent our graph, so our accesses over E are sequential. To
find the outgoing edges of a given vertex, we do two lookups in the V array, one for V [v]
and one for V [v+1]. These lookups give us the offset into the E array for the starting edge
of v and the last edge of v. The pseudocode for the expand kernel is shown in Algorithm 8.

Algorithm 8 Pseudocode of expand kernel
function expand(jfq, V, E, bsak, bsa)

for each vertex ∈ jfq in parallel do
first ← V [vertex]
last ← V [vertex + 1]
val = bsa[vertex]
for id ∈ (first...last) do

atomicOr(bsak[E[id]], val)

4.2.4 Combining all steps

The driver program is responsible for calling the kernels, managing GPU resources, and
fetching the output from GPU memory. In our library, this driver program is the
implementation of our iterative_length function. The number of source-destination
pairs passed to the driver program can exceed the number of concurrent searches supported
by our implementation of IBFS. Due to the limited number of concurrent searches in
IBFS, we process the source-destination pairs in batches. By batching the execution of the
algorithm, we avoid having to delete and recreate GPU resources. After each iteration,
we swap BSA and BSAK to avoid having to copy or set either buffer. A pseudocode
implementation is given for this driver program in Algorithm 9

When implementing these kernels, some state needs to be preserved between invocations.

32

4.3 Parallezation schemes

Algorithm 9 Pseudocode of driver program
function IBFS(V, E, sources, destinations)

(jfq, bsa, bsak, pathLengths) ← allocateGPULocal()
(v, e, s, d) ← allocateGPUCopied(V, E, sources, destinations)
for i ∈ 0...(ω/|sources|) do

iteration ← 0
offset ← i ∗ ω
SetFirstBSAK(s+ i ∗ ω, bsak)
while readFromGPUMemory(|jfq|) > 0 do

if iteration % 2 == 0 then
identify(jfq, d + offset, bsak, bsa, 0, pathLengths + offset, iteration)
expand(jfq, v, e, bsak, bsa)

else
identify(jfq, d + offset, bsa, bsak, 0, pathLengths + offset, iteration)
expand(jfq, v, e, bsa, bsak)

iteration ← iteration + 1
return readFromGPUMemory(pathLengths)

The state that we wish to store is mask, iteration, and the JFQ length. We group these
variables into a structure we call SearchInfo. The GPU kernels can modify this state,
eliminating the need for copies from the CPU to the GPU. The enqueue operation of the
JFQ uses an atomicAdd on the length stored in state. Since atomicAdd returns the previous
value, we can directly use the returned value as the index for the item to enqueue. Such an
atomic operation is found to be faster than other alternatives, as shown by Gaihre et al.
(33).

Getting the length of the JFQ from GPU memory forces the GPU and the CPU to
synchronize and transfer data. Such a synchronization is a costly operation. To avoid
synchronizing after each invocation, we want to be able to tune this parameter. So we
execute N iterations before checking the JFQ length. A high value for N results in
running empty iterations, while a low value for N results in more synchronization. During
development we have seen that changing the value from one to two gave an improvement,
any higher did not result in any gains for native execution. The overhead of synchronizing
differs between CUDA, WGPU, and Dawn. These costs are even higher when executing
on the web, where waiting for results has significant overhead.

4.3 Parallezation schemes

With the driver program and kernels designed, we now have the logic necessary to execute
the IBFS algorithm. However, before launching any kernels, we must first determine an
appropriate parallelization scheme.

Recall that the kernels we write are executed by a group of threads called a workgroup.
The driver program can dispatch multiple of these workgroups depending on problem size
and hardware capabilities. A parallelization scheme determines how to utilize the spawned
threads. In compute kernels, we often see the usage of a parallel strided for loop to loop over

33

4. DESIGN & IMPLEMENTATION

large arrays. In such a for loop, each thread starts at an offset determined by a linearized
thread ID, and the offset is incremented by the total number of threads each iteration,
which resembles the following for (x = threadId; x < lim; x += totalThreads). The
additional benefit of this template is that it gives coalesced access to an array that needs
to be scanned.

For example, we could use the parallel strided for loop scheme to accelerate the parallel
for in the expand algorithm. We start by determining the size of the workgroup. The
optimal size of a workgroup depends on the GPU used. The default is using a workgroup
of size 32. This default is set to 32 as NVIDIA GPUs (69) execute code in blocks of 32,
while AMD executes code in blocks of 64 or 32 (7). As workgroup sizes are expressed using
3D vectors, we set our workgroup size to (32, 1, 1). Spawning a total of 320 threads is done
by dispatching (10, 1, 1) workgroups.

The NVIDIA Nsight Compute profiler provides a list of issues for each kernels execution.
The possible issues identified by the profiler are as follows.

• Small grid: A low amount of work was scheduled, so most of the GPU will remain
underutilized. This can be solved by executing the kernel with more workgroups.

• Achieved occupancy: The difference between the calculated theoretical and
measured achieved occupancy. This can be the result of workgroup scheduling or
workload imbalance.

• Theoretical occupancy: The number of theoretical workgroups per scheduler
is limited due to the number of workgroups executed or due to shared memory
requirements.

• Long scoreboard stalls: a workgroup is stalled because it is waiting for a result
to arrive (in our thesis, this is often due to a data dependency).

• SMSP workload imbalance: one or more SM has a much higher number of active
cycles than the average number of active cycles.

• Uncoalesced global accesses: A kernel has uncoalesced global access to global
memory.

• L1Tex Global load access pattern: The memory access pattern for global loads
is non-optimal. This hints at a portion of the cache line being unused, typically due
to reading a small number of values from global memory.

4.3.1 Naive solutions

Throughout this thesis, we have implemented multiple naive approaches in an attempt to
accelerate performance. These naive solutions failed to meet performance expectations. In
this section, we will discuss some of these naive solutions and explain why they failed to
work, as well as how they led us to the three approaches that perform the best.

34

4.3 Parallezation schemes

Parallelize over the JFQ: Our first attempt executed 32 searches in parallel. One
workgroup was used for the identify step. For the expand step, we dispatched either the
maximum supported number of workgroups or one thread for each vertex in the JFQ. This
approach forces us to read the length of the JFQ each iteration. The iteration number was
also written to the GPU each iteration. All this synchronization hindered performance.
We also tried this approach with 128 searches instead of 32, which performed worse. We
attempted to submit work to the GPU from multiple threads to avoid GPU starvation;
however, this did not improve performance.

Uber shader: To reduce the synchronization costs associated with the parallelize over
the JFQ approach, we implemented the entire algorithm in a single kernel. A single
kernel saw significant improvement over the parallelize over the JFQ approach. This
approach utilized one workgroup per IBFS instance. There is no synchronization across
workgroups due to the limited synchronization primitives available in WebGPU. Resulting
in us scaling up the number of IBFS instances. Before we are able to read back any results
we have to wait until all instances finish executing. These execution times become so long
that the GPU driver crashes on an integrated GPU. The long-running kernels triggered a
device reset timer (DRT), causing the running kernel to crash. The driver uses this DRT
mechanism to recover a GPU that has stopped responding.

Scale out: With this approach, we move to the pseudocode we have shown in Section 4.2.
Parallelizing over the instances that we execute, thus one workgroup executes one instance
of IBFS. With this approach, we ran 64 instances of IBFS concurrently. The Scale out saw
significant improvements over previous attempts. However, it shows low GPU utilization
and occupancy up to 25-30%.

4.3.2 Workgroups

In our workgroups1 approach we continue with our findings from scale out. The next step
we took was to reduce the number of concurrent instances of IBFS from 64 to either 1,
2, or 4, depending on a runtime environment variable. Dispatching just a few workgroups
would leave the GPU underutilized. Thus, we aim to use multiple workgroups for each
instance we run. To accomplish this, we utilize the three-dimensional nature of the dispatch
call. Recall that when dispatching with size (2, 2, 1) we spawn four workgroups with
ids {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}. So by dispatching with (Instances,Workers, 1) we
spawn workgroups with invocation ids (0...Instances, 0...Workers, 1).

As we now have multiple workers per instance, we need to differentiate in the kernel
which SearchInfo, BSA, BSAK, and JFQ to modify. As the invocation_id is determined
by the dispatch call, the x component will be within range 0...Instances. To determine
the instance to work on, we use invocation_id.x. This is used to index into the array of
SearchInfo objects and to calculate offsets into the BSA, BSAK, and JFQ.

A parallel strided for loop is utilized to use multiple workgroups for each instance. We
have Workers number of workgroups that share an instance. To linearize the thread ID,
we utilize the built-in compute grid variables. The linearized thread ID is calculated using

1https://github.com/ThijsDreef/wgpu-msbfs/tree/workgroups

35

4. DESIGN & IMPLEMENTATION

local_id.x + the invocation_id.y * workgroup_size.x. An example of this loop is
given in Source Code 4.2 using WGSL.

for (
var i : u32 = local_id.x + invocation_id.y * workgroup_size.x;
i < length;
i += workgroup_size.x * invocation_size.y

) {

Source Code 4.2: The parallelization scheme for the expand and identify step of the
workgroups approach. Each thread handles the identification and expansion of one vertex.
To determine the workgroup size, we follow the default as discussed previously. So the

x component of our workgroup size is set to 32. However, we found that by utilizing the
y component of our workgroup, we can achieve a performance improvement in the expand
step. These y number of extra threads are used in a parallel strided for looping over the
ougoing edges. In Figure 4.2, we show the execution times for running the workgroups
approach with one workgroup using varying y components for the workgroup sizes ranging
1 - 32 using powers of two. We conclude that the optimal size of the y component is eight.

Figure 4.2: shows the execution time of the workgroups method using one workgroup with
a varying workgroup size y component ranging from 1 - 32 using powers of two.

To keep the number of bindings that we use as low as possible, we store each instance’s
arrays in the same binding. The JFQ and BSA are laid out consecutively in memory for each
IBFS instance. To find the start of either the JFQ or BSA, we compute the starting offset
using |V | multiplied by invocation_id.x. This data layout is depicted in Figure 4.3.

Bottlenecks:

Set first BSAK:

36

4.3 Parallezation schemes

BSA / BSAK

JFQ

SearchInfo 0 ... i

S0v0 ... S0V|V| S1V0 ... S1V|V|

i

SiV0 ... SiV|V|

00 ... |V|0 01 ... |V|1

i

0i ... |V|i

Figure 4.3: Depicts the data-layout of the workgroups approach where i is the number of
instances. We have i number of search info objects, BSA and BSAK are laid out consecutively
by the number of instances and there are i JFQ instances also laid out consecutively.

• Small grid: Due to the nature of the workload, we can only dispatch a small grid
of work. For this kernel, we spawn 32 threads to do 32 atomic operations. There is
no more work to schedule, thus we have a small grid issue.

• Low achieved occupancy: Low occupancy ties into the small grid issue, as we
cannot utilize the whole GPU; therefore, we will see low occupancy.

• Theoretical occupancy: Due to the limited size of the workgroup the theoretical
occupancy is limited as we can only fill half of a SM with the workload.

Identify step:

• Achieved occupancy: We achieve roughly 48% occupancy. Considering the
branching required for the identity step, this is deemed adequate. As the identify
step is a fraction of the total runtime (0.01 - 1 ms), compared to the expand step
taking (1.2 - 16.8 ms).

• Long scoreboard stalls: According to the profiler, we stall due to the load
operations on BSA and BSAK. Access to BSA/BSAK is required and cannot be
expedited (apart from fetching earlier).

• L1Tex Global load access pattern: Access to the destination array only checks a
few items and loads the whole global array into cache. As we do not access the
entire array each time, the access pattern is flagged as a potential performance
improvement.

Expand step:

• Uncoalesced global access: The expand step has uncoalesced access into the BSA
and BSAK buffers, as these are consecutively laid out in memory. Access to the edge
array to find the outgoing edges is also uncoalesced.

• L1Tex global load access pattern: Due to the nature of our CSR graph
representation, we will not use all the bytes that are pulled into the cache. This
issue is even more prevalent as the uncoalesced access into BSA and BSAK contributes
to this metric.

37

4. DESIGN & IMPLEMENTATION

• Long scoreboard stalls: Accessing items in BSA/BSAK and accessing the CSR are
the cause of these long scoreboard stalls. The workgroup stalls are caused by waiting
for data to arrive from the accesses to BSAK, BSA, V, and E

4.3.3 Coalesced access

The main issue with the workgroup approach is that we lack coalesced memory access and
experience thread divergence during the expand step. To address these issues, we propose
another parallelization scheme, which we call coalesced access1

Our coalesced access scheme avoids thread divergence and coalesced access by letting
each thread on the x axis within a workgroup work on a different instance. These x
instances of the algorithm share the same JFQ. To build this JFQ, we have to communicate
between the threads in a workgroup during the identify step. If any thread encounters
a difference between BSA and BSAK, then that vertex should be added to the JFQ.
To do this efficiently, we use a “vote” instruction. in CUDA these take the form of
__ballot_sync(mask, condition). This intrinsic returns a mask indicating for which
threads the condition is true. Using this mask, we can determine if any thread has found
a difference between BSA and BSAK. The requirements for these vote instructions are that
they execute within the same subgroup unit. Effectively limiting our workgroup size to
32, which gives us the following workgroup size for the identify step (32, 1, 1).

Due to the workgroup size being limited to 32, we are required to execute 1024 searches
concurrently. Each thread executes one instance, which contains 32 searches, resulting in
32 * 32 = 1024 searches. Increasing the number of searches would necessitate the use of a
different synchronization primitive, which would be less efficient. Lowering the number of
searches would result in underutilized threads in the subgroup unit.

To make access to BSA and BSAK coalesced, these arrays need to be restructured. We
change the data layout to a format where the seen state is grouped per instance. The first
32 entries store the seen state for vertex 1, the second set of 32 entries stores the state
for vertex 2, and so on. As each thread on the x axis of the workgroup now accesses the
same vertex but for different instances, we get a coalesced access pattern. To index into
the BSA or BSAK arrays, we use the formula vertex ∗ 32 + local_id.x. This data layout
is depicted in Figure 4.4.

We use a parallel strided for loop over invocation_id.y for the top-level loops in
both the expand and identify steps. Giving us invocation_id.y workgroups, where each
workgroup advances the state of 1 vertex for all 32 BFS instances concurrently. During the
expand step, all threads within a workgroup access the same vertex, eliminating thread
divergence in the loop over all outgoing edges and providing coalesced access for reads
and writes to the status arrays. The dispatch vector from the driver program now looks
like (1,Workers, 1), which results in 1024 total searches being executed using Workers
workgroups.

Bottlenecks:

Set first BSAK:

1https://github.com/ThijsDreef/wgpu-msbfs/tree/coalesced-access

38

4.3 Parallezation schemes

BSA / BSAK

JFQ

SearchInfo 0

S0-ω Sω-2ω ... S31ω-32ω

|V|

0 1 2 3 4 5

|V|

6 ... |V|

1 2

S(x-1)ω-xω S0-ω Sω-2ω ... S(x-1)ω-xω

Figure 4.4: Depicts the data layout for the coalesced access method, where ω denotes the
amount of concurrent searches and x denotes the amount of instances executed. Note that
there is only one search info struct for all ω ∗ x searches and all these searches share one JFQ.

• Low achieved occupancy & Theoretical occupancy Similar to the workgroups
approach, we observe low occupancy, both theoretically and practically, due to a
limited number of threads being utilized. It has improved over the workgroups
approach, as we set BSAK for 1024 searches instead of 32, 64, or 128.

Identify step:

• L1Tex Global load access pattern: Access to the destination and path_length
is unoptimal, as only parts of the cache line are read. We tried to optimize this using
shared memory, but moving these arrays to shared memory harmed performance.

• Uncoalesced global accesses: This ties into the same issue as described for L1Tex
Global load access patterns, as the uncoalesced global access to destination and
path_length is the root cause.

• Achieved occupancy: The root cause of the achieved occupancy has not changed
from the workgroups’ approach, except for the expand step taking a maximum of
8.7ms.

Expand step:

• Long scoreboard stalls: 78% of all our stalls are due to two dependent reads. The
reads are the v[vertex + 1] and edges[outgoingedge]. We are no longer bound
by uncoalesced memory access. But, we are now limited by the memory latency, as
we stall until the values of these variables arrive.

• L1Tex Global load access pattern: The access pattern for the edges is still not
optimal. As we read parts of the edges array, we will always load some entries from
the edge array into cache, which the profiler considers non-optimal.

39

4. DESIGN & IMPLEMENTATION

4.3.3.1 Direction switching

With the coalesced access approach, we have achieved coalesced access and no thread
divergence in the expand step. Another way to improve performance would be to apply
some form of direction switching. With direction switching, the BFS is either executed
top-down or bottom-up, depending on a specific heuristic. Direction switching has been
shown to improve performance by Beamer et al. (14), Liu et al. (56), Then (86). We
implement this optimization in another approach called coalesced access bottom-up1

The implementations provided so far are all top-down versions of the BFS algorithm.
A top-down implementation of the IBFS algorithm checks the difference between BSA and
BSAK to determine the frontier. To expand the frontier, it propagates the seen state to
all outgoing edges. A bottom-up implementation determines the frontier by checking if a
vertex has not yet been explored in any active search. The expand step of the bottom-up
method is performed using the incoming edges instead of the outgoing edges. Thus, for
bottom-up, we propagate the state of all incoming edges to the frontier vertex, and change
our random writes into random reads instead.

The identify kernel is described in Algorithm 10. Note that this is identical to the
default identify kernel, except that the condition to continue on line 4 is modified to only
add to the JFQ if there is a search that has not yet encountered this vertex. In the expand
step, as illustrated in Algorithm 11, we now perform the writes to a local variable (see
lines 5 and 7), which we subsequently write out to BSAK after the loop on line 8.

Switching between top-down and bottom-up is done dynamically. Creating a
sophisticated switching scheme is outside the scope of this thesis. Instead, we use the
length of the JFQ as a heuristic to determine the direction of the following iterations. A
bottom-up iteration in IBFS results in most vertices being in the JFQ, as any vertex that
has not been seen in any search is appended. As our heuristic relies on the length of the
JFQ, there is no moment when we can switch back to top-down; thus, we always continue
with a top-down iteration after a bottom-up iteration.

Algorithm 10 Pseudocode of the bottom-up identify kernel
1: function identify(jfq, destinations, bsak, bsa, mask, lengths, iteration)
2: for each vertex ∈ V in parallel do
3: diff← bsak[vertex]⊕ bsa[vertex]
4: if (b̃sak[vertex]) & mask > 0 then continue
5: bsak[vertex] ← bsak[vertex] | bsa[vertex]
6: jfq.enqueue(vertex)
7: activeSearches ← countOneBits(diff)
8: for x ∈ activeSearches do
9: index ← countTrailingZeros(diff)

10: diff ← diff ⊕ (1 << index)
11: if destinations[index] != vertex then continue
12: lengths[index] ← iteration
13: mask ← mask ⊕ (1 << index)

1https://github.com/ThijsDreef/wgpu-msbfs/tree/coalesced-access-bottom-up

40

4.4 Implementation difference between CUDA and WebGPU

Algorithm 11 Pseudocode of the bottom-up expand kernel, note that V and E represent
a reverse CSR thus looping over the incoming edges instead of outgoing.
1: function expand(jfq, V, E, bsak, bsa)
2: for each vertex ∈ jfq in parallel do
3: first ← V [vertex]
4: last ← V [vertex + 1]
5: val = bsa[vertex]
6: for id ∈ (first...last) do
7: val ← val | bsa[e[id]]
8: bsak[vertex] ← val

Bottlenecks:

Identify step bottom up: The profiler reports the same issues as for the coalesced
access approach.

Expand step bottom up: With the bottom-up expansion, we observe that we wait
36 cycles on average for long scoreboard stalls, whereas this was 41 cycles for the top-
down approach. The profiler now additionally reports SM workload imbalance, which
indicates a roughly 13% load difference between the SM with the minimum workload and
the SM with the maximum workload.

4.4 Implementation difference between CUDA and WebGPU

While developing both of our implementations (WebGPU and Cuda), we have run into
backend-specific issues. The main issues will be discussed in this section.

Determining the optimal amount of worker threads: A tail effect occurs when
one or more SMs are unutilized for a workload because there is nothing to schedule on
that SM. In our implementation section, we have only mentioned that there should be
an x number of workers. The optimal number of workers depends on the hardware. In
our profiler reports using NVIDIA Nsight Compute, we have observed that not scheduling
an exact multiple of SM units results in such a tail effect. The effect occurs because the
number of workgroups cannot be distributed evenly among the SMs. We eventually reach
a point where some SMs have no scheduled work, while others remain fully occupied. A
tail effect can have a significant impact on performance. For CUDA, we can determine
the number of SMs programatically on our device using cudaDeviceProp. However, there
is currently no such functionality in WebGPU, which means that our implementation can
suffer from a tail effect due to this missing information. We currently use 184 as the value
for x, as this is a multiple of the amount of SM’s (46) for the NVIDIA RTX 2080.

Voting instructions and synchronization: CUDA provides multiple functions to
achieve synchronization between threads within a workgroup or synchronize all workgroups
of an invocation, for example, using __syncthreads. WebGPU has less sophisticated
synchronization primitives. Only providing the ability to synchronize memory access within
a workgroup. To use these primitives in WebGPU, the control flow of your kernel is required
to be uniform. The primitives available in WebGPU are the following:

41

4. DESIGN & IMPLEMENTATION

• storageBarrier ensures that all in-flight storage operations on global GPU memory
within a workgroup have been executed after that point.

• WorkgroupBarrier ensures that all in-flight storage operations on workgroup local
memory have been executed after that point.

These limited primitives make it impossible to synchronize anything outside of a single
workgroup in WebGPU efficiently. In our CUDA implementation, we use __syncthreads()
to reset the JFQ length at the start of an iteration. WebGPU cannot let all threads in a
workgroup wait until the length is reset; instead, a clear operation is encoded before the
kernel executes instead. Incrementing the iteration is another example of such an issue.
To solve this for WebGPU, we increment the iteration count in the expand step using a
single thread by utilizing if statements. In CUDA, we can ensure that all threads read the
same iteration using __syncthreads() and let all threads write the iteration + 1.

WebGPU also does not support voting instructions or other so-called subgroup
operations (operations which are implemented as compiler intrinsics for fast communication
within a workgroup). An extension is being developed for these subgroup operations (5),
as most hardware supports these operations. However, this has not been adopted as of the
time of writing this thesis. We observed that by naively implementing a vote instruction
using shared memory, as shown in Source Code 4.3, similar performance to CUDA’s vote
instructions is achieved. We assume that these operations are optimized to vote instructions
by the compiler.

ar<workgroup> shared: array<u32, workgroup_size>;

@compute
@workgroup_size(32)
fn main(@builtin(local_invocation_id) local_id: vec3<u32>) {

shared[local_id.x] = variable;
if (local_id.x == 0u) {

var acc = 0u;
for (var j : u32 = 0u; j < 32; j++) {

acc |= prefix[j];
}
if (acc > 0) {

// There is a thread for which variable was not 0
}

}
}

Source Code 4.3: Shows how vote instructions are naively implemented in WGSL. Note
that all threads write to a shared memory variable and only one thread reads from it. So if
any thread’s variable was non-zero, the if clause will be executed, which is equivalent to the
CUDA ballot function.
Portability of WebGPU using Dawn and WGPU: Throughout this thesis, we

have seen that WebGPU delivers on the promise of being write-once, run-anywhere. We
have made no changes to the WebGPU portion of the code for compatibility reasons. The

42

4.4 Implementation difference between CUDA and WebGPU

only issue encountered in terms of portability is crashes on Windows when the DirectX
backend is used. DirectX does not allow context creation in DLLMain, which causes both
Dawn and WGPU to crash on Windows. We solved this by creating the WebGPU context
when the actual function is called, instead of when the shared library is loaded.

The primary differences between Dawn and WGPU consist mainly of the strictness of
validation. Dawn enforces the WebGPU specification more strictly than WGPU. Uniform
control flow in WGPU allows early exiting when branching on variables that do not
change during execution (which technically breaks uniform control flow), while Dawn
does not allow this. Another example is the use of atomics. Dawn forces you to use
atomicLoad when fetching the value of a variable marked as atomic, while WGPU allows
both x = atomicLoad(&var) and x = var. Both of the syntaxes for WGPU are loaded
using atomics, as verified by transforming a WGSL snippet using NAGA (WGPU’s shader
transpiler).

Profiling and tools: The biggest hurdle in developing performant GPU-accelerated
algorithms using WebGPU is the lack of profiling and tools. NVIDIA’s Nsight systems (68)
was the only tool that could collect any profiling information. The insights gathered by
Nsight Systems are limited to unit throughput, GPU memory bandwidth, cache hit rates,
and occupancy. Occupancy can be influenced by dispatching more workgroups, which
does not impact performance but does result in higher occupancy numbers. Profiling
our CUDA implementation using NVIDIA Nsight Compute (67) provides more detailed
information, including performance insights, performance counters, and even suggestions
on how to improve performance. The tooling for WebGPU is not at the level of existing
GPU frameworks, which is to be expected as it is still under active development.

WebGPU, in both Dawn and WGPU, provides a validation layer that ensures the API
is used correctly. The validation makes it trivial to track down bugs that coincide with
incorrect API usage, such as incorrect pipeline layouts, bindings, or other constructs. The
validation layer does not report bugs such as reading out of bounds or incorrect binding
size. These issues can create hard-to-detect bugs, as no error is thrown.

43

4. DESIGN & IMPLEMENTATION

44

Evaluation

We evaluate the performance of our three main methods workgroups, coalesced access and
coalesced access bottom up through a series of experiments.

5.1 Experiment setup

We produced three “camera-ready” branches, one for each implementation (workgroups1,
coalesced access2, coalesced access bottom up3). As building and testing on multiple
machines can be time-consuming, we simplified this process using Python scripts. To
reproduce the results of our experiments on any machine, first install the Python
requirements using pip install -r requirements.txt after which the build script can
be called using python scripts/build.py, which executes the following steps.

• Fetch the dataset

• Compute ground truth using DuckDB and DuckPGQ

• Build all supported backends

• Run correctness testing for built backends

• Run benchmarking for built backends

5.1.1 Dataset: LDBC Social Network Benchmark

The Linked Data Benchmark Council (LDBC) (8) provides datasets and standardized
benchmarks to evaluate the performance of Graph Database Systems. It provides a set of
graph data and queries that simulate real-world scenarios. We use their Social Network
Benchmark (SNB) (9) as test data for our algorithms.

The SNB dataset is provided in multiple scale factors (SF), which scale the dataset’s
size. We run our experiments on SF 1, 3, 10, 30, 100, and 300. The original dataset is
trimmed down to the graph represented by the Person and Person_Knows_Person columns.
Where Person is used as the vertex and Person_Knows_Person is used as the edges. The
number of vertices and edges for these graphs at all scale factors is shown in Table 5.1.
Selecting source-destination pairs in this graph is done randomly, using the same seed
as DuckPGQ’s performance testing suite. Enabling us to compare performance results
directly to DuckPGQ, as identical source-destination pairs are used for benchmarking. We

1https://github.com/ThijsDreef/wgpu-msbfs/tree/workgroups
2https://github.com/ThijsDreef/wgpu-msbfs/tree/coalesced-access
3https://github.com/ThijsDreef/wgpu-msbfs/tree/coalesced-access-bottom-up

45

5. EVALUATION

Scale factor (SF) Number of vertices Number of edges
1 10620 219450
3 25870 668431
10 70800 2304951
30 175950 6880584
100 487700 23116805
300 1230500 68313982

Table 5.1: Number of vertices and edges for all scale factors used in the experiments.

test with the following number of pairs: 1, 10, 100, 1000, 2048, 4096, 8192, 16384, 32768,
and 65536.

5.1.2 Environment

To build our project we require the following dependencies:

• CMAKE 3.15+

• Python 3.x.x

• A C++ compiler

Experiments were performed on multiple machines. The specifications of the machines
used in the experiments are shown in Table 5.2. All required dependencies, such as
GoogleTest, Google Benchmark, and WebGPU, are automatically fetched and compiled
using cmake’s FetchContent. Reducing the friction for building and testing on multiple
machines. The versions of WebGPU backends used throughout this thesis have been kept
as up-to-date as possible. Our repository will always attempt to fetch the most up-to-date
versions as provided by WebGPU distribution1 (29). The versions of all dependencies that
were automatically fetched are frozen for the experiments to the following:

• Dawn 7187

• WGPU native v24.0.3.1

• Google Test 1.15.2

• Google Benchmark 1.9.1

ID CPU GPU RAM OS Compiler CUDA version
Desktop I3-6100 RTX 2060 16GB Windows MSVC 14.44 12.8

Linux Ubuntu 24.04 GCC 13.2 12.8
Laptop I7-9750H RTX 2080 Mobile 64GB Arch Linux GCC 15.1.1 12.8
MacBook M1 pro M1 Pro 16GB Mac OS Compiler N/A

Table 5.2: Table depicting the specifications of the machines that ran the experiments

1https://github.com/eliemichel/WebGPU-distribution

46

5.2 Comparing approaches

5.2 Comparing approaches

We first evaluate the different approaches on the same system and use the insights gained to
determine the best approach. To assess the three key methods (coalesced access, coalesced
access bottom-up, and workgroups), we ran all methods on all test machines.

To compare the different approaches on the same system, we use a normalized execution
time bar chart. The execution time is normalized to the fastest method for that scale
factor and pair combination. Resulting in the lowest bar being the fastest and the other
bars being a factor x slower than the fastest method. Figure 5.1 shows the results for the
Linux laptop with the NVIDIA RTX 2080 mobile, Figure 5.2 shows the results for the
Windows desktop with the NVIDIA RTX 2060, and Figure 5.3 shows the results for the
M1 MacBook.

We observe that the workgroups approach outperforms the coalesced access methods
for all numbers of pairs smaller than 1000. This can be attributed to the fact that the
workgroups approach utilizes its threads more efficiently with a low number of pairs than
the coalesced method. The coalesced methods always execute 1024 searches, whereas the
workgroups method executes 32, 64, or 128 concurrently. When executing a search with
fewer than 1024 searches, the workgroups approach will utilize its threads more effectively.
As the coalesced access method is forced to evaluate 32 IBFS instances, most of which
are empty. Executing 1000 or more searches using the coalesced methods outperforms the
workgroup approach in all cases. The speedup gained by comparing coalesced access to
workgroups is not proportional across all systems. The M1 integrated GPU only achieves
a approximately 2.5x improvement, while the discrete cards (NVIDIA RTX 2060 and
NVIDIA RTX 2080 Mobile) see a 4-5x improvement.

Determining which of the two coalesced methods is better is hard to decide based on
normalized execution time. To better compare the two approaches, we plot the execution
times of the coalesced methods for all machines, as can be seen in Figure 5.4, Figure 5.5,
and Figure 5.6. These plots show that the runtime cost is low for small-scale factors, a few
milliseconds at most, but the gain for larger scale factors can be as large as 50 seconds for
a scale factor of 300. This trend is evident on all test machines. The exact scale factor
at which bottom-up outperforms depends on the system. The RTX 2080 mobile and the
M1 start outperforming top-down at a scale factor of 30, while the RTX 2060 outperforms
at a scale factor of 10. From now on, we will compare performance for coalesced access
bottom-up, as we claim this to be the most performant overall.

47

5. EVALUATION

Figure 5.1: Shows the normalized execution times of all approaches ran on the Laptop with
the NVIDIA 2080 RTX mobile. Execution times are normalized to the fastest algorithm.

Figure 5.2: Shows the normalized execution times of all approaches ran on the Desktop with
the NVIDIA 2060. Execution times are normalized to the fastest algorithm.

48

5.2 Comparing approaches

Figure 5.3: Shows the normalized execution times of all approaches ran on the M1 MacBook
with the M1 GPU. Execution times are normalized to the fastest algorithm.

Figure 5.4: Shows the execution times of the coalesced approaches ran on the Laptop with
the NVIDIA 2080 RTX mobile.

49

5. EVALUATION

Figure 5.5: Shows the execution times of the coalesced approaches ran on the Desktop with
the NVIDIA 2060 RTX mobile.

Figure 5.6: Shows the normalized execution times of all approaches ran on the M1 MacBook
with the M1 GPU.

50

5.3 Comparison of different backends

5.3 Comparison of different backends

As we have decided on the coalesced access bottom-up method, we want to gain insight
into how it performs using the different backends on all machines. These benchmarks are
plotted using normalized execution times normalized to the fastest approach.

In Figure 5.7, we see that CUDA outperforms both WebGPU implementations on the
laptop with an NVIDIA RTX 2080 mobile. For the smaller scale factors, we see that Dawn
outperforms WGPU. When the scale factors grow and the number of pairs increases, the
execution times tend to equalize. From a scale factor of 3 and beyond, we observe that the
disparity between WebGPU and CUDA trends downward as the number of pairs increases.
This suggests that initialization costs for WebGPU are higher than those for CUDA.

Comparing backends for the desktop running Windows with the NVIDIA RTX 2060 can
be seen in Figure 5.8. The differences between backends for this machine never exceed
2x. Dawn even outperforms CUDA on certain workloads. CUDA does have a performance
benefit when evaluating a smaller number of pairs as compared to WebGPU.

The results for the M1 MacBook are shown in Figure 5.9. These results do not include
a CUDA backend, as this is not supported on non-NVIDIA hardware. Dawn outperforms
WGPU by 1.75 - 6x for all scale factors and pairs. Pinpointing the source of this
performance discrepancy is challenging, as it stems from the differences in implementation
between Dawn and WGPU. To investigate whether the issue stems from a shader generation
issue, all shaders have been transpiled to their Metal equivalents using both Tint (Dawn)
and Naga (WGPU). The key differences found in these Metal shaders are the following:.

• Bitwise operations: Dawn masks shift operations on variables using
1 << index & 31. The mask ensures that we do not exceed the size of the variable,
which might allow the compiler to perform optimizations that the WGPU version
does not have.

• Arguments in struct: WGPU calls the kernel with all variables as arguments,
providing a signature that matches our WGSL definition. Dawn creates a struct that
holds all the parameters, which results in a smaller function signature.

• Infinite loop protection: Both transpilers protect against infinite loops by
decrementing a large counter. When this counter hits zero, the loop exits. WGPU
initializes these variables in the body of the while loop using a boolean to check if
it’s the first iteration. Dawn performs this initialization at the top of the loop and
omits the check in the loop body.

We are unsure of the exact reason for the large disparity in performance. The Metal
source code for all shaders can be found in Appendix A, as generating the Metal source
code requires additional tools.

51

5. EVALUATION

Figure 5.7: Shows the normalized execution times of all backends executing the coalesced
bottom up method ran on the laptop with the NVIDIA RTX 2080 mobile.

Figure 5.8: Shows the normalized execution times of all backends executing the coalesced
bottom up method ran on the desktop running Windows with the NVIDIA RTX 2060.

52

5.4 Operating systems impact

Figure 5.9: Shows the normalized execution times of all backends executing the coalesced
bottom up method ran on the MacBook with the M1 GPU.

5.4 Operating systems impact

The experiment is run on the desktop machine using both Windows 10 and Linux (Ubuntu
24.04) to determine the impact that the operating system has on performance. The results
for this experiment are shown using normalized execution times in Figure 5.10.

Linux using the CUDA backend performs the best overall. The most significant
differences are observed when executing a search on just one pair. As execution times
encompass not only algorithm execution but also resource initialization, we can attribute
this to the initialization overhead, which differs between operating systems and backends.
The same trend as before can be observed: when larger-scale factors and a higher number
of pairs are executed, performance tends to equalize.

Overall, no significant performance difference is found between operating systems. The
outliers shown in the graph have small scales and a low number of pairs. Since run times
are low (smaller than 100 ms), we do not consider this significant.

53

5. EVALUATION

Figure 5.10: Shows the normalized execution times of all backends executing the coalesced
bottom up method ran on the desktop with the NVIDIA RTX 2060 on both Windows 10 and
Linux Ubuntu 24.04.

5.5 Executing in a web browser

We conducted both correctness testing and benchmarking using Firefox Nightly (142.0a1)
and Chrome (137.0.7151.68) on the laptop with an NVIDIA RTX 2080 mobile. The
interface for the testing is shown in Figure 5.11.

Executing the native version of the code in the browser resulted in significantly
longer execution times. Our program waits for the results by polling the WebGPU
implementation. In a native environment, this is required as WebGPU does not have
a thread to signal our implementation that a result is ready. In the browser, the event
loop runs each time we poll, as this is implemented using Emscripten’s sleep function (as
implemented by the EMDAWN port maintained by Google (34)). We only regain control
when the next event loop runs. This bottleneck is demonstrated by both browser profilers,
as shown in Figure 5.12 for Firefox and Figure 5.13 for Chrome. To reduce the number of
read-backs, we increase the number of iterations executed before reading any results back
to the CPU for the emscripten implementation.

After running the modified code using the test setup, we obtain the results, which we
compare to those of the native version in Figure 5.14 using normalized execution time. The
difference between web and native versions for Firefox is significant, with the web version
being between 8 and 200 times slower. In contrast, Chrome lags behind the native version
for the smaller scale factors, while performance tends to equalize for the larger scale factors

54

5.5 Executing in a web browser

Figure 5.11: Illustrates the web based benchmarking and correctness testing setup. By
pressing the buttons one can start correctness testing or benchmarking, after which the results
can be downloaded in a JSON format.

Figure 5.12: Gives a flame chart description of the execution of one run of the IBFS algorithm
in the Firefox browser. Note barely any time is spent in WebGPU calls and most time is spent
in timeouts waiting for results to be communicated back to the CPU.

Figure 5.13: Shows the profiler trace for one run of the IBFS algorithm. Note that there are
long pauses between any GPU work being executed. These pauses are there due to the added
overhead of communication between WebGPU and the CPU, resulting from the browser’s
event loop.

55

5. EVALUATION

Figure 5.14: Shows the normalized execution times of laptop with the NVIDIA RTX 2080
GPU executing on both WebGPU backends natively and in browser.

5.6 Comparison with DuckPGQ multi-threaded CPU

DuckPGQ has an experimental operator based on the works of Ren (76) and Kaufmann
et al. (51) 1. This experimental operator outperforms the DuckPGQ’s morsel-driven
parallelism implementation. It achieves this by utilizing the MS-PBFS algorithm, combined
with the operator design proposed by Ren (76), and thread local CSRs. With test
results available for pairs 16384 - 65536. We first compare our GPU approach to their
optimized CPU approach on the same hardware in Figure 5.15. Our approach begins
to be outperformed by the CPU at higher scale factors. Starting from scale factor 100,
the M1 CPU outperforms its integrated GPU. We are unsure of the exact cause for this
observation.

Comparing the M1 CPU against all other discrete cards tested, we observe that the
discrete cards outperform the M1 CPU in all cases, as illustrated in Figure 5.16. Note
that this is not a fair comparison, as we are comparing the M1 MacBook’s integrated GPU
against discrete GPUs with much higher thermal design power (TDP), resulting in higher
core speeds, higher core counts, and higher bandwidth memory.

1https://github.com/cwida/duckpgq-extension/tree/pathfindingoperator-two-phase-csr-lock-free

56

5.6 Comparison with DuckPGQ multi-threaded CPU

Figure 5.15: Shows the execution times of the M1 MacBook executing the experimental
optimized CPU version used by DuckPGQ and our GPU approach ran on the M1 GPU.

Figure 5.16: Shows the execution times of the M1 MacBook executing the experimental
optimized CPU version used by DuckPGQ and our GPU approach on all systems.

57

5. EVALUATION

5.7 Comparison with Mix and Match (Belewitte)

Comparing our approach with the implementation by Verstraaten et al. (87) (Belewitte)
shows that we can perform on par with a small number of pairs using the workgroups
approach. The coalesced bottom-up starts outperforming Belewitte starting from 100
pairs. Comparing against Belewitte is not a fair comparison, as this paper accelerates one
BFS and outputs the full search tree. Our algorithm optimizes for 1024 BFS instances and
only outputs the path length. These observations can be seen in Figure 5.17. We would
have also liked to test our implementation against the original IBFS work (56). However,
their repository did not compile with the listed dependencies.

Figure 5.17: Shows the execution times of Mix and Match papers implementation (Belewitte)
compared to our coalesced access bottom up and workgroups with one workgroup.

5.8 Underutilization

Using the NVIDIA Nsight Systems Profiler, we see one clear trend across all
implementations: we never come close to 100% utilization of the GPU. Utilization of
all tested methods, including the work by Verstraaten et al. (87), tends to utilize roughly
40% of bandwidth and compute resources.

Using NVIDIA NSight Compute, we investigate why this underutilization occurs with
the coalesced access bottom-up approach. We inspect the performance of this approach,
as it has the fewest performance issues, as indicated previously. The GPU spends most of
the time executing the expand step. In this kernel, the profiler indicates that execution
stalls because of Long Scoreboard Stalls. Two reads are responsible for these stalls,
which together account for 78% of the kernel’s runtime. These reads are v[vertex + 1]

58

5.8 Underutilization

and e[outgoingedge]. The GPU is forced to stall as these values are required in the
computation directly after their request. We conclude that these stalls occur due to GPU
memory latency as we are requesting multiple small blocks of data which are not cache
coherent.

59

5. EVALUATION

60

Future Work

6.1 Comparison between GPU APIs

In our thesis, we have demonstrated that executing a BFS on the GPU is latency-bound.
Comparing the performance of different backends using this latency-bound workload
provides a biased view of the performance. Before other work relies on WebGPU for
portable GPU acceleration more research is required. Other workloads might run into
other bottlenecks, they might encounter situations where CUDA outperforms WebGPU so
significantly that the portability benefits do not outweight the performance costs.

Future work could focus on using WebGPU as a portable GPU accelerator for different
workloads. Providing a clear overview of when using a portable GPU API outweighs the
performance cost.

6.2 Extending current approach

6.2.1 Improving workload balance

We have seen that imbalance between workgroups could give up to a 20% performance
increase. The workload imbalance has been shown to be improved by sorting the CSR
based on the outdegree of vertices by various studies (51, 56, 63). As the scan over
the vertices is done in a coalesced manner, the workgroups end up with a roughly equal
workload.

Future work could incorporate a sorted CSR based on the outdegree to gain a slight
performance improvement.

6.2.2 Computing full path

We have provided a method for computing the length of the path given a source-destination
pair. Queries can also request the full path; to return the path, our method needs to be
modified. To store the paths for all concurrent searches, |V |∗1024 extra values are required.
These additional values would store the search tree of all concurrent searches, requiring an
atomic CAS to set the parent in the identify step. The search tree could then be walked
using a new kernel to walk the tree and construct a path.

Future work could implement the creation of a search tree and the walking of the tree
to compute the full length path.

61

6. FUTURE WORK

6.3 Heterogeneous path length computation

As there are now optimized versions of MS-BFS for both CPU and GPU, heterogeneous
computation could be leveraged for path finding on the same system. Utilizing both
the CPU and the GPU of a system to compute path length information in DuckPGQ
can enhance performance when a large number of source-destination pairs need to be
processed. Both versions of the algorithm execute on the same graph and a subset of
the pairs. Partitioning the source-destination pairs between the CPU and GPU enables a
single system to utilize both processing units. Providing an increase in performance, as a
higher number of source-destination pairs can be solved concurrently.

Future work can integrate our GPU method in DuckPGQ and combine it with
heterogeneous computation for a performance improvement.

6.4 Optimizing query performance of DuckPGQ

Most queries in DuckPGQ search for a path between a single source and multiple
destinations. These queries are broken down into a multitude of source destination pairs,
which are then solved using some MS-BFS variant. Accelerating MS-BFS has yielded
overall improvements, but the performance is still insufficient. Due to the nature of these
queries, either the source values contain a small set of distinct values or the destinations
do. Running a single BFS that computes the shortest path for all nodes from a single
source would be less computationally intensive than generating and solving a large list of
source-destination pairs.

-- Find mutual friends between two users
FROM GRAPH_TABLE (snb

MATCH (p1:Person WHERE p1.id = 16)-[k:knows]->(p2:Person)<-[k2:knows]-(p3:Person WHERE p3.id = 32)
COLUMNS (p2.firstName)

);

Source Code 6.1: Find mutual friend example from DuckPGQ’s website duckpgq.org
For example, we examine one of DuckPGQ’s example queries, as shown in Source

Code 6.1. Currently, DuckPGQ solves this query by generating source-destination pairs
from p1 and p3 to all other nodes. The same result can be achieved by executing two
regular BFSs, which output the length iteration for all nodes, which is less computationally
intensive than executing 2 * nodes searches using an MS-BFS variant.

It would not always be more performant to use a single-source BFS. When there are a
large number of distinct source and destination nodes, an MS-BFS variant would be more
performant. Determining when to use an MS-BFS variant or do a regular BFS depends on
the query being executed. Picking either option based on an arbitrary query would require
future work.

62

duckpgq.org

Conclusion

In this thesis, we have examined multiple implementations of the IBFS algorithm, a
GPU-accelerated BFS traversal algorithm. These implementations have been done
using both CUDA and WebGPU. During the design process, we have explored multiple
parallelization schemes, demonstrating that those utilizing coalesced access and minimizing
thread divergence perform the best. Using dynamic direction switching between bottom-up
and top-down gives an additional performance benefit for higher scale factors. However,
we have observed that global memory access latency limits the performance of BFS on
the GPU. Furthermore, we demonstrate that our GPU method can outperform a highly
optimized CPU version running on an M1 MacBook, depending on the scale factor.
Comparing performance on discrete cards shows that GPUs can outperform the optimized
CPU version of the algorithm running on a M1 MacBook pro in all cases.

Following are the answers to our research questions.

How to design a GPU based path-finding algorithm? Designing a path-finding
algorithm to run on the GPU requires formulating your algorithm in the form of kernels.
A driver program then coordinates the resource initialization and execution of these
kernels. In this thesis, we designed three kernels, which are coordinated by a single
driver function. The parallelization scheme has a significant impact on performance as
it determines memory access patterns and control flow. By optimizing the parallelization
scheme to access elements in a coalesced manner and minimizing thread divergence the best
performance is achieved. The difficulty in designing a GPU-based path-finding algorithm
lies in ensuring that memory accesses are coalesced and divergence is minimized. Access
to the graph will remain a bottleneck as these lookups are inherently random.

What are the bottlenecks of a GPU path-finding algorithm? The bottlenecks
encountered are synchronization costs, thread divergence, coalesced access, workload
imbalance, and global access memory latency. We have seen that we can reduce
synchronization costs by executing more work on the GPU before attempting to read results
back to CPU memory. The chosen parallelization scheme and data layout can heavily
influence thread divergence and coalesced access. We have not tried to improve workload
imbalance. We conclude that global access memory latency is the biggest bottleneck in a
GPU BFS algorithm. 78% of our execution time in the expand step is spent stalling due
to accessing the graph structure. These reads cannot be hidden by the GPU as there is no
computation between the reads of these values and their usage. This is further excarbated
by the accesses to these arrays being random and just a few values are actually read.

63

7. CONCLUSION

When does the GPU provide a speedup compared to a CPU? We have seen that
our method, based on IBFS, can outperform the optimized CPU version of MS-PBFS using
thread local CSRs1. On the M1 MacBook, we observe that our GPU method outperforms
the CPU method on scale factors (1, 3, 10, 30), where the CPU outperforms on the other
scale factors (100, 300). Comparing the M1 CPU against discrete GPUs shows that GPUs
outperform in all cases, but this is not a fair comparison, as the power draw of discrete
cards is significantly higher than that of the M1 GPU or CPU.

How to optimize a GPU based path-finding algorithm? To utilize the GPU’s
resources effectively, it is crucial to adhere to a coalesced memory access pattern whenever
possible. Changing the parallelization scheme to reduce thread divergence enables more
threads to remain active, thereby improving performance. We observed that the bottleneck
in executing path-finding algorithms on the GPU is access to the graph structure. 78% of
our execution time is spend stalling due to Long Scoreboard Stalls based on our access
to the graph structure.

How do performance characteristics differ between integrated and discrete
cards? We observe that the performance disparity between methods is lower on
integrated hardware than on discrete hardware. The difference between the performance
gained by switching from the workgroups approach to coalesced access is disproportionate
between discrete and integrated GPUs. For scale factor 300, discrete hardware becomes
roughly 7 times faster, while the integrated GPU only sees a 3 times improvement. Overall,
it is challenging to make a fair comparison between integrated and discrete GPUs, as core
counts, clock speeds, memory bandwidth, and TDP vary.

How do performance characteristics differ between Operating systems? We
have tested the same machine using both Windows 10 and Linux Ubuntu (24.04). The
most significant differences are observed when low-scale factors and a low number of source-
destination pairs are executed. When larger-scale factors and a greater number of source-
destination pairs are executed, all performance figures tend to equalize. From this, we
conclude that the observed overhead is primarily due to initialization costs and driver
overhead.

How does a WebGPU implementation compare to a CUDA implementation?
There can be a significant performance discrepancy between WebGPU implementations.
For the M1 MacBook, we observe a performance disparity of 1.5 to 6 times between Dawn
and WGPU, which we cannot explain. This disparity is not reproducible on other hardware
or software setups. For our discrete hardware, we observe that all backends tend towards
approximately equal execution times as the scale factors increase. Suggesting that the
primary differentiating factors are the initialization costs and the library runtime.

1https://github.com/cwida/duckpgq-extension/tree/pathfindingoperator-two-phase-csr-lock-free

64

References

[1] Arangodb graph database, Jul 2024. URL https://arangodb.com/. Accessed on
27/01/2025. 1

[2] Neo4j graph database, Jul 2024. URL https://neo4j.com/. Accessed on 27/01/2025.
1

[3] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-oriented database
systems. Proceedings of the VLDB Endowment, 2(2):1664–1665, 2009. 1, 5

[4] Mlc AI. Webllm, 2025. URL https://webllm.mlc.ai/. 27

[5] teoxoy Alan baker, exrook. Webgpu subgroup operations proposal, 2025. URL https:
//github.com/gpuweb/gpuweb/blob/main/proposals/subgroups.md. 42

[6] AMD. Orochi, 2024. https://gpuopen.com/orochi/ [Accessed 13-02-2025]. 10

[7] AMD. Hip documentation about wavefronts / warps / workgroups, 2025.
URL https://rocm.docs.amd.com/projects/HIP/en/latest/understand/
programming_model.html. 34

[8] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling,
Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-Lluís Larriba-Pey, Norbert
Martínez-Bazan, József Marton, Marcus Paradies, Minh-Duc Pham, Arnau Prat-
Pérez, Mirko Spasic, Benjamin A. Steer, Gábor Szárnyas, and Jack Waudby. The
LDBC Social Network Benchmark. CoRR, abs/2001.02299, 2020. URL http:
//arxiv.org/abs/2001.02299. 21, 45

[9] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling,
Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep Lluís Larriba-Pey, Norbert
Martínez-Bazan, József Marton, Marcus Paradies, Minh-Duc Pham, Arnau Prat-
Pérez, Mirko Spasic, Benjamin A. Steer, Gábor Szárnyas, and Jack Waudby. The
LDBC social network benchmark. CoRR, abs/2001.02299, 2020. URL http://arxiv.
org/abs/2001.02299. 45

[10] Apple. metal, 2025. https://developer.apple.com/metal/ [Accessed 13-02-2025].
11

[11] Apple. Opencl for macos developer, 2025. https://developer.apple.com/opencl/
[Accessed: (11 February 2025)]. 10

65

https://arangodb.com/
https://neo4j.com/
https://webllm.mlc.ai/
https://github.com/gpuweb/gpuweb/blob/main/proposals/subgroups.md
https://github.com/gpuweb/gpuweb/blob/main/proposals/subgroups.md
https://gpuopen.com/orochi/
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
http://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
https://developer.apple.com/metal/
https://developer.apple.com/opencl/

REFERENCES

[12] Jiri Barnat, Lubos Brim, and Jakub Chaloupka. Parallel breadth-first search ltl model-
checking. In 18th IEEE International Conference on Automated Software Engineering,
2003. Proceedings., pages 106–115. IEEE, 2003. 20

[13] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing breadth-
first search. Scientific Programming, 21(3-4):137–148, 2013. 20, 23, 25

[14] Scott Beamer, Aydin Buluç, Krste Asanovic, and David Patterson. Distributed
memory breadth-first search revisited: Enabling bottom-up search. In 2013 IEEE
International Symposium on Parallel and Distributed Processing, Workshops and Phd
Forum, pages 1618–1627, 2013. doi: 10.1109/IPDPSW.2013.159. 21, 40

[15] Lukas Bernhard, Nico Schiller, Moritz Schloegel, Nils Bars, and Thorsten Holz.
Darthshader: Fuzzing webgpu shader translators & compilers. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications Security, pages
690–704, 2024. 26

[16] Jim Blandy, Kai Ninomiya, and Brandon Jones. WebGPU. Candidate
recommendation, W3C, January 2025. https://www.w3.org/TR/2025/CRD-webgpu-
20250131/. 2, 11

[17] BlazingDB. Blazingsql, 2021. URL https://github.com/BlazingDB/blazingsql?
tab=readme-ov-file. 18

[18] Avi Bleiweiss. Gpu accelerated pathfinding. In Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 65–74, 2008.
2, 10

[19] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining
query execution. In Cidr, volume 5, pages 225–237, 2005. 5

[20] Angela Bonifati, M. Tamer Ozsu, Yuanyuan Tian, Hannes Voigt, Wenyuan Yu, and
enjie Zhang. A roadmap to graph analytics. SIGMOD Rec., 53(4):43–51, January
2025. ISSN 0163-5808. doi: 10.1145/3712311.3712323. URL https://doi.org/10.
1145/3712311.3712323. 2

[21] Aydin Buluç and Kamesh Madduri. Parallel breadth-first search on distributed
memory systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12, 2011. 20,
21

[22] Aydin Buluç and Kamesh Madduri. Parallel breadth-first search on distributed
memory systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450307710. doi:
10.1145/2063384.2063471. URL https://doi.org/10.1145/2063384.2063471. 21

[23] Antonio Jesús Chaves, Cristian Martín, and Manuel Díaz. The orchestration of
machine learning frameworks with data streams and gpu acceleration in kafka-ml:
A deep-learning performance comparative. Expert Systems, 41(2):e13287, 2024. 1

66

https://github.com/BlazingDB/blazingsql?tab=readme-ov-file
https://github.com/BlazingDB/blazingsql?tab=readme-ov-file
https://doi.org/10.1145/3712311.3712323
https://doi.org/10.1145/3712311.3712323
https://doi.org/10.1145/2063384.2063471

REFERENCES

[24] Zhiyang Chen, Yun Ma, Haiyang Shen, and Mugeng Liu. Weinfer: Unleashing the
power of webgpu on llm inference in web browsers. In Proceedings of the ACM on
Web Conference 2025, pages 4264–4273, 2025. 27

[25] CHIP-SPV. chipstar, 2025. https://github.com/CHIP-SPV/chipStar [Accessed 13-
02-2025]. 10

[26] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. Hetexchange: encapsulating heterogeneous cpu-gpu parallelism in jit
compiled engines. Proc. VLDB Endow., 12(5):544–556, January 2019. ISSN 2150-
8097. doi: 10.14778/3303753.3303760. URL https://doi.org/10.14778/3303753.
3303760. 19

[27] Periklis Chrysogelos, Aunn Raza, Manos Karpathiotakis, vsanca, Hamish Nicholson,
Lionel Sambuc, panos-sioulas, tahirazim, ember-tomster, and Alex Huang. epfl-
dias/proteus. https://github.com/epfl-dias/proteus, sep 29 2023. URL https:
//github.com/epfl-dias/proteus. 20

[28] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, et al. Graph pattern
matching in gql and sql/pgq. In Proceedings of the 2022 International Conference on
Management of Data, pages 2246–2258, 2022. 1, 5

[29] elimichel. Webgpu distribution, 2025. URL https://github.com/eliemichel/
WebGPU-distribution. 46

[30] Ethan Ferguson, Adam Wilson, and Hoda Naghibijouybari. Webgpu-spy: Finding
fingerprints in the sandbox through gpu cache attacks. In Proceedings of the 19th
ACM Asia Conference on Computer and Communications Security, pages 158–171,
2024. 25

[31] Zhisong Fu, Harish Kumar Dasari, Bradley Bebee, Martin Berzins, and Bryan
Thompson. Parallel breadth first search on gpu clusters. In 2014 IEEE International
Conference on Big Data (Big Data), pages 110–118. IEEE, 2014. 20

[32] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and Masato Edahiro.
Data transfer matters for GPU computing. In 19th IEEE International Conference
on Parallel and Distributed Systems, ICPADS 2013, Seoul, Korea, December 15-18,
2013, pages 275–282. IEEE Computer Society, 2013. doi: 10.1109/ICPADS.2013.47.
URL https://doi.org/10.1109/ICPADS.2013.47. 14

[33] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. Xbfs: exploring runtime
optimizations for breadth-first search on gpus. In Proceedings of the 28th International
symposium on high-performance parallel and distributed computing, pages 121–131,
2019. 33

[34] Google. emdawnwebgpu a emscripten port for webgpu, 2025. URL https://dawn.
googlesource.com/dawn/+/refs/heads/chromium/6814/src/emdawnwebgpu/. 54

67

https://github.com/CHIP-SPV/chipStar
https://doi.org/10.14778/3303753.3303760
https://doi.org/10.14778/3303753.3303760
https://github.com/epfl-dias/proteus
https://github.com/epfl-dias/proteus
https://github.com/eliemichel/WebGPU-distribution
https://github.com/eliemichel/WebGPU-distribution
https://doi.org/10.1109/ICPADS.2013.47
https://dawn.googlesource.com/dawn/+/refs/heads/chromium/6814/src/emdawnwebgpu/
https://dawn.googlesource.com/dawn/+/refs/heads/chromium/6814/src/emdawnwebgpu/

REFERENCES

[35] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort:
high performance graphics co-processor sorting for large database management. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, page 325–336, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595934340. doi: 10.1145/1142473.1142511. URL
https://doi.org/10.1145/1142473.1142511. 15

[36] Goetz Graefe and William J McKenna. The volcano optimizer generator: Extensibility
and efficient search. In Proceedings of IEEE 9th international conference on data
engineering, pages 209–218. IEEE, 1993. 18

[37] Yudong Han, Weichen Bi, Ruibo An, Deyu Tian, Qi Yang, and Yun Ma. Gl2gpu:
Accelerating webgl applications via dynamic api translation to webgpu. In Proceedings
of the ACM on Web Conference 2025, pages 751–762, 2025. 26

[38] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. Relational joins on graphics processors. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 511–524, 2008. 15

[39] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K Govindaraju, Qiong Luo,
and Pedro V Sander. Relational query coprocessing on graphics processors. ACM
Transactions on Database Systems (TODS), 34(4):1–39, 2009. 15

[40] Dong He, Supun Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun
Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karanasos, and Matteo
Interlandi. Query processing on tensor computation runtimes. arXiv preprint
arXiv:2203.01877, 2022. 18

[41] HeavyAI. Omniscidb, 2019. URL https://heavyai.github.io/heavydb/index.
html. 17

[42] HeavyAI. Heavdb, 2025. URL https://www.heavy.ai/product/heavydb. 18

[43] HeavyAI. Heavydb commercial info, 2025. URL https://www.heavy.ai/product/
overview. 18

[44] HeteroDB. Pg-strom gpu direct, 2025. URL https://heterodb.github.io/
pg-strom/ssd2gpu/. 17

[45] heterodb. pg-strom, 2025. URL https://github.com/heterodb/pg-strom?tab=
readme-ov-file. 16

[46] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating
cuda graph algorithms at maximum warp. Acm Sigplan Notices, 46(8):267–276, 2011.
25

[47] IEEE. IEEE Standard for Floating-Point Arithmetic.
https://ieeexplore.ieee.org/document/8866810, 2019. IEEE Std 754-2019. 26

68

https://doi.org/10.1145/1142473.1142511
https://heavyai.github.io/heavydb/index.html
https://heavyai.github.io/heavydb/index.html
https://www.heavy.ai/product/heavydb
https://www.heavy.ai/product/overview
https://www.heavy.ai/product/overview
https://heterodb.github.io/pg-strom/ssd2gpu/
https://heterodb.github.io/pg-strom/ssd2gpu/
https://github.com/heterodb/pg-strom?tab=readme-ov-file
https://github.com/heterodb/pg-strom?tab=readme-ov-file

REFERENCES

[48] intel. What Is Intel® AVX-512? - Intel — intel.com, 2025. https:
//www.intel.com/content/www/us/en/products/docs/accelerator-engines/
what-is-intel-avx-512.html [Accessed 13-02-2025]. 7

[49] Raghav G Jha and Abhishek Samlodia. Gpu-acceleration of tensor renormalization
with pytorch using cuda. Computer Physics Communications, 294:108941, 2024. 2,
10

[50] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. Gpu join processing
revisited. In Proceedings of the Eighth International Workshop on Data Management
on New Hardware, DaMoN ’12, page 55–62, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450314459. doi: 10.1145/2236584.2236592. URL
https://doi.org/10.1145/2236584.2236592. 15

[51] Moritz Kaufmann, Manuel Then, Alfons Kemper, and Thomas Neumann. Parallel
array-based single-and multi-source breadth first searches on large dense graphs. In
EDBT, pages 1–12, 2017. 23, 56, 61

[52] Khronos. Opengl homepage, 2021. https://www.opengl.org/ [Accessed 13-02-2025].
9

[53] Khronos. Vulkan, 2025. https://www.vulkan.org/ [Accessed 13-02-2025]. 11

[54] Richard E Korf and Peter Schultze. Large-scale parallel breadth-first search. In AAAI,
volume 5, pages 1380–1385, 2005. 20, 21

[55] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven
parallelism: a numa-aware query evaluation framework for the many-core age. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’14, page 743–754, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450323765. doi: 10.1145/2588555.2610507. URL
https://doi.org/10.1145/2588555.2610507. 5

[56] Hang Liu, H Howie Huang, and Yang Hu. ibfs: Concurrent breadth-first search on
gpus. In Proceedings of the 2016 International Conference on Management of Data,
pages 403–416, 2016. 2, 7, 10, 24, 25, 29, 32, 40, 58, 61

[57] David Luebke. Gpu architecture: Implications & trends. SIGGRAPH 2008: Beyond
Programmable Shading Course Materials, 2008. 9

[58] David Luebke and M Harris. General-purpose computation on graphics hardware. In
Workshop, SIGGRAPH, volume 33, page 6, 2004. 9

[59] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective gpu implementation of
breadth-first search. In Proceedings of the 47th design automation conference, pages
52–55, 2010. 20

[60] Microsoft. Directx getting started page, 2025. https://learn.microsoft.com/
en-us/windows/uwp/gaming/directx-programming [Accessed 13-02-2025]. 9, 11

69

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-avx-512.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-avx-512.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-avx-512.html
https://doi.org/10.1145/2236584.2236592
https://www.opengl.org/
https://www.vulkan.org/
https://doi.org/10.1145/2588555.2610507
https://learn.microsoft.com/en-us/windows/uwp/gaming/directx-programming
https://learn.microsoft.com/en-us/windows/uwp/gaming/directx-programming

REFERENCES

[61] Marko J. Mišić, Ðorđe M. Ðurđević, and Milo V. Tomašević. Evolution and trends
in gpu computing. In 2012 Proceedings of the 35th International Convention MIPRO,
pages 289–294, 2012. 9

[62] Todd Mostak. An overview of mapd (massively parallel database). White paper.
Massachusetts Institute of Technology, 2013. 17

[63] Reece Neff, Mostafa Eghbali Zarch, Marco Minutoli, Mahantesh Halappanavar,
Antonino Tumeo, Ananth Kalyanaraman, and Michela Becchi. Fused breadth-first
probabilistic traversals on distributed gpu systems. arXiv preprint arXiv:2311.10201,
2023. 24, 61

[NVIDIA] NVIDIA. V100 volta architecture. URL https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf. 9

[64] nvidia. Introduction rapids by nvidia, 2018. URL https://nvidianews.nvidia.com/
news/nvidia-introduces-rapids-open-source-gpu-acceleration-platform-for-large-scale-data-analytics-and-machine-learning.
18

[65] NVIDIA. Gpu direct storage, 2019. URL https://developer.nvidia.com/blog/
gpudirect-storage/. v, 17

[66] NVIDIA. About cuda, 2025. https://developer.nvidia.com/about-cuda
[Accessed: (11 February 2025)]. 8, 10

[67] NVIDIA. Nvidia nsight compute, 2025. URL https://developer.nvidia.com/
nsight-compute. 43

[68] NVIDIA. Nvidia nsight systems, 2025. URL https://developer.nvidia.com/
nsight-systems. 43

[69] NVIDIA. Cuda documentation warp size, 2025. URL https://docs.nvidia.com/
cuda/parallel-thread-execution/. 34

[70] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak. The
star schema benchmark and augmented fact table indexing. In Raghunath Othayoth
Nambiar and Meikel Poess, editors, Performance Evaluation and Benchmarking,
First TPC Technology Conference, TPCTC 2009, Lyon, France, August 24-28, 2009,
Revised Selected Papers, volume 5895 of Lecture Notes in Computer Science, pages
237–252. Springer, 2009. doi: 10.1007/978-3-642-10424-4_17. URL https://doi.
org/10.1007/978-3-642-10424-4_17. 16

[71] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899, 2008.
8

[72] Sebastian Paarmann. A webgpu backend for futhark. 2024. URL https://www.
futhark-lang.org/student-projects/sebastian-msc-thesis.pdf. 26

70

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://nvidianews.nvidia.com/news/nvidia-introduces-rapids-open-source-gpu-acceleration-platform-for-large-scale-data-analytics-and-machine-learning
https://nvidianews.nvidia.com/news/nvidia-introduces-rapids-open-source-gpu-acceleration-platform-for-large-scale-data-analytics-and-machine-learning
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
https://www.futhark-lang.org/student-projects/sebastian-msc-thesis.pdf
https://www.futhark-lang.org/student-projects/sebastian-msc-thesis.pdf

REFERENCES

[73] Jaroslav Pokornỳ. Graph databases: their power and limitations. In Computer
Information Systems and Industrial Management: 14th IFIP TC 8 International
Conference, CISIM 2015, Warsaw, Poland, September 24-26, 2015, Proceedings 14,
pages 58–69. Springer, 2015. 1

[74] Mark Raasveldt and Hannes Mühleisen. Duckdb: an embeddable analytical database.
In Proceedings of the 2019 International Conference on Management of Data, pages
1981–1984, 2019. 1, 5

[75] RAPIDS. Rapids homepage, 2025. URL https://rapids.ai/. 18

[76] Pingan Ren. Parallelized path-finding in duckpgq. 2024. 1, 56

[77] Ran Rui and Yi-Cheng Tu. Fast equi-join algorithms on gpus: Design and
implementation. In Proceedings of the 29th International Conference on Scientific and
Statistical Database Management, SSDBM ’17, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450352826. doi: 10.1145/3085504.3085521. URL
https://doi.org/10.1145/3085504.3085521. 15

[78] Ran Rui, Hao Li, and Yi-Cheng Tu. Join algorithms on gpus: A revisit after seven
years. In 2015 IEEE International Conference on Big Data (Big Data), pages 2541–
2550. IEEE, 2015. 15

[79] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental
performance characteristics of gpus and cpus for database analytics. In Proceedings
of the 2020 ACM SIGMOD international conference on Management of data, pages
1617–1632, 2020. v, 15, 16, 18

[80] Bin Shao, Yatao Li, Haixun Wang, and Huanhuan Xia. Trinity graph engine and
its applications. IEEE Data Eng. Bull., 40(3):18–29, 2017. URL http://sites.
computer.org/debull/A17sept/p18.pdf. 1

[81] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy,
and Anastasia Ailamaki. Hardware-conscious hash-joins on gpus. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 698–709, 2019. doi:
10.1109/ICDE.2019.00068. 15

[82] Evangelia A Sitaridi and Kenneth A Ross. Optimizing select conditions on gpus.
In Proceedings of the Ninth International Workshop on Data Management on New
Hardware, pages 1–8, 2013. 15

[83] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. Vectorization vs. compilation
in query execution. In Proceedings of the Seventh International Workshop on Data
Management on New Hardware, pages 33–40, 2011. 1

[84] Elias Stehle and Hans-Arno Jacobsen. A memory bandwidth-efficient hybrid radix sort
on gpus. CoRR, abs/1611.01137, 2016. URL http://arxiv.org/abs/1611.01137.
15

71

https://rapids.ai/
https://doi.org/10.1145/3085504.3085521
http://sites.computer.org/debull/A17sept/p18.pdf
http://sites.computer.org/debull/A17sept/p18.pdf
http://arxiv.org/abs/1611.01137

REFERENCES

[85] Daniel ten Wolde, Tavneet Singh, Gábor Szárnyas, and Peter A. Boncz. Duckpgq:
Efficient property graph queries in an analytical RDBMS. In 13th Conference
on Innovative Data Systems Research, CIDR 2023, Amsterdam, The Netherlands,
January 8-11, 2023. www.cidrdb.org, 2023. URL https://www.cidrdb.org/
cidr2023/papers/p66-wolde.pdf. 1

[86] Manuel Then. Efficient batched graph analytics through algorithmic transformation.
PhD thesis, Technical University Munchen, 2017. v, 1, 6, 21, 22, 23, 24, 25, 29, 40

[87] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. Mix-and-match: A
model-driven runtime optimisation strategy for bfs on gpus. In 2018 IEEE/ACM
8th Workshop on Irregular Applications: Architectures and Algorithms (IA3), pages
53–60, 2018. doi: 10.1109/IA3.2018.00014. 25, 58

[88] vosen. Zluda, 2025. https://github.com/vosen/ZLUDA [Accessed 13-02-2025]. 10

[89] W3C. wgsl, 2025. https://www.w3.org/TR/WGSL/ [Accessed 13-02-2025]. 14

[90] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding, and
Xiaodong Zhang. Concurrent analytical query processing with gpus. Proc. VLDB
Endow., 7(11):1011–1022, July 2014. ISSN 2150-8097. doi: 10.14778/2732967.2732976.
URL https://doi.org/10.14778/2732967.2732976. 15

[91] Daniel ten Wolde, Gábor Szárnyas, and Peter Boncz. Duckpgq: Bringing sql/pgq´ to
duckdb. Proceedings of the VLDB Endowment, 16(12):4034–4037, 2023. 5

[92] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili. Kernel
weaver: Automatically fusing database primitives for efficient gpu computation. In
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, pages
107–118, 2012. doi: 10.1109/MICRO.2012.19. 15

[93] Makoto Yabuta, Anh Nguyen, Shinpei Kato, Masato Edahiro, and Hideyuki
Kawashima. Relational joins on gpus: A closer look. IEEE Transactions on Parallel
and Distributed Systems, 28(9):2663–2673, 2017. doi: 10.1109/TPDS.2017.2677451.
15

[94] Bobbi Yogatama, Brandon Miller, Yunsong Wang, Graham Markall, Jacob Hemstad,
Gregory Kimball, and Xiangyao Yu. Accelerating user-defined aggregate functions
(udaf) with block-wide execution and jit compilation on gpus. In Proceedings of the
19th International Workshop on Data Management on New Hardware, pages 19–26,
2023. 18

[95] Yanhong Zhuo, Tao Zhang, Feng Du, and Ruilin Liu. A parallel particle swarm
optimization algorithm based on gpu/cuda. Applied Soft Computing, 144:110499,
2023. 2, 10

72

https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf
https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf
https://github.com/vosen/ZLUDA
https://www.w3.org/TR/WGSL/
https://doi.org/10.14778/2732967.2732976

Metal shader sources

A.1 Set First BSAK Dawn

include <metal_stdlib>
using namespace metal;

template<typename T, size_t N>
struct tint_array {

const constant T& operator[](size_t i) const constant { return
elements[i]; }↪→

device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return

elements[i]; }↪→

T elements[N];
};

struct SearchInfo {
/* 0x0000 */ uint offset;
/* 0x0004 */ uint iteration;
/* 0x0008 */ uint mask;
/* 0x000c */ uint jfq_length;
/* 0x0010 */ uint last_jfq;

};

struct tint_module_vars_struct {
const device tint_array<SearchInfo, 1>* info;
const device tint_array<uint, 1>* src;
device tint_array<atomic_uint, 1>* bsak;
const constant tint_array<uint4, 1>* tint_storage_buffer_sizes;

};

struct tint_array_lengths_struct {
uint tint_array_length_0_1;

73

A. METAL SHADER SOURCES

uint tint_array_length_0_2;
uint tint_array_length_0_0;

};

uint tint_div_u32(uint lhs, uint rhs) {
return (lhs / select(rhs, 1u, (rhs == 0u)));

}

void main_inner(uint3 local_id, uint3 invocation, uint3 invocation_size,
tint_module_vars_struct tint_module_vars) {↪→

tint_array_lengths_struct const v =
tint_array_lengths_struct{.tint_array_length_0_1=((*tint_module_vars.tint_storage_buffer_sizes)[0u].y
/ 4u),
.tint_array_length_0_2=((*tint_module_vars.tint_storage_buffer_sizes)[0u].z
/ 4u),
.tint_array_length_0_0=((*tint_module_vars.tint_storage_buffer_sizes)[0u].x
/ 20u)};

↪→

↪→

↪→

↪→

↪→

↪→

uint index = (local_id.x + (*tint_module_vars.info)[min(invocation.x,
(v.tint_array_length_0_0 - 1u))].offset);↪→

if ((index >= v.tint_array_length_0_1)) {
return;

}
uint v_size = tint_div_u32(v.tint_array_length_0_2, invocation_size.x);
uint temp = ((*tint_module_vars.src)[min(index, (v.tint_array_length_0_1

- 1u))] + (v_size * invocation.x));↪→

atomic_fetch_or_explicit((&(*tint_module_vars.bsak)[min(temp,
(v.tint_array_length_0_2 - 1u))]), (1u << (local_id.x & 31u)),
memory_order_relaxed);

↪→

↪→

}

kernel void v_1(uint3 local_id [[thread_position_in_threadgroup]], uint3
invocation [[threadgroup_position_in_grid]], uint3 invocation_size
[[threadgroups_per_grid]], const device tint_array<SearchInfo, 1>* info
[[buffer(0)]], const device tint_array<uint, 1>* src [[buffer(1)]],
device tint_array<atomic_uint, 1>* bsak [[buffer(2)]], const constant
tint_array<uint4, 1>* tint_storage_buffer_sizes [[buffer(30)]]) {

↪→

↪→

↪→

↪→

↪→

tint_module_vars_struct const tint_module_vars =
tint_module_vars_struct{.info=info, .src=src, .bsak=bsak,
.tint_storage_buffer_sizes=tint_storage_buffer_sizes};

↪→

↪→

main_inner(local_id, invocation, invocation_size, tint_module_vars);
}

A.2 Set First BSAK WGPU

// language: metal1.0
include <metal_stdlib>

74

A.2 Set First BSAK WGPU

include <simd/simd.h>

using metal::uint;

struct _mslBufferSizes {
uint size0;
uint size1;
uint size2;

};

struct SearchInfo {
uint offset;
uint iteration;
uint mask;
uint jfq_length;
uint last_jfq;

};
typedef SearchInfo type_1[1];
typedef uint type_2[1];
typedef metal::atomic_uint type_4[1];
uint naga_div(uint lhs, uint rhs) {

return lhs / metal::select(rhs, 1u, rhs == 0u);
}

struct main_Input {
};
kernel void main_(

metal::uint3 local_id [[thread_position_in_threadgroup]]
, metal::uint3 invocation [[threadgroup_position_in_grid]]
, metal::uint3 invocation_size [[threadgroups_per_grid]]
, device type_1 const& info [[user(fake0)]]
, device type_2 const& src [[user(fake0)]]
, device type_4& bsak [[user(fake0)]]
, constant _mslBufferSizes& _buffer_sizes [[user(fake0)]]
) {

uint index = {};
uint v_size = {};
uint temp = {};
uint _e8 = info[invocation.x].offset;
index = local_id.x + _e8;
uint _e11 = index;
if (_e11 >= (1 + (_buffer_sizes.size1 - 0 - 4) / 4)) {

return;
}
v_size = naga_div(1 + (_buffer_sizes.size2 - 0 - 4) / 4,

invocation_size.x);↪→

75

A. METAL SHADER SOURCES

uint _e21 = index;
uint _e23 = src[_e21];
uint _e24 = v_size;
temp = _e23 + (_e24 * invocation.x);
uint _e30 = temp;
uint _e35 = metal::atomic_fetch_or_explicit(&bsak[_e30], 1u <<

local_id.x, metal::memory_order_relaxed);↪→

return;
}

A.3 Frontier expansion Dawn

include <metal_stdlib>
using namespace metal;

template<typename T, size_t N>
struct tint_array {

const constant T& operator[](size_t i) const constant { return
elements[i]; }↪→

device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return

elements[i]; }↪→

T elements[N];
};

struct SearchInfo {
/* 0x0000 */ uint offset;
/* 0x0004 */ uint iteration;
/* 0x0008 */ uint mask;
/* 0x000c */ uint jfq_length;
/* 0x0010 */ uint last_jfq;

};

struct tint_module_vars_struct {
const device tint_array<uint, 1>* v;
const device tint_array<uint, 1>* e;
device tint_array<uint, 1>* jfq;
device tint_array<SearchInfo, 1>* search_info;
const device tint_array<uint, 1>* bsa;
device tint_array<atomic_uint, 1>* bsak;
const constant tint_array<uint4, 2>* tint_storage_buffer_sizes;

};

76

A.3 Frontier expansion Dawn

struct tint_array_lengths_struct {
uint tint_array_length_0_0;
uint tint_array_length_0_3;
uint tint_array_length_0_2;
uint tint_array_length_0_1;
uint tint_array_length_0_5;
uint tint_array_length_0_4;

};

void main_inner(uint3 local_id, uint3 invocation_size, uint3 invocation_id,
tint_module_vars_struct tint_module_vars) {↪→

tint_array_lengths_struct const v_1 =
tint_array_lengths_struct{.tint_array_length_0_0=((*tint_module_vars.tint_storage_buffer_sizes)[0u].x
/ 4u),
.tint_array_length_0_3=((*tint_module_vars.tint_storage_buffer_sizes)[0u].w
/ 20u),
.tint_array_length_0_2=((*tint_module_vars.tint_storage_buffer_sizes)[0u].z
/ 4u),
.tint_array_length_0_1=((*tint_module_vars.tint_storage_buffer_sizes)[0u].y
/ 4u),
.tint_array_length_0_5=((*tint_module_vars.tint_storage_buffer_sizes)[1u].y
/ 4u),
.tint_array_length_0_4=((*tint_module_vars.tint_storage_buffer_sizes)[1u].x
/ 4u)};

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

uint id = invocation_id.x;
bool v_2 = false;
if ((local_id.x == 0u)) {

v_2 = (local_id.y == 0u);
} else {

v_2 = false;
}
bool v_3 = false;
if (v_2) {

v_3 = (invocation_id.y == 0u);
} else {

v_3 = false;
}
if (v_3) {

device uint* const v_4 = (&(*tint_module_vars.search_info)[min(id,
(v_1.tint_array_length_0_3 - 1u))].iteration);↪→

(*v_4) = ((*v_4) + 1u);
(*tint_module_vars.search_info)[min(id, (v_1.tint_array_length_0_3 -

1u))].last_jfq = (*tint_module_vars.search_info)[min(id,
(v_1.tint_array_length_0_3 - 1u))].jfq_length;

↪→

↪→

}

77

A. METAL SHADER SOURCES

uint bsa_offset = (id * v_1.tint_array_length_0_0);
uint jfq_length = (*tint_module_vars.search_info)[min(id,

(v_1.tint_array_length_0_3 - 1u))].jfq_length;↪→

{
uint2 tint_loop_idx = uint2(4294967295u);
uint i = (local_id.x + (invocation_id.y * 128u));
while(true) {

if (all((tint_loop_idx == uint2(0u)))) {
break;

}
if ((i < jfq_length)) {
} else {

break;
}
uint v_5 = (*tint_module_vars.jfq)[min((bsa_offset + i),

(v_1.tint_array_length_0_2 - 1u))];↪→

uint start = ((*tint_module_vars.v)[min(v_5,
(v_1.tint_array_length_0_0 - 1u))] + local_id.y);↪→

uint end = (*tint_module_vars.v)[min((v_5 + 1u),
(v_1.tint_array_length_0_0 - 1u))];↪→

{
uint2 tint_loop_idx_1 = uint2(4294967295u);
while(true) {

if (all((tint_loop_idx_1 == uint2(0u)))) {
break;

}
if ((start < end)) {
} else {

break;
}
uint edge = (*tint_module_vars.e)[min(start,

(v_1.tint_array_length_0_1 - 1u))];↪→

atomic_fetch_or_explicit((&(*tint_module_vars.bsak)[min((bsa_offset
+ edge), (v_1.tint_array_length_0_5 - 1u))]),
(*tint_module_vars.bsa)[min((v_5 + bsa_offset),
(v_1.tint_array_length_0_4 - 1u))], memory_order_relaxed);

↪→

↪→

↪→

↪→

{
uint const tint_low_inc_1 = (tint_loop_idx_1.x - 1u);
tint_loop_idx_1.x = tint_low_inc_1;
uint const tint_carry_1 = uint((tint_low_inc_1 ==

4294967295u));↪→

tint_loop_idx_1.y = (tint_loop_idx_1.y - tint_carry_1);
start = (start + 8u);

}
continue;

78

A.4 Frontier expansion WGPU

}
}
{

uint const tint_low_inc = (tint_loop_idx.x - 1u);
tint_loop_idx.x = tint_low_inc;
uint const tint_carry = uint((tint_low_inc == 4294967295u));
tint_loop_idx.y = (tint_loop_idx.y - tint_carry);
i = (i + (128u * invocation_size.y));

}
continue;

}
}

}

kernel void v_6(uint3 local_id [[thread_position_in_threadgroup]], uint3
invocation_size [[threadgroups_per_grid]], uint3 invocation_id
[[threadgroup_position_in_grid]], const device tint_array<uint, 1>* v
[[buffer(0)]], const device tint_array<uint, 1>* e [[buffer(1)]],
device tint_array<uint, 1>* jfq [[buffer(2)]], device
tint_array<SearchInfo, 1>* search_info [[buffer(3)]], const device
tint_array<uint, 1>* bsa [[buffer(4)]], device tint_array<atomic_uint,
1>* bsak [[buffer(5)]], const constant tint_array<uint4, 2>*
tint_storage_buffer_sizes [[buffer(30)]]) {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

tint_module_vars_struct const tint_module_vars =
tint_module_vars_struct{.v=v, .e=e, .jfq=jfq,
.search_info=search_info, .bsa=bsa, .bsak=bsak,
.tint_storage_buffer_sizes=tint_storage_buffer_sizes};

↪→

↪→

↪→

main_inner(local_id, invocation_size, invocation_id, tint_module_vars);
}

A.4 Frontier expansion WGPU

// language: metal1.0
include <metal_stdlib>
include <simd/simd.h>

using metal::uint;

struct _mslBufferSizes {
uint size0;
uint size1;
uint size2;
uint size3;
uint size4;
uint size5;

};

79

A. METAL SHADER SOURCES

struct SearchInfo {
uint offset;
uint iteration;
uint mask;
uint jfq_length;
uint last_jfq;

};
typedef uint type_1[1];
typedef SearchInfo type_2[1];
typedef metal::atomic_uint type_4[1];

struct main_Input {
};
kernel void main_(

metal::uint3 local_id [[thread_position_in_threadgroup]]
, metal::uint3 invocation_size [[threadgroups_per_grid]]
, metal::uint3 invocation_id [[threadgroup_position_in_grid]]
, device type_1 const& v [[user(fake0)]]
, device type_1 const& e [[user(fake0)]]
, device type_1 const& jfq [[user(fake0)]]
, device type_2& search_info [[user(fake0)]]
, device type_1 const& bsa [[user(fake0)]]
, device type_4& bsak [[user(fake0)]]
, constant _mslBufferSizes& _buffer_sizes [[user(fake0)]]
) {

uint id = {};
uint bsa_offset = {};
uint jfq_length = {};
uint i = {};
uint vertex_ = {};
uint start = {};
uint end = {};
uint edge = {};
id = invocation_id.x;
if (((local_id.x == 0u) && (local_id.y == 0u)) && (invocation_id.y ==

0u)) {↪→

uint _e17 = id;
uint _e21 = search_info[_e17].iteration;
search_info[_e17].iteration = _e21 + 1u;
uint _e24 = id;
uint _e28 = id;
uint _e31 = search_info[_e28].jfq_length;
search_info[_e24].last_jfq = _e31;

}
uint _e32 = id;
bsa_offset = _e32 * (1 + (_buffer_sizes.size0 - 0 - 4) / 4);

80

A.4 Frontier expansion WGPU

uint _e38 = id;
uint _e41 = search_info[_e38].jfq_length;
jfq_length = _e41;
i = local_id.x + (invocation_id.y * 128u);
uint2 loop_bound = uint2(4294967295u);
bool loop_init = true;
while(true) {

if (metal::all(loop_bound == uint2(0u))) { break; }
loop_bound -= uint2(loop_bound.y == 0u, 1u);
if (!loop_init) {

uint _e99 = i;
i = _e99 + (128u * invocation_size.y);

}
loop_init = false;
uint _e49 = i;
uint _e50 = jfq_length;
if (_e49 < _e50) {
} else {

break;
}
{

uint _e53 = bsa_offset;
uint _e54 = i;
uint _e57 = jfq[_e53 + _e54];
vertex_ = _e57;
uint _e60 = vertex_;
uint _e62 = v[_e60];
start = _e62 + local_id.y;
uint _e67 = vertex_;
uint _e71 = v[_e67 + 1u];
end = _e71;
uint2 loop_bound_1 = uint2(4294967295u);
bool loop_init_1 = true;
while(true) {

if (metal::all(loop_bound_1 == uint2(0u))) { break; }
loop_bound_1 -= uint2(loop_bound_1.y == 0u, 1u);
if (!loop_init_1) {

uint _e94 = start;
start = _e94 + 8u;

}
loop_init_1 = false;
uint _e73 = start;
uint _e74 = end;
if (_e73 < _e74) {
} else {

break;
}

81

A. METAL SHADER SOURCES

{
uint _e77 = start;
uint _e79 = e[_e77];
edge = _e79;
uint _e82 = bsa_offset;
uint _e83 = edge;
uint _e87 = vertex_;
uint _e88 = bsa_offset;
uint _e91 = bsa[_e87 + _e88];
uint _e92 = metal::atomic_fetch_or_explicit(&bsak[_e82

+ _e83], _e91, metal::memory_order_relaxed);↪→

}
}

}
}
return;

}

A.5 Frontier identification Dawn

include <metal_stdlib>
using namespace metal;

template<typename T, size_t N>
struct tint_array {

const constant T& operator[](size_t i) const constant { return
elements[i]; }↪→

device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return

elements[i]; }↪→

T elements[N];
};

struct SearchInfo {
/* 0x0000 */ uint offset;
/* 0x0004 */ uint iteration;
/* 0x0008 */ atomic_uint mask;
/* 0x000c */ atomic_uint jfq_length;
/* 0x0010 */ uint last_jfq;

};

struct tint_module_vars_struct {

82

A.5 Frontier identification Dawn

device tint_array<uint, 1>* jfq;
device tint_array<SearchInfo, 1>* search_info;
const device tint_array<uint, 1>* dst;
device tint_array<uint, 1>* path_length;
const device tint_array<uint, 1>* bsa;
device tint_array<uint, 1>* bsak;
const constant tint_array<uint4, 2>* tint_storage_buffer_sizes;

};

struct tint_array_lengths_struct {
uint tint_array_length_0_0;
uint tint_array_length_0_1;
uint tint_array_length_0_4;
uint tint_array_length_0_5;
uint tint_array_length_0_2;
uint tint_array_length_0_3;

};

uint tint_div_u32(uint lhs, uint rhs) {
return (lhs / select(rhs, 1u, (rhs == 0u)));

}

void main_inner(uint3 local_id, uint3 invocation, uint3 invocation_size,
tint_module_vars_struct tint_module_vars) {↪→

tint_array_lengths_struct const v =
tint_array_lengths_struct{.tint_array_length_0_0=((*tint_module_vars.tint_storage_buffer_sizes)[0u].x
/ 4u),
.tint_array_length_0_1=((*tint_module_vars.tint_storage_buffer_sizes)[0u].y
/ 20u),
.tint_array_length_0_4=((*tint_module_vars.tint_storage_buffer_sizes)[1u].x
/ 4u),
.tint_array_length_0_5=((*tint_module_vars.tint_storage_buffer_sizes)[1u].y
/ 4u),
.tint_array_length_0_2=((*tint_module_vars.tint_storage_buffer_sizes)[0u].z
/ 4u),
.tint_array_length_0_3=((*tint_module_vars.tint_storage_buffer_sizes)[0u].w
/ 4u)};

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

uint id = invocation.x;
bool v_1 = false;
if (((*tint_module_vars.search_info)[min(id, (v.tint_array_length_0_1 -

1u))].iteration > 0u)) {↪→

v_1 = ((*tint_module_vars.search_info)[min(id, (v.tint_array_length_0_1
- 1u))].last_jfq == 0u);↪→

} else {
v_1 = false;

}

83

A. METAL SHADER SOURCES

if (v_1) {
return;

}
uint const v_2 = id;
uint bsa_offset = (v_2 * tint_div_u32(v.tint_array_length_0_0,

invocation_size.x));↪→

uint dst_offset = (*tint_module_vars.search_info)[min(id,
(v.tint_array_length_0_1 - 1u))].offset;↪→

uint maskl =
~(atomic_load_explicit((&(*tint_module_vars.search_info)[min(id,
(v.tint_array_length_0_1 - 1u))].mask), memory_order_relaxed));

↪→

↪→

uint iteration = (*tint_module_vars.search_info)[min(id,
(v.tint_array_length_0_1 - 1u))].iteration;↪→

{
uint2 tint_loop_idx = uint2(4294967295u);
uint i = (local_id.x + (invocation.y * 256u));
while(true) {

if (all((tint_loop_idx == uint2(0u)))) {
break;

}
uint const v_3 = i;
if ((v_3 < tint_div_u32(v.tint_array_length_0_0, invocation_size.x)))

{↪→

} else {
break;

}
uint diff = (((*tint_module_vars.bsa)[min((bsa_offset + i),

(v.tint_array_length_0_4 - 1u))] ^
(*tint_module_vars.bsak)[min((bsa_offset + i),
(v.tint_array_length_0_5 - 1u))]) & maskl);

↪→

↪→

↪→

if ((diff == 0u)) {
{

uint const tint_low_inc = (tint_loop_idx.x - 1u);
tint_loop_idx.x = tint_low_inc;
uint const tint_carry = uint((tint_low_inc == 4294967295u));
tint_loop_idx.y = (tint_loop_idx.y - tint_carry);
i = (i + (256u * invocation_size.y));

}
continue;

}
device uint* const v_4 = (&(*tint_module_vars.bsak)[min((bsa_offset +

i), (v.tint_array_length_0_5 - 1u))]);↪→

(*v_4) = ((*v_4) | (*tint_module_vars.bsa)[min((bsa_offset + i),
(v.tint_array_length_0_4 - 1u))]);↪→

84

A.5 Frontier identification Dawn

uint temp =
atomic_fetch_add_explicit((&(*tint_module_vars.search_info)[min(id,
(v.tint_array_length_0_1 - 1u))].jfq_length), 1u,
memory_order_relaxed);

↪→

↪→

↪→

(*tint_module_vars.jfq)[min((bsa_offset + temp),
(v.tint_array_length_0_0 - 1u))] = i;↪→

uint length = popcount(diff);
{

uint2 tint_loop_idx_1 = uint2(4294967295u);
uint j = 0u;
while(true) {

if (all((tint_loop_idx_1 == uint2(0u)))) {
break;

}
if ((j < length)) {
} else {

break;
}
uint index = ctz(diff);
if (((*tint_module_vars.dst)[min((dst_offset + index),

(v.tint_array_length_0_2 - 1u))] == i)) {↪→

(*tint_module_vars.path_length)[min((dst_offset + index),
(v.tint_array_length_0_3 - 1u))] = iteration;↪→

atomic_fetch_or_explicit((&(*tint_module_vars.search_info)[min(id,
(v.tint_array_length_0_1 - 1u))].mask), (1u << (index &
31u)), memory_order_relaxed);

↪→

↪→

↪→

}
diff = (diff ^ (1u << (index & 31u)));
{

uint const tint_low_inc_1 = (tint_loop_idx_1.x - 1u);
tint_loop_idx_1.x = tint_low_inc_1;
uint const tint_carry_1 = uint((tint_low_inc_1 ==

4294967295u));↪→

tint_loop_idx_1.y = (tint_loop_idx_1.y - tint_carry_1);
j = (j + 1u);

}
continue;

}
}
{

uint const tint_low_inc = (tint_loop_idx.x - 1u);
tint_loop_idx.x = tint_low_inc;
uint const tint_carry = uint((tint_low_inc == 4294967295u));
tint_loop_idx.y = (tint_loop_idx.y - tint_carry);
i = (i + (256u * invocation_size.y));

85

A. METAL SHADER SOURCES

}
continue;

}
}

}

kernel void v_5(uint3 local_id [[thread_position_in_threadgroup]], uint3
invocation [[threadgroup_position_in_grid]], uint3 invocation_size
[[threadgroups_per_grid]], device tint_array<uint, 1>* jfq
[[buffer(0)]], device tint_array<SearchInfo, 1>* search_info
[[buffer(1)]], const device tint_array<uint, 1>* dst [[buffer(2)]],
device tint_array<uint, 1>* path_length [[buffer(3)]], const device
tint_array<uint, 1>* bsa [[buffer(4)]], device tint_array<uint, 1>*
bsak [[buffer(5)]], const constant tint_array<uint4, 2>*
tint_storage_buffer_sizes [[buffer(30)]]) {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

tint_module_vars_struct const tint_module_vars =
tint_module_vars_struct{.jfq=jfq, .search_info=search_info, .dst=dst,
.path_length=path_length, .bsa=bsa, .bsak=bsak,
.tint_storage_buffer_sizes=tint_storage_buffer_sizes};

↪→

↪→

↪→

main_inner(local_id, invocation, invocation_size, tint_module_vars);
}

A.6 Frontier identification WGPU

// language: metal1.0
include <metal_stdlib>
include <simd/simd.h>

using metal::uint;

struct _mslBufferSizes {
uint size0;
uint size1;
uint size2;
uint size3;
uint size4;
uint size5;

};

struct SearchInfo {
uint offset;
uint iteration;
metal::atomic_uint mask;
metal::atomic_uint jfq_length;
uint last_jfq;

};

86

A.6 Frontier identification WGPU

typedef uint type_2[1];
typedef SearchInfo type_3[1];
uint naga_div(uint lhs, uint rhs) {

return lhs / metal::select(rhs, 1u, rhs == 0u);
}

struct main_Input {
};
kernel void main_(

metal::uint3 local_id [[thread_position_in_threadgroup]]
, metal::uint3 invocation [[threadgroup_position_in_grid]]
, metal::uint3 invocation_size [[threadgroups_per_grid]]
, device type_2& jfq [[user(fake0)]]
, device type_3& search_info [[user(fake0)]]
, device type_2 const& dst [[user(fake0)]]
, device type_2& path_length [[user(fake0)]]
, device type_2 const& bsa [[user(fake0)]]
, device type_2& bsak [[user(fake0)]]
, constant _mslBufferSizes& _buffer_sizes [[user(fake0)]]
) {

uint id = {};
uint bsa_offset = {};
uint dst_offset = {};
uint maskl = {};
uint iteration = {};
uint i = {};
uint diff = {};
uint temp = {};
uint length = {};
uint j = {};
uint index = {};
id = invocation.x;
uint _e6 = id;
uint _e9 = search_info[_e6].iteration;
uint _e13 = id;
uint _e16 = search_info[_e13].last_jfq;
if ((_e9 > 0u) && (_e16 == 0u)) {

return;
}
uint _e20 = id;
bsa_offset = _e20 * naga_div(1 + (_buffer_sizes.size0 - 0 - 4) / 4,

invocation_size.x);↪→

uint _e28 = id;
uint _e31 = search_info[_e28].offset;
dst_offset = _e31;
uint _e34 = id;

87

A. METAL SHADER SOURCES

uint _e37 = metal::atomic_load_explicit(&search_info[_e34].mask,
metal::memory_order_relaxed);↪→

maskl = ~(_e37);
uint _e41 = id;
uint _e44 = search_info[_e41].iteration;
iteration = _e44;
i = local_id.x + (invocation.y * 256u);
uint2 loop_bound = uint2(4294967295u);
bool loop_init = true;
while(true) {

if (metal::all(loop_bound == uint2(0u))) { break; }
loop_bound -= uint2(loop_bound.y == 0u, 1u);
if (!loop_init) {

uint _e147 = i;
i = _e147 + (256u * invocation_size.y);

}
loop_init = false;
uint _e52 = i;
if (_e52 < naga_div(1 + (_buffer_sizes.size0 - 0 - 4) / 4,

invocation_size.x)) {↪→

} else {
break;

}
{

uint _e59 = bsa_offset;
uint _e60 = i;
uint _e63 = bsa[_e59 + _e60];
uint _e65 = bsa_offset;
uint _e66 = i;
uint _e69 = bsak[_e65 + _e66];
uint _e71 = maskl;
diff = (_e63 ^ _e69) & _e71;
uint _e74 = diff;
if (_e74 == 0u) {

continue;
}
uint _e78 = bsa_offset;
uint _e79 = i;
uint _e83 = bsa_offset;
uint _e84 = i;
uint _e87 = bsa[_e83 + _e84];
uint _e88 = bsak[_e78 + _e79];
bsak[_e78 + _e79] = _e88 | _e87;
uint _e91 = id;
uint _e95 =

metal::atomic_fetch_add_explicit(&search_info[_e91].jfq_length,
1u, metal::memory_order_relaxed);

↪→

↪→

88

A.6 Frontier identification WGPU

temp = _e95;
uint _e98 = bsa_offset;
uint _e99 = temp;
uint _e102 = i;
jfq[_e98 + _e99] = _e102;
uint _e103 = diff;
length = metal::popcount(_e103);
j = 0u;
uint2 loop_bound_1 = uint2(4294967295u);
bool loop_init_1 = true;
while(true) {

if (metal::all(loop_bound_1 == uint2(0u))) { break; }
loop_bound_1 -= uint2(loop_bound_1.y == 0u, 1u);
if (!loop_init_1) {

uint _e142 = j;
j = _e142 + 1u;

}
loop_init_1 = false;
uint _e108 = j;
uint _e109 = length;
if (_e108 < _e109) {
} else {

break;
}
{

uint _e111 = diff;
index = metal::ctz(_e111);
uint _e115 = dst_offset;
uint _e116 = index;
uint _e119 = dst[_e115 + _e116];
uint _e120 = i;
if (_e119 == _e120) {

uint _e123 = dst_offset;
uint _e124 = index;
uint _e127 = iteration;
path_length[_e123 + _e124] = _e127;
uint _e129 = id;
uint _e133 = index;
uint _e135 =

metal::atomic_fetch_or_explicit(&search_info[_e129].mask,
1u << _e133, metal::memory_order_relaxed);

↪→

↪→

}
uint _e137 = index;
uint _e139 = diff;
diff = _e139 ^ (1u << _e137);

}
}

89

A. METAL SHADER SOURCES

}
}
return;

}

90

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Goals
	1.2.1 Research questions

	2 Background
	2.1 DuckDB
	2.1.1 Morsel-driven parallelism
	2.1.2 DuckPGQ
	2.1.3 Compressed sparse row (CSR)
	2.1.4 Multi-Source Breadth-First Search
	2.1.5 IBFS

	2.2 Graphics processing unit (GPU)
	2.2.1 Programming model
	2.2.1.1 GPU programming paradigms
	2.2.1.2 WebGPU
	2.2.1.3 Compute shaders
	2.2.1.4 The C++ driver code
	2.2.1.5 Features and limitations

	2.2.2 Data transfers

	3 Related Work
	3.1 GPUs in database systems
	3.1.1 Accelerating GPU operators
	3.1.2 Crystal
	3.1.3 PG-Strom
	3.1.4 HeavyDB (MapD, OmniSciDB)
	3.1.5 BlazingSQL / RAPIDS
	3.1.6 TQP
	3.1.7 HetExchange

	3.2 Breadth-First Search
	3.2.1 Single Source
	3.2.2 Multi-Source
	3.2.2.1 MS-PBFS

	3.3 BFS on the GPU
	3.3.1 IBFS
	3.3.2 Fused Probabilistic Breadth-First Search
	3.3.3 Mix and match A model driven runtime optimization for BFS on GPU

	3.4 WebGPU usage in science
	3.4.1 Security
	3.4.2 Portability

	4 Design & Implementation
	4.1 Moving away from MS-BFS
	4.2 Implementing IBFS
	4.2.1 Set first BSAK
	4.2.2 Identify
	4.2.3 Expand
	4.2.4 Combining all steps

	4.3 Parallezation schemes
	4.3.1 Naive solutions
	4.3.2 Workgroups
	4.3.3 Coalesced access
	4.3.3.1 Direction switching

	4.4 Implementation difference between CUDA and WebGPU

	5 Evaluation
	5.1 Experiment setup
	5.1.1 Dataset: LDBC Social Network Benchmark
	5.1.2 Environment

	5.2 Comparing approaches
	5.3 Comparison of different backends
	5.4 Operating systems impact
	5.5 Executing in a web browser
	5.6 Comparison with DuckPGQ multi-threaded CPU
	5.7 Comparison with Mix and Match (Belewitte)
	5.8 Underutilization

	6 Future Work
	6.1 Comparison between GPU APIs
	6.2 Extending current approach
	6.2.1 Improving workload balance
	6.2.2 Computing full path

	6.3 Heterogeneous path length computation
	6.4 Optimizing query performance of DuckPGQ

	7 Conclusion
	References
	A Metal shader sources
	A.1 Set First BSAK Dawn
	A.2 Set First BSAK WGPU
	A.3 Frontier expansion Dawn
	A.4 Frontier expansion WGPU
	A.5 Frontier identification Dawn
	A.6 Frontier identification WGPU

