
Bloom Filter Based Encrypted
Data Skipping In DuckDB

Iceberg

Author: Thijs van der Heijden (2824561)
Vrije Universiteit × Universiteit van Amsterdam

1st supervisor: Peter Boncz
daily supervisor: Lotte Felius
2nd reader: Dandan Yuan

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 8, 2025

“Here’s to the crazy ones.“

Steve Jobs

Abstract

In this thesis, we introduce the notion of Encrypted Data Skipping (EDS), as

well as a novel Bloom filter based EDS scheme (BF-EDS). Our novel scheme

encrypts just the metadata in such a way that range predicates can still be

evaluated, allowing for efficient data skipping while leaking significantly less

information compared to existing schemes like Order Preserving Encryption

(OPE) and Order Revealing Encryption (ORE). To the best of our knowledge,

no research has been done on encrypting just metadata to allow for predicate

evaluation, while keeping the data itself encrypted using fast AES encryption

schemes. Additionally, we add mapping functions to support signed, unsigned,

NULL and string values, increasing the usefulness of BF-EDS.

We integrate BF-EDS in DuckDB Iceberg and perform extensive evalua-

tions using both custom and TPC-H benchmarks, as well as a comparison with

an ORE based EDS implementation. Our evaluation shows BF-EDS incurs an

overhead between 1.15 and 1.4x when querying compared to plaintext, while sig-

nificantly outperforming ORE by 1.8x. Additionally, ciphertexts are generated

135x faster compared to ORE, making BF-EDS better suited for write-heavy

applications.

Acknowledgements

This thesis was completed at the Centrum Wiskunde & Informatica (CWI) in

Amsterdam. I would like to give a special thanks to Peter Boncz for offering me

a place in the Database Architectures group and for his feedback and support

throughout this thesis. Thank you Dandan Yuan and Lotte Felius for providing

me with valuable insights and feedback during our weekly meetings and for your

enthusiasm for the work done in this thesis. I am grateful for all the wonderful

people I met as part of the DA group, the MotherDuckers who opened their

doors to us and the many, many games of table tennis that were played.

Most of all, I want to thank my partner, Charlotte, for her unwavering

support and belief in me. Your support means the world to me.

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Outline . 3

2 Background 6

2.1 Cryptographic Primitives . 6

2.1.1 Security Parameter . 6

2.1.2 Property Preserving Encryption 7

2.1.3 Homomorphic Encryption 8

2.1.4 Pseudorandom Functions 8

2.2 Binary Interval Trees . 11

2.2.1 Node Coverage And Coverage Set 13

2.2.2 Minimum Coverage Set 14

2.2.3 Determining Range Intersections 15

2.3 Bloom Filters . 16

2.3.1 Register Blocked Bloom Filters 17

2.3.2 Split Block Bloom Filters 18

2.4 Data Lakehouse . 19

2.4.1 Data Lakes . 20

2.4.2 Open Table Formats . 20

2.4.3 Data Skipping In Data Lakehouse Systems 23

3 Related Works 25

3.1 Software-Only EDBMSs . 26

3.2 Trusted Hardware . 30

3.2.1 Dedicated Trusted Hardware 30

3.2.2 Trusted Execution Environments 34

3.3 Hybrid Query Execution . 39

3.3.1 Hybrid Software & Trusted Hardware Query Execution . 39

1

3.3.2 Multi-Party Hybrid Query Execution 43

3.4 Comparison . 48

3.4.1 Functionality . 48

3.4.2 Security . 50

3.4.3 Performance . 50

4 Bloom Filter Based Encrypted Data Skipping 52

4.1 Problem Statement . 52

4.2 Threat Model . 52

4.3 The Scheme . 53

4.3.1 Bloom Filter Encryption 55

4.3.2 Querying Using Query Tokens 56

4.3.3 Security Analysis . 58

5 Implementing Bloom Filter Based Encrypted Data Skipping 60

5.1 Binary Interval Trees . 60

5.1.1 Coverage Set . 60

5.1.2 Minimum Coverage Set 62

5.2 Hash Functions . 65

5.3 Bloom Filters . 66

5.3.1 Basic Bloom Filters . 66

5.3.2 Register Blocked Bloom Filters 67

5.3.3 Split Block Bloom Filters 68

5.4 BF-EDS Library . 73

5.5 Iceberg . 74

5.5.1 Creating Iceberg Tables 74

5.5.2 Adding Bloom Filters To Manifest Files 74

5.5.3 Adding BF-EDS To DuckDB Iceberg 77

5.6 Range Mapping . 78

5.6.1 Signed Integers . 78

5.6.2 Strings . 79

5.6.3 NULL Values . 82

6 Evaluation 83

6.1 Preliminaries . 83

6.2 Binary Interval Trees . 83

6.2.1 Node ID Calculation . 84

6.2.2 Coverage Set Calculation 84

6.2.3 Minimum Coverage Set Calculation 86

6.3 Hash Functions . 88

6.3.1 Performance . 88

6.3.2 Uniformity . 89

6.4 Bloom Filters . 91

6.4.1 Split Block Bloom Filter Comparison 91

6.4.2 Bloom Filter Comparison 93

6.4.3 Encryption Methods Comparison 97

6.5 String Range Mapping . 98

6.5.1 Perfect Accuracy . 98

6.5.2 Benchmarks On Real World Data 99

6.6 DuckDB Iceberg Manifest Querying Performance 101

6.6.1 Querying Increasing Range Sizes 101

6.6.2 Performance With Larger Bloom Filter Bitsets 102

6.6.3 Increasing Manifest Batch Size 104

6.6.4 Regular Iceberg Performance Comparison 105

6.6.5 TPC-H Performance . 108

6.7 Order Revealing Encryption Performance Comparison 110

6.7.1 Manifest Querying Performance 110

6.7.2 Ciphertext Generation . 111

7 Discussion & Future Work 114

8 Conclusion 116

9 Appendix 119

9.1 Range Generation Seeds . 119

9.2 Keyed Hash Function Keys . 121

References 121

List of Figures

2.1 Example binary interval tree which can depict ranges in the in-

clusive domain [0, 7] and has a height of log2(7) ≈ 3. 12

2.2 Binary interval trees with binary labels and IDs calculated using

the equation in Listing 2.3. 12

2.3 Equation which calculates a unique ID for each node in a binary

interval tree. The term b[i] is the bit at index i, from least to

most significant bit (right to left), in the nodes binary label[42]. . 13

2.4 Example calculation of node ID for the nodes with binary labels

110 and 01. Index 0 is the least significant, rightmost bit in the

nodes binary label. 13

2.5 Coverage, cv of node 12 which is equal to {8, 9, 0, 1, 2, 3}. 14

2.6 The coverage sets P(3) and P(7), highlighted in green. 14

2.7 MCS Λ(3, 7) = {3, 13}. Node 4 is not a member of the MCS as

it also covers node 2, which is not part of the MCS range. Node

13 covers the entire range [4, 7], and is preferred over {10, 11} as
the MCS is defined as the smallest subset of nodes. 15

2.8 Example data and query ranges [3, 7] and [2, 5] respectively. These

two ranges intersect. 15

2.9 Intersection between the sets Λ(0,maxq) and P(mind) results in

{12}. 16

2.10 Intersection between the sets Λ(minq, T) and P(maxd) results in

{13}. 16

2.11 Inserting two items into a Bloom filter. Both insertions set the

bit at index 6 due to a hash collision. 17

2.12 Checking whether two items are in the Bloom filter. One item is,

the other item is not. 17

4

2.13 Insertion of an item into a register blocked Bloom filter. The first

hash is used to select a block, the remaining k−1 hashes are used

to set bits within this block. Each block is the size of a machine

word, in this case 64 bits. 18

2.14 Insertion of an item into a SBBF. The most significant 32 bits are

used to select a block. Multiply-shift hashing is used to obtain

eight distinct indices. Bits at these eight indices are set in the

selected block. 19

2.15 The architecture of Apache Iceberg. The solid black arrows indi-

cate active links between files. Three main layers are shown: the

data layer, metadata layer and the catalog. 22

2.16 Iceberg manifest file containing two example manifest entries.

Each entry points to a distinct data file and contains relevant file

statistics like column bounds, NULL value counts and row counts. 23

3.1 CryptDB onion model and the operations which can be performed

using each of the onion layers[55]. 26

3.2 Operation execution time of SAHE and SMHE compared to asym-

metric schemes, followed by relative standard error. All execution

times given in nanoseconds[59]. 28

3.3 Storage overhead of SAHE, SMHE and asymmetric schemes com-

pared to plaintext. Plaintext (text) indicates uncompressed

plaintext data. All other methods use Parquet to store com-

pressed data. Duration indicates the compression time for plain-

text data and additionally the encryption time for all other schemes[59]. 29

3.4 KafeDB and CryptDB slowdown relative to plaintext PostgreSQL

on TPC-H benchmark using scale factor 1. KafeDB incurs about

an order of magnitude more slowdown compared to CryptDB[71]. 30

3.5 Cost analysis and runtime results for TrustedDB[8]. 32

3.6 Cipherbase architecture using FPGA extension cards as TH[7]. . 33

3.7 Normalized performance of Cipherbase on the TPC-C set com-

pared to plaintext SQL Server. Customer : All PII columns in

the Customer table are strongly encrypted. Strong/Weak : In-

dex and foreign key columns are encrypted using DE, all other

columns are strongly encrypted. Strong/Strong : All columns are

strongly encrypted. Opt : With optimizations. NoOpt : Without

optimizations[7]. 34

3.8 Azure Always Encrypted architecture. All parts are trusted ex-

cept for the grayed out SQL server[3]. 35

3.9 All four query processing algorithms presented in ObliDB[24]. . . 37

3.10 GaussDB architecture showing the REE which uses software-

based PPE to interact directly with ciphertexts and the TEE

which securely decrypts data to perform more complex SQL op-

erations on plaintext data[73]. 39

3.11 GaussDB performance evaluation results for three SQL opera-

tions claiming, on average, less than 5% performance overhead

with encrypted columns compared to plaintext columns[73]. . . . 40

3.12 Results running binary search and quicksort within Intel SGX

enclave with increasing problem size. Large spike in runtime

indicates page faults due to the highly random nature of the

algorithms and is used to estimate residual enclave memory. . . . 42

3.13 MONOMI and modified CryptDB TPC-H execution times, nor-

malized to plaintext PostgreSQL. Overall MONOMI claims to in-

cur a median overhead of 1.24x over plaintext PostgreSQL, with

overheads ranging from 1.03x for query 7 to 2.33x for query 11.

Query 21 times out due to its subquery complexity and non-

obvious rewrite[68]. 44

3.14 Cuttlefish table definition including SDTs[60]. 45

3.15 Cuttlefish architecture showing the trusted and untrusted do-

mains. The query planner/compiler determines the query opera-

tions to perform locally versus on the server[60]. 45

3.16 VCrypt nonce structure splitting the nonce value into a high,

low and counter part. High and low values are RLE compressed,

counter value is delta compressed[25]. 47

4.1 Binary interval tree denoting range [3, 7] with highlighted sets

P(3) and P(7). 53

4.2 Bloom filter insertion of coverage sets P(3) and P(7). Both sets

are prefixed with distinct symbols to prevent incorrect intersec-

tion results. 54

4.3 MCSs for ranges [0,maxq] and [minq, T]. 55

4.4 Querying the Bloom filter containing elements from P(3) and

P(7) for intersections with the sets Λ(0, 5) and Λ(2, 7). Elements

in sets checked for intersections are prefixed with the same char-

acter. 55

5.1 Binary interval trees with both binary labels and ID’s. 61

5.2 Comparison of MCS nodes between small and large ranges. . . . 63

5.3 Order in which nodes are expanded for the binary search and top

down MCS calculation algorithms respectively. In this case the

binary search implementation expands less than half the number

of nodes compared to the top down algorithm. 63

5.4 String to unsigned integer mapping equation wherem denotes the

maximum prefix length of the string taken into account, s repre-

sents the to-be-converted-string and b is a base which determines

the weight of characters in the string. 79

5.5 Character weight drops off exponentially as letter index in the

string increases. Increasing b exacerbates this effect, allowing for

longer strings to be mapped with perfect accuracy. 80

5.6 Mapping the strings ’azzz’ and ’b’ to an integer using parameters

m = 4 and b = 2. Parameter b is too small to assign sufficient

weight to earlier characters in the string, leading to ’b’ having

a lower numerical value than ’azzz’. This leads to numerical

ordering which differs from the strings lexicographical ordering. . 81

5.7 Mapping the strings ’azzz’ and ’b’ to an integer using parameters

m = 4 and b = 27. This parameter combination correctly maps

’azzz’ to a lower numerical value than ’b’, preserving the strings

lexicographical ordering. 81

6.1 Node ID calculation duration for the leftmost leaf node with in-

creasing tree heights. Runtime increases linearly with tree height. 84

6.2 Coverage set calculation duration for the leaf node ’0’ with in-

creasing tree heights. 85

6.3 Coverage set calculation duration comparison between the naive

and optimized implementations for the leaf node ’0’ with increas-

ing tree heights. 86

6.4 Average MCS calculation duration per implementation with in-

creasing tree height. Shown duration is average of 10,000 random

range MCS calculations. 87

6.5 Average number of expanded nodes per implementation. Average

taken over 10,000 random range MCS calculations. An expanded

node is a node for which the coverage is calculated and checked. 87

6.6 Hashing duration for various HFs with increasing key sizes. Over-

all HighwayHash and SipHash perform best, with SipHash out-

performing HighwayHash on inputs smaller than 128 bytes. . . . 89

6.7 Mean χ2 test results for various HFs hashing to 8192 and 16384

buckets over 50 runs. A mean χ2 value closer to buckets − 1

indicates more uniform hashing. Overall HighwayHash performs

best when taking both bucket counts into account. 90

6.8 Number of runs out of 50 total runs with a p value below 0.05,

indicating a significant deviation from the expected uniform dis-

tribution. HighwayHash has the lowest number of deviations with

both bucket counts, indicating very consistent uniform hashing

performance. 91

6.9 Comparison of false positives spread between the regular, 256

bit and 256 bit multiply-shift hashing SBBF variants. The 256

bit variant using no multiply-shift hashing performs significantly

worse compared to the other two variants. 92

6.10 Single query duration comparison between the regular SBBF us-

ing just the first 64 bits of a digest, and the SBBF variant using

the full 256 bits of the digest. Both variants use multiply-shift

hashing to generate eight sufficiently independent hashes. 93

6.11 Single Bloom filter query duration comparison between three

Bloom filter variants. All Bloom filters are unencrypted. The pa-

rameters m and k are chosen such that the Bloom filter achieves

an average FPR of 1%. We benchmark both cases where the

query range intersects with the Bloom filter range, as well as

cases where the query range does not intersect with the Bloom

filter range. 94

6.12 Query duration comparison between XOR encrypted Bloom fil-

ter variants. We benchmark both cases where the query range

intersects with the Bloom filter range, as well as cases where the

query range does not intersect with the Bloom filter range. The

SBBF variant significantly outperforms the other variants. 95

6.13 Comparison of number of performed XOR decryptions between

XOR encrypted Bloom filter variants. The SBBF significantly

outperforms the other two variants due to its block-by-block

encryption which uses larger blocks compared to the register

blocked Bloom filter. 96

6.14 Number of matching pairs when querying a basic Bloom filter, k

pairs per sub-token, with intersecting and non-intersecting ranges.

The first pair in most sub-tokens is not present in the Bloom fil-

ter, allowing the remaining k− 1 pairs to be skipped. This leads

to a much smaller number of HF operations than expected. . . . 97

6.15 Query duration with various encryption methods applied to the

SBBF. Per encryption method the benchmark is run twice with

10,000 randomly generated ranges. First with only intersecting

ranges, second with only non-intersecting ranges (left and right

bars respectively). 98

6.16 Accuracy of ordering with mapped strings. All strings mapped to

integers using the parameters (m = 12, b = 30). Acceptable delta

is defined as the maximum delta between the index of a string in

the ordered string list compared to the mapped numerical value

in the ordered mapped values list. Any delta larger than the

acceptable delta is counted as an error. 101

6.17 Query duration for range sizes from 1 to 263 on a table with

1 million files using AES-encrypted 16384 bit SBBF. While the

largest query range size intersects with all files, and the smallest

with just a single file, all queries take about the same amount of

time. Query duration thus leaks little to an adversary about the

queried range size. 102

6.18 Comparison in query duration when querying 1 million files with

increasing SBBF bitset size m. Query duration increases sublin-

early with linear increasing m. Above m = 8192 query duration

increases at a higher rate. 103

6.19 FPR when querying 1 million files with increasing SBBF bitset

size m. 103

6.20 Size of individual manifest files containing 1000 manifest entries

for various Bloom filter bitset sizes m. Manifest file size increases

linearly with m. 104

6.21 Query duration querying 100,000 manifest entries with various

batch sizes while using AES-encrypted 16384 bit SBBF. Higher

batch sizes result in shorter queries. Diminishing returns with

very high batch sizes due to query processing dominating I/O

operations and diminishing decrease in manifest file count. 105

6.22 Mean query duration comparison between regular DuckDB Ice-

berg and DuckDB Iceberg using BF-EDS. BF-EDS uses AES-

encrypted 16384 bit SBBF. Benchmarked on 64 query ranges

covering all range sizes between 20 and 263. Query duration in-

creases linearly with table size for both the regular and BF-EDS

implementation. 106

6.23 BF-EDS overhead compared to regular DuckDB Iceberg as query

range size increases from 20 to 263. BF-EDS performance remains

stable whereas regular Iceberg performance decreases, leading to

a reduced overhead with larger query range sizes. 107

6.24 Standard TPC-H query 6 taken from the DuckDB tpch extension

and the modified query used in our evaluation. 108

6.25 TPC-H query 6 mean duration comparison between regular DuckDB

Iceberg and DuckDB Iceberg using BF-EDS. Evaluation run with

increasing scale factors up to 16. BF-EDS uses AES-encrypted

16384 bit SBBF. On average our BF-EDS implementation incurs

a 15% overhead compared to regular DuckDB Iceberg. 109

6.26 Mean DuckDB Iceberg query duration comparison between ORE

and BF-EDS using an AES-encrypted 16384 bit SBBF. BF-EDS

is 1.8x faster compared to ORE for each of the evaluated table

sizes. 111

6.27 Duration to compute a single ciphertext for ORE with two do-

main sizes, as well as BF-EDS with two encryption methods.

BF-EDS is 135x faster than ORE with a 64 bit domain and 67x

faster than ORE with a 32 bit domain. 112

6.28 Duration to update a full Iceberg manifest file containing 1000

manifest entries using BF-EDS and ORE. BF-EDS significantly

outperforms ORE. With the largest Bloom filter bitset size of 216

BF-EDS outperforms ORE by 39x. 113

List of Tables

2.1 Covered encryption schemes and their corresponding information

leakage. 9

3.1 Supported SQL operations as well as an overview of the category

and used technologies for each discussed EDBMS. 49

6.1 String mapping parameter combinations which yield perfect ac-

curacy for strings up to length m. As m increases the max usable

b value drops due to integer overflows, clearly seen by the drop

in max b from 64 with m = 4 down to 30 with m = 12. Above

m = 12 perfect accuracy is no longer possible. 99

6.2 Relevant statistics for body and author column string lengths

in preprocessed NextiaJD Reddit comments dataset. The mean

body column string length is significantly longer compared to the

author column. The longest string in the author column can be

entirely covered by m, whereas this is not the case for the body

column. 100

6.3 Mean query duration and overhead when using BF-EDS com-

pared to regular Iceberg for various table sizes. Results obtained

by running 64 query ranges covering range sizes from 20 up to 263.107

6.4 Mean query duration and BF-EDS overhead when running TPC-

H query 6 at scale factors between 1 and 16. 109

11

List of Listings

1 Implementation of coverage set calculation function in C++ which

computes the node ID’s in place while moving down the three. . 62

2 MCS calculation algorithm using binary search. Calculates the

MCS for the given range r and uses the number of significant bits

sBits to determine the height of the tree. 64

3 HF universal input struct and HF signature definition. 65

4 Blake3 HF implementation using double hashing. 66

5 Mask construction code used in the register blocked Bloom filter

implementation. Sets k bits within a 64 bit value. These bits

are copied into the actual bitset block using a single logical OR

operation. 67

6 Item insertion code for a SBBF. HighwayHash is used to generate

a 256 bit hash of which the most significant 64 are returned. The

most significant 32 bits are used to select a block. Multiply-shift

hashing is used on the remaining 32 bits to calculate eight distinct

hashes. A mask is generated using these eight hashes. 68

7 Block selection code for a SBBF. Right shifting by 32 yields the

most significant 32 bits which are used to select a block. Multi-

plication by the number of blocks followed by right shifting by 32

results in an index in the domain [0, b− 1] where b is the number

of blocks. 69

8 Mask construction code for a SBBF. The least significant 32 bits

of the hash are broadcast to eight distinct lanes. Each of these

lanes is multiplied by a predefined odd constant. Right shifting

each lane by 27 results in a value within the range [0, 31] set in

each lane. These values are called the shift values. The final mask

is generated by left shifting eight 1’s by the previously computed

shift values, resulting in eight lanes with a single bit set at a

seemingly random index. 70

12

9 Item checking code for a SBBF. The same block selection and

mask construction code is used. Instead of performing a logical

OR between the selected block and generated mask, a logical

AND operation is performed. If all bits in the mask are set in

the block, the result of this operation is identical to the supplied

mask. 71

10 Difference in mask construction for SBBF when using the digests

full 256 bits. Instead of broadcasting the least significant 32 bits

of the hash to eight lanes, the eight lanes are filled by the 256 bit

digest. This improves security as each lane has a distinct value, as

opposed to sharing the same 32 bit value. Multiply-shift hashing

is required to generate eight distinct and independent hashes. . . 73

11 Manifest file schema consisting of rows of manifest entry records.

A small subset of the fields in the manifest file schema are shown

in this Listing. 75

12 Manifest file schema extension to add support for per-column

Bloom filters. Bloom filters are stored in a dictionary which maps

column ID to Bloom filter bitset. Avro implicitly stores lengths

of byte arrays, meaning no additional field is required to store m. 76

13 SQL query which can skip evaluating the second predicate if the

first predicate is false. 78

14 SQL query which has to evaluate the second predicate if the first

predicate is false. 78

15 Code for mapping signed integers to unsigned integers. The

signed value is cast to an unsigned 64 bit integer. If the signed

value is negative, the most significant bit will be set. An XOR op-

eration turns this bit off. If the signed value is positive, its most

significant bit is turned on by the same XOR operation. This

effectively maps the negative domain [−263, 0] to the first 63 bits

of the unsigned integer. The positive signed integer domain is

mapped to [263, 264]. 79

16 Sample row from NextiaJD Reddit comments dataset before and

after preprocessing. 100

17 SQL query used to compare regular DuckDB Iceberg and our

BF-EDS implementation. 106

Glossary

BF-EDS Bloom Filter based Encrypted Data Skipping.

CHF Cryptographic Hash Function.

DBMS Database Management System.

DE Deterministic Encryption.

EBF Encrypted Bloom Filter.

EDBMS Encrypted Database Management System.

EDS Encrypted Data Skipping.

FHE Fully Homomorphic Encryption.

FPGA Field Programmable Gate Array.

FPR False Positive Rate.

HE Homomorphic Encryption.

HF Hash Function.

MCS Minimum Coverage Set.

OLAP Online Analytical Processing.

OLTP Online Transactional Processing.

OPE Order Preserving Encryption.

ORAM Oblivious RAM.

14

ORE Order Revealing Encryption.

OTF Open Table Format.

PHE Partially Homomorphic Encryption.

PPE Property Preserving Encryption.

PRF Pseudorandom Function.

RE Random Encryption.

SBBF Split Block Bloom Filter.

SIMD Single Instruction Multiple Data.

STE Structured Encryption.

TCB Trusted Computing Base.

TEE Trusted Execution Environment.

TH Trusted Hardware.

UDF User Defined Function.

UDT User Defined Type.

15

Chapter 1

Introduction

Data privacy and security are fundamental rights, however, upholding these

rights remains challenging. In this era of cloud computing, storage of sensi-

tive data is frequently outsourced to third parties like Amazon, Google and

Microsoft. Storing our data with these cloud providers requires a level of trust

which we may not always be comfortable extending.

Consider, for instance, a hospital which stores its patient data in the cloud.

To comply with data privacy regulations like GDPR this data must be en-

crypted. Ideally, hospitals would like to perform queries and share this data

with other institutions, while keeping the data encrypted when at rest and in

transit. To efficiently access these large amounts of data, data systems often

use metadata containing statistics like row counts and min/max values to skip

irrelevant data. When encrypting sensitive data this metadata should also be

encrypted to prevent information leakage.

Despite the sensitivity of metadata, encryption support in current data lake-

house systems is limited. Delta Lake, for example, lacks native encryption ca-

pabilities and relies entirely on underlying storage and compute systems for

encryption. Apache Iceberg supports basic table and metadata encryption us-

ing AES-GCM. Most existing solutions require metadata decryption to take

place on the untrusted server. This is problematic, as it exposes both decrypted

metadata and decryption keys to the untrusted server during query execution. A

more secure alternative is to send all encrypted metadata to a trusted client for

decryption. This approach, however, introduces significant I/O and decryption

overheads, rendering it infeasible at the data lakehouse scale.

We argue that both data and metadata should be encrypted at all times on

the server to ensure strong security guarantees. At the same time, we aim to

enable efficient access to encrypted data on the server. Specifically, the system

1

must be able to prune partitions and skip irrelevant data. To achieve this we

introduce the notion of Encrypted Data Skipping (EDS). With EDS we encrypt

the metadata in such a way that it is still possible to evaluate a predicate over

it.

EDS allows for fast access to data while keeping data and metadata en-

crypted on the server at all times. By skipping irrelevant data and returning

only the relevant subset of data, EDS reduces both I/O and decryption over-

heads. Data files (e.g. in Parquet or ORC files) should be encrypted using fast

symmetric encryption schemes such as AES-CTR or AES-GCM. This allows

for easier pruning of data, thanks to columnar encryption, as well as efficient

compression before encryption, reducing storage overhead.

Existing Property Preserving Encryption (PPE) schemes like Deterministic

Encryption (DE), Order Preserving Encryption (OPE), Order Revealing En-

cryption (ORE) and Homomorphic Encryption (HE) allow various predicates

to be evaluated over encrypted data. However, systems like CryptDB[55] and

MONOMI[68] show that using these schemes is non-trivial. These schemes are

not practical for the encryption of metadata (DE), leak too much information

(DE, OPE, ORE) or are simply too slow (HE). To the best of our knowledge, no

system has encrypted solely the metadata in such a way to allow for predicate

evaluation.

In this thesis we introduce the notion of EDS, along with a novel Bloom

filter based EDS scheme called BF-EDS. We extensively evaluate this scheme

comparing it with both plaintext and ORE based systems. Implementing our

scheme in DuckDB Iceberg allows us to evaluate the practicality of our scheme

and its real-world data skipping performance. This leads us to the following

research questions:

1. How can Bloom filters be used to construct a secure and efficient

EDS scheme? This question consists of the following sub-questions.

(a) How can we minimize the storage overhead while optimizing the per-

formance of the scheme at the algorithmic level?

(b) How can the performance of the Bloom filters be optimized while

maintaining security?

(c) Can we extend the BF-EDS scheme to support negative, NULL and

string values?

(d) How does the performance of BF-EDS compare to EDS using an

existing scheme like ORE?

2

2. How can we integrate BF-EDS in an existing data lakehouse

system, such as DuckDB Iceberg?

1.1 Contributions

Our main contributions are as follows:

• Literature Study: We perform a literature study analyzing and compar-

ing existing encryption and query techniques used in Encrypted Database

Management Systems (EDBMSs) to determine the practicality of our

scheme.

• Bloom Filter Based Encrypted Data Skipping (BF-EDS): We in-

troduce, implement and evaluate a novel Bloom filter based metadata en-

cryption scheme which allows for EDS using range predicate evaluation.

• BF-EDS in DuckDB Iceberg: We integrate BF-EDS in the DuckDB

Iceberg extension as well as implementing custom Iceberg manifest file

generation code to inject our schemes metadata into Iceberg metadata

files.

• Comprehensive Performance Evaluation: We perform a comprehen-

sive performance evaluation at both the algorithmic and system levels to

construct the best-performing BF-EDS scheme.

1.2 Outline

First, we provide the relevant background information for this thesis in Chapter

2. Section 2.1 introduces a number of cryptographic primitives relevant to the

scheme, as well as a number of existing encryption schemes and Hash Functions

(HFs). Binary interval trees, which are fundamental to the BF-EDS scheme,

are introduced in Section 2.2. We then introduce Bloom filters in Section 2.3.

These are used in conjunction with binary interval trees to enable BF-EDS. We

conclude the background chapter with Section 2.4, which briefly covers relevant

data storage systems, focussing on data lakehouse systems. Apache Iceberg is

discussed in more detail, being the system we ultimately use to implement and

evaluate BF-EDS.

Following the presentation of relevant background information, Chapter 3

provides an overview of existing techniques and EDBMSs through an exten-

sive literature study. This chapter covers the three main EDBMS categories:

software-only, trusted-hardware based and hybrid systems. A comparison is

3

performed between systems in the three categories based on their functionality

(Section 3.4.1), security (Section 3.4.2) and their performance (Section 3.4.3).

Chapter 4 introduces Bloom Filter based Encrypted Data Skipping (BF-

EDS), starting with a brief summary of the problem it aims to solve, as well

as the threat model it assumes (Section 4.1). The remainder of the chapter

introduces a number of novel algorithms which combine binary interval trees

and Bloom filters to form the complete BF-EDS scheme. This chapter concludes

with a brief security analysis (Section 4.3.3), which discusses the general and

worst-case security of our scheme.

In Chapter 5 we discuss the implementation of BF-EDS. The implementation

of various existing, as well as novel, binary interval tree algorithms is covered

in Section 5.1. A generic and easily extendable HF interface implementation is

given in Section 5.2. Three Bloom filter variants are implemented in Section 5.3.

The methods to create Iceberg tables for testing and evaluation, inject BF-EDS

metadata into existing Iceberg manifest files and the integration of BF-EDS

in the DuckDB Iceberg extension, involving conversion of DuckDB queries to

our custom range predicates and loading Bloom filters from Iceberg manifest

entries, are given in Section 5.5. Section 5.6 concludes the implementation

chapter discussing how signed integers and NULL values are mapped to the

unsigned integer domain, as well as introducing a novel method to map strings

to the numerical domain in a way which maintains their lexicographical ordering

(Section 5.6.2).

Chapter 6 contains an extensive evaluation at both the algorithmic and sys-

tem levels. The performance of our binary interval tree algorithms (Section 6.2),

various HFs (Section 6.3) and our three Bloom filter implementations (Section

6.4) is evaluated using comprehensive microbenchmarks. Additionally, we eval-

uate the hashing output uniformity of a number of HFs to determine their level

of security when used in BF-EDS (Section 6.3.2). The accuracy of our novel

string mapping approach is evaluated on a real-world dataset in Section 6.5. In

Section 6.6 a number of system-level evaluations are performed. The impact of

increasing the query range size (Section 6.6.1), Bloom filter bitset size (Section

6.6.2) and manifest file batch size (Section 6.6.3) is evaluated. Additionally, we

comparatively evaluate the performance of our BF-EDS DuckDB Iceberg imple-

mentation with plaintext DuckDB Iceberg on both our own datasets (Section

6.6.4) as well as TPC-H with various scale factors (Section 6.6.5). We conclude

Chapter 6 with a comparison between our BF-EDS DuckDB Iceberg implemen-

tation and an ORE based EDS implementation. We compare with ORE as it

is a commonly used PPE scheme and this evaluation demonstrates the practi-

cality of our scheme. Both querying performance and ciphertext generation are

4

evaluated and compared (Section 6.7).

Finally, we list a number of loose ends and potential future work in Chapter

7, before providing a final conclusion to this thesis in Chapter 8.

5

Chapter 2

Background

This chapter introduces background information required to understand the full

BF-EDS scheme. This includes a number of cryptographic primitives, binary

interval trees, Bloom filters and data lakehouse systems.

2.1 Cryptographic Primitives

This section introduces a number of foundational cryptographic concepts and

primitives relevant to this thesis. A number of encryption schemes, including

both PPE and non-PPE schemes, are described. Table 2.1 lists all schemes and

their associated leakage. Subsequently, Pseudorandom Function (PRF), HF

and Cryptographic Hash Function (CHF) definitions are presented, followed by

a number of HFs which can be used in BF-EDS.

2.1.1 Security Parameter

In cryptography the security parameter, typically denoted with λ, is a variable

which defines the computational security of a scheme, consequently quantifying

the desired level of security. It determines the key length and input sizes. The

resources required by the algorithm and the difficulty, as well as probability,

for an adversary to break it are considered functions of λ. A higher security

parameter typically implies a stronger security at the cost of more computational

resources. In this thesis we set the λ = 128, which is a commonly accepted

standard for practical security[69].

6

2.1.2 Property Preserving Encryption

PPE is a form of encryption where specific plaintext properties are deliberately

preserved in the ciphertext. Public tests can be performed to check whether

a property predicate holds for a ciphertext. Systems like CryptDB [55] utilize

PPE schemes to enable efficient query processing over encrypted data.

Deterministic Encryption

DE[9] is an encryption scheme which deterministically encrypts values. Two

equal plaintext values encrypt to the same ciphertext. Equality operations can

be performed using DE, and it is commonly used for SQL equality compar-

isons (=), equality-based JOIN and GROUP BY operations , DISTINCT clauses, as

well as set operations like INTERSECT and EXCEPT. DE leaks equality of values

through equality of ciphertexts. Commonly DE is achieved through AES en-

cryption without IV’s to deterministically encrypt values[55]. In [48] it is shown

that through frequency analysis DE can be broken, and an attacker can infer

plaintext values from their respective DE ciphertexts.

Order Preserving Encryption

OPE[1][12] is an encryption scheme which allows for ordering of plaintext values

through their ciphertexts. Originally proposed in [1], OPE encrypts numerical

values in such a way that their ciphertext counterparts maintain plaintext or-

dering. This allows for efficient numerical comparisons as ciphertexts can be

compared as regular numerical values. This simplifies usage of OPE as it re-

quires little change to existing Database Management Systems (DBMSs). While

practical, OPE leaks a lot of information. In [13] it is shown that a single OPE

ciphertext leaks half of the most significant bits of its underlying plaintext value.

The notion of ”best-possible” security is introduced in [52]. At this level of se-

curity the OPE ciphertexts leak no additional info besides the ordering of data.

To achieve this they show that the size of ciphertexts must grow exponentially

relative to the length of plaintext values.

Order Revealing Encryption

ORE[61][17][39] is a generalization of OPE. Contrary to OPE, ORE does not

place any restrictions on the structure of the ciphertext space. An ORE scheme

simply requires there to be a function which compares two ciphertext values to

determine the ordering of their plaintext counterparts. This prevents leakage

of the total ordering within a column. More recent ORE schemes exist which

7

increase security and reduce leakage further. Most recently in [39] a new block-

based ORE scheme is introduced which is robust against the attacks presented

in [48]. A number of SQL operations can be performed using OPE and ORE

ciphertexts including range comparisons (<, >, <=, >=), BETWEEN, ORDER BY

and LIMIT[66].

Although PPE schemes do not explicitly reveal plaintext information, their

exposed properties (i.e. equality and ordering) have been shown to be vulnerable

to inference attacks[48][22][31]. These attacks can lead to significant leakage

and, in some scenarios, even plaintext recovery.

2.1.3 Homomorphic Encryption

Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE)[27] is an encryption scheme which al-

lows arbitrary operations to be performed directly over ciphertexts. Given ci-

phertexts (c1, c2 . . . cn) that encrypt messages (m1,m2 . . .mn), an FHE scheme

allows the generation of a ciphertext ct which encrypts f(m1,m2 . . .mn) for any

efficiently computable function f . Data confidentiality is preserved throughout

computations. The main drawback to using FHE is its performance cost, which

prohibits its usage in many systems. It is estimated that FHE runs between

50,000-1,000,000x slower than comparable plaintext operations[64][37].

Partially Homomorphic Encryption

Partially Homomorphic Encryption (PHE) is an alternative to FHE which sup-

ports just a single operation (e.g. addition or multiplication) over encrypted

data. In some cases this operation can only be performed a fixed number of

times. Contrary to FHE schemes, PHE schemes offer a much more manageable

overhead. Using multiple different PHE schemes side-by-side offers functional-

ity and security similar to FHE at significantly lower costs. Examples of PHE

schemes are Paillier[53] for addition and Elgamal[23] for multiplication. These

schemes are asymmetric, requiring them to have large ciphertext spaces lead-

ing to large ciphertext size overheads. In [59] more efficient symmetric PHE

schemes are presented for addition and multiplication, which outperform exist-

ing asymmetric PHE schemes by orders of magnitude.

2.1.4 Pseudorandom Functions

A PRF is a deterministic function F : {0, 1}λ × {0, 1}∗ → {0, 1}l where the

first input is a secret key k ∈ {0, 1}λ with length λ, and the second input is a

8

PPE Leakage

DE Equality of values and vulnerability to inference attacks

OPE Ordering of values and vulnerability to inference attacks

ORE First ciphertext bit or block that differs

PHE Operations performed

FHE Operations performed

Table 2.1: Covered encryption schemes and their corresponding information

leakage.

message with an arbitrary length. The function outputs a fixed-length binary

string of length l. We write Fk(x) to denote the function F keyed with k on the

input x. A function F is considered pseudorandom if, for a randomly chosen

key k, the function Fk is indistinguishable from a function chosen uniformly at

random from the set of all functions with the same domain and range.

Hash Functions

A HF is a deterministic function which maps an input of arbitrary length to

a fixed-length output. In this thesis, keyed HFs are used as approximated

PRFs. We assume that each HF acts as an ideal random function, meaning

each input hashes to a uniformly distributed and independent output. A keyed

HF combines a secret key and input message to generate a fixed-length output.

This protects against dictionary attacks in cases where the input domain is small

and known to the adversary. During a dictionary attack an adversary hashes all

values within the domain using the same HF to obtain all digests. These digests

can be inserted into a Bloom filter to compare which bits are set, allowing an

adversary to reverse-engineer inserted values. Without knowledge of the secret

key it becomes computationally infeasible for an adversary to reverse-engineer

hashed values. A CHF is a HF which satisfies additional security properties. A

good CHF satisfies four key properties:

1. Uniformity: Digests produced by a HF H(x) should be uniformly dis-

tributed and look random. This ensures the hash digest leaks no informa-

tion about the plaintext input.

2. Determinism: For a given input s a HF should always produce the same

digest H(s) = h.

3. Irreversibility: Given a digest h it should be infeasible to invert the

hashing process and obtain the input s.

9

4. Approximate Injectivity: Tiny changes in the input should result in

wildly different digests (snowball effect). This prevents leakage of input

characteristics.

The security of a CHF is assessed based on a number of properties. Each

property in this list implies the property following it:

1. Collision Resistance: It should be infeasible for an attacker to find two

strings s1 and s2 such that, for a CHF H(x), H(s1) = H(s2). In other

words, it should be infeasible for an attacker to find two different inputs

which hash to the same digest.

2. Second Pre-image Resistance: Given an arbitrary input s1 it should

be infeasible for an attacker to find a second string s2 for which H(s1) =

H(s2).

3. Pre-image Resistance: Given a digest h of length n produced by CHF

H(x), it should be infeasible for an attacker to find the string s for which

H(s) = h. In other words, given a digest it should be infeasible for an

attacker to find the input which produced it. A party wishing to conduct

a pre-image attack has no other option than brute forcing, which has a

time complexity of 2n.

The security of a CHF is strongly influenced by its digest length n. A longer

hash digest exponentially slows down brute force attacks thanks to the brute

force time complexity of 2n[19][69]. In the remainder of this section a number

of cryptographic and non-cryptographic HFs are presented. An evaluation of

these functions is given in Section 6.3.

SHA256

SHA256[47] (Secure Hash Algorithm 256-bit) is a CHF, part of the SHA-2 fam-

ily, designed by the NSA and published by NIST in 2001. It produces 256 bit

hashes from arbitrary length inputs. SHA256 is widely used, for instance in

blockchains, TLS and code signing, thanks to its balance of speed, simplicity

and strong security. Due to its widespread use many CPUs include hardware in-

structions designed to accelerate SHA256 operations. As of writing, SHA256 is

considered safe, with no known practical collision or pre-image attacks. SHA256

processes inputs in 512 bit blocks (padding the input if required) using a 64

round compression function. This function uses bitwise operations, modular

additions and constants derived from the first eight prime numbers. A fixed set

of initial hash values is updated across each block over 64 iterations resulting in

a 256 bit digest.

10

Blake3

Blake3[50] is a CHF which is both faster and, in some aspects, more secure than

SHA-2 and SHA-3 algorithms. It uses a Merkle tree structure, splitting inputs

into 1KiB individually processable chunks, making it highly parallelizable across

any number of threads and Single Instruction Multiple Data (SIMD) lanes.

In [54], a performance comparison between SHA256 and Blake3 is performed,

showing that Blake3 consistently outperforms SHA256 across various platforms

and input sizes. Due to the underlying Merkle tree structure and 1KiB chunk

sizes Blake3 struggles with smaller inputs, and in some cases is outperformed

by SHA256. Blake3 extensively uses fast SIMD XOR operations to compute its

256 bit digest.

HighwayHash

HighwayHash[2] is a keyed, SIMD-optimized, HF. Unlike SHA256 and Blake3,

HighwayHash is not a CHF, providing no formal collision-resistance guarantees.

Similar to Blake3, HighwayHash performance takes a hit on small input sizes

(< 64 bytes) due to internal initialization and finalization costs. Benchmarks

show that for small inputs (8-64 bytes) hashing can take 7-8 CPU cycles per

byte, compared to 0.94-0.24 cycles per byte for longer inputs (64-1024 bytes).

HighwayHash uses SIMD-accelerated multiply-permute operations (multiplica-

tion followed by reordering of elements) on 64 byte blocks, combining these

blocks into a digest of either 64 or 256 bits.

Murmur3

Murmur3[6] is a fast, non-cryptographic HF designed for Bloom filters, hash

tables and general purpose hashing. It offers no resistance against collision or

pre-image attacks, making it unsuitable for cryptographic purposes. Murmur3

offers excellent throughput, high avalanche properties (approximate injectivity)

and low collision rates. Murmur3 processes inputs in fixed-size chunks using

fast integer multiplication, rotation and XOR operations. A final mixing step

is performed to diffuse bits and increase entropy, producing either a 32 or 128

bit digest.

2.2 Binary Interval Trees

A binary interval tree [62][42] is a binary tree which can represent ranges in the

domain [0, T], where T is the largest possible range value the tree can represent.

Sets of nodes in a binary interval tree can be used to compute whether two

11

ranges intersect. Figure 2.1 shows an example binary interval tree which can

represent ranges in the domain [0, 7].

Figure 2.1: Example binary interval tree which can depict ranges in the inclusive

domain [0, 7] and has a height of log2(7) ≈ 3.

This tree is a simplified example. Constructing a binary interval tree for a

domain [0, T] requires the following steps. First, the root node is defined using

an empty binary string b. Second, the left and right children of the root node

are labeled b0 and b1 respectively. This process is repeated up to tree depth

log2(T). Figure 2.2a shows the final tree with binary labels. Each leaf node has

a binary label which corresponds with its decimal value in Figure 2.1.

(a) Binary interval tree shown in Figure

2.1 annotated with its binary labels. A

nodes left and right child inherit the par-

ents binary label appended with a 0 or 1

respectively.

(b) Binary interval tree shown in Figure

2.2a annotated with IDs calculated using

the equation in Listing 2.3.

Figure 2.2: Binary interval trees with binary labels and IDs calculated using

the equation in Listing 2.3.

Being able to distinguish nodes in a binary interval tree is important as

determining range intersections requires performing set intersections. Using

binary labels does not work as some nodes have identical binary labels, with the

12

exception of leading zeroes. To this end every node in the tree has a unique ID.

These ID’s are computed using Equation 2.3, in which b[i] is the bit at index

i - starting from the least significant bit - in the nodes binary label. Equation

2.4 shows ID calculation examples for the nodes with binary labels 110 and 01.

Figure 2.2b shows a binary interval tree annotated with IDs based on the binary

labels shown in Figure 2.2a.

|b|−1∑
i=0

(2i + 2i · b[i])

Figure 2.3: Equation which calculates a unique ID for each node in a binary

interval tree. The term b[i] is the bit at index i, from least to most significant

bit (right to left), in the nodes binary label[42].

110

(20 + 20 · 0) + (21 + 21 · 1) + (22 + 22 · 1)
= 1 + 4 + 8

= 13

01

(20 + 20 · 1) + (21 + 21 · 0)
= 2 + 2

= 4

Figure 2.4: Example calculation of node ID for the nodes with binary labels 110

and 01. Index 0 is the least significant, rightmost bit in the nodes binary label.

2.2.1 Node Coverage And Coverage Set

The coverage, cv, of a node is defined as follows:

• If the node is a leaf node, cv(id) = id

• If the node is not a leaf node, denote the ID’s of its two child nodes as id1

and id2, its coverage is cv(id) = cv(id1) ∪ cv(id2)

13

In other words, the coverage of a node is the set of all nodes whose path

to the root flows through this node. Figure 2.5 shows the coverage of node 12

which is equal to the set {8, 9, 0, 1, 2, 3}. Using this definition of coverage, we

introduce a set called the coverage set. For a leaf node v the coverage set P(v)

is defined as the set of all nodes i which cover v (i.e. v ∈ cv(i)). This set can

be computed by starting at the leaf node v and traversing upwards toward the

root. All nodes on this path, including the root node, are part of the coverage

set for v. Figure 2.6 shows the coverage sets P(3) and P(7).

Figure 2.5: Coverage, cv of node 12 which is equal to {8, 9, 0, 1, 2, 3}.

Figure 2.6: The coverage sets P(3) and P(7), highlighted in green.

2.2.2 Minimum Coverage Set

For an inclusive range [s, t], Λ(s, t) is defined to be the smallest subset of nodes

that cover, exclusively, all leaves within the range [s, t]. In [42] this set is referred

to as the Minimum Coverage Set (MCS). It’s size, given T ≥ 4, is proven to

be at most 2 ∗ log2(T). Additionally, it is proven that if a value v ∈ [s, t] then

P(v)∩Λ(s, t) results in one node[42][62]. The MCS for the range [3, 7] is shown

in Figure 2.7.

14

Figure 2.7: MCS Λ(3, 7) = {3, 13}. Node 4 is not a member of the MCS as it

also covers node 2, which is not part of the MCS range. Node 13 covers the

entire range [4, 7], and is preferred over {10, 11} as the MCS is defined as the

smallest subset of nodes.

2.2.3 Determining Range Intersections

When querying for data in the range [minq,maxq], a block containing data in

the range [mind,maxd] should be returned if and only if minq ≤ maxd and

maxq ≥ mind. This is equivalent to testing whether Λ(0,maxq)∩P(mind) ̸= ∅
and Λ(minq, T)∩P(maxq) ̸= ∅. If both intersections intersect in one node, the

ranges intersect[69].

Figure 2.8: Example data and query ranges [3, 7] and [2, 5] respectively. These

two ranges intersect.

Figure 2.8 shows an example data as well as query range. Figures 2.9 and

2.10 show the two set intersections. The first intersection results in {12} and

the second intersection results in {13}. As both intersections return exactly one

node, the two ranges intersect.

15

Figure 2.9: Intersection between the sets Λ(0,maxq) and P(mind) results in

{12}.

Figure 2.10: Intersection between the sets Λ(minq, T) and P(maxd) results in

{13}.

2.3 Bloom Filters

A Bloom filter is a space efficient, probabilistic data structure, which can answers

set-membership queries. Items can be inserted into a Bloom filter, similar to

how items might be added to a set. Consequent set membership queries can

return false positives, but never false negatives. In other words, if an item has

been inserted, the set membership query will never return false. Bloom filters

use k HFs (k is not the same as the key in Hk), being different HFs or the

same HF using k different seeds, and a bitset of length m. The False Positive

Rate (FPR) denotes how often false positives are returned. Adjusting m and k

changes the FPR of the Bloom filter.

Inserting an item into a Bloom filter is done in two steps. First, the item is

hashed using the filters k HFs, resulting in k hash digests h. Second, the bits

at indices h % m in the bitset are set. Due to hash collisions the same bit in

the bitset might be set multiple times during separate insertions. Figure 2.11

shows a basic Bloom filter as well as insertion of two items.

16

Figure 2.11: Inserting two items into a Bloom filter. Both insertions set the bit

at index 6 due to a hash collision.

Checking if an item is in the Bloom filter follows the same steps as an

insertion. First, the item is hashed using the same k HFs. Second, if all indices

at h%m in the bitset are set, the item might be in the Bloom filter. If at least

one of the indices is not set, the item is definitely not in the Bloom filter[11].

Figure 2.12 shows Bloom filter membership checks with Figure 2.12a showing

the check of an item which is in the Bloom filter and Figure 2.12b showing the

checking process for an item which is not in the Bloom filter.

(a) Bloom filter check for an item

which is in the Bloom filter.

(b) Bloom filter check for an item

which is not in the Bloom filter.

Figure 2.12: Checking whether two items are in the Bloom filter. One item is,

the other item is not.

2.3.1 Register Blocked Bloom Filters

Insert and check operations on a basic Bloom filter are quite inefficient. Even

with a small Bloom filter bitset, which might fit entirely into cache, both opera-

tions require at most k random accesses. A blocked Bloom filter offers increased

locality by performing all insertions and checks for a single item within a cache-

line sized block. This increases locality and reduces the number of potential

cache misses down to one. The first of k hash digests is used to select a block.

The remaining k− 1 hash digests set bits within this block. A downside of this

approach is a significant increase in FPR. Each block acts as a separate Bloom

filter with a very small bitset size m/blocks. Setting k − 1 bits in such a small

bitset, collisions are likely to occur. Increasing the total bitset size compensates

17

for this as fewer block collisions will occur.

A register blocked Bloom filter is a specialized variant of the general blocked

Bloom filter, where each block is machine word sized (e.g. 64 bits on a 64 bit

machine). Two main benefits stem from this. First, all operations now happen

within a register, increasing throughput. Second, SIMD operations, as well as

vectorization, can be used to increase filter throughput even further[44]. Figure

2.13 shows the register Blocked Bloom filter insertion process.

Figure 2.13: Insertion of an item into a register blocked Bloom filter. The first

hash is used to select a block, the remaining k − 1 hashes are used to set bits

within this block. Each block is the size of a machine word, in this case 64 bits.

2.3.2 Split Block Bloom Filters

Split Block Bloom Filters (SBBFs) are similar to the abovementioned blocked

Bloom filters, differing in the way bits are set within blocks. Instead of setting

k − 1 random bits within a block, the block is split up into eight disjoint con-

tiguous sections, with one bit in each section being set. This approach leads

to a significantly lower FPR when compared to blocked Bloom filters[16]. The

Parquet file format internally uses the SBBF described in [5], which uses 256

bit blocks and eight HFs. Each block fits nicely within one CPU cache line and

the eight HFs fit cleanly into SIMD lanes.

18

Figure 2.14: Insertion of an item into a SBBF. The most significant 32 bits are

used to select a block. Multiply-shift hashing is used to obtain eight distinct

indices. Bits at these eight indices are set in the selected block.

During item insertion the to-be-inserted item is hashed once and the 32

most significant bits of this hash are used to select a specific block. the least

significant 32 bits are broadcast to eight lanes and subsequently multiplied with

eight distinct odd constants. This results in eight distinct hashes. These eight

hashes are then shifted to the right by 27 resulting in eight indices within the

range [0, 31]. This process is called multiply-shift hashing. Each of these indices

is used to set a bit in a different 32 bit sub-block. This is done by constructing

a mask using these eight indices, which is then inserted into the existing block

using a boolean OR operation. All bits set in the mask are copied into the block.

All steps in this process can efficiently be performed using SIMD instructions.

Figure 2.14 shows the insertion steps described above. Checking for an item

only differs from insertion in the last step. Instead of using an OR operation

an AND operation is used to check whether all bits in the mask are also set in

the block. If the result of this AND operation is equal to the original mask, all

bits in the mask were set in the block. This indicates the item is in the Bloom

filter[5].

2.4 Data Lakehouse

This section briefly goes over the evolution of data storage systems, followed by

an introduction to data lakehouse systems focussing on Apache Iceberg.

19

2.4.1 Data Lakes

Relational databases optimized for Online Transactional Processing (OLTP)

have long been, and still are, the de-facto way businesses store their transac-

tional data. OLTP databases excel in write-heavy applications thanks to their

row-based storage. Increasing demand for Online Analytical Processing (OLAP)

workloads lead to the development of analytical systems like DuckDB[56] and

Clickhouse[18]. These systems often make use of columnar storage and vector-

ized execution[14]. In OLAP workloads organizations often aggregate all their

data into a single system for centralized analytical processing. These collection

systems are often called data warehouses[41][41].

Data lakes can store large amounts of structured, semi-structured and raw

data. Storing these different kinds of data allows for future processing of data

into various different formats. This allows the same data to be used for many

different usecases[67]. Columnar file formats like Parquet and ORC are the

standard in data lakes as data lake usecases are generally read-heavy, for which

columnar storage lends itself well. Columns are split into blocks of rows called

row-groups, for each of which metadata is tracked and stored. Data skipping can

be used to effectively skip row-groups or entire columns, based on this metadata,

if query tuples correlate well with column ordering. If this is not the case, data

can be partitioned to allow for effective partition pruning[26][15].

2.4.2 Open Table Formats

Missing features like schema enforcement and lack of ACID transactions force

organizations to employ both data warehouses and data lakes to make use of

their combined features. Open Table Formats (OTFs) aim to provide a unified

solution by adding a distinct metadata layer on top of existing data lake stor-

age. This metadata layer adds traditional data warehouse features like ACID

transactions, time travel and schema enforcement to data lakes. These systems

are canonically called data lakehouse systems[51].

Delta Lake is Databricks OTF. It uses a transaction log, compacted into

Parquet files, to provide ACID transactions, time travel and significantly faster

metadata operations using per-file statistics. The transaction log contains object

metadata like value ranges (min/max values) and supports Bloom filters and

dictionaries for extensive data skipping. Delta Lake is seen as the first system

to store object metadata directly in the object store, an approach which Apache

Hudi and Iceberg later adopted[20].

Apache Hudi is an open-source OTF designed mainly for fast upserts and

deletes, as well as incremental file updates. Hudi mainly optimizes for data

20

streaming ingestion and workloads where only data ingested over a certain pe-

riod is required for analysis. By only processing new data Hudi increases query

performance. A directory-based data management structure is used, where each

table is stored in its own directory and data files belonging to this table are

stored in nested sub-directories. Data is stored in Parquet format. Hudi divides

tables into partitions based on column values, like for instance timestamps.

Metadata files in the root table directory contain partition metadata which is

used for partition pruning to optimize query performance[26].

Apache Iceberg is an OTF for large tables and OLAP workloads. Iceberg

provides an extended SQL syntax to allow for tasks like merging new data,

updating existing rows and performing targeted deletes. Schemas in Iceberg

are evolvable, allowing columns to be renamed, reordered, added and deleted.

Changing the schema does not require rewriting table data. Partitioning, the

grouping of similar rows to improve query performance, is done automatically by

Iceberg. Time travel and rollback, as well as data compaction using bin-packing

or sorting, are all natively supported. Iceberg and Delta Lake are very similar,

with their main differences being in the way they handle transactions (atomic

snapshots versus transaction log), handle file updates (merge-on-read versus

merge-on-write) and file format compatibility. Both formats are slowly converg-

ing, and tools like Databricks’ Unity Catalog[28] allow simultaneous reading

from both systems at once.

Iceberg is file format agnostic and supports the Parquet, ORC and Avro

file formats[43][33]. Being file format agnostic is important for a number of

reasons. First, it allows the data from multiple teams in an organization to

be combined, even if these teams use different systems with different formats.

Second, it provides flexibility for users to choose the format that best fits their

needs. Last, it future-proofs Iceberg. Iceberg can add support for future file

formats without requiring complete rewrites of existing tables[4].

A hierarchical metadata structure is used in Iceberg, allowing for extensive

data skipping from the partition level down to individual files. Metadata is

stored exclusively in Avro - a schema-based binary file format - files. Following

is an explanation of Icebergs architecture, from bottom to top. Figure 2.15

shows the full Iceberg metadata architecture.

21

Figure 2.15: The architecture of Apache Iceberg. The solid black arrows indicate

active links between files. Three main layers are shown: the data layer, metadata

layer and the catalog.

The bottommost layer is the data layer. This layer contains all the actual

data files which can be seen as the leaves in the Iceberg metadata tree. Almost

every query interacts with a subset of these files (except for pure metadata

queries). In real-world usage the data layer is backed by some form of distributed

storage. This can be a distributed filesystem like HDFS (Hadoop Distributed

File System) or object storage like Amazon S3, Google Cloud Storage or Azure

Data Lake Storage. Using object storage enables data lakehouse systems to

benefit from extremely scalable and low-cost storage.

The middle layer is the metadata layer. This layer consists of three types

of metadata files. Each type tracks a subset of the data in the table. Manifest

files are the lowest layer of metadata files. Each manifest file contains many

manifest entries, each of which tracks an individual data file, as well as storing

relevant file statistics. Statistics include the minimum and maximum values,

row counts and partition membership. Some of these statistics are stored in the

data files as well. Storing them in the manifest files prevents having to read

the footer of the data files, reducing costly I/O operations. Figure 2.16 shows

a simplified manifest file containing two manifest entries tracking Parquet files.

Iceberg updates these statistics on writes. Other system, like Apache Hive,

22

compute statistics in long-running read jobs. As a result statistics are more

up-to-date and reliable in Iceberg.

Figure 2.16: Iceberg manifest file containing two example manifest entries. Each

entry points to a distinct data file and contains relevant file statistics like column

bounds, NULL value counts and row counts.

A manifest list is a snapshot of an Iceberg table at a given point in time. It

contains a list of manifest files as well as statistics for each of these files. These

statistics can be used for data skipping at this level. Manifest lists are tracked

by metadata files. Each metadata file denotes the state of an Iceberg table

at a certain point in time. It contains information about the tables schema,

partition information, snapshots and which snapshot is the current one. Each

time an Iceberg table is changed, a new metadata file is created and registered

atomically via the catalog. This atomic registration helps create a linear table

history as well as resolve situations in which concurrent writes occur.

At the root of the Iceberg tree is the catalog. The catalog stores information

on where to find the latest metadata file for each table. This metadata file

pointer must be updated atomically. This prevents situations in which there

are two ’most recent’ metadata files. There are a number of different catalog

backends available, each of which provides the atomicity guarantee but stores

the current metadata file pointer differently[63].

2.4.3 Data Skipping In Data Lakehouse Systems

Data skipping in data lakehouse systems is an effective technique for improving

query performance. Metadata is used to determine whether data is relevant for a

query. Irrelevant data can be safely skipped. Two commonly used data skipping

techniques are predicate pushdown and partition pruning. Data skipping can

leverage various data structures, including zone maps, dictionaries and Bloom

filters.

Predicate pushdown is a query optimization technique where data filtering

is performed as early as possible. Filtering operations are pushed down into

the data scan operator. By filtering at the scan level the amount of data that

23

enters the query pipeline is reduced significantly[15]. Partition pruning prunes

entire irrelevant data partitions. This is often done in combination with predi-

cate pushdown, and further reduces the amount of data pushed into the query

pipeline. Partition pruning is only effective if data is partitioned well. Or-

dered temporal data lends itself well for partitioning. Non-temporal data can

be partitioned as well, for instance by using clustering techniques[46].

Zone maps store the min and max values present in data files, allowing the

query optimizer to skip files which do not contain values within the query range.

Delta Lake, Apache Hudi and Apache Iceberg store table zone maps which are

used during query planning [34][21][74].

Dictionaries can be used for data skipping on columns that store low car-

dinality data. By storing the values present in the column in a dictionary and

replacing column values with dictionary indices, repeating column values take

up far less space. When querying for a specific value, predicate pushdown can be

used to check a files dictionary first. If the dictionary does not contain the value

the file can be skipped (granted all column values are present in the dictionary).

In cases where columns contain high cardinality data, Bloom filters can be

used to effectively skip data. All column values can be inserted into a Bloom

filter. Consequent queries can query the Bloom filter to determine if a value is

present in the column. If the value is not present in the Bloom filter the data

can safely be skipped. Parquet natively supports Bloom filters and systems like

DuckDB can transparently read and write them[45]. Delta Lake is the only OTF

which supports creating Bloom filter indexes for columns, which are stored in

the table metadata[10].

24

Chapter 3

Related Works

This chapter introduces, discusses and reviews related work in the EDBMS

and query processing domain. This domain is split into three main categories,

and for each of these relevant literature is discussed. The three main EDBMS

categories are as follows:

• Software-Only: EDBMSs using solely software level cryptography to

support queries over encrypted data. These systems make use of PPE

schemes like DE, OPE, PHE and FHE to support various operations over

encrypted data.

• Trusted Hardware: EDBMSs which use Trusted Hardware (TH), be-

ing either dedicated TH or a Trusted Execution Environment (TEE), to

perform operations over decrypted data in a trusted environment.

• Hybrid Query Execution: EDBMSs which split up query processing in

some way. Various implementations exist which split queries over various

distinct components. In this study we will look at EDBMSs which split

up queries over a software and TH component, as well as EDBMSs which

use a split client/server execution model.

For each of these categories a number of relevant works are discussed. The

structure of this related works section is as follows: Section 3.1 introduces a

number of software-only EDBMSs, both using PPE and Structured Encryption

(STE), including CryptDB[55] and KafeDB[71]. In Section 3.2 a number of

EDBMSs utilizing TH are introduced. Both systems using dedicated TH, like

for instance TrustedDB[8], and systems using TEEs, like for instance Azure

Always Encrypted[3], are discussed. Hybrid EDBMSs, using either a software-

trusted-hardware or client-server split execution model, are discussed in Section

25

3.3. These include MONOMI[68] and VCrypt[25]. Section 3.4 briefly compares

discussed EDBMSs on their functionality, security and performance. There is a

large amount of research in the EDBMS domain. However, to the best of our

knowledge, no research has specifically focussed on the EDS problem.

3.1 Software-Only EDBMSs

This section discusses relevant research in the area of EDBMSs using a software-

only approach.

CryptDB

CryptDB is one of the first software-only EDBMSs which supports queries over

encrypted data. It claims to provide provable and practical privacy in face of a

compromised database server or curious administrator. A SQL-aware encryp-

tion strategy is used. A number of PPE schemes are used to encrypt data in

ways supporting various SQL operations. For example: DE is used for equality

operations and OPE is used for ordering and range queries.

To prevent leakage of information by less secure schemes like DE and OPE,

an onion model is used. Values are encrypted using various encryption schemes,

with the least secure scheme on the inside, and more secure schemes going out-

wards. The outermost layer of the onion is encrypted using a scheme that leaks

very little, like for instance Random Encryption (RE) or HE. The PPE schemes

used within the onion are less secure but allow for predicates to be evaluated

over them. During a query the Onion Key Manager (OKM) determines which

layers of the onion need to be ’peeled’ off to perform the requested SQL query.

Figure 3.1 shows the CryptDB onion model.

Figure 3.1: CryptDB onion model and the operations which can be performed

using each of the onion layers[55].

26

Performing joins on encrypted columns requires columns to be encrypted

using the same keys. To prevent the server from being able to join all columns,

without a user requesting this, CryptDB introduces a new cryptographic prim-

itive which allows the server to dynamically adjust the join encryption keys

for each column. Initially all columns are encrypted using different join keys,

disallowing all joins. When a user requests two columns should be joined, the

server computes an onion key which can be used to re-encrypt the two columns

to the same join key. Subsequently allowing for the join to happen. This novel

cryptographic primitive is based on Elliptic-Curve-Cryptography (ECC).

CryptDB claims a mean throughput overhead of roughly 27% when com-

pared with plaintext PostgreSQL. Evaluation is performed using the TPC-C

benchmark focussing on an OLTP workload. Importantly, CryptDB does not

change the inner workings of an existing DBMS, but instead relies on client-

side query rewriting and User Defined Functions (UDFs). This approach makes

CryptDB portable, which is demonstrated in a port to MySQL requiring just

86 lines of code to be changed[55].

Symmetria

Symmetria is a prototype software-only EDBMS using novel symmetric PHE

schemes in combination with existing PPE schemes. These schemes are claimed

to perform far better than state-of-the-art asymmetric PHE schemes used in ear-

lier EDBMSs, like for instance CryptDB.While Symmetria offers split-execution,

performing part of the query on the server and part on the client, it aims to,

and can, perform most of queries entirely on the server. Two novel symmetric

encryption schemes are introduced: Symmetric Additive Homomorphic Encryp-

tion (SAHE) and Symmetric Multiplicative Homomorphic Encryption (SMHE).

These schemes are designed specifically to retain the expressiveness of existing

PHE schemes, while providing improved query performance compared to state-

of-the-art asymmetric PHE schemes.

Previous attempts to develop symmetric PHE schemes did so at the expense

of expressivity. Specifically, existing SAHE schemes only support addition of

two ciphertexts, whereas their asymmetric counterpart supports addition and

subtraction of two ciphertexts, or between a ciphertext and a plaintext value,

as well as negation of a ciphertext. Lack of expressiveness forces EDBMSs,

like for instance Cuttlefish[60], to use multiple schemes to support complex

operations SAHE does not support. As far as the authors know, no SMHE

scheme exists. Achieving both good performance and expressivity is traded

off against reduced ciphertext compactness (size of ciphertext, as well as query

results). Strict compactness guaranteed by asymmetric PHE schemes is traded

27

for quantitatively good compactness in practice.

SAHE and SMHE ciphertexts are made up of the three elements constituting

the vector ⟨v, lp, ln⟩. The size of v is fixed, however, the elements lp and lr are

lists of IDs which increase in length as PHE operations are performed. A number

of compaction techniques are proposed to keep these lists as small as possible,

while maintaining full expressivity. Both lists contain IDs which are used to

generate random values either added or subtracted from the message during

decryption. List aggregation removes IDs which are present in both lists, as

these operations cancel each other out. As IDs can appear multiple times in a

list, they are grouped with a count, reducing list size and speeding up decryption

thanks to batched operations on grouped IDs. Range folding folds consecutive,

regularly spaced, IDs into ranges (e.g. [1, 2, 3, 4] to [1-4]) reducing the list size.

During transmission or storage, integer list compression techniques are used to

compress lp and lr to reduce their size.

Symmetria features a transformation module on the trusted client which

rewrites plaintext queries to work on encrypted columns using PPE or PHE op-

erations. A number of query optimization techniques are used to further improve

query performance. Expression rewriting simplifies and restructures expressions

for better performance. Rewrite rules include constant folding, factoring and

replacing nested operations with cheaper equivalents (e.g. add(c, c) to mlp(c,

2)). Instead of creating intermediate ciphertexts for each homomorphic opera-

tion in an expression, operations are batched together and operation pipelining

is used to execute homomorphic operations in a single pass. This reduces mem-

ory allocations and improves CPU cache locality. Since the encryption process

uses pseudorandom numbers generated from IDs, precomputing them when IDs

are predictable (e.g. incremental encryption) accelerates both encryption and

decryption.

Figure 3.2: Operation execution time of SAHE and SMHE compared to asym-

metric schemes, followed by relative standard error. All execution times given

in nanoseconds[59].

Symmetria is evaluated using TPC-H and TPC-DS benchmarks. The in-

curred ciphertext size overhead is less than naive symmetric alternatives. The

authors claim that Symmetria’s PHE operations are up to 1000x faster than

28

Figure 3.3: Storage overhead of SAHE, SMHE and asymmetric schemes com-

pared to plaintext. Plaintext (text) indicates uncompressed plaintext data.

All other methods use Parquet to store compressed data. Duration indicates

the compression time for plaintext data and additionally the encryption time

for all other schemes[59].

Paillier and Elgamal equivalents. Figures 3.2 and 3.3 show the operation execu-

tion times and storage usage of SAHE and SMHE compared to these asymmet-

ric schemes. Additionally, Symmetria is compared to MONOMI[68], a system

which uses similar split execution, however, using asymmetric PHE schemes.

Compared to MONOMI Symmetria claims to be, on average, 3.8x faster on

TPC-H queries and 7x faster on TPC-DS queries. This demonstrates the prac-

ticality of the proposed SAHE and SMHE schemes, despite their lack of strict

ciphertext compactness[59].

KafeDB

Most software-only EDBMSs use PPE schemes to perform various SQL op-

erations over encrypted data. PPE schemes like OPE and DE leak a lot of

information while HE leaks little but is too computationally demanding. In [65]

STE is presented, which is a novel encryption scheme which enables SQL queries

over encrypted data without relying on leaky PPE and costly HE schemes.

KafeDB is an end-to-end EDBMS designed to balance security, performance

and expressiveness. At the core of KafeDB is OPX, a novel encryption scheme

which is built atop STE. OPX supports optimized query execution, allowing

integration with existing DBMS. Under the hood OPX uses encrypted multi-

maps to store encrypted indices for rows, columns and value mappings. This

enables SQL queries using filters, joins and projections. A key contribution

of KafeDB is the use of structural chaining. This allows a server to perform

multiple complex operations while preserving security. Each operation results

in a token which can be used by a subsequent operation.

KafeDB includes an emulation layer which reshapes encrypted data struc-

tures into relational tables and reformulates encrypted query plans into stan-

29

dard SQL. This enables OPX-encrypted queries to be executed on unmodified

DBMSs. This avoids having to build a custom database from scratch. Similar

to other EDBMSs, KafeDB performs encryption and query optimization on a

trusted local client, while executing queries over encrypted data on an untrusted

server.

Figure 3.4: KafeDB and CryptDB slowdown relative to plaintext PostgreSQL

on TPC-H benchmark using scale factor 1. KafeDB incurs about an order of

magnitude more slowdown compared to CryptDB[71].

An evaluation of KafeDB is performed using the TPC-H benchmark with a

scale factor of 1. KafeDB claims to offer significantly stronger security compared

to existing EDBMSs like CryptDB which rely on PPE schemes. Performance-

wise KafeDB claims a median slowdown of 45x compared to plaintext Post-

greSQL, with a storage overhead of 13x. Figure 3.4 shows the slowdown of

both KafeDB and CryptDB compared to plaintext PostgreSQL on the TPC-H

benchmark using scale factor 1. The authors argue that these overheads are jus-

tified by the improved security guarantees. Specifically, OPX, and by extension

KafeDB, claims to be resilient against known practical leakage-abuse attacks

(which DE and OPE are susceptible to)[71].

3.2 Trusted Hardware

Encrypted databases using TH rely on specific hardware to perform queries

over encrypted data. Data is often decrypted in this secure environment to

allow regular SQL operators to be used without exposing plaintext data to an

untrusted server.

3.2.1 Dedicated Trusted Hardware

Dedicated TH often comes in the form of a PCI extension card housing a system-

on-a-chip. This system-on-a-chip acts as a secure coprocessor allowing for com-

30

putations in a tamper-proof environment using dedicated secure memory.

TrustedDB

TrustedDB is a modified version of SQLite which performs all SQL operations

on dedicated TH. The authors argue that software-only encryption techniques

either limit expressiveness of queries or are prohibitively slow. TrustedDB uses

cryptographic coprocessors as TH, specifically the IBM 4764, to execute queries

on encrypted data. These coprocessors are tamper-resistant and provide a secure

place for data to be decrypted and processed, even on an untrusted server.

A custom query parser is used to partition queries into a public and private

component. The public component can be executed on the untrusted server,

whereas the private component must be executed inside the Secure Coproces-

sor (SCPU). Performance is maximized by offloading as much computation as

possible to the untrusted server. Scalable storage is supported, allowing the SC-

PUs to page encrypted data from the untrusted host. This allows the SCPUs

to handle larger datasets than their memory would otherwise permit.

A cost model analysis is performed comparing three approaches of querying

EDBMSs:

1. Transferring all encrypted data back to the client for local processing

2. Applying HE for server-side computations

3. Using TH

Via their cost analysis the authors claim that the third option, using TH,

is several orders of magnitude more cost-efficient compared to the other two

approaches, particularly in large-scale deployments. The large performance dif-

ference between approaches 2 and 3 arises from the comparatively low per-

operation cost of SCPUs compared to the high computational cost of crypto-

graphic primitives, such as modular multiplication, used in HE. While the cost

is orders of magnitude lower for approach 3, the performance is much closer to

approach 2. This is due to the much lower CPU speed of the SCPUs (just 233

Mhz). Figure 3.5a shows the results of the performed cost analysis. For each

approach the total cost performing a SUM aggregation on all rows is calculated.

The TH approach consistently costs orders of magnitude less than both other

approaches.

31

(a) Cost analysis performing a SUM ag-

gregation on all rows in the database with

increasing database size.

(b) Comparison of runtime results for

a subset of TPC-H queries between

TrustedDB and unencrypted MySQL.

Figure 3.5: Cost analysis and runtime results for TrustedDB[8].

System throughput and latency is evaluated using a subset of queries from

the TPC-H set (Q3, Q5, Q6 and Q10). Exclusively non-nested queries are used

as the TrustedDB query parser does not efficiently support nested queries. The

standard TPC-H schema is targeted and a scale factor of 1 is used, resulting in

a database size of 1GB. Figure 3.5b shows the runtime results for the above-

mentioned queries on the TPC-H dataset. Overall TrustedDB claims to incur a

runtime overhead between 1.03x and 7.8x compared to plaintext MySQL. The

authors additionally claim that the actual costs are orders of magnitude lower

than any software-only EDBMS could achieve[8].

Cipherbase

Cipherbase is an EDBMS that provides strong end-to-end data confidential-

ity through encryption. It uses a novel architecture combining a conventional

DBMS (SQL Server) with lightweight encrypted data processing in TH. It boasts

the smallest Trusted Computing Base (TCB) - the code which is run on TH -

among similar systems while claiming to provide significantly better security,

performance and functionality. Cipherbase uses dedicated Field Programmable

Gate Array (FPGA) extension cards as TH.

The Cipherbase architecture has several advantages over existing EDBMSs.

While conceptually similar to TrustedDB, Cipherbase aims to perform minimal

computations within TH. This reduces the TCB down to a size which can be

formally verified to prove absence of bugs and backdoors. Extending an existing

DBMS system and only performing low level expression evaluations in TH allows

Cipherbase to profit from existing rich DBMS functionalities for ’free’.

32

Cipherbase supports the full TPC-C benchmark with all data strongly en-

crypted, as well as supporting indexing and transaction management on fully

encrypted data. This division of work between the existing DBMS and the TH

results in strong scalability while retaining data protection guarantees. Figure

3.6 shows the Cipherbase architecture.

Figure 3.6: Cipherbase architecture using FPGA extension cards as TH[7].

Cipherbase introduces a number of optimizations to increase performance.

Each FPGA runs up to n concurrent instances capable of evaluating independent

encrypted expressions. This allows independent transactions to use the FPGA

in parallel, boosting throughput. If all FPGA instances are busy, additional

work is queued up and sent in a single batch when resources become available.

This reduces the per-call latency and PCIe overhead. Expression folding folds

multiple adjacent expressions, which require the TH, into a single expression.

This reduces the number of TH calls, saving PCIe bandwidth and FPGA cycles,

and allows for common sub-expression reuse, where a value is decrypted once

and used multiple times.

A number of optimizations are specific to indexing. Cipherbase vectorizes

the B-tree lookup process, sending the entire tree to the TH instead of sending

data for each comparison separately. Binary search is performed on the vector

and the match location is returned. This reduces the number of TH calls per

lookup significantly. Frequently accessed B-tree vectors are cached, in plaintext,

in FPGA memory. Subsequent queries using these B-trees send a reference to

the tree. This saves both PCIe bandwidth and decryption costs.

Encrypted results of previously evaluated TH expressions are stored in mem-

ory, keyed by encrypted parameters, on the untrusted server. Consecutive eval-

uations with the same parameters can reuse these cached results. This reduces

the number of redundant TH calls, especially in iterative situations where the

same TH call might be performed many times.

33

Figure 3.7: Normalized performance of Cipherbase on the TPC-C set compared

to plaintext SQL Server. Customer : All PII columns in the Customer table

are strongly encrypted. Strong/Weak : Index and foreign key columns are en-

crypted using DE, all other columns are strongly encrypted. Strong/Strong : All

columns are strongly encrypted. Opt : With optimizations. NoOpt : Without

optimizations[7].

Evaluation of Cipherbase is performed using the TPC-C benchmark. Figure

3.7 shows the normalized performance of Cipherbase compared to plaintext SQL

Server. Encrypting just the columns containing Personally Identifiable Informa-

tion (PII), Cipherbase claims to attain around 90% of throughput compared to

plaintext SQL Server. Encrypting all columns reduces this to around 40%[7].

3.2.2 Trusted Execution Environments

Many modern processors include a TEE. Common examples of TEEs are In-

tels SGX and ARMs TrustZone. The TEE is a separate part of the processor

which provides a secure and isolated area in which sensitive operations can be

performed.

Azure SQL Always Encrypted

Always Encrypted (AE) is a feature of Microsoft SQL Server which adds column-

level encryption to keep data confidential. AE claims to guarantee data con-

fidentiality, even if the database server is compromised. Clients manage their

own encryption keys, which are never sent to the server. Data stays encrypted

at all times, when in rest on disk, when in use (except when inside the TEE)

and when in transit. The design of AE inherits many of the design elements

from Cipherbase.

34

AE uses a TEE to run small amounts of trusted code, called an enclave, as

part of a larger untrusted process. The TEE hides computations and data from

the host process and system. By extension this hides data and computations

from the administrator of the system as well. AE uses the TEE to temporarily

store decryption keys and perform query operations on decrypted data. Using

a TEE introduces technical challenges. These include the necessity to split

query processing between the TEE and the untrusted server, and preventing

information leakage through data movements to and from the TEE. Figure 3.8

shows the AE architecture, which is similar to the Cipherbase architecture in

Figure 3.6. AE uses Intel SGX or Windows VBS enclaves as TEE instead of

the FPGAs Cipherbase uses.

Figure 3.8: Azure Always Encrypted architecture. All parts are trusted except

for the grayed out SQL server[3].

A strong adversary threat model is used. This adversary has unbounded

power over the SQL server. This allows them to no only read data on disk

and in memory, view all incoming and outgoing communications, but also to

tamper with this data, by for instance using an attached SQL debugger. This

adversary can’t access the TEE to see any computations or internal data, as

this is specifically what the TEE is designed for. However, an adversary can

view memory movements to and from the TEE. AE can use both DE and RE.

DE allows for equality operations without use of the TEE whereas RE is more

secure but requires TEE usage for all operations, including equality operations.

AE uses a two level key hierarchy to encrypt data. A Column Encryption

Key (CEK) is used to encrypt data in the database. This key is then encrypted

using the Column Master Key (CMS). The encrypted CEK is stored in the

database and the CMS is stored in an external Key Management Service like

35

Azure Key Vault. Storing the encrypted CEK in the database allows for ’appli-

cation transparency’, a core focus of AE. This allows applications not modified

for AE to work with AE without any modifications.

When performing a query which requires TEE usage, the client must send

the required CEK’s to the enclave. This is done using a remote attestation

process which checks the integrity of the host machine and the TEE, after

which the Diffie-Hellman key exchange protocol is used to compute a shared

secret. The client uses this shared secret to encrypt the required CEK’s before

sending these to the TEE which decrypts them using the same shared secret.

To prevent replay attacks a nonce value is used during the attestation process.

While AE and Cipherbase share the key idea of using TH and minimizing

the amount of work performed within this hardware, they differ in a number of

key areas. Key management is implicit in Cipherbase, whereas in AE the client

is required to send CEKs when a query requires TH. Additionally, AE sup-

ports key rotations without exposing plaintext data to the server. Cipherbase

focusses mainly on OLTP workloads, whereas AE supports a broader spectrum

of workloads thanks to support for JOIN, GROUP BY and LIKE operators.

A slightly modified version of the TPC-C benchmark is used to evaluate

the system. Specifically, queries using ORDER BY operations are edited as AE

does not support these operations within TEEs. Exclusively columns storing

personally identifiable information are encrypted. These constitute six of the

22 columns in the CUSTOMER table. All other columns remain unencrypted. On

this benchmark AE claims to achieve roughly 50% of the throughput compared

to plaintext SQL server. AE works well for its intended purpose of encrypting

a small subset of sensitive columns, while still allowing simple queries to be

performed on this data. Additionally, AE is one of the few reviewed EDBMSs

which is not just a prototype system, but can actually be used[3].

ObliDB

ObliDB is the first oblivious EDBMS capable of efficiently processing general

SQL queries over encrypted data while hiding access patterns from adversaries.

While TEEs like Intel SGX provide memory encryption and isolated execution,

access pattern attacks can be used by adversaries controlling the OS to infer sen-

sitive information through observation of which memory addresses are accessed

during query execution. A number of novel oblivious query processing, join and

aggregation algorithms are presented. Each of these algorithms is briefly dis-

cussed. Besides these algorithms, ObliDB introduces oblivious B+ trees built

over Oblivious RAM (ORAM) with a number of optimizations including lazy

write-back and removal of parent pointers to minimize the performance over-

36

head typically associated with usage of ORAM. ORAM, first proposed in [29],

is a cryptographic primitive which hides memory access patterns in untrusted

memory.

(a) Small, Large and Continuous query

processing algorithms. In this example

the TEE memory is only large enough to

store two rows, requiring Small Select to

perform three passes.

(b) Hash Select query processing algo-

rithm.

Figure 3.9: All four query processing algorithms presented in ObliDB[24].

Four oblivious query processing algorithms are presented, each optimized

for different query selectivity and data distributions. Large Select is used for

queries selecting most of the table. A copy of the full table is used as query

output, with a single pass marking unused rows via a dummy write. This

avoids the overhead of multiple scan passes if most of the data will be retained.

Small Select is used for queries with high selectivity, whose result sets fit inside

TEE memory. Multiple passes are made over the input table, storing selected

rows in a buffer within the TEE. Once the buffer is filled it is written to the

output. The number of passes reveals only the result size, not the specific rows

selected. Continuous Select handles queries where contiguous rows are selected

(e.g. range queries on sorted data). For each row at position i writes to i

mod |output| if row is selected, else performs a dummy write. Completes in a

single pass but leaks that results form contiguous segments. Hash Select is a

general-purpose query processing algorithm using oblivious hashing. For each

row at position i it either writes the row or makes a dummy write to position

H(i) in the output. Double hashing with fixed-depth collision chains is used to

handle hash collisions obliviously, while maintaining a consistent access pattern

regardless of row content (matching query or not). Figure 3.9 shows a visual

37

representation for each of the four presented query algorithms.

Three oblivious join algorithms are presented. Hash Join builds a hash ta-

ble from the first table. The table is chunked into chunks fitting within TEE

memory. Rows from the second table are subsequently probed. For each com-

parison one real or dummy row is written, depending on the probing result. This

maintains a fixed access pattern. Sort-Merge Join combines both input tables

and uses quicksort on chunks fitting within TEE memory. Chunks are then

merged using bitonic sorting networks. A linear scan is performed to eliminate

unmatched, and merge matched rows. Zero-Oblivious-Memory is a sort-merge

join variant which requires no TEE memory.

Additionally, three aggregation algorithms are presented. Standard Aggrega-

tion sequentially scans the input table while maintaining aggregation statistics

within the TEE. Its fixed sequential access pattern leaks only the input table

size. Grouped Aggregation uses a hash table in TEE memory to track per-group

aggregations. All operations access the hash table consistently, regardless of

data distribution, to maintain a fixed access pattern. Fused Select-Aggregate

combines selection and aggregation in a single operator to avoid creation of in-

termediate tables. Aggregates are instead computed directly over filtered input

data.

A key contribution of ObliDB is its novel oblivious query planner. This

query planner intelligently chooses between the various oblivious query, join and

aggregation algorithms. A choice is made based on input/output table sizes and

available TEE memory, claiming to achieve significant speedups between 4.6x

and 11x, while maintaining security guarantees. The planners choice is based

on information already leaked by the system, avoiding leakage of additional

information.

An evaluation is performed comparing ObliDB with existing oblivious EDBMSs,

as well as plaintext Spark SQL. On Big Data Benchmark queries, ObliDB claims

to perform 1.1-19x better compared to Opaque[72], gaining the most perfor-

mance on queries which benefit from index usage. A 7x improvement is claimed

compared to HIRB[58], another oblivious index system. Compared to plaintext

Spark SQL ObliDB claims to incur at most a 2.6x overhead, demonstrating

strong security guarantees can be achieved with reasonable performance over-

head. ObliDB leaks only table sizes, query result sizes and the structure of

the physical query plan. Compared to existing oblivious EDBMSs, ObliDB

leaks the same information but with a significantly broader set of supported

functionalities and better performance characteristics[24].

38

3.3 Hybrid Query Execution

3.3.1 Hybrid Software & Trusted Hardware Query Exe-

cution

Software-only EDBMSs either have limited throughput due to high computa-

tional associated with PHE and FHE operations, or use weaker PPE schemes

which leak too much information. Hybrid EDBMSs using a combination of both

software-based cryptography and TH aim to offer the simplicity of a software-

only solution, with the performance and security of TH implementation.

GaussDB

GaussDB is an EDBMS which utilizes both software-based encryption and

hardware-based TEEs such as Intel SGX and ARM TrustZone. It aims to

provide robust protection against adversaries, including privileged server ad-

ministrators. Data remains encrypted throughout the entirety of its lifecycle:

at rest, in transit and during computation. Figure 3.10 shows the GaussDB

architecture, demonstrating its split query execution over the software-based

Rich Execution Environment (REE) and TEE.

Figure 3.10: GaussDB architecture showing the REE which uses software-based

PPE to interact directly with ciphertexts and the TEE which securely decrypts

data to perform more complex SQL operations on plaintext data[73].

GaussDB introduces the TEE abstraction layer secGear which enables sys-

tem portability between various hardware platforms. This makes GaussDB one

of the first systems to support both Intel SGX and ARM TrustZone in a unified

39

way. Additionally, this simplifying adding support for potential new TEEs in

the future.

Data is encrypted at the column level using either DE or RE via AES.

Integrity of encrypted values is ensured via HMAC. A layered key management

system using CEKs and CMKs is used, similar to the key management system

Azure AE uses. In cases where the TEE is required, the CEKs are transferred

to the TEE using a secure SSL channel which is encrypted using a shared key

generated using Eliptic-Curve Diffie-Hellman (ECDH). This is similar to the

attestation and key transfer used in Azure AE[3], which uses regular Diffie-

Hellman. Indexes are encrypted using PPE to allow equality and range queries

on ciphertexts. Sensitive and more complex operations, like JOIN and GROUP

BY operations, are offloaded to the TEE. A hybrid query execution model is

introduced which intelligently splits operations over the system software and

hardware components. The dual mode operations of GaussDB ensures a good

balance between security and throughput.

Figure 3.11: GaussDB performance evaluation results for three SQL opera-

tions claiming, on average, less than 5% performance overhead with encrypted

columns compared to plaintext columns[73].

GaussDB is evaluated using three real-world scenarios. Evaluations are run

on production-grade server hardware (Taishan 2280 server with dual-CPUs and

256GB of RAM). Overall GaussDB claims to incur around a 5% overhead with

operations on encrypted columns compared to operations on plaintext columns.

The evaluation is done using simple queries focussing mostly on OLTP work-

loads. The overhead for three SQL operations is shown in Figure 3.11. The

40

evaluation of GaussDB is lackluster and done using a non-generic benchmark.

This makes it difficult to compare GaussDB to similar EDBMSs[73].

Enc2DB

Enc2DB is a hybrid EDBMS utilizing both software-based cryptographic meth-

ods and a TEE (Intel SGX specifically). Similar to GaussDB Enc2DB is built

atop openGauss, which is a fork of PosgreSQL extensively modified by Huawei

(75% of the kernel code changed, optimized for Kunpeng processors)[32]. Enc2DB

aims to maximize security without excessively compromising on query perfor-

mance. Encrypted query execution is performed transparently to users. Two

operating modes are introduced: a software-only mode, EncDB, and a TEE-

enabled mode, Enc2DB.

The software-only mode uses a combination of additive and multiplicative

HE (addition, group by and multiplication), DE (equality operations) and ORE

(range comparisons) to perform SQL operations over encrypted data. This

mode however suffers from redundancy and performance inefficiencies, particu-

larly when performing queries with mixed operations which require a number of

different PPE schemes. Efficiently supporting multiple PPE schemes requires

multiple ciphertext versions per column. Each column can have 3-4 different

encrypted forms, leading to storage bloat and increased query processing costs.

In its TEE-enabled mode data is decrypted and processed securely within

Intel SGX enclaves. This removes the need for multiple ciphertext columns,

reducing storage bloat and query processing costs, as well as supporting more

complex queries compared to software-only mode. Adaptively selecting the best

performing mode (software-only or TEE) is done using a self-adaptive mode

switch based on runtime conditions. Enclave memory usage is a key metric

used to decide operating mode, as excessive page faults in Intel SGX enclaves

strongly degrade performance. As the SGX SDK does not provide these met-

rics a micro-benchmark, binary search over quick-sorted data, is presented to

estimate the enclave’s residual memory capacity. Figure 3.12 shows the runtime

of this microbenchmark with increasing data size. Once the residual enclave

memory runs out the runtime spikes, enabling estimation of available enclave

memory. An extensive cost model taking into account encryption/decryption

cost, enclave invocation overhead (ECALL - Enclave Call) and runtime pag-

ing overhead (page replacements inside SGX) is used to determine the optimal

execution path for a query (software-only or using TEE).

Enc2DB introduces a ciphertext-aware indexing mechanism which is com-

patible with standard PostgreSQL indexing and query optimizations. This is

particularly effective for ORE based queries. Range and equality queries over

41

Figure 3.12: Results running binary search and quicksort within Intel SGX

enclave with increasing problem size. Large spike in runtime indicates page

faults due to the highly random nature of the algorithms and is used to estimate

residual enclave memory.

encrypted data can utilize B(+)-trees via custom User Defined Types (UDTs)

and UDFs. Additionally, SGX-local caching, reducing redundant cryptographic

operations, and a batched ECALL mechanism, reducing enclave startup over-

head, are implemented to further optimize performance.

An extensive evaluation is performed using the TPC-C benchmark, which

focusses on OLTP workloads. Enc2DB is compared to the state-of-the-art

software-only EDBMS Symmetria[59] and openGauss as a plaintext baseline.

Software-only EncDB suffers a 5x-10x performance degradation compared to

the baseline due to computationally intensive cryptographic UDFs and storage

overhead. Static TEE performs well at low concurrency levels but suffers from

extensive page faults at higher levels of concurrency due to exhausted enclave

memory. Self-adaptive TEE mode performs best overall, especially under high

concurrency as it avoids enclave paging. Additionally, storage overhead is eval-

uated. Software-only mode incurs a hefty 30x storage overhead, thanks to the

large number of ciphertext columns required, compared to TEE-mode which

incurs a 7x storage overhead, requiring just one ciphertext column. Overall,

Enc2DB claims to consistently outperform Symmetria by around 50-100x. This

large performance increase can be attributed to the much smaller number of HE

operations Enc2DB has to perform, thanks to its usage of the TEE, compared

to Symmetria[40].

42

3.3.2 Multi-Party Hybrid Query Execution

The database systems above perform the entire query over encrypted data on

the database server. Multi-party hybrid query execution moves some parts of

the query to the trusted client.

MONOMI

MONOMI is an EDBMS which introduces a new approach based on split clien-

t/server execution. This allows MONOMI to perform part of a query on the

untrusted server over encrypted data, and compute the final result on the trusted

client. Similar to CryptDB, MONOMI uses a number of PPE schemes to per-

form specific SQL operations. MONOMI stores a each column multiple times,

each of which encrypted using a different PPE scheme. This approach differs

from CryptDB’s onion approach, leaking significantly more information.

MONOMI includes an optimizer designed to determine which encryption

schemes should be used to encrypt each of the database columns. Users specify,

for each column, which operations are likely to be performed in future queries.

MONOMI uses this specification to determine which encryption schemes to use

for each column. Additionally, the split client/server query execution plan is

optimized using this specification.

MONOMI partitions execution of a query between the client and server

by constructing a SQL operator tree consisting of regular SQL operators as

well as decryption operations which have to take place on the client. Various

optimizations are performed to achieve the best performance. MONOMI can

add additional columns containing precomputed encrypted expressions, which

would otherwise require downloading a large amount of intermediate data to

the client. To avoid sending all data to the client in cases where filter predicates

cannot be computed over encrypted data, MONOMI generates a conservative

estimate of the predicate and pre-filters intermediate results using this predicate.

Exact filtering is subsequently performed on the client.

MONOMI is evaluated using a slightly modified TPC-H bechmark with a

scale factor of 10, simulating an OLAP workload. As MONOMI does not sup-

port views and more than one string pattern match per query, TPC-H queries

13, 15 and 16 can’t be evaluated. Queries 17, 20 and 21 cause trouble due to

their correlated subqueries, which the optimizer is unable to handle efficiently.

These queries are rewritten to use explicit joins. Query 21 does not have an

obvious rewrite so it is left in its original form. Each column, not just those

containing personally identifiable information, is encrypted one or more times

depending on the optimizer selected settings. Figure 3.13 shows the TPC-H

43

Figure 3.13: MONOMI and modified CryptDB TPC-H execution times, nor-

malized to plaintext PostgreSQL. Overall MONOMI claims to incur a median

overhead of 1.24x over plaintext PostgreSQL, with overheads ranging from 1.03x

for query 7 to 2.33x for query 11. Query 21 times out due to its subquery com-

plexity and non-obvious rewrite[68].

execution times for MONOMI and a modified version of CryptDB compared

to plaintext PostgreSQL. Overall MONOMI claims a median overhead of 1.24x

over plaintext PostgreSQL, with overheads ranging from 1.03x for query 7 to

2.33x for query 11[68].

Cuttlefish

Cuttlefish is an Apache Spark-based[70] EDBMS, designed to provide secure and

expressive data analytics over encrypted data stored in public clouds. Savvides

et al. state that one problem with existing systems, like MONOMI, is the

focus on making encrypted computation transparent and hidden from users.

This leads to inefficient querying and possible security compromises. Cuttlefish

exposes constraints on security and confidentiality through so called Secure Data

Types (SDTs). SDTs allow users to annotate data with security information

like sensitivity level, data range, decimal accuracy, uniqueness, enumerated type

and composite type.

Sensitivity is used by Cuttlefish to determine the level of encryption required

for a column. Declaring a column as unique allows Cuttlefish to encrypt the

column using DE while maintaining strong security and no leakage. The range

and decimal precision of a column can optionally be provided to help Cuttle-

fish generate more expressive and efficient queries. Enumerated values can be

defined which Cuttlefish will optimize using dictionary encoding. This allows

Cuttlefish to apply the efficient encryption compilation technique to reduce the

encrypted data size overhead which can lead to substantial reductions in query

duration. Composite types can be declared to allow Cuttlefish to perform op-

44

erations on parts of a value. For instance a date value which can be split into a

day, month and year part. Figure 3.14 shows a Cuttlefish table definition with

SDTs.

Figure 3.14: Cuttlefish table definition including SDTs[60].

A number of optimization techniques are proposed for the Cuttlefish com-

piler which make queries more expressive and efficient. Expression rewriting

rewrites expressions in semantically equivalent ways which are more suitable for

the encryption schemes used. Some encryption schemes only support a limited

set of operations. Rewriting can help reduce the number of re-encryptions which

have to be performed. Condition expansion uses known data ranges to reduce

the number of expensive encrypted arithmetic and re-encryption operations re-

quired. A condition which is known to never be true based on known data ranges

can be removed from the query. Selective encryption allows non-sensitive fields

to remain plaintext allowing for more efficient querying.

Figure 3.15: Cuttlefish architecture showing the trusted and untrusted domains.

The query planner/compiler determines the query operations to perform locally

versus on the server[60].

45

User queries are split into two parts. A remote part which can be executed

over encrypted data in the cloud, and a local part which completes any opera-

tions not possible in the cloud on either a trusted client or TH (Intel SGX) if

available on the server. PHE is used to perform computations on encrypted data.

In cases where a required operation is not possible using PHE, re-encryption is

performed on the client or TH to transition between encryption formats which

do support the required operation. Cuttlefish uses a planner engine to decide

where operations should take place. Heuristics are used to make an informed

decision, using a number of features including the query structure, selectivity

and previously gathered profiler data. The Cuttlefish architecture is shown in

Figure 3.15.

Cuttlefish is evaluated using a comprehensive benchmarking suite. TPC-H

and TPC-DS benchmarks, both using a scale factor of 100, are used to compare

Cuttlefish with MONOMI[68] and Crypsis[35], two similar DBMSs both using

a hybrid architecture, as well as plaintext Apache Spark[70]. Two variants of

Cuttlefish are evaluated. The first, Cuttlefish-TH, performs re-encryption server

side on TH and the second, Cuttlefish-CS, uses client side re-encryption. Cuttle-

fish supports the full TPC-H and TPC-DS benchmarks. Overall Cuttlefish-TH

performs best with a claimed 2.34x overhead on TPC-H and 1.69x overhead

on TPC-DS compared to plaintext Apache Spark. Disabling all optimizations

increases the overhead to 4.23x on the TPC-DS benchmark, signifying their im-

portance. Overall Cuttlefish claims to have a significantly lower overhead than

prior hybrid EDBMSs, while offering better security through minimized use of

weaker PPE schemes like DE and OPE[60].

VCrypt

VCrypt is a novel DuckDB extension that introduces fine-grained client-side

columnar encryption to DuckDB. Minimal storage and performance overheads

are achieved by leveraging DuckDB’s columnar compression and vectorized ex-

ecution capabilities. Traditionally encryption in analytical systems is expensive

due to the overhead of storing cryptographic nonce values and the high perfor-

mance penalty of per-value encryption. VCrypt addresses both issues.

Encrypted values are represented as structs, with metadata specifically for-

matted to support compression via standard techniques like Run Length En-

coding (RLE) and delta compression. Specifically nonce values are structured

into high, low and counter components. Batches of encrypted values share the

same nonce high and low values, differing only in their counter values. This can

be done as nonce values need to be unique, but not random. Sharing nonce high

and low values allows these values to be effectively compressed (e.g. using RLE).

46

The counter values can be compressed using delta compression or bitpacking.

The VCrypt nonce splitting structure is shown in Figure 3.16.

Figure 3.16: VCrypt nonce structure splitting the nonce value into a high, low

and counter part. High and low values are RLE compressed, counter value is

delta compressed[25].

VCrypt introduces vectorized, batch-based, encryption. Instead of per-value

encryption, VCrypt encrypts 128 values into a single encrypted blob, referred

to as a ”tile”. VCrypt tracks the position of each value within the tile using a

compact one-byte field called the cipher. For variable-length types like strings

it also stores a length and byte offset. These values are XOR-obfuscated and

capped to improve compressibility. Tiles are grouped together in 512 byte or

larger buffers and encrypted using AES-CTR which is both performant and

avoids the per-value authentication tags required by AES-CBC. As AES-CTR

does not require fixed input sizes or padding any part of the buffer can be

decrypted given the correct offset and nonce. This prevents having to decrypt

the entire buffer to retrieve just a single decrypted tile or value. Throughput

increases up to 100x when using vectorized encryption over per-value encryption

thanks to higher efficiency of AES primitives when operating on larger buffers.

VCrypt introduces a number of UDF which operate on DuckDB vectors

(2048 values) performing vectorized encryption and decryption. If multiple rows

share the same tile this tile only has to be decrypted once. These UDFs can

be used explicitly but are envisioned to be used implicitly in VIEW definitions

where the encrypted column is decrypted using the UDF. A key management

mechanism is used which utilizes hierarchical encryption and uses the DuckDB

secrets manager to store encryption keys securely.

MotherDuck, a system that provides hybrid query processing for DuckDB,

is extended to support secure hybrid query processing. The MotherDuck query

optimizer, which determines which parts of a query are performed client- and

server-side, is extended to only perform sensitive data decryption client-side.

This prevents the untrusted server from every seeing plaintext data or decryp-

tion keys, while offloading a large part of the computation, such as filters and

joins, to the server. A demo based evaluation is performed using the TPC-H

benchmark with a scale factor of 1[25].

47

3.4 Comparison

This section briefly compares the discussed EDBMSs on their functionality,

security and performance.

3.4.1 Functionality

Table 3.1 shows the supported SQL operations as well as an overview of cat-

egories and used technologies for each discussed EDBMS. As no overview of

supported operations is given in [25], VCrypt lists no supported SQL opera-

tions. Interestingly, while Azure AE is, in contrast to many other systems, a

genuine product, it does not support commonly used order operations. This is

due to its exclusive use of DE and RE schemes. These schemes do not support

ordering of data. Overall the hybrid EDBMSs support the most functionalities.

Operations which can’t be performed over encrypted data can be securely per-

formed over decrypted data either on TH or on the secure client. By extension

hybrid systems benefit from more expressive queries as well.

48

E
D
B
M

S
C
a
te

g
o
r
y

C
o
r
e

S
u
p
p
o
r
te

d
F
u
n
c
ti
o
n
s

E
q
u
a
li
ty

Q
u
er
ie
s

J
o
in
s

G
ro
u
p
B
y

O
rd

er
B
y

R
a
n
g
e
Q
u
er
ie
s

A
g
g
re
g
a
ti
o
n

S
tr
in
g
M
a
tc
h
in
g

C
ry
p
tD

B
P
P
E

✔
✔

✔
✔

✔
✔

✔

S
y
m
m
et
ri
a

S
o
ft
w
a
re
-O

n
ly

P
P
E

✔
✔

✔
✔

✔
✔

✔

K
a
fe
D
B

S
T
E

✔
✔

✔
✔

✔

T
ru

st
ed

D
B

D
ed

ic
a
te
d
H
a
rd

w
a
re

✔
✔

✔
✔

✔
✔

C
ip
h
er
b
a
se

T
ru

st
ed

H
a
rd

w
a
re

D
ed

ic
a
te
d
H
a
rd

w
a
re

✔
✔

✔

A
zu

re
A
E

T
E
E

✔
✔

✔
✔

O
b
li
D
B

T
E
E

+
O
R
A
M

✔
✔

✔
✔

✔

G
a
u
ss
D
B

P
P
E

+
T
E
E

✔
✔

✔
✔

✔
✔

✔

E
n
c2
D
B

P
P
E

+
T
E
E

✔
✔

✔
✔

✔
✔

M
O
N
O
M
I

H
y
b
ri
d

C
li
en

t
+

S
er
v
er

✔
✔

✔
✔

✔
✔

✔

C
u
tt
le
fi
sh

C
li
en

t
+

S
er
v
er

✔
✔

✔
✔

✔
✔

✔

V
C
ry
p
t

C
li
en

t
+

S
er
v
er

T
ab

le
3.
1:

S
u
p
p
or
te
d
S
Q
L
op

er
at
io
n
s
a
s
w
el
l
a
s
a
n
ov
er
v
ie
w

o
f
th
e
ca
te
g
o
ry

a
n
d
u
se
d
te
ch
n
o
lo
g
ie
s
fo
r
ea
ch

d
is
cu
ss
ed

E
D
B
M
S
.

49

3.4.2 Security

Software-only EDBMSs using PPE schemes offer the worst security. Schemes

like DE and OPE leak a significant amount of information through their ci-

phertexts, with DE leaking equality and OPE leaking total ordering of values.

Additionally, in [13] it is shown that a single OPE ciphertext leaks half of the

most significant bits of its plaintext value, and in [48] it is shown that both DE

and OPE are vulnerable to frequency attacks, allowing an attacker to infer plain-

text values through frequency analysis. Newer PPE schemes like ORE[61][39]

reduce the leakage of information through ciphertexts. These schemes increase

security at the cost of significantly worse performance. EDBMSs like Cuttle-

fish, which allow users to specify uniqueness for a column, can use DE with less

leakage as uniqueness guarantees no identical ciphertexts occur. Compared to

PPE, STE offers significantly more comprehensive security through encryption

of both data storage and search structures, preventing inference through access

or search patterns.

TH based EDBMSs offer superior security over software-only EDBMSs. In-

herent vulnerabilities in TH present security concerns, as well as side-channel

attacks arising from the hardware, which are often overlooked. TH memory ac-

cess patterns leak some information. Oblivious TH based EDBMSs like ObliDB

obfuscate these access patterns, preventing an attacker from inferring queries

and returned data while leaking minimal amounts of information.

Hybrid approaches using both software and TH solutions offer the best of

both worlds. Performing all operations in TH provides the highest level of

security, however, at the cost of performance as TH has limited memory and

compute resources. Using software cryptography in combination with TH can

offer higher throughput without decreasing security.

3.4.3 Performance

Performance of EDBMSs is difficult to compare. Overall TH and hybrid systems

appear to perform best. Schemes like PHE and FHE, while providing excellent

security, have significant computational overheads compared to similar plaintext

operations run on TH. Specifically FHE, which runs between 50,000-1,000,000x

slower than comparable plaintext operations[64][37]. A hybrid system can use

both TH to prevent having to use computationally demanding schemes, and

software-based cryptography to circumvent hardware limitations. Hybrid sys-

tems using a client/server model perform worse than their hybrid software-

hardware counterparts. This is due to network latency which constitutes a

large part of the overhead of these systems.

50

Optimizations greatly affect the performance of EDBMSs. Rewrite rules

are used extensively in Symmetria to improve query performance by reducing

the number of required re-encryptions, favouring more performant schemes and

folding constants. Data annotation in Cuttlefish enables selective encryption

and optimized encoding based on data format and sensitivity. GaussDB and

Enc2DB show that using runtime metrics such as TH memory availability and

query complexity, to optimally partition a query across TH and software, sig-

nificantly improves query throughput. TH transition overhead is reduced in

Cipherbase and Enc2DB via batched TH calls, batching multiple encrypted

operations into a single call, effectively reducing the per call overhead. Vec-

torized and batch-based encryption, introduced by VCrypt, significantly boosts

throughput by encrypting vectors, instead of individual values, as well as reduc-

ing storage overhead via nonce compression.

51

Chapter 4

Bloom Filter Based

Encrypted Data Skipping

This chapter introduces the EDS problem, assumed threat model and the algo-

rithms which implement Bloom filter based EDS.

4.1 Problem Statement

Many queries perform range-based filtering. From a large collection of files, each

of which is associated with a specific range, only files whose range intersects

with the query range are returned. Files whose range does not intersect with

the query range are not relevant and are skipped. This is trivial with plaintext

data, however, with encrypted data this becomes difficult. Existing schemes

like OPE, ORE and HE can be used to perform EDS, however, they either leak

significant amounts of information or are too slow to be used in any practical

system. We introduce a Bloom filter based EDS scheme called BF-EDS, which

allows for range predicates to be evaluated over encrypted metadata. For each

file BF-EDS determines whether the file range intersects with the query range.

If this is the case the file is returned to the client, if not, the file is skipped. BF-

EDS both leaks significantly less information and is more performant compared

to existing PPE schemes.

4.2 Threat Model

We assume an honest-but-curious attacker. Someone who works at a cloud

provider and has access to users DBMSs. They might be an administrator

52

who has elevated privileges. This would allow them to attach debuggers to

view running processes, as well as view and inspect memory. This is a passive

attacker who can see and inspect all data, in and outgoing requests and network

usage. We assume the local client is trustworthy.

4.3 The Scheme

Binary interval trees are used to denote ranges. Two set definitions, the cov-

erage set P and MCS Λ, can be used to test for range intersections using set

intersections. Bloom filters can be used to test for set membership, and by

extension, to compute set intersections. Adding all nodes in set A to a Bloom

filter and consequently testing Bloom filter membership for all nodes in set B

results in the intersection set C where A ∩ B = C. Due to the probabilistic

nature of Bloom filters, C might contain elements not present in A∩B. First, a

simplified overview of the scheme is given, followed by an in depth explanation.

(a) Binary interval tree denoting the

range [3, 7].

(b) Coverage sets P(3) = {3, 9, 12, 14}
and P(7) = {7, 11, 13, 14}

Figure 4.1: Binary interval tree denoting range [3, 7] with highlighted sets P(3)

and P(7).

Testing whether two ranges intersect is done using the two set intersections

Λ(0,maxq) ∩ P(minf) and Λ(minq, T) ∩ P(maxf). If both intersections result

in a non-empty set the ranges intersect. Given a file f containing values in the

range [minf ,maxf] we can compute the coverage sets P(minf) and P(maxf),

which constitute the right side of both intersections, and insert these sets into a

Bloom filter. We choose to insert the coverage sets into the Bloom filter instead

of the MCSs due to their constant size. A coverage set will always contain

log2(T) + 1 nodes, whereas the number of nodes in a MCS varies. Having a

constant number of nodes means each Bloom filter has a similar number of bits

53

set, reducing information leakage. Figure 4.1a shows the binary interval tree for

file range [3, 7] and Figure 4.1b shows the coverage sets P(3) and P(7).

Both sets P(minf) and P(maxf) are added to the same Bloom filter. A

keyed HF Hk is used to determine the bits to set in the Bloom filter bitset.

This HF uses a secret key k1 known only to the client. Usage of k1 reduces

the susceptibility of BF-EDS to pre-image and dictionary attacks. To pre-

vent intersections between sets which should not intersect, for example between

Λ(0,maxq) and P(maxf), the nodes in the two sets are prefixed with distinct

symbols before being inserted. All items in P(minf) are prefixed with ∗, and
items in P(maxf) are prefixed with +. Figure 4.2 shows a simplified Bloom

filter insertion of the prefixed sets P(3) and P(7).

Figure 4.2: Bloom filter insertion of coverage sets P(3) and P(7). Both sets are

prefixed with distinct symbols to prevent incorrect intersection results.

Testing whether a query range [minq,maxq] intersects with the file range

[minf ,maxf] requires computing the two MCSs, constituting the left side in

both intersections, and checking Bloom filter membership for both sets. Given

a query range [2, 5] we compute the MCSs Λ(0, 5) and Λ(2, 7), shown in Figures

4.3a and 4.3b respectively. The items in these sets are prefixed with the same

characters as the items in the coverage set we want to intersect with. We prefix

the items in Λ(0, 5) with ∗ and those in Λ(2, 7) with +.

54

(a) MCS Λ(0, 5) = {∗12, ∗10}. (b) MCS Λ(2, 7) = {+9,+13}.

Figure 4.3: MCSs for ranges [0,maxq] and [minq, T].

Querying the Bloom filter results in two intersections as shown in Figure

4.4. The first intersection is in node +13 and the second intersection is in node

∗12. As there are two intersections the ranges intersect. This way we can use

Bloom filters in combination with binary interval trees to determine whether

two ranges intersect. Due to the probabilistic nature of Bloom filters there will

be cases where there are more than two intersections, as well as cases where

there are two intersections even with non-intersecting ranges.

Figure 4.4: Querying the Bloom filter containing elements from P(3) and P(7)

for intersections with the sets Λ(0, 5) and Λ(2, 7). Elements in sets checked for

intersections are prefixed with the same character.

4.3.1 Bloom Filter Encryption

Plaintext Bloom filters leak little information, however, to further decrease leak-

age and protect against snapshot attacks we encrypt the Bloom filters using

XOR encryption. Each bit in the Bloom filter bitset is encrypted separately

using two PRFs F1 and F2. Algorithm 1 shows the encryption process. For

each bit in the Bloom filter bitset a key kpos is computed using F1 based on a

combination of the secret key k2 and the current index in the bitset idx. This

55

key is used by F2 together with a unique file identifier, fuuid, to compute b.

An XOR operation is performed between the plaintext bit value at idx and the

most significant bit of b. The resulting value is stored in the encrypted Bloom

filter at idx. This process is repeated for each bit in the Bloom filter bitset and

results in an Encrypted Bloom Filter (EBF).

Algorithm 1 Bloom filter XOR encryption algorithm for File fuuid.

EBF ← new Vec(m)

for idx in m do

kpos ← F1(k2, idx)

b ← F2(kpos, fuuid)

EBF[idx] ← BF[idx] ⊕ b[0]

end for

4.3.2 Querying Using Query Tokens

Querying the EBF is done using a query token. This query token contains a list

of sub-tokens, each of which contains k pairs, where k is equal to the number

of HFs the Bloom filter uses. Algorithm 2 lists the query token generation

algorithm. The two MCSs, Λ(0,maxq) and Λ(minq, T), are computed and the

items in these sets are prefixed with their distinct character. To prevent leaking

any information about the query range the combined set of MCS IDs is padded

with bogus nodeid’s up to length 2 · log2(T). This ensures all query tokens

are the same length, making it more difficult for an adversary observing query

tokens to infer query information.

56

Algorithm 2 EBF query token generation algorithm.

S1 ← Λ(0,maxq) ▷ Compute minimum coverage sets

S2 ← Λ(minq, T)

prefix(S1, ∗) ▷ Prefix elements with same character as P(maxf) set

prefix(S2, +) ▷ Prefix elements with same character as P(minf) set

S ← S1 ∪ S2

while |S| < 2 · log2(T) do ▷ Add bogus nodes up to |2 · log2(T)|
nodeid ← rand(T)

S ← S ∪ nodeid
end while

queryTok ← new Vec(2 · log2(T)) ▷ e.g. length 128 with max value 264

for nodeid in S do

subTok ← new Vec(k) ▷ k pairs per sub-token

for j in k do

idx← Hj(k1, nodeid) ▷ Compute hash to get bitset idx

kpos ← F1(k2, idx)

Insert (idx, kpos) into subTok ▷ Add (idx, kpos) pair to sub-token

end for

insert subTok into queryTok

end for

shuffle(queryTok)

For each element in the combined set we compute the k indices (idx) which

would be set in the Bloom filter using the Bloom filters k HFs. We use F1 to

compute kpos for each idx - similar to during the Bloom filter encryption process

- adding the pair (idx, kpos) to the sub-token. This sub-token is consequently

added to the query token. The resulting query token contains 2 · log2(T) sub-

tokens, each of which contains k pairs in the form (idx, kpos). Before sending

the query token to the database server, the vector of sub-tokens is shuffled to

mix genuine and dummy sub-tokens.

Each file in the collection (e.g. data lake) is associated with a distinct Bloom

filter encoding the range of that file, as well as a collection-wide unique file

identifier fuuid. During a query each Bloom filter is queried following the steps

shown in Algorithm 3. For each sub-token subTok in the query token we check

whether for each pair (idx, kpos) the Bloom filter plaintext bit at idx is set. Dur-

ing Bloom filter encryption each plaintext bit is XORed with the kpos generated

for its idx. As XOR operations are reversible, performing the same operation

on the encrypted bit results in the plaintext bit. If the plaintext bit at idx is

57

not set, the algorithm can skip the remaining pairs in the sub-token. The bits

at all k idx’s need to be set for the element to be in the Bloom filter.

Algorithm 3 EBF querying using a query token for File fuuid.

intersections← 0

for subTok in queryTok do

for (idx, kpos) in subTok do

b← F2(kpos, fuuid) ▷ Compute F2 using kpos and file identifier

match← EBF[idx] ⊕ b[0] ▷ match is either 0 or 1

if match == 0 then

break ▷ Early termination, move to next sub-token

else

intersections← intersections+ 1

if intersections == 2 then

return true

end if

end if

end for

end for

return false ▷ Less than two intersections, no range intersection

If the number of intersections reaches two, the query and file ranges likely

intersect. Consequently, the file is returned to the client. Due to the probabilis-

tic nature of Bloom filters, as well as the dummy sub-tokens added to the query

token, the two ranges might not actually intersect. Increasing m and reducing

the number of dummy sub-tokens reduces this FPR.

4.3.3 Security Analysis

BF-EDS ensures security in a number of ways. First, we use keyed HFs Hk for

our Bloom filters. This ensures that even in scenarios where the full plaintext

bitset is observed or leaked, an adversary can’t infer the actual encoded values.

Additionally, using keyed HFs protects BF-EDS against dictionary attacks. Sec-

ond, we encrypt our Bloom filters at rest to protect against snapshot attackers

- attackers who gain control to the server temporarily - making it significantly

more difficult for these attackers to recover plaintext bits. In the worst case

scenario, where all plaintext bits in the Bloom filter are decrypted (through

observation over many queries), our plaintext bitsets leak little information. An

adversary may be able to infer the similarity between ranges associated with

specific files through similarities in their Bloom filter bitsets. However, unlike

schemes like OPE and ORE, BF-EDS does not leak significant ordering informa-

58

tion. Additionally, each query token contains the same number of sub-tokens,

making it harder for an adversary to infer the ranges being queried through

query token observation.

59

Chapter 5

Implementing Bloom Filter

Based Encrypted Data

Skipping

This chapter covers the implementation of various binary interval tree algo-

rithms, a generic HF interface, three Bloom filter variants, the BF-EDS C++

library and the integration of BF-EDS in DuckDB Iceberg. A small section

on range mapping covers how signed integers, NULL values and strings can be

mapped to numerical values, allowing BF-EDS over these types.

5.1 Binary Interval Trees

5.1.1 Coverage Set

Calculation of the coverage set is relatively simple. A bottom-up approach can

be used to calculate the binary labels of all nodes in the coverage set for a given

leaf node v. Starting at this leaf node all nodes in the set can be calculated

by, for each layer in the tree, shifting the leaf nodes binary label to the right

once. Choosing any leaf node in Figure 5.1a and moving towards the root node

shows this pattern. The result is a set of size log2(T)+1 as the root node is also

part of this set. As we are interested in the set of ID’s and not binary labels

we have to convert each label in this set to its ID equivalent. A naive way to

calculate the coverage set would be to perform the bottom-up approach and at

each depth calculate the node ID.

60

(a) Binary interval tree with binary labels. (b) Binary interval tree with node ID’s.

Figure 5.1: Binary interval trees with both binary labels and ID’s.

Looking at Figure 5.1b a pattern can be seen in the ID’s of nodes when

moving from the root towards a leaf node. Each step the ID of each node is

doubled and incremented by one. Additionally, if the rightmost bit is set, the

ID is incremented once more. This ensures the ID of a nodes left child is smaller

than the ID of its right child. This is propagated down to the leaf nodes and

ensures all nodes in the tree have a unique ID. The C++ implementation of this

method is shown in Listing 1. Calculating the coverage set using this method is

substantially faster than the first method, as we don’t have to convert log2(T)

binary labels to ID’s. Section 6.2.2 contains a comparative evaluation of both

methods.

61

Listing 1 Implementation of coverage set calculation function in C++ which

computes the node ID’s in place while moving down the three.
std::vector<__uint128_t>
calculateCoverageSetForValue(uint64_t v, int8_t treeHeight) {

// Create coverage set vector and add root node ID

// to coverage set (will always be present, no need to compute)

std::vector<__uint128_t> coverageSet;

// Reserve space for all nodes in path to root (+1 for root)

coverageSet.reserve(treeHeight+1);

coverageSet.push_back(0); // Add root node to set

__uint128_t currentNodeID = 0; // Set current node to root node

// Going from root to the leaf node follows the pattern

// ID = (ID * 2) + v[|v|] (value of rightmost bit at that depth)

uint64_t mask = 1ull << (treeHeight - 1);

for (int8_t idx = 0; idx < treeHeight; idx++) {

// Multiply current node ID by two and add either 1 or 2

// depending on the bit set at this depth (using mask)

currentNodeID = (currentNodeID << 1) + (v & mask > 0 ? 2 : 1);

coverageSet.push_back(currentNodeID);

mask >>= 1;

}

return coverageSet;

}

5.1.2 Minimum Coverage Set

The MCS for a range r can be calculated using the algorithm provided in [42].

This algorithm starts at the root of the tree and works its way down using

Breadth First Search (BFS). Each iteration the first item is popped from a

queue and its coverage is checked. If the coverage of the node is strictly within

the range r, the node is a part of the MCS and is added to the result set. If

this is not the case the nodes two children are checked. The coverage of both

children is calculated. If the child nodes coverage overlaps with r the child node

is pushed to the queue. This process continues until the queue is empty.

This top down approach makes sense for large ranges, as the MCS for a large

range likely contains nodes closer to the root, compared to a smaller range which

is covered by nodes closer to the leaves. Figure 5.2 shows this difference with an

exaggerated example. A bottom up approach may be faster with smaller ranges.

A compromise between both implementations is a binary search implementation.

62

Figure 5.2: Comparison of MCS nodes between small and large ranges.

In this thesis we introduce a binary search variant of the MCS algorithm.

Listing 2 shows the code for this binary search variant. The algorithm starts

with the leaf node which represents the smallest value in the range r. From this

leaf node binary search is used to jump up and down the path from the leaf

node to the root. After each jump the coverage set of the node at the current

depth is checked. If the coverage set covers exclusively the range r the node is

a candidate for the MCS. The search is moved up the path to find a potential

node that covers more of r. If the node covers more than r the search is moved

down the path. Once the left and right pointers cross, the last checked node is

added to the MCS. Figure 5.3 shows this process. The numbers in the nodes

show the order in which they are checked.

1

2

3

4

5

6

7

2

4

9

3

1

5 6

8 10 11 12

Figure 5.3: Order in which nodes are expanded for the binary search and top

down MCS calculation algorithms respectively. In this case the binary search

implementation expands less than half the number of nodes compared to the

top down algorithm.

63

Listing 2 MCS calculation algorithm using binary search. Calculates the MCS

for the given range r and uses the number of significant bits sBits to determine

the height of the tree.

std::vector<__uint128_t> calculateMinimumCoverageSetForRange(
range<uint64_t> r, int8_t sBits) {

// Result vector to store the MCS

std::vector<__uint128_t> MCS;

// Start with the leftmost value of range 'r'

uint64_t currentNode = r.min;

while (true) {

// Binary search initialization, range is from

// leaf node parent -> root

int8_t low = 1, high = sBits, level = 0;

// pRange will store the leaf node coverage of the current

// candidate node level = 0 initially → leaf node

range pRange = leafNodesAtEndOfPath(currentNode, sBits, level);

// Binary search to find the largest subtree rooted at (

// currentNode >> level) such that its covered leaves lie fully

// within [r.min, r.max]

while (low <= high && pRange.min >= r.min && pRange.max < r.max) {

int8_t mid = low + (high - low) / 2;

// Compute the range of leaves covered by the subtree rooted at

// (currentNode >> mid)

range nextRange =

leafNodesAtEndOfPath(currentNode >> mid, sBits, mid);

// If this subtree covers exclusively the range 'r' it's a candidate

if (nextRange.min >= r.min && nextRange.max <= r.max) {

// Promote level up to mid and continue searching for

// a larger subtree

level = mid;

pRange = nextRange;

low = mid + 1;

} else {

// Otherwise reduce the range to search for a smaller

// valid subtree

high = mid - 1;

}

}

// Right shift the current leaf node by 'level' to move to the

// parent node at the level where binary search terminated

currentNode >>= level;

MCS.push_back(calculateNodeID(currentNode, sBits - level));

// Advance currentNode past the covered range of the added node

currentNode = pRange.max + 1;

// Stop when the target range is fully covered

if (pRange.max == r.max) break;

}

return MCS;

}

64

5.2 Hash Functions

In our scheme we extensively use HFs. Being able to swap the HF being used is

important when benchmarking and testing. Therefore a HF function signature

is defined. Any function implementing this signature can be used as a HF

anywhere this is required. Listing 3 shows this signature, as well as the input

struct. The caller provides a uint64 array of size k. At each index the function

will return the 64 most significant bits of the k’th hash.

Listing 3 HF universal input struct and HF signature definition.

struct hfInput {
uint8_t* key = nullptr;

size_t keyLen = 0;

int k = 0;

// Only used by AES, Highwayhash and Siphash

uint8_t* k1 = nullptr;

size_t k1Len = 0;

};

// Hash function signature type definition

typedef void(*hash_func_signature)(const hfInput&, uint64_t* hashes);

Double hashing is used to compute k hashes. Two HFs of the form h1(x)

and h2(x) are combined to simulate i additional HFs of the form g(x) =

h1(x) + i · h2(x). This keeps the number of HF calls in situations where k > 2

fixed at 2. [36] demonstrates that double hashing does not increase FPR, while

reducing the amount of computation significantly. Listing 4 shows the Blake3

HF implementation using double hashing.

65

Listing 4 Blake3 HF implementation using double hashing.

inline void Blake3(const hfInput& in, uint64_t* hashes) {
// Init hasher

blake3_hasher blake3Hasher;

blake3_hasher_init(&blake3Hasher);

// Initialize hash result array and perform hash

std::array<uint8_t, BLAKE3_OUT_LEN> res1{};

blake3_hasher_update(&blake3Hasher, in.key, in.keyLen);

blake3_hasher_finalize(&blake3Hasher, res1.data(), BLAKE3_OUT_LEN);

// Copy 64 most significant bits to output

uint64_t res1Int;

memcpy(&res1Int, res1.data(), 8);

if (in.k > 1) {

std::array<uint8_t, BLAKE3_OUT_LEN> res2{};

// Re-hash res1 to get res2

blake3_hasher_reset(&blake3Hasher);

blake3_hasher_update(&blake3Hasher, res1.data(), BLAKE3_OUT_LEN);

blake3_hasher_finalize(&blake3Hasher, res2.data(), BLAKE3_OUT_LEN);

uint64_t res2Int;

memcpy(&res2Int, res2.data(), 8);

// Calculate k hashes using double hashing

for (int i = 0; i < in.k; ++i) {

hashes[i] = res1Int + (i*res2Int);

}

} else {

hashes[0] = res1Int;

}

}

5.3 Bloom Filters

5.3.1 Basic Bloom Filters

Our basic Bloom filter implementation uses a boolean vector to store bits. Dur-

ing insertion and checking, k hashes are computed using double hashing. The

basic Bloom filter is encrypted using XOR encryption. Each bit is encrypted

separately. While this is secure, as the server has to observe a lot of queries to

decrypt the full Bloom filter, it is also slow. Given k = 8 and a tree height of 64,

66

a query token would contain 128 sub-tokens (2·log2(264)), each of which contains

eight pairs. During a query, theoretically, a maximum of 1024 decryptions are

performed. Each decryption requires a computationally demanding hash com-

putation. This high number of decryptions slows down the query significantly,

consequently, performing less decryptions should lead to faster queries.

5.3.2 Register Blocked Bloom Filters

Our register blocked Bloom filter implementation is inspired by [44]. A vector

of uint64 values is used as the Bloom filter bitset. These values are machine

word sized and fit in a single register on a system with a 64 bit architecture.

During insertion and checking operations k + 1 hashes are computed. The last

hash result is used to select a block. A mask is used to insert or check values in

a block using a single operation. The code which generates this mask is shown

in Listing 5. For each of the k hashes a bit within the mask is set using a logical

OR operations.

During insertion a logical OR operation is performed between the block and

the mask. This copies over the bits set in the mask to the block, while not

changing any bits already set in the block. When performing a check a logical

AND is performed between the block and the mask. If the result of this is equal

to the mask, all bits in the mask are also set in the block. This indicates the

value is present in the Bloom filter.

Listing 5 Mask construction code used in the register blocked Bloom filter

implementation. Sets k bits within a 64 bit value. These bits are copied into

the actual bitset block using a single logical OR operation.

uint64_t constructMask(const std::vector<uint64_t>& hashes) {
uint64_t mask = 0;

for (int i = 0; i < k; ++i) {

mask |= 1ull << (hashes[i] & (blockWidth-1));

}

return mask;

}

The register blocked Bloom filter is encrypted using XOR encryption at the

block level. This makes it slightly easier for an observer to observe all plaintext

bit values compared to the basic Bloom filters bit-by-bit encryption. However,

for a modest 16384 bit Bloom filter this would still require observing 256 block

decryptions.

67

5.3.3 Split Block Bloom Filters

Our SBBF implementation is inspired by [5] and modified to use ARM NEON

instructions. A block in this implementation is represented by the uint32x4x2 t

datatype, which contains two 128 bit vectors, each of which contain four 32 bit

lanes. Listing 6 shows the SBBF insertion code. Highwayhash256 generates a

256 bit hash and returns the first 64 bits of this hash. The most significant 32

bits of this hash are used to select a 256 bit block using the code in Listing 7.

Listing 6 Item insertion code for a SBBF. HighwayHash is used to generate a

256 bit hash of which the most significant 64 are returned. The most significant

32 bits are used to select a block. Multiply-shift hashing is used on the remaining

32 bits to calculate eight distinct hashes. A mask is generated using these eight

hashes.
void BlockedBloomFilterParquet::insert(uint8_t *key, size_t keyLen,

uint8_t *k1, size_t k1Len) {

// Hash the item

hash_functions::hfInput in = {key, keyLen, 1, k1, k1Len};

uint64_t hash = hash_functions::Highwayhash256(in);

// Determine block using most significant 32 bits from hash

uint32x4x2_t* block = getBlock(hash);

// Construct mask using multiply-shift hashing

uint32x4x2_t mask = constructMask(hash);

/* Perform OR operation between the block and the mask,

* since block is a pointer this operation directly updates

* the block data

*/

block->val[0] = vorrq_u32(block->val[0], mask.val[0]);

block->val[1] = vorrq_u32(block->val[1], mask.val[1]);

}

A uint32x4x2 t mask is constructed with one bit set in each of its eight

lanes. Listing 8 shows the code used to create this mask. The least significant

32 bits of the hash are used to construct the mask. Multiply-shift hashing is used

to generate eight unique hashes using the original hash. Right shifting each of

these hashes by 27 results in values within the range [0, 31] set in each of the eight

lanes. These values are referred to as the shift values. Another uint32x4x2 t

value is created with all lanes set to 1. The vshlq u32 instruction is used to

shift these 1’s left by the shift values previously calculated. The result of this

is a uint32x4x2 t value with one bit set in each lane. A logical OR operation

68

Listing 7 Block selection code for a SBBF. Right shifting by 32 yields the

most significant 32 bits which are used to select a block. Multiplication by the

number of blocks followed by right shifting by 32 results in an index in the

domain [0, b− 1] where b is the number of blocks.

uint32x4x2_t* getBlock(uint64_t hash) {
/* Grab most significant 32 bits and use multiply-shift

* trick to skip having to perform a modulo operation

*/

return &this->blocks[((hash >> 32) * this->numBlocks) >> 32];

}

is used to set the bits set in the mask in the block.

Checking whether an item is present in a SBBF follows the same steps as

inserting an item, with exception of the final step. Listing 9 shows the code

for this process. Once the block has been selected and the mask constructed a

logical AND operation is performed between the block and mask. If all bits in

the mask are also set in the block the result of this operation will be identical

to the original mask. The vceqq u32 instruction is used to compare the mask

and the result, setting all bits in a lane if the two lanes in the given vectors are

equal. If the minimum value across all lanes is 264 − 1, all values are equal.

69

Listing 8 Mask construction code for a SBBF. The least significant 32 bits of

the hash are broadcast to eight distinct lanes. Each of these lanes is multiplied

by a predefined odd constant. Right shifting each lane by 27 results in a value

within the range [0, 31] set in each lane. These values are called the shift values.

The final mask is generated by left shifting eight 1’s by the previously computed

shift values, resulting in eight lanes with a single bit set at a seemingly random

index.
uint32x4x2_t constructMask(uint32_t hash) {
// Constants used in multiply-shift hashing (same as in Parquet)

const uint32_t rehash_vals[8] =

{ 0x47b6137bU, 0x44974d91U, 0x8824ad5bU, 0xa2b7289dU,

0x705495c7U, 0x2df1424bU, 0x9efc4947U, 0x5c6bfb31U };

// Load rehash constants into two 128-bit vectors

uint32x4x2_t rehash;

rehash.val[0] = vld1q_u32(&rehash_vals[0]); // first 4 constants

rehash.val[1] = vld1q_u32(&rehash_vals[4]); // next 4 constants

/* Broadcast hash across two 128-bit vectors

* (set all uint32_t values to the 'hash' value)

*/

uint32x4_t hash_vec = vdupq_n_u32(hash);

/* Multiply and shift: (rehash * hash) >> 27

* (shifting right by 27 leaves only 5 bits, being within a range [0, 31])

*/

uint32x4x2_t shift;

shift.val[0] = vshrq_n_u32(vmulq_u32(rehash.val[0], hash_vec), 27);

shift.val[1] = vshrq_n_u32(vmulq_u32(rehash.val[1], hash_vec), 27);

// Create 128 bit vector with value of 1 in all lanes

uint32x4_t ones = vdupq_n_u32(1);

/* Shift left by the per-lane shift values, reinterpret the shift values

* as signed as the vshl instruction uses the sign to determine direction

*/

uint32x4x2_t result;

result.val[0] = vshlq_u32(ones, vreinterpretq_s32_u32(shift.val[0]));

result.val[1] = vshlq_u32(ones, vreinterpretq_s32_u32(shift.val[1]));

return result;

}

70

Listing 9 Item checking code for a SBBF. The same block selection and mask

construction code is used. Instead of performing a logical OR between the

selected block and generated mask, a logical AND operation is performed. If all

bits in the mask are set in the block, the result of this operation is identical to

the supplied mask.

bool BlockedBloomFilterParquet::check(uint8_t *key, size_t keyLen,
uint8_t *k1, size_t k1Len) {

// Hash the item

uint64_t hash = hash_functions::Highwayhash256({key, keyLen, 1, k1, k1Len});

// Determine block using most significant 32 bits from hash

uint32x4x2_t* block = getBlock(hash);

// Construct mask using multiply-shift hashing

uint32x4x2_t mask = constructMask(hash);

// Perform AND between the block and mask

auto res1 = vandq_u32(block->val[0], mask.val[0]);

auto res2 = vandq_u32(block->val[1], mask.val[1]);

/* If the AND result and the mask are the same, the element is in the block

* vceqq_u32 -> Compares two uint32x4_t values, for each lane if the values

* are equal it sets that lane in the result to 0xFFFFFFFF

* vminvq_u32 -> Grabs the smallest value from the four lanes

* If the smallest value is equal to UINT_MAX (0xFFFFFFFF)

* then all lanes were equal, and therefore the mask and AND

* result are equal

*/

return (vminvq_u32(vceqq_u32(res1, mask.val[0])) == UINT_MAX) &&

(vminvq_u32(vceqq_u32(res2, mask.val[1])) == UINT_MAX);

}

The SBBF can be encrypted using XOR or AES encryption. Using XOR

encryption the bitset is encrypted on a block level (256 bits), similar to the

register blocked Bloom filter. Given a tree height of 64 a query token contains

128 sub-tokens, each containing 8 pairs. These 8 pairs reference indices in

the same block, requiring a single decryption per sub-token. Given a large

bitset size, containing more than 128 blocks, and perfectly random and uniform

hashing, a query would require 128 decryptions. In real-world usage the number

of decryptions is far lower due to block collisions and local caching of decrypted

blocks.

Encryption using AES encrypts the full Bloom filter bitset at once, requiring

a single decryption per query. For our assumed threat model this encryption

71

method is substantially worse than XOR encryption. An observer can obtain

the complete plaintext bitset after just a single query, as opposed to having

to observe each bit or 256 bit block be decrypted to piece together the full

plaintext bitset. Using AES encryption trades off a higher level of security for

better performance. Given the low level of leakage from a plaintext Bloom

filter bitset, AES encryption can be a compelling choice if better performance is

required. AES-CBC-256 is used as it encrypts in 128 bit blocks. With our 256

bit blocks this method requires no padding. An empty IV is used for two reasons.

First, we don’t want to store IV’s. Second, when using no IV, identical plaintext

Bloom filters will encrypt to identical ciphertexts. This is not a concern as this

only leaks both files contain the same upper and lower bounds for a specific

column, which in many cases could be considered acceptable leakage.

Using The Full 256 Bits

The implementation mentioned above exclusively uses the first 64 bits of a

hash, calculating the eight required hashes using multiply-shift hashing. While

multiply-shift hashing is cheap and results in uniform and independent hashes,

the outputs are neither unpredictable nor collision resistant. This is exacerbated

in this implementation as the same 32 bit hash is used as the base for each of

the eight resulting hashes. This section describes an extended, more secure

implementation, which uses a hash digests full 256 bits.

Overall the insertion and checking methods are the same. Mask calculation

is adapted to use the full 256 bits of a digest. Listing 10 shows the multiply-shift

step in the modified mask construction method. Instead of using the same 32

bits of the hash for each multiplication, a distinct 32 bit part of the 256 bit

hash is used. Simply splitting the 256 bit hash into eight 32 bit hashes does

not result in sufficiently independent values, leading to a significantly higher

FPR. Multiply-shift hashing these eight hashes with odd constants results in

uniform and independent hashes. Section 6.4.1 contains benchmarks comparing

performance and FPR between the three SBBF variants.

72

Listing 10 Difference in mask construction for SBBF when using the digests

full 256 bits. Instead of broadcasting the least significant 32 bits of the hash to

eight lanes, the eight lanes are filled by the 256 bit digest. This improves security

as each lane has a distinct value, as opposed to sharing the same 32 bit value.

Multiply-shift hashing is required to generate eight distinct and independent

hashes.
uint32x4x2_t hashes;
hash_functions::Highwayhash(

{key, keyLen, 1, k1, k1Len},

reinterpret_cast<uint64_t*>(&hashes)

);

// Multiply and shift: (rehash * hashes[i]) >> 27

uint32x4x2_t shift;

shift.val[0] = vshrq_n_u32(vmulq_u32(rehash.val[0], hashes.val[0]), 27);

shift.val[1] = vshrq_n_u32(vmulq_u32(rehash.val[1], hashes.val[1]), 27);

5.4 BF-EDS Library

This section describes the implementation of the BF-EDS C++ library which

contains the algorithms described in Sections 4.3.1 and 4.3.2, as well as all binary

interval tree algorithm implementations. The library focusses on ease of use

and extendability. Adding a new Bloom filter type, encryption method or HF is

trivial. Templating is used extensively to write generic and type-safe code that

can reuse existing code, while simultaneously allowing differing implementations

when necessary. A QueryManager class is introduced to manage keys (client

side) and Bloom filter settings, reducing the parameters required for all methods.

Bloom filter XOR encryption is implemented for basic, register blocked and

SBBF types. The EBF creation method takes a file range [minf ,maxf]. The

two coverage sets P(minf) and P(maxf) are calculated and their elements are

added to the templated Bloom filter type. The method returns a unique pointer

to an instance of the abstract Bloom filter class. By using this abstract Bloom

filter class, which exposes a number of generic Bloom filter methods (insert,

check, retrieve bitset), each method can use any type of Bloom filter. New

Bloom filter types can be added without requiring any code changes in most

methods. Once all coverage set elements are inserted into the Bloom filter,

its bitset is encrypted using either XOR or AES-CBC-256 encryption. The

encryption method is specified using a method parameter.

Creating query tokens uses the algorithm described in Section 4.3.2. The

global query token creation method is the same for each Bloom filter type,

73

however, the sub-token creation methods vary. This difference is due to the

difference in block size when encrypting the bitset using XOR encryption (bit-

by-bit or block-by-block with varying block sizes). The query token method

generates the MCS for the requested query range. For each node ID in the

MCS a sub-token is created using a Bloom filter type specific implementation.

The query token is padded with bogus sub-tokens up to length 2 ∗ log2(T).
Querying is again Bloom filter type specific thanks to the differences in query

token sub-tokens. Thanks to the extensive usage of templating, changing the

type of Bloom filter and encryption being used solely requires changing a single

template parameter. This significantly simplifies both testing and evaluation.

5.5 Iceberg

This section describes the process of creating Iceberg tables for testing and

evaluation, updating manifest files with our Bloom filters and integrating BF-

EDS in the DuckDB Iceberg extension.

5.5.1 Creating Iceberg Tables

Iceberg tables can be created a number of different ways. Using Apache Spark,

INSERT operations can be performed to create Parquet files with accompanying

Iceberg metadata. This process is slow and does not work for already existing

data files. As Iceberg is just a metadata format, metadata can be created

for existing files as well using Icebergs add files method. Spark supports

using this method, however, when used it compacts and rewrites the original

files. Repartitioning, to undo the compaction, is possible but breaks the original

ordering of data across files. This makes it unusable for our application, as some

evaluations require data to be ordered or distributed across files in a specific

way. Additionally, Spark’ rewriting of files slows down the process significantly,

especially for larger tables.

To tackle the abovementioned issue PyIceberg is used to create Iceberg ta-

bles. PyIceberg implements the add files method differently compared to

Spark. Specifically, PyIceberg does not compact and rewrite files, unless ex-

plicitly asked to do so. Duplicate file checking can be disabled to speed up the

Iceberg table creation process significantly.

5.5.2 Adding Bloom Filters To Manifest Files

Iceberg manifest files are stored using the Avro file format. Avro is a data

serialization framework which provides a fast, schema-based binary data format.

74

Manifest files follow a strict schema, a small part of which is shown in Listing

11. The data file field is a record which contains a large number of fields.

These fields contain general information and statistics for a specific data file.

As data files can contain multiple distinct columns, most statistics are defined as

dictionaries (e.g. upper and lower bounds). This allows statistics to be added on

a per-column basis. The added Bloom filter extension follows the same pattern

as these statistics fields, allowing a Bloom filter to be added for each distinct

column in a file. Listing 12 shows the Bloom filter field which is added to the

data file record. The bloom filters dictionary maps one or more column

IDs to Bloom filter bitsets. Avro implicitly stores the size of the bitset byte

arrays, meaning no additional field is required to store m.

Listing 11 Manifest file schema consisting of rows of manifest entry records. A

small subset of the fields in the manifest file schema are shown in this Listing.
{

"type": "record",
"name": "manifest_entry",
"fields": [

{
"field-id": 0,
"name": "status",
"type": "int"

},
// ...
{

"field-id": 2,
"name": "data_file",
"type": {

"type": "record",
"name": "r2",
"fields": [

{
"field-id": 134,
"doc": "File format name: avro, orc, or parquet",
"name": "content",
"type": "int"

},
// ...

]
}

}
]

}

Adding Bloom filters to Iceberg manifest files is done using a small C++

helper program. This program takes a number of arguments, including a man-

ifest file path, bitset size m and a number of client-side secret keys used in the

BF-EDS PRFs F1 and F2, as well as an optional 32 byte key used for AES

encryption (if used instead of XOR encryption).

75

Listing 12 Manifest file schema extension to add support for per-column Bloom

filters. Bloom filters are stored in a dictionary which maps column ID to Bloom

filter bitset. Avro implicitly stores lengths of byte arrays, meaning no additional

field is required to store m.
{
"name": "bloom_filters",
"type": [

"null",
{

"type": "array",
"items": {

"type": "record",
"name": "k144_v145",
"fields": [

{
"name": "key",
"type": "int",
"field-id": 144

},
{

"name": "value",
"type": "bytes",
"field-id": 145,
"doc": "The Bloom filter bitset"

}
]

},
"logicalType": "map"

}
],
"doc": "Map of column id to Bloom filter",
"default": null,
"field-id": 141
}

76

For each manifest entry a selection of columns is made for which both an up-

per and lower bound is present in the entry’s upper bounds and lower bounds

dictionaries. For each of these columns a Bloom filter is generated using the cov-

erage sets P(column lower) and P(column upper) and added to the manifest

entry’s bloom filters dictionary. Once all Bloom filters for an entry are gener-

ated, the upper bounds and lower bounds dictionaries are NULLed to prevent

leakage of bounds information. The updated manifest file is then written to the

files original location, overwriting the existing file.

5.5.3 Adding BF-EDS To DuckDB Iceberg

A hybrid query execution model makes most sense for the BF-EDS scheme.

Accurate data skipping precisely selects files relevant for a query. These files

are then transferred to a trusted client which decrypts the files and performs

the remaining part of the query locally. Due to the limited amount of time

available and the complexities involved in developing a hybrid query execution

system (MotherDuck 2.0), the BF-EDS implementation in this thesis is run

entirely server side. Adding BF-EDS methods to the DuckDB Iceberg extension

is done through linking with the BF-EDS library, introduced in Section 5.4,

which implements all required BF-EDS functions.

The initial step in a query consists of converting the set of applied DuckDB

table filters to a per-column filter range mapping. Currently this mapping is

one-to-one, however, extending this mapping to support multiple filter ranges

per column is trivial. For each of these filter ranges a query token is generated.

Query tokens are stored in a dictionary which maps column ID’s to vectors of

query tokens. This allows for multiple query tokens to be added per column.

DuckDB’s active query ID is stored with this dictionary, ensuring query token

creation happens exactly once per query. Additionally, a number of custom

settings are added which alter DuckDB Iceberg’s querying behavior:

• use encrypted bloom filters: Enables usage of EBFs. If not enabled

Bloom filters are not loaded and regular upper and lower bounds statistics

are used.

• bloom filter encryption method: Specifies the encryption method used

for the EBF. One of: XOR, AES or NONE.

• write to file: Whether to write the paths of non-skipped data files to

a text file, as a JSON array of strings, instead of reading and querying

the actual files. This setting is used during FPR testing as it allows

77

comparison between the files returned by the regular and BF-EDS Iceberg

implementations.

• skip reading parquet: Whether to skip reading the actual data files once

manifest file scans are completed. Used during evaluation to prevent regu-

lar Iceberg from reading Parquet files. While similar to the write to file

setting, write to file incurs a large performance penalty due to its I/O

operations.

During a query all manifest entries are scanned. Sequentially, for each of

the columns in the query token dictionary, the associated Bloom filter is loaded

and queried using the query token. The query predicate can be replaced by the

Bloom filter query result. Dependant on the full query, the file the manifest

entry references can either be safely skipped, or one or more remaining query

tokens have to be applied. Listing 13 shows a query where if value 1 is larger

than 10 the second predicate can be skipped, whereas Listing 14 shows a query

where, in this case, the second predicate has to be evaluated. If no Bloom filter

exists for the requested column, the file cannot be skipped as it might contain

relevant data.

Listing 13 SQL query which can skip evaluating the second predicate if the

first predicate is false.

SELECT COUNT(*) FROM table WHERE value_1 < 10 AND value_2 < 20;

Listing 14 SQL query which has to evaluate the second predicate if the first

predicate is false.

SELECT COUNT(*) FROM table WHERE value_1 < 10 OR value_2 < 20;

5.6 Range Mapping

Binary interval trees work with unsigned numerical ranges. Using these trees

with other data types requires mapping values to the unsigned integer domain.

This section describes the process of mapping signed integers, strings and NULL

values to the unsigned integer domain.

5.6.1 Signed Integers

Mapping signed integers to the unsigned integer domain is trivial. Listing 15

shows the code responsible for mapping signed integers to unsigned integers.

78

Listing 15 Code for mapping signed integers to unsigned integers. The signed

value is cast to an unsigned 64 bit integer. If the signed value is negative, the

most significant bit will be set. An XOR operation turns this bit off. If the

signed value is positive, its most significant bit is turned on by the same XOR

operation. This effectively maps the negative domain [−263, 0] to the first 63

bits of the unsigned integer. The positive signed integer domain is mapped to

[263, 264].

return {
static_cast<uint64_t>(r.min) ^ 0x8000000000000000ULL,

static_cast<uint64_t>(r.max) ^ 0x8000000000000000ULL,

};

The signed integer is first cast to an unsigned 64 bit integer. Signed integers

use the most significant bit to store their sign. A negative integer has its most

significant bit unset, whereas a positive integer has its most significant bit set.

After the cast a bitwise XOR operation is performed with the hexadecimal

representation of a 64 bit unsigned integer with just the most significant bit

set. This XOR maps negative integer values to lower unsigned integer values

than positive integer values (the most significant bit will be unset by the XOR).

This maintains the relative ordering of the signed values in the unsigned integer

domain. The entire 64 bit signed integer domain fits within a 64 bit unsigned

integer.

5.6.2 Strings

Mapping strings to the unsigned integer domain is less trivial. String ordering is

often done using lexicographical ordering, which determines the ordering of two

strings by comparing them letter-by-letter. When using binary interval trees

this approach is not possible. Instead, we convert strings to numerical values

using the equation in Figure 5.4.

m∑
i=0

(s[i]− 97) · bm−i

Figure 5.4: String to unsigned integer mapping equation where m denotes the

maximum prefix length of the string taken into account, s represents the to-be-

converted-string and b is a base which determines the weight of characters in

the string.

79

In this equation m denotes the maximum string prefix length taken into

account during mapping, s is the to-be-converted string and b is a base which

determines the weight each character contributes to the final numerical value.

The C++ character code of the character at index i is reduced by 97, mapping

’a’ to 0. This value is subsequently multiplied by b raised to a power which

decreases as the character index increases. This way, earlier characters weigh

orders of magnitude more compared to later characters. Using this approach a

long string like ’azzzzzzzzz’ can be mapped to a smaller numerical value than

a much shorter string like ’b’. Figure 5.5 shows how the weight of a character

drops off exponentially as its index in the string increases, and how increasing

b exacerbates this effect.

0 1 2 3

Character Index i

0

1000

2000

3000

4000

C
h

ar
ac

te
r

W
ei

gh
t

(b
4
−
i)

Character Weight Dropoff For m = 4 With Increasing b Value

b = 2

b = 4

b = 6

b = 8

b = 10

b = 12

b = 14

b = 16

Figure 5.5: Character weight drops off exponentially as letter index in the string

increases. Increasing b exacerbates this effect, allowing for longer strings to be

mapped with perfect accuracy.

A combination of m and b is said to have perfect accuracy if the absolute

lexicographical ordering of strings up to length m is maintained in their mapped

numerical counterparts. Perfect accuracy is tested by comparing the strings

a ∥ zm−1 and b. If a ∥ zm−1 has a lower mapped numerical value than b, the

parameter set has perfect accuracy. Achieving perfect accuracy is challenging.

It requires a string composed of a single low-value character, b, to map to a

higher numerical value than a longer string which is composed of high-value

characters. A careful balance between m and b is required. Increasing both too

much overflows 64 bits of space.

Figures 5.6 and 5.7 show how the strings ’azzz’ and ’b’ are mapped to an

integer with parameters (m = 2, b = 2) and (m = 2, b = 27) respectively. The

constant b can be lowered to allow for higher values of m without overflowing

a 64 bit unsigned integer. Lowering this constant reduces accuracy leading

to strings like ’azzzzzzzzz’ mapping to a higher value than ’b’. String range

mapping, and specifically perfect accuracy pairs, are evaluated in Section 6.5.

80

azzz

(97− 97) · 24−0 + (122− 97) · 24−1 + (122− 97) · 24−2 · (122− 97) · 24−3

= 0 · 24 + 25 · 23 + 25 · 22 · 25 · 21

= 0 + 200 + 100 + 25

= 325

b

(98− 97) · 24−0

= 1 · 24

= 16

Figure 5.6: Mapping the strings ’azzz’ and ’b’ to an integer using parameters

m = 4 and b = 2. Parameter b is too small to assign sufficient weight to earlier

characters in the string, leading to ’b’ having a lower numerical value than ’azzz’.

This leads to numerical ordering which differs from the strings lexicographical

ordering.

azzz

(97− 97) · 274−0 + (122− 97) · 274−1 + (122− 97) · 274−2 · (122− 97) · 274−3

= 0 · 274 + 25 · 273 + 25 · 272 · 25 · 271

= 0 + 492075 + 18225 + 675

= 510975

b

(98− 97) · 274−0

= 1 · 274

= 531441

Figure 5.7: Mapping the strings ’azzz’ and ’b’ to an integer using parameters

m = 4 and b = 27. This parameter combination correctly maps ’azzz’ to a lower

numerical value than ’b’, preserving the strings lexicographical ordering.

81

5.6.3 NULL Values

The way NULL values are mapped depends on the semantics associated with

them. A NULL value can be seen as being any possible value, or no value at

all. Therefore, a data block which contains a NULL value should either always

be returned, no matter the query, or only be returned if the range represented

by the non-NULL elements intersects with the query range.

If NULL values are seen as being any possible value, a data block which

contains a NULL value should always be returned. Inserting the nodes in the

sets P(0) and P(T), where T is the largest possible 64 bit unsigned integer

value, into the Bloom filter will make any query range intersect with the block

range. This approach can lead to leakage, as all data blocks containing NULL

values will have the same Bloom filter bitset. Adding random elements to the

bitset can help reduce this leakage. Seeing NULL values as being no value,

requires no changes. BF-EDS inherently ignores NULL values when generating

ciphertexts.

82

Chapter 6

Evaluation

This chapter contains an extensive evaluation of BF-EDS using both system-

level and microbenchmarks.

6.1 Preliminaries

All microbenchmarks use Googlebenchmark[30], a widely-used microbenchmark-

ing library. Googlebenchmark uses high resolution timers and tries to mitigate

CPU frequency scaling and warmup effects by dynamically adjusting the num-

ber of benchmarking iterations. This results in reliable and reproducible bench-

mark results. Extensive templating support allows the same benchmark to be

run with many different parameters, including different Bloom filter types and

encryption methods. Benchmarks which generate random ranges use a set list

of 100 randomly generated seeds, attached in Appendix 9.1. The keys used in

our keyed HFs are attached in Appendix 9.2. All benchmarks are run on an

Apple MacBook Pro with an M1 Pro CPU and 32GB of RAM. During bench-

mark runs no applications beside the benchmarking software are running on the

device.

6.2 Binary Interval Trees

As part of research question 1a, various binary interval tree implementations

are evaluated. The runtime of these implementations is not crucial, as all of

these functions are run on the client side. Additionally, these functions are run

orders of magnitudes less frequently compared to server-side functions.

83

6.2.1 Node ID Calculation

For various tree heights the duration to calculate the ID of the leftmost leaf node

is measured. This node is selected as it is present in all trees and calculating

the ID of a leaf node takes the longest (longest binary label). Figure 6.1 shows

the duration to calculate the node ID with increasing tree heights. As expected,

this runtime increases linearly with the tree height. The current complexity of

this implementation is Θ(h). Improving this complexity further is not possible

due to the iterative nature of the ID calculation process.

0 10 20 30 40 50 60

Tree Height

10

20

30

40

50

R
u

n
ti

m
e

(n
s)

Linear Fit (0.9999)

Measured Data

Node ID Calculation Duration With Increasing Tree Height

Figure 6.1: Node ID calculation duration for the leftmost leaf node with in-

creasing tree heights. Runtime increases linearly with tree height.

6.2.2 Coverage Set Calculation

For various tree heights the coverage set of the leaf node ’0’ is calculated. The

coverage set size scales linearly with the tree height. A linear relation between

the two is expected.

Figure 6.2 shows that this is the case (RMS 3.10 · 10−10). In some cases the

performance scales sublinearly. Given a tree with height h the algorithm always

performs h calculations. Therefore, both the runtime upper and lower bounds

are fixed, which results in a complexity of Θ(h). Figure 6.3 compares the runtime

duration of calculating the coverage set for the tree leaf ’0’ between the naive

84

0 10 20 30 40 50 60

Tree Height

10

20

30

40

50

60
R

u
n
ti

m
e

(n
s)

Linear Fit (0.9731)

Measured Data

Coverage Set Calculation Duration With Increasing Tree Height

Figure 6.2: Coverage set calculation duration for the leaf node ’0’ with increasing

tree heights.

implementation, which calculates the node ID each iteration, and the optimized

implementation, which iteratively updates the node ID while moving down the

tree. As expected, the optimized implementation performs significantly better,

with the naive implementation scaling quadratically (RMS 3.4 · 10−11).

85

0 10 20 30 40 50 60

Tree Height

0

250

500

750

1000

1250

1500

1750

2000
R

u
n
ti

m
e

(n
s)

Naive Implementation

Optimized Implementation

Coverage Set Calculation Duration Comparison With Increasing Tree Height

Figure 6.3: Coverage set calculation duration comparison between the naive and

optimized implementations for the leaf node ’0’ with increasing tree heights.

6.2.3 Minimum Coverage Set Calculation

For a number of tree heights, up to 64, the MCS is calculated for 10,000, pre-

seeded, randomly generated ranges. Figure 6.4 shows the runtime results for

this benchmark. The top down and bottom up approaches are similar in perfor-

mance, with the bottom up approach being slightly faster in trees with a height

less than 32. Figure 6.5 shows the number of expanded nodes for each imple-

mentation at various tree heights. The top down approach consistently expands

fewest nodes. Due to the ordered nature of the tree the top down approach is

performing a form of binary search via BFS.

86

0 10 20 30 40 50 60

Tree Height

0

2000

4000

6000

8000

10000

12000

R
u

n
ti

m
e

(n
s)

Average MCS Calculation Duration Per Implementation
With Increasing Tree Height

Binary Search

Bottom Up DFS

Top Down BFS (Lu)

Figure 6.4: Average MCS calculation duration per implementation with in-

creasing tree height. Shown duration is average of 10,000 random range MCS

calculations.

0 10 20 30 40 50 60

Tree Height

0

500

1000

1500

2000

E
x
p

an
d

ed
N

o
d

es

Average Number Of Expanded Nodes Per Implementation
With Increasing Tree Height

Binary Search

Bottom Up DFS

Top Down BFS (Lu)

Figure 6.5: Average number of expanded nodes per implementation. Average

taken over 10,000 random range MCS calculations. An expanded node is a node

for which the coverage is calculated and checked.

87

The performance difference between the top down and bottom up approaches

is small, whereas the difference in expanded nodes is large. At tree height 64

the bottom up approach expands 3.8x more nodes compared to the top down

approach, whereas the top down approach performs just 1.2x better when look-

ing at runtime. This stark and unexpected difference can be partly attributed

to the queue which the top down approach uses. Profiler results show that

the queue expansion and insertions operations occupy around 10% of the total

runtime. Additionally, the bottom up approach offers simpler and more linear

code, resulting in a smaller than expected performance difference given the large

difference in expanded nodes.

The binary search implementation performs very poorly. Figure 6.5 shows

this is not due to a much larger number of node expansions. Both the binary

search and bottom up implementations expand a similar number of nodes. Most

likely, this performance difference stems from the non-linear memory access

patterns and high amount of branching this implementation introduces.

6.3 Hash Functions

This section evaluates multiple HFs on both their hashing performance and

uniformity.

6.3.1 Performance

The performance of the HF we use plays a significant role in the usability of

BF-EDS in real-world systems. Computing hashes quicker leads to lower query

durations and a higher system throughput. When using XOR encryption for

our Bloom filters the query duration is dominated by hash computations. If

AES encryption is used the HF performance plays a much smaller role in query

performance.

Figure 6.6 shows the time it takes various HFs to hash keys with increasing

sizes. HighwayHash and SipHash perform the best, with SipHash outperforming

HighwayHash with keys smaller than 128 bytes. This is unexpected as High-

wayHash claims to be consistently faster than SipHash for all input sizes[2]. Do

note that SipHash only outputs a 64 bit hash, whereas HighwayHash outputs

a 256 bit hash. AES128 and AES256 are not HFs but can be used as one by

encrypting the key and then using the first 128 or 256 bits of the ciphertext as

a hash.

88

SHA256 (256) Blake3 (256) AES256 (256) AES128 (256)HighwayHash (256) SipHash (64) Murmur3 (2*128)

Algorithm (Hash Size In Bits)

0

200

400

600

800
D

u
ra

ti
on

(n
s)

Hash Speed With Increasing Key Size

32 Bytes

64 Bytes

128 Bytes

256 Bytes

512 Bytes

Figure 6.6: Hashing duration for various HFs with increasing key sizes. Overall

HighwayHash and SipHash perform best, with SipHash outperforming High-

wayHash on inputs smaller than 128 bytes.

6.3.2 Uniformity

A perfectly uniform HF hashes any value v to one of n buckets with probability

1/n. When used in a Bloom filter, uniform hashing is important as it reduces

the number of collisions, reducing the FPR of the filter. In our scheme we

use three HFs: Hk for Bloom filter insertions and F1 and F2 for Bloom filter

XOR encryption. For all three HFs non-uniform hashing leads to lesser security

and possibly more leakage. A non-uniform hashing Hk leads to non-uniform

bit distribution. This makes it easier for an adversary to infer which inputs

correspond to specific bits being set. By observing the distribution of set bits

an adversary may be able to infer information about the plaintext key used in

Hk, as well as the range associated with the Bloom filter. In case F1 or F2

exhibit poor uniformity the resulting encrypted Bloom filter will lack sufficient

randomness. This increases the likelihood an adversary could infer the plaintext

bits, even before a query decrypts these bits.

To test the uniformity of HFs a simple benchmark is used. This benchmark

hashes n random values to b buckets, and compares the distribution of values

over these buckets with a perfectly uniform distribution (n/b values per bucket).

The significance of the results is evaluated using a χ2 test. For each HF 50 runs

are performed. Each run 100∗buckets randomly generated numbers are inserted,

using a different predefined seed each run. The first 50 range generation seeds

given in Appendix 9.1 are used. Figure 6.7 shows the resulting mean χ2 values.

89

Values which lie closer to buckets− 1 indicate more uniform hashing.

M
ur

m
ur

3

SH
A
25

6

H
ig
hw

ay
ha

sh

Si
ph

as
h

Bla
ke

3

A
ES1

28
8160

8170

8180

8190

8200

8210

8220

8230

8240

M
ea

n
χ

2

8192 Buckets

M
ur

m
ur

3

SH
A
25

6

H
ig
hw

ay
ha

sh

Si
ph

as
h

Bla
ke

3

A
ES1

28

16360

16380

16400

16420

16440

16384 Buckets

Mean χ2 per Hash Function by Bucket Count

Figure 6.7: Mean χ2 test results for various HFs hashing to 8192 and 16384

buckets over 50 runs. A mean χ2 value closer to buckets − 1 indicates more

uniform hashing. Overall HighwayHash performs best when taking both bucket

counts into account.

A statistical p test is used to determine if the resulting distribution in any

benchmark run deviates significantly from the expected uniform distribution. In

this case, a p value below 0.05 indicates deviation. Figure 6.8 shows the number

of runs, for each HF, in which the resulting distribution deviated significantly

from the expected uniform distribution. A lower number of deviations indicates

more consistent uniform hashing. HighwayHash performs best both in terms of

mean χ2 value and number of deviations.

90

AES128 Blake3 Highwayhash Murmur3 SHA256 Siphash

Hash Function

0

1

2

3

4

5

6
C

ou
n
t

Bucket Count

8192

16384

Number Of Distributions Where χ2 p < 0.05

Figure 6.8: Number of runs out of 50 total runs with a p value below 0.05, indi-

cating a significant deviation from the expected uniform distribution. Highway-

Hash has the lowest number of deviations with both bucket counts, indicating

very consistent uniform hashing performance.

6.4 Bloom Filters

6.4.1 Split Block Bloom Filter Comparison

As discussed in Section 5.3.3 two implementations of the SBBF exist. The

original implementation uses just the upper 64 digest bits, whereas the adapted

implementation uses the full 256 bit digest. For this second implementation two

variants are implemented. The first simply splits the 256 bit digest into eight 32

bit values and the second additionally performs multiply-shift hashing on these

eight values.

Figure 6.9 shows the spread of false positives these variants returned when

querying a table containing 1 million files. The variant using the full 256 bit

digest instead of multiply-shift hashing the first 64 bits returns, on average, 6.3x

more false positives. Looking at the two spreads it is clear that the full 256 bit

variant performs significantly worse in all quartiles as well as in its outliers. This

significantly worse false positive is surprising. When using the full 256 bit digest

one would expect higher entropy compared to simply multiplying the first 64

bits with eight odd constants. Multiply-shift hashing yields eight distinct and

91

Multiply Shift 256 Bit Hash 256 Bit Hash & Multiply Shift

Bloom Filter Variant

0

10

20

30

40

50

60

70
F

al
se

P
os

it
iv

es

3.38

21.25

3.40

False Positive Count Comparison Between Split Block Bloom Filter Variants

Figure 6.9: Comparison of false positives spread between the regular, 256 bit

and 256 bit multiply-shift hashing SBBF variants. The 256 bit variant using no

multiply-shift hashing performs significantly worse compared to the other two

variants.

independent values, whereas simply splitting the 256 bit digest into eight parts

does not yield truly independent values. This results in more collisions within

blocks. Using the full 256 bit digest in combination with multiply-shift hashing

makes the resulting hashes more unpredictable, resulting in FPRs comparable

to the original implementation. Additionally, using a different base in each lane

increases security.

Performance wise both variants are very similar. The SBBF variant using

the full 256 bit digest is, on average, slightly faster as the 256 bit digest comes

spread over eight lanes and as such does does not require an additional broadcast

operation. Figure 6.10 shows the runtime duration of performing a single Bloom

filter query for both the 64 bit and 256 bit variants.

92

64 Bit 256 Bit

Digest Bits Used In Multiply-Shift Hashing

10

20

30

40

50

60

70

80

C
P

U
T

im
e

(n
s)

Min

Mean

Max

Query Duration Comparison Between SBBF Variants

Figure 6.10: Single query duration comparison between the regular SBBF using

just the first 64 bits of a digest, and the SBBF variant using the full 256 bits of

the digest. Both variants use multiply-shift hashing to generate eight sufficiently

independent hashes.

6.4.2 Bloom Filter Comparison

In Sections 2.3 and 5.3 three Bloom filter implementations are discussed. Bench-

marks are used to determine which implementation performs best. Query du-

ration is the most important factor in determining the best implementation, as

a faster Bloom filter results in faster queries. Figure 6.11 shows the average du-

ration of a single Bloom filter query (using a query token). We benchmark both

cases where the query range intersects with the Bloom filter range, as well as

cases where the query range does not intersect with the Bloom filter range. The

bitset size m and HF count k of each implementation are set to values for which

the Bloom filter averages less than 1% FPR over 1000 randomly generated test

ranges. The register blocked Bloom filter requires a much higher m to achieve

this average FPR.

93

Basic
m = 8192, k = 6

Register Blocked
m = 64000, k = 6

Register Blocked
m = 8192, k = 6

Split Block
m = 8192

Bloom Filter Type

0

50

100

150

200

250
C

P
U

T
im

e
(n

s)
Min

Mean

Max

Unencrypted Bloom Filter Query Duration With Intersecting And Non-Intersecting Ranges

Figure 6.11: Single Bloom filter query duration comparison between three

Bloom filter variants. All Bloom filters are unencrypted. The parameters m

and k are chosen such that the Bloom filter achieves an average FPR of 1%. We

benchmark both cases where the query range intersects with the Bloom filter

range, as well as cases where the query range does not intersect with the Bloom

filter range.

The SBBF performs the best. Overall the minimum and mean query dura-

tion with intersecting ranges is a lot lower than with non-intersecting ranges.

This is due to early termination as soon as two intersections are found. With

non-intersecting ranges all sub-tokens in the query token have to be evaluated

to ensure there are not two intersections. The register blocked Bloom filter

performs worse than expected. This can be attributed to the HF computation

cost being the same for the basic and register blocked Bloom filters. The faster

bitset level operations are overshadowed by the hash computation overhead. In

comparison, the SBBF only has to compute a single hash, using multiply-shift

hashing to compute the required eight hashes. This leads to, on average, 2.1x

faster queries compared to the two other implementations.

Figure 6.12 shows the duration of a single query when using XOR encryption

(as explained in Section 4.3.1). The SBBF outperforms the other implementa-

tions by around 2.5x. Each query processes a single query token, which consists

of 128 sub-tokens each containing k hashes. Theoretically a basic Bloom filter,

in the worse case, performs 768 decryptions (given all hashed indices are unique

and no early termination can be performed). In comparison, the SBBF requires

94

Basic
m = 8192, k = 6

Register Blocked
m = 64000, k = 6

Register Blocked
m = 8192, k = 6

Split Block
m = 8192

Bloom Filter Type

0

2000

4000

6000

8000

10000

12000

C
P

U
T

im
e

(n
s)

Min

Mean

Max

Encrypted Bloom Filter Query Duration With Intersecting And Non-Intersecting Ranges

Figure 6.12: Query duration comparison between XOR encrypted Bloom filter

variants. We benchmark both cases where the query range intersects with the

Bloom filter range, as well as cases where the query range does not intersect

with the Bloom filter range. The SBBF variant significantly outperforms the

other variants.

95

at most 32 decryptions (32 blocks of 256 bits). If the theoretical maximum

number of decryptions are performed the SBBF outperforms the basic Bloom

filter by 24x.

Basic
m = 8192, k = 6

Register Blocked
m = 64000, k = 6

Split Block
m = 8192

Bloom Filter Type

0

20

40

60

80

100

120

140

160

H
as

h
In

vo
ca

ti
on

s

Min

Mean

Max

Encrypted Bloom Filter Hash Invocations With Intersecting And Non-Intersecting Ranges

Figure 6.13: Comparison of number of performed XOR decryptions between

XOR encrypted Bloom filter variants. The SBBF significantly outperforms the

other two variants due to its block-by-block encryption which uses larger blocks

compared to the register blocked Bloom filter.

Figure 6.13 shows the number of XOR decryptions each Bloom filter variant

performs during a single query. Both with intersecting and non-intersecting

queries the basic Bloom filter performs far less decryptions than the theoretical

maximum. With intersecting ranges it performs just 16.9% of the 768 possible

decryptions, with non-intersecting ranges this percentage lies slightly higher at

18.8%. This low number of computed hashes is the result of early termination

and a low FPR.

Figure 6.14 expands on this explanation. Shown is the number of pairs, of

which there are k in each sub-token, which intersect with the basic Bloom filter

set, both with intersecting and non-intersecting ranges. If one of the pairs is not

in the Bloom filter, the rest of the pairs in the sub-token can be skipped. All k

pairs in a sub-token need to be present in the Bloom filter for the full sub-token

to intersect. The bar at zero shows that for the majority of sub-tokens the

first pair is not present in the Bloom filter, meaning the remaining k − 1 pairs

can be skipped. For 128 sub-tokens this leads to an average of 135 computed

96

hashes, as shown in Figure 6.13. Reducing the Bloom filter bitset size m leads

to more intersections and less early termination, however, this comes at the cost

of significantly more incorrect intersections.

0 1 2 3 4 5 6

Sub-Token Pairs In Bloom Filter

0

20

40

60

80

100

120

N
u

m
b

er
O

f
O

cc
u

rr
en

ce
s

Min

Mean

Max

Sub-Token Pairs Present In Basic Bloom Filter With
Intersecting And Non-Intersecting Ranges

Figure 6.14: Number of matching pairs when querying a basic Bloom filter, k

pairs per sub-token, with intersecting and non-intersecting ranges. The first pair

in most sub-tokens is not present in the Bloom filter, allowing the remaining

k−1 pairs to be skipped. This leads to a much smaller number of HF operations

than expected.

6.4.3 Encryption Methods Comparison

Bloom filters can be left in plaintext or encrypted using XOR or AES encryption.

The SBBF has implementations of both encryption methods. This section con-

tains a comparative evaluation of the performance of these encryption methods

using the SBBF. For each range generation seed 100 ranges are generated, for a

total of 10,000 ranges. The benchmark is run twice. First with all Bloom filter

ranges intersecting with the query range, second with no Bloom filter ranges

intersecting. The same benchmark is run for each of the three encryption meth-

ods.

97

Plaintext AES XOR

Bitset Encryption Method

0

1000

2000

3000

4000

5000

C
P

U
T

im
e

(n
s)

Encrypted Bloom Filter Query Duration Comparison With Various Encryption Methods

Min

Mean

Max

Figure 6.15: Query duration with various encryption methods applied to the

SBBF. Per encryption method the benchmark is run twice with 10,000 randomly

generated ranges. First with only intersecting ranges, second with only non-

intersecting ranges (left and right bars respectively).

Figure 6.15 shows the benchmark results. Plaintext encryption - no encryp-

tion - performs the best, as one would expect. On average, queries on the AES

encrypted Bloom filter are 5.5x faster compared to the XOR encrypted Bloom

filter when querying a non-intersecting range, and 4.6x faster when querying an

intersecting range. A larger drop in query duration when querying intersecting

ranges can be seen when using XOR encryption, compared to AES encryption.

This is due to the fixed decryption overhead of the AES encryption method. The

XOR encryption method performs less decryptions when querying intersecting

ranges, whereas the AES method still performs one decryption.

6.5 String Range Mapping

In this section the benchmarking process regarding string mapping and the best

performing values for the parameters m and b are discussed.

6.5.1 Perfect Accuracy

As discussed in Section 6.5, a combination of m and b is said to have perfect

accuracy if the absolute lexicographical ordering of strings up to length m is

maintained in their mapped numerical counterparts. Perfect accuracy is tested

by comparing the strings a∥zm−1 and b. If a∥zm−1 has a lower mapped numer-

ical value than b the parameter set has perfect accuracy. Table 6.1 contains all

98

perfect accuracy parameter combinations, with the best parameter combination,

if perfect accuracy is required, being (m = 12, b = 30). With this parameter

combination, mapped strings up to length 12 are guaranteed to remain lexico-

graphically ordered in the numerical domain.

m b

4 [26, 64]

5 [26, 64]

6 [26, 64]

7 [26, 64]

8 [26, 64]

9 [26, 64]

10 [26, 60]

11 [26, 42]

12 [26, 30]

Table 6.1: String mapping parameter combinations which yield perfect accuracy

for strings up to length m. As m increases the max usable b value drops due to

integer overflows, clearly seen by the drop in max b from 64 with m = 4 down

to 30 with m = 12. Above m = 12 perfect accuracy is no longer possible.

6.5.2 Benchmarks On Real World Data

For this benchmark the NextiaJD Reddit dataset[49] is used. This dataset

contains comments posted on various ”Subreddits”, similar to message boards,

along with metadata relating to these comments. Two columns in this dataset

are used in our benchmark: the comments and the comment authors. Com-

ments are written in natural language without any specific patterns and are

often longer than the maximum possible m value. The comment authors are

generally shorter with a mean length smaller than our maximumm value. Before

benchmarking data is preprocessed in two steps. First, each string is converted

to lowercase. Second, all non-alpha characters are removed from each string as

our string ordering solution exclusively supports alpha characters. Extending

support to additional characters using their character codes is trivial but limits

the largest value of m due to integer overflow.

Listing 16 shows a dataset sample row before and after preprocessing. Pre-

processed strings are lexicographically ordered and exported to be used in the

benchmarks. Duplicate rows in both the author and body columns are dropped

as there is no ’correct’ ordering for duplicate strings. Table 6.2 shows relevant

statistics for the preprocessed body and author columns.

99

Listing 16 Sample row from NextiaJD Reddit comments dataset before and

after preprocessing.
Author Body
"eczaz05" "I get the impression that he writes his own bars..."

"eczaz" "igettheimpressionthathewriteshisownbars..."

Row Count Min Max Mean Std Dev

Body 6,886,549 1 9991 123 182.7

Author 633,105 1 20 10 3.7

Table 6.2: Relevant statistics for body and author column string lengths in pre-

processed NextiaJD Reddit comments dataset. The mean body column string

length is significantly longer compared to the author column. The longest string

in the author column can be entirely covered by m, whereas this is not the case

for the body column.

Measuring the accuracy of the mapped strings is done in three steps:

1. All strings in the to-be-benchmarked column are mapped to the numerical

domain using the parameters (m = 12, b = 30).

2. The list of numerical values is sorted in ascending order.

3. For each string value, the delta between its index in the sorted string

list in the sorted numerical list is calculated. If this delta is larger than

a set maximum acceptable delta it is counted as an error. Accuracy is

calculated using the formula 1 - (error count / row count).

The benchmark is run using max acceptable deltas ranging from zero to

eight. Figures 6.16a and 6.16b show the ordering accuracy results for these

benchmarks. For both columns all five benchmarked delta values resulted in an

ordering accuracy of 100%. These results show that the ordered mapped strings

are in exactly the same order as their lexicographically ordered counterparts.

Additionally, these results show that taking just the first 12 characters into

account results in great ordering. Even with a collection of strings where the

mean string length is significantly larger than 12.

100

0 1 2 4 8

Acceptable Delta

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy
String Ordering Accuracy Author Column

(a) Accuracy of numerical mapped string

ordering on the NextiaJD Reddit dataset

author column, with various acceptable

deltas. At delta zero accuracy is 100%,

indicating all mapped strings remain cor-

rectly ordered.

0 1 2 4 8

Acceptable Delta

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

String Ordering Accuracy Body Column

(b) Accuracy of numerical mapped string

ordering on the NextiaJD Reddit dataset

body column, with various acceptable

deltas. At delta zero accuracy is 100%,

indicating all mapped strings remain cor-

rectly ordered.

Figure 6.16: Accuracy of ordering with mapped strings. All strings mapped to

integers using the parameters (m = 12, b = 30). Acceptable delta is defined

as the maximum delta between the index of a string in the ordered string list

compared to the mapped numerical value in the ordered mapped values list.

Any delta larger than the acceptable delta is counted as an error.

6.6 DuckDB Iceberg Manifest Querying Perfor-

mance

This section evaluates the manifest scanning performance using BF-EDS. Deter-

mining FPR is done by comparing the data file paths returned by our BF-EDS

Iceberg implementation with those returned by regular Iceberg. All files re-

turned by regular Iceberg must be present in the files returned by BF-EDS.

Any additional files count as false positives. When evaluating performance Par-

quet file reading is disabled for both implementations, as we only evaluate the

manifest querying performance. Signed integer ranges are used during evalua-

tion as they are natively supported by Iceberg, whereas unsigned integer ranges

require use of custom types.

6.6.1 Querying Increasing Range Sizes

To obscure information about the range being queried, as well as the number of

relevant files, it is important for queries with varying range sizes to take similar

amounts of time. An approach which decrypts and queries files on the server

101

leaks information about the number of relevant files through its query duration.

Figure 6.17 shows that queries at all query range sizes take about the same

amount of time. A query which matches none of the files on the server takes

about the same amount of time as a query which matches every single file. The

transfer of relevant files from the server to the client does leak some information.

Having a slightly higher FPR obscures information about the actually relevant

files, as every query returns some irrelevant files, which could throw an adversary

off.

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

Query Range Size

0

1

2

3

4

5

Q
u

er
y

D
u

ra
ti

on
(S

ec
on

d
s)

Query Duration Per Query Range Size

Figure 6.17: Query duration for range sizes from 1 to 263 on a table with

1 million files using AES-encrypted 16384 bit SBBF. While the largest query

range size intersects with all files, and the smallest with just a single file, all

queries take about the same amount of time. Query duration thus leaks little

to an adversary about the queried range size.

6.6.2 Performance With Larger Bloom Filter Bitsets

We are using a SBBF with a fixed k of eight. The only way of influencing the

FPR is by adjusting the size of our Bloom filter bitset m. This section evaluates

the influence increasing m has on performance.

Figure 6.18 compares the query durations when querying 1 million files using

SBBFs with increasing bitset sizes. Increasing the bitset size slows down queries,

however, while m doubles each run, the query duration increases far less. Above

m = 8192 query duration increases faster, however, still far below the linear

increase in m. Doubling m from 214 to 215 increases mean query duration by

just 17%.

102

2048 (211) 4096 (212) 8192 (213) 16384 (214) 32768 (215)

Bloom Filter Bitset Size (Bits)

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

Q
u

er
y

D
u

ra
ti

on
(S

ec
on

d
s)

Querying 1M Iceberg Manifests Using DuckDB

Min

Mean

Max

Figure 6.18: Comparison in query duration when querying 1 million files with

increasing SBBF bitset size m. Query duration increases sublinearly with linear

increasing m. Above m = 8192 query duration increases at a higher rate.

Figure 6.19 shows the decrease in FPR as m increases, again using the

1 million file table. The FPR decreases exponentially as m increases. Even

with the addition of dummy sub-tokens in the query token the number of false

positives can be brought down to near-zero with outliers below 5. This is a

significant result as it demonstrates the usability of this scheme for tables with

very high file counts, where the number of false positives is much more important

than any query duration increase.

2048 (211) 4096 (212) 8192 (213)

102

103

104

105

lo
g

1
0

S
ca

le

144828.12

4311.41

119.87

16384 (214) 32768 (215)

0

20

40

60

80

100

L
in

ea
r

S
ca

le

3.38
0.14

False Positive Count With Various Bloom Filter Bitset Sizes

Bloom Filter Bitset Size (bits)

F
al

se
P

os
it

iv
es

Figure 6.19: FPR when querying 1 million files with increasing SBBF bitset size

m.

Increasing m logically increases the size of metadata as well. Figure 6.20

shows manifest file size increases linearly as the Bloom filter bitset size m in-

103

creases. When adding 2048 bit Bloom filters the manifest file size jumps from

9KB to 470KB, which is more than the expected 9KB+(1000 · 2048) = 265KB.

This is due to a combination of Avro’s internal block based structure requiring

additional sync markers, changes in the schema requiring additional storage and

all Bloom filter bitset byte arrays requiring a 1 byte length prefix. Manifest files

are limited in size to around 4GB, meaning m can be increased much further to

maintain a low FPR, even in tables with orders of magnitude more files.

No BF 2048 (211) 4096 (212) 8192 (213) 16384 (214) 32768 (215)

Bloom Filter Bitset Size m (bits)

0

1

2

3

4

M
an

if
es

t
F

ile
S

iz
e

(M
B

)

0.009

0.47

0.73

1.20

2.30

4.30

Manifest File Size With Increasing m

Figure 6.20: Size of individual manifest files containing 1000 manifest entries

for various Bloom filter bitset sizes m. Manifest file size increases linearly with

m.

6.6.3 Increasing Manifest Batch Size

Each manifest file contains a number of manifest entries. Each entry points to

a data file and contains relevant information and statistics about this file. The

number of entries per manifest file is determined by the batch size. Increasing

the batch size increases the number of entries per manifest file and reduces the

number of manifest files to be read. As I/O operations can be slow, increasing

the batch size should improve performance.

The same dataset, containing 100,000 files, is converted to an Iceberg table

using various batch sizes. For each batch size a separate table is created. With

each increase in batch size the resulting table has fewer manifest files. This

should reduce the amount of file level I/O operations required when scanning,

resulting in faster queries.

104

100 1000 10,000

Manifest Batch Size (# Entries Per File)

0.40

0.45

0.50

0.55

0.60

0.65

Q
u

er
y

D
u

ra
ti

on
(S

ec
on

d
s)

Querying 100K Iceberg Manifests Entries With Various Batch Sizes

Min

Mean

Max

Figure 6.21: Query duration querying 100,000 manifest entries with various

batch sizes while using AES-encrypted 16384 bit SBBF. Higher batch sizes result

in shorter queries. Diminishing returns with very high batch sizes due to query

processing dominating I/O operations and diminishing decrease in manifest file

count.

Figure 6.21 shows the mean query duration with various batch sizes. In-

creasing the batch size improves query performance. Increasing the batch size

from 100 to 1000 reduces the number of manifest files by 10x, consequently de-

creasing query duration by 23%. Repeating the process, using batch size 10,000,

decreases the manifest file count to just 10. This yields a decrease in query du-

ration, compared to batch size 1000, of just 3.2%. There are strong diminishing

returns. Each 10x batch size increase yields a smaller decrease in manifest file

count (100 to 1000 decreases by 900 files, 1000 to 10,000 by just 90). Addition-

ally, higher batch sizes result in larger files. Reading these files requires more

memory and potentially leads to increased garbage collection, both of which can

cause slowdowns.

6.6.4 Regular Iceberg Performance Comparison

Comparing regular DuckDB Iceberg performance to our BF-EDS implementa-

tion is done using the query in Listing 17. This query is run 64 times. Each

iteration the query range size is increased to cover all range sizes between 20

and 263. Our BF-EDS implementation uses an AES-encrypted 16384 bit SBBF.

105

Listing 17 SQL query used to compare regular DuckDB Iceberg and our BF-

EDS implementation.
SELECT
COUNT(*)

FROM

default.data

WHERE

value BETWEEN query_min AND query_max;

Figure 6.22 and Table 6.3 show the benchmark results for three table sizes.

Across all tested table sizes the mean overhead is around 40%. With increasing

table size the query duration for both the regular and BF-EDS implementations

scales linearly. Increasing the table size by 10x increases the query duration

around 10x as well.

10k 100k 1M

Table File Count

0

1

2

3

4

M
ea

n
Q

u
er

y
D

u
ra

ti
on

(s
)

0.03

0.33

3.34

0.05

0.48

4.73

Mean Manifest Query Duration Comparison

Regular Iceberg

Bloom Filter Based Encrypted Data Skipping

Figure 6.22: Mean query duration comparison between regular DuckDB Iceberg

and DuckDB Iceberg using BF-EDS. BF-EDS uses AES-encrypted 16384 bit

SBBF. Benchmarked on 64 query ranges covering all range sizes between 20

and 263. Query duration increases linearly with table size for both the regular

and BF-EDS implementation.

106

Table Size Regular Duration BF-EDS Duration Overhead

10k 0,0352 0,0489 39%

100k 0,335 0,477 42%

1M 3,33 4,63 39%

Table 6.3: Mean query duration and overhead when using BF-EDS compared

to regular Iceberg for various table sizes. Results obtained by running 64 query

ranges covering range sizes from 20 up to 263.

Looking at the overhead per query range size shown in Figure 6.23 we see that

the overhead when using BF-EDS decreases as the query range size increases.

With a query range size covering the entire domain (263) the overhead using

BF-EDS is just 10%, compared to 40% with smaller query range sizes. The BF-

EDS implementation performs the same over all query range sizes, something

which is shown in Figure 6.17, whereas the regular implementation performs

worse as the query range size increases. This leads to a lower overhead.

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

Range Size

0

10

20

30

40

M
ea

n
O

ve
rh

ea
d

(%
)

Mean Overhead Using BF-EDS Compared To Regular DuckDB Iceberg For Various Range Sizes

Figure 6.23: BF-EDS overhead compared to regular DuckDB Iceberg as query

range size increases from 20 to 263. BF-EDS performance remains stable whereas

regular Iceberg performance decreases, leading to a reduced overhead with larger

query range sizes.

It is unclear why the regular implementation starts performing worse as the

query range size increases, whereas the BF-EDS implementation performance

remains consistent. Looking at profiler data, both implementations perform

significantly more vector and buffer allocations at higher query range sizes.

A possible reason these allocations do not affect the BF-EDS runtime is that

the slower decryption operations and Bloom filter lookups mask the alloca-

tions. This results in no blocking, whereas The regular implementation might

be blocked by these allocations.

107

6.6.5 TPC-H Performance

TPC-H is a benchmark that evaluates the performance of analytical database

systems by simulating a business-oriented query workload. Data is generated

using the tpch extension in DuckDB. Various scale factors between 1 and 16 are

used. Higher scale factors increase the amount of TPC-H data that is generated.

The generated data is copied into Parquet files, with each file containing 250

rows. With the largest scale factor of 16 this results in 96 million rows spread

over more than 383,000 files.

A modified version of TPC-H query 6 is used to evaluate performance. Our

system does not support aggregation operations like SUM and JOIN, which most

TPC-H queries use. Floating point range queries are also not supported. All

floating point values in the table are converted to integers using 100x multipli-

cation. This can be done without loss of information as the original column

type is DECIMAL(15, 2), indicating only two decimals of precision. Dates are

converted to unix timestamps and stored as 64 bit integer values (milliseconds

since epoch). The date predicates in the query are converted using the same

method. The standard TPC-H query 6 and the modified version used in our

evaluation are shown in Listing 6.24.

SELECT

SUM(l_extendedprice * l_discount)

AS revenue

FROM

lineitem

WHERE

l_shipdate >= CAST('1994-01-01' AS

date)

AND l_shipdate < CAST('1995-01-01'
AS date)

AND l_discount BETWEEN 0.05 AND

0.07

AND l_quantity < 24;

(a) TPC-H query 6 copied from DuckDB

tpch extension.

SELECT

COUNT(*)

FROM

default.lineitem

WHERE

l_shipdate >= 757382400000

AND l_shipdate < 788918400000

AND l_discount BETWEEN 5 AND 7

AND l_quantity < 2400;

(b) TPC-H query 6 modified to work

in our system. Decimal and Date type

values are converted to integers. SUM

operation converted to COUNT operation.

Figure 6.24: Standard TPC-H query 6 taken from the DuckDB tpch extension

and the modified query used in our evaluation.

The results of this evaluation are shown in Figure 6.25 and Table 6.4. On

average, using BF-EDS incurs a 15% overhead compared to regular DuckDB Ice-

108

berg. This overhead is significantly lower than the mean overhead of 40% in the

comparison between regular DuckDB Iceberg and our BF-EDS implementation

in Section 6.6.4.

1 2 4 8 16

TPC-H Scale Factor

0

2

4

6

8

M
ea

n
Q

u
er

y
D

u
ra

ti
on

(s
)

0.47

0.95

1.88

3.79

7.58

0.55

1.08

2.18

4.31

8.72

TPC-H Query 6 Mean Query Duration Comparison

Regular Iceberg

Bloom Filter Based Encrypted Data Skipping

Figure 6.25: TPC-H query 6 mean duration comparison between regular

DuckDB Iceberg and DuckDB Iceberg using BF-EDS. Evaluation run with in-

creasing scale factors up to 16. BF-EDS uses AES-encrypted 16384 bit SBBF.

On average our BF-EDS implementation incurs a 15% overhead compared to

regular DuckDB Iceberg.

Scale Factor Regular Duration BF-EDS Duration Overhead

1 0,473 0,550 16%

2 0,949 1,076 13%

4 1,882 2,174 15%

8 3,788 4,307 13%

16 7,577 8,716 15%

Table 6.4: Mean query duration and BF-EDS overhead when running TPC-H

query 6 at scale factors between 1 and 16.

The unmodified TPC-H query 6 performs a summation over all matching

rows. Looking at the generated data it appears all rows in the dataset match the

predicates in query 6, meaning every row is returned during a query. This can

be seen as a query with the largest possible range size (matching all rows/files),

109

comparable to the range size 263 in Section 6.6.4. Figure 6.23 shows that for

large query range sizes, matching 50+% of the tables rows/files, the overhead

when using BF-EDS drops significantly. For query range size 263 the overhead is

around 10%, comparable to the overhead of 15% seen in the TPC-H evaluation

results.

6.7 Order Revealing Encryption Performance Com-

parison

Both OPE and its generalization ORE can be effectively used for EDS. While

both schemes are highly vulnerable to attacks[48][22][31], we provide a com-

parison with ORE based EDS to demonstrate the practical performance of our

solution. This section evaluates and compares the performance of both schemes

when used in DuckDB Iceberg. The ORE implementation we use is based on

[39] and uses a block-based ciphertext.

6.7.1 Manifest Querying Performance

In this evaluation ORE uses a domain size of 64 bits and a block size of 12 bits.

This domain is the same size as our BF-EDS implementation can represent.

The block size is taken as the largest block size evaluated in [39], which results

in the longest ciphertext and consequently the highest level of security. Using

these parameters yields a 3288 bit ciphertext for each numerical value. Ranges

are represented using two 3288 bit ciphertexts for a total of 6576 bits. Our BF-

EDS implementation uses the same AES-encrypted 16384 bit SBBF used in the

comparison between BF-EDS and regular Iceberg in Section 6.6.4. Evaluation

is performed by running the query in Listing 17 for ranges with sizes from 20 to

263.

110

10k 100k 1M

Table File Count

0

1

2

3

4

5

6

7

8
M

ea
n

Q
u

er
y

D
u

ra
ti

on
(s

)

0.05

0.48

4.73

0.09

0.86

8.52

Mean Manifest Query Duration Comparison

Bloom Filter Based Encrypted Data Skipping

Block Based Order Revealing Encryption

Figure 6.26: Mean DuckDB Iceberg query duration comparison between ORE

and BF-EDS using an AES-encrypted 16384 bit SBBF. BF-EDS is 1.8x faster

compared to ORE for each of the evaluated table sizes.

Figure 6.26 shows the mean query duration in DuckDB Iceberg for both

schemes with various table sizes. BF-EDS is, on average, 1.8x faster compared

to ORE for each of the evaluated table sizes.

6.7.2 Ciphertext Generation

This evaluation compares generating ORE and BF-EDS ciphertexts, as well as

the duration to update an entire Iceberg manifest file using each scheme. The

same ORE and BF-EDS setups used in Section 6.26 are used in this evaluation,

with the addition of an ORE scheme using a 32 bit domain, as well as an XOR-

encrypted SBBF BF-EDS variant. Figure 6.27 shows the results of the single

ciphertext generation benchmark. Both the AES- and XOR-encrypted BF-EDS

implementations are orders of magnitude faster than the ORE implementations

when generating a single ciphertext. When using AES encryption BF-EDS is

between 135 and 67x faster compared to 64 and 32 bit ORE respectively. This

is a significant difference, with a real impact in write-heavy applications which

often generate ciphertexts.

111

ORE 32 Bits ORE 64 Bits BF-EDS AES
m = 214

BF-EDS XOR
m = 214

PPE Scheme

105

106

lo
g 1

0
D

u
ra

ti
on

(n
s)

8.75E+05

1.75E+06

1.29E+04
1.49E+04

Single Ciphertext Computation Duration

Figure 6.27: Duration to compute a single ciphertext for ORE with two domain

sizes, as well as BF-EDS with two encryption methods. BF-EDS is 135x faster

than ORE with a 64 bit domain and 67x faster than ORE with a 32 bit domain.

The results of the second evaluation, updating a full Iceberg manifest file, are

shown in Figure 6.28. The manifest file used for the evaluation is generated using

a batch size of 1000 and thus contains 1000 manifest entries. Both ORE with 64

bit domain as well as BF-EDS using AES-encryption are evaluated. Note that

the runtime duration is expressed in seconds as opposed to nanoseconds. Similar

to the first evaluation, BF-EDS outperforms ORE by orders of magnitude. Using

the largest Bloom filter size 216 (65536 bits) BF-EDS updates the full manifest

file 30x faster, taking just 60ms compared to ORE’s 1.83 seconds.

112

BF-EDS
m = 214

BF-EDS
m = 215

BF-EDS
m = 216

ORE

PPE Scheme

10−1

100

lo
g 1

0
D

u
ra

ti
on

(s
)

0.03
0.04

0.05

1.83

Manifest File Update Duration For Various PPE Schemes

Figure 6.28: Duration to update a full Iceberg manifest file containing 1000

manifest entries using BF-EDS and ORE. BF-EDS significantly outperforms

ORE. With the largest Bloom filter bitset size of 216 BF-EDS outperforms

ORE by 39x.

113

Chapter 7

Discussion & Future Work

In this chapter we briefly discuss loose ends as well as potential future work.

In this thesis we have shown that BF-EDS is a performant and secure scheme

which can, with high accuracy, perform data skipping for range intersection

queries. Throughout this thesis we state that relevant files are returned to a

trusted client. Our implementation, however, is purely server-side due to the

limited time available. Implementing a hybrid architecture could be done using

either a client-server model, or, as seen in the literature study, a software-TH

model. Both models would work with BF-EDS. However, as data lakehouse sys-

tems focus on OLAP workloads, which oftentimes require many (large) files to

be read, a hybrid model using TH makes most sense. With a client-server model

network throughput is likely to become a bottleneck. This becomes especially

pressing at larger data lake scales (e.g. terabytes, petabytes or more). With a

full hybrid system an evaluation of the entire system throughput could be per-

formed. Specifically, a fairer comparison with plaintext DuckDB Iceberg. TH or

network throughput overheads will increase the BF-EDS overhead significantly

compared to the comparative evaluation performed in this thesis.

Currently our DuckDB Iceberg implementation exclusively supports read

operations. Adding support for write operations would significantly increase the

usefulness of the scheme. New Bloom filter ciphertexts could be generated on the

server in TH, or on a trusted client. Existing Iceberg manifest files could then

be updated with these new Bloom filters. Securely communicating the secret

keys k1 and k2 to TH could be done using attestation and a shared secret via

Diffie-Hellman, similar to the attestation processes performed by Azure Always

Encrypted[3] and GaussDB[73].

When using SBBFs, during a query only specific blocks of the filters bitset

are required. Our DuckDB Iceberg implementation loads the entire Bloom fil-

114

ter bitset from the manifest entry, instead of loading only the required block.

Prefetching could be used to fetch the next required bitset block while concur-

rently querying the current block. This way latency bound I/O operations could

be overlapped with compute operations which increases the overall throughput.

Three Bloom filter variants were implemented and evaluated. Newer Bloom

filter variants, for instance the cache-sectorized Bloom filter variant introduced

in [38], offer higher throughput with a lower hit to the FPR. The SBBFs we

use perform well, however, their performance comes at the cost of a higher FPR

compared to basic Bloom filters of the same size. These newer Bloom filters

could be added to our BF-EDS library and be evaluated to determine their

usefulness in our scheme. Achieving both high throughput and a good FPR

reduces the schemes overall storage overhead, as smaller bitsets can be used.

Our current BF-EDS implementation sequentially performs single-key lookups.

Given the need to lookup at most k ·(2·log2(T)) keys, vectorized hash primitives

could significantly improve query performance. When using a vectorized hash

primitive, instead of hashing a single key, an entire vector of keys is hashed

at once using SIMD instructions. Given the early termination which often-

times occurs, we are unsure whether vectorized hashing would actually speed

up queries. More hashes than required might be performed, consuming more

compute resources which could have been used by other query processes.

We added mapping methods to expand the BF-EDS queryable domain to

include signed integers, NULL values and strings. Mapping for additional

datatypes could be added to support more complex queries. For instance,

booleans and enumerated types could be mapped to specific interval ranges.

Via point range intersections more complex SQL operations like GROUP BY and

JOIN should, in theory, be possible. Adding support for this would greatly

increase the amount of processing which can be performed on the server, con-

sequently decreasing the amount of data which has to be transferred to a client

or TH.

During this thesis DuckLake[57] was released. DuckLake is a simple OTF

which re-imagines the traditional data lakehouse architecture. The basic premise

of DuckLake is to move all metadata structures into a SQL database, both for

catalog and table data. Implementing BF-EDS in DuckLake should be relatively

straightforward. DuckDB has native support for Bloom filters, and DuckLake

metadata is stored in relational tables, as opposed to Iceberg’s Avro files. Ad-

ditionally, DuckLake can be used with any existing data lake, greatly increasing

the number of systems which could benefit from BF-EDS.

115

Chapter 8

Conclusion

In this thesis we introduced the notion of EDS and presented a novel Bloom

filter based EDS scheme (BF-EDS). We implemented and extensively evaluated

the BF-EDS scheme. Additionally, we implemented BF-EDS in an existing sys-

tem, DuckDB Iceberg, to evaluate its practicality and performance. Following

are the answers to the research questions we set out to answer:

How can we minimize the storage overhead while optimizing the

performance of the BF-EDS scheme at the algorithmic level? Using

a Bloom filter which offers the best throughput versus FPR combination mini-

mizes the storage overhead, while offering best-possible performance. The basic

Bloom filter provides the lowest FPR with the smallest bitset size. However,

the basic Bloom filter suffers in throughput, performing between 2-2.5x worse

than a comparable SBBF. Using AES instead of XOR encryption to encrypt the

Bloom filter bitset yields significantly higher performance, at the cost of lower

security at query time. When using XOR encryption the most significant factor

in query performance is the performance of the HFs F1 and F2, for which a fast

but secure CHF like HighwayHash should be used.

How can the performance of the Bloom filters be optimized while

maintaining security? Using a block-based Bloom filter combined with block-

by-block XOR encryption offers the best performance versus security tradeoff.

The block-size does not influence performance as much as expected, but does

increase storage overhead. While using AES encryption offers significantly bet-

ter performance it reduces security. An adversary has to observe just a single

query to obtain the full plaintext bitset. Using a keyed CHF Hk for our Bloom

filters protects against dictionary attacks. The uniformity with whichHk hashes

116

significantly influences the security and leakage of our Bloom filters through non-

uniform bit distribution. This makes it easier for an adversary to infer which

inputs correspond to specific bits being set. Through observation an adversary

may be able to infer information about the plaintext key used in Hk, as well as

the range associated with the Bloom filter. A modern CHF like HighwayHash

offers both the best performance and the most uniform hashing.

Can we extend the BF-EDS scheme to support negative, NULL

and string values? BF-EDS can be extended to support these three types.

Any additional type which can in some way be mapped to the numerical domain

can be used for BF-EDS. Adding support for negative values was trivial as the

full 64 bit signed domain fits inside the 64 bit unsigned domain. Depending on

the semantics associated with NULL values they are either ignored (represent

no value), or a file containing a NULL value should always be returned (rep-

resent any/all values). In the first case, no changes are required as the NULL

value won’t be represented in the Bloom filter. For the second case the sets P(0)

and P(T) can be added to the Bloom filter. String values are supported via a

novel string mapping algorithm which supports mapping strings with perfect

accuracy up to 12 characters. An evaluation on real-world data showed using

just 12 characters was sufficient for perfect ordering of longer strings.

How does the performance of BF-EDS compare to EDS using an

existing scheme like ORE? BF-EDS is significantly faster both when query-

ing and generating ciphertexts compared to ORE. Additionally, BF-EDS leaks

little information, even if the full plaintext bitset is observed. A comparative

evaluation was performed comparing querying and ciphertext generation perfor-

mance between DuckDB Iceberg using BF-EDS and ORE for EDS. While ORE

is highly vulnerable to attacks, we performed this comparison to demonstrate

the practical performance of our solution, being both faster and more secure

compared to ORE. When querying between 10k-1M files, BF-EDS is 1.8x faster

on average compared to ORE. BF-EDS generates ciphertexts (EBFs) between

117 and 135x faster, using XOR and AES encryption respectively, compared to

ORE. This is a significant difference and is especially relevant for write-heavy

applications where many ciphertexts are generated.

How can we integrate BF-EDS into an existing data lakehouse sys-

tem, such as DuckDB Iceberg? BF-EDS can be integrated into an existing

system such as DuckDB Iceberg using a combination of custom settings and

checking for Bloom filter presence in manifest files. If Bloom filters are present

117

these are used and regular bounds information is skipped. Our BF-EDS C++

library contains all required methods to perform BF-EDS, and as such by link-

ing into an existing systems codebase BF-EDS is trivial to add. Updating the

Iceberg manifest files to add Bloom filter bitsets proved to be more difficult than

expected, due to the rigid binary nature of Avro files. While our implementa-

tion works, there is room for improvement as discussed previously.

In this thesis we introduced the concept of EDS and proposed a novel scheme,

BF-EDS, which leverages Bloom filters to enable efficient data skipping over en-

crypted data using range predicates. While existing PPE schemes like OPE and

ORE can be used for EDS, BF-EDS significantly reduces information leakage.

We implemented BF-EDS in DuckDB Iceberg and evaluated it using custom

benchmarks and TPC-H, as well as a comparison with an ORE based EDS

implementation. BF-EDS incurred between a 10 to 40% overhead on our own

benchmarks, and a 15% overhead compared to plaintext DuckDB Iceberg on

the TPC-H benchmark. On average BF-EDS outperformed an ORE-based EDS

implementation by 1.8x when querying and 135x when generating ciphertexts.

Overall, our findings establish BF-EDS as a practical and secure EDS solution,

offering an excellent balance between performance and security.

118

Chapter 9

Appendix

The appendix contains additional information referenced in this thesis.

9.1 Range Generation Seeds

This list contains the int64 seeds used to generate random ranges during testing

and evaluation.

-5526699637936106548

-2599495216165156510

1152894751851419352

905854664609886134

836198753323994200

-2453634864968754158

1239823529904912931

8799449158572356982

-4728781075803368789

-3371035615212122797

-6806862878324622294

-5103571351601584490

2894134514233878313

4344764747414031496

-2216040963088378940

1699652657573126515

4062978669480330397

-2927433888129129745

8068757880956122703

1132576627787800503

2265248284352883378

-5739666452106411873

8585829402665510834

-4518529121956511548

-2097716994910086998

2363632205110577638

-7971455118372794370

-7171976124329196662

-6384338902479739715

-139149002439314971

-3554878522296883994

119

6701948383759025869

581683163625277629

7254521096467471263

-7419651579699786674

-4761702335370118884

2050564042523421330

8682352615091205649

5168326528241326321

106968450659912100

-7422480947204228329

1655794280672602103

7360871294234762655

-4995076547733869750

2423844782699678409

1099714007311946935

4051926043588958682

5353893343635388583

7444504291873593822

7176174240641478807

-6078871923352658031

-3011571190410932532

-5230476445706037739

-203249302638236391

-187243911454898925

3154296414642993591

7718163613970455860

-6838567281184370372

3346586808525795136

1609384230784894351

6724113044858062538

2656588490159743405

7168506967979450740

-578549917062904789

-1971118683358498941

7861449626275816724

-1436850705418414870

3718213084596389145

-920663789302100387

5268452343299983855

-1917828076434286675

6348276355767769209

-1416971564537008260

1200247221296323522

-2528819966959134072

976681231239224448

-6893452664840047511

-3671325374383919232

127978847845664228

-8996877824535300611

-2339799268668364837

3257462487445295781

-1321744640853741875

6499297326796480662

-8625726860178189482

2350463590712900358

-2916970912568333488

1508798202809544425

7852535973968707136

850372044584432611

5405077277237659745

-370785963505066635

-3468641342188479676

120

405172425108258613

-4908015070027393756

-2876958081717649592

9025163892723084554

6689785489388830723

7986081955135897209

-7023371780847147188

9.2 Keyed Hash Function Keys

This list contains the 64 bit keys used during testing and evaluation. These

keys are used in the keyed PRFs F1 and F2.

96c199a49e4a416bd5c20c5fcfedc8a380b21eee0ffe33cc252eaa6a36713152a0bd09d2e73f122bc4a2ecad93cd2899bc754fb0f6b2a3a518ed65206b6b4120

a33f192294800b2e422a1d7487b9891633c6ec7db1c84db710a3ada87225f784e46735fabd7fe421e8655f654062a0d4861fe1f8c711d544473ea623259f3ce1

8d2fcf4a47f8907ff23a22e7e809fa0e2a185e9a4826fce5f9f023d71b961f86fee8d9981d3fab1887fcc611199e77c2befe89e7a7baed10a6de68d407318938

d1d4cb0a3dccaaa9a6c70cbc21a0aaed6a340c89cb67faf40748e4d127ca6745093783f878c171e61a2231ec08977f3dcaffb63966fc876f3c37593a8bbb7150

5bb64b1798852752f892cab59267f7f6b0ddba96e780fefc954b186a2ad7db367cdf60f75b059aedb69d54e74059ce54e1c8d3fc5259acb0654ea10f17545220

b9e45903c4ee156047a0c202efedb7adc6d8140d3378d6792414c905865f7eee75d09f5272fa9b3b92420a234589cdb843dd4d483dac0d2a31e504b0502b3e2a

5a11a8e7fed9cdf505e04ff60dd14aee9d03a7416c1b014831c387b0dcb3f80e830c0578f349e786e1352bfe82b51315730dbaec3d118d19a68ea1c4b7fc1481

b64239fb03d50c795673ad1a0a68718f98f003a75673c73917b7a30a911db3dcec33ab2577380e03d93aa516e8a60580250dd34c48df20187c333d29b650f898

2b7c0833b090f764a30f121420f5861f3b3aa781901e79e05309cae29fce6418dc720c85dd9990ee0e55706ef3c2da2187fa7793b85b181f8154f89c1f18a0cf

c8146f3fc77f33f2a978e0e90e5f8bf217607e5f1f760554510bfb869f70c2b2fba8aaecac39bc71f04dfa63a0aa4492195158cf7e8ad4c66c8e2a598a55f421

55545ec9d57d0f93782a786d43f5a7347bac98cc174f4c0b9bbee412884b984373f0948487e5d486e94cd881335a97db226766ae49cd1c1c840fe95b7c27af98

9c9f0e420d26cd294e3da84cfa28634cc9f8ea39bb16e013004738af08f4dd0accae154e181096b9281aa4e929b0b27bf29b59264b94b49e2ff45a1cb4b0e401

adbe30dfa4a837418751361c945b6805f2220756c789f0311652b222a71699066f11c363dad6ad0ec4e54fe3d67a1811514c579873055e1c0520585861c7d717

decc7efbafc59011362c7f81da2fdb7f0afdb605e81ce4d235b0ee5d914a41cb103df418fcc82687d05f236dce9dac30557dc74e1e99fcdb1091ce49852acded

73b9e32af1b69554b4586cc34c5c68062dee4dbc51441626b7b29252d92ff8df2b39133c8f3fda486ee0940008d0f0746a569dedc1e036c56aa6a08051f9cac2

de3b98c42f03c64ce9b01dfdae170f2f76d0628e2789d53b36a64bf732309e6f629361a52abc24809cc2f8dfafc6f06941fbd417bff252c3553be82c538ac803

838b75a161de931cf05200cea366f0a7b4fa66dd9b623beebe9a9378daa5184643d991b928a3e69ca42d1b9b97928ba1250acf26e014bd2e74d772294138d55f

eb898257522edcd3394902ee36be1266935ccec4ba393b464ee4ad8fc484f73acb6f69873deaee25694056713cbc9dc2e478b3fb82ef6a013e404ec692ab5738

6f42defb4de97dfad4f98b79c2621c1e4b5dffbf2a3ce2ea189326f760020ddc85bc69cd2705c5a8ea967a3084efce8d7519bf879755077542d8faa15dec7b23

f9c93872b789427e59a4f6be1ab2b5f67cea5d6e667102fff846de773cceaf58c461d358013885bb814287e007b3295fa108802fa709a5c6e225d4af123c7fa0

4e82235ec5978f44c1719b94605a8fb8a2f1e7a371af88a75a4cd6779fc4e26665142e592d65a0ff97b01b44e638c041d6708a8fa51496c0ef285ac6ddf7ce6a

033986c1ed1d7936f1ab14eeba8b0592fa49388ff6598162a524bc4acbdfb72da697232c819dfb3ac83409c06d0c94114c14a7970bf10357bad6f7a4fbd87093

8f02958a1ea10e503043ab07576b0060c3cf4eb73181dbcd1769ccda1a93b97f38c71b586d9e77b093f47d0104a3217ee2ea440dc497753d49cbd557f55d4585

7371f899e6d586a43f764704eddeddc6e46b54cd4a2c3895417bbf153c74ccdf85928ac82f7b87a1d0b24f524cc0afee60ffd1fa43e2b5a7fe81b1b1b2eef9b2

5b56e46904483e793ee143c20497b5f304f4bbf6685789931e40375cbbadc5f6052145badf89c2c7c0eac217bc096af5af311f69796abde08dd85072999008e6

121

Bibliography

[1] Rakesh Agrawal et al. “Order Preserving Encryption for Numeric Data”.

In: Proceedings of the 2004 ACM SIGMOD International Conference on

Management of Data. Paris France: ACM, June 2004, pp. 563–574. doi:

10.1145/1007568.1007632. url: https://dl.acm.org/doi/10.1145/

1007568.1007632 (visited on 07/21/2025).

[2] Jyrki Alakuijala, Bill Cox, and Jan Wassenberg. Fast Keyed Hash/Pseudo-

Random Function Using SIMD Multiply and Permute. Feb. 2017. doi:

10.48550/arXiv.1612.06257. arXiv: 1612.06257 [cs]. url: http:

//arxiv.org/abs/1612.06257 (visited on 06/24/2025).

[3] Panagiotis Antonopoulos et al. “Azure SQL Database Always Encrypted”.

In: Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data. Portland OR USA: ACM, June 2020, pp. 1511–

1525. isbn: 978-1-4503-6735-6. doi: 10.1145/3318464.3386141. url:

https://dl.acm.org/doi/10.1145/3318464.3386141 (visited on

03/13/2025).

[4] Apache Iceberg - Apache Iceberg™. url: https://iceberg.apache.org/
(visited on 02/19/2025).

[5] Jim Apple. Split Block Bloom Filters. Jan. 2023. doi: 10.48550/arXiv.

2101.01719. arXiv: 2101.01719 [cs]. url: http://arxiv.org/abs/

2101.01719 (visited on 06/18/2025).

[6] Austin Appleby.MurmurHash3. 2016. url: https://github.com/aappleby/

smhasher/wiki/MurmurHash3.

[7] Arvind Arasu et al. “Transaction Processing on Confidential Data Us-

ing Cipherbase”. In: 2015 IEEE 31st International Conference on Data

Engineering. Seoul, South Korea: IEEE, Apr. 2015, pp. 435–446. doi:

10.1109/icde.2015.7113304. url: http://ieeexplore.ieee.org/

document/7113304/ (visited on 07/09/2025).

122

https://doi.org/10.1145/1007568.1007632
https://dl.acm.org/doi/10.1145/1007568.1007632
https://dl.acm.org/doi/10.1145/1007568.1007632
https://doi.org/10.48550/arXiv.1612.06257
https://arxiv.org/abs/1612.06257
http://arxiv.org/abs/1612.06257
http://arxiv.org/abs/1612.06257
https://doi.org/10.1145/3318464.3386141
https://dl.acm.org/doi/10.1145/3318464.3386141
https://iceberg.apache.org/
https://doi.org/10.48550/arXiv.2101.01719
https://doi.org/10.48550/arXiv.2101.01719
https://arxiv.org/abs/2101.01719
http://arxiv.org/abs/2101.01719
http://arxiv.org/abs/2101.01719
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.1109/icde.2015.7113304
http://ieeexplore.ieee.org/document/7113304/
http://ieeexplore.ieee.org/document/7113304/

[8] Sumeet Bajaj and Radu Sion. “TrustedDB: A Trusted Hardware-Based

Database with Privacy and Data Confidentiality”. In: IEEE Transactions

on Knowledge and Data Engineering 26.3 (Mar. 2014), pp. 752–765. issn:

1041-4347. doi: 10.1109/TKDE.2013.38. url: http://ieeexplore.

ieee.org/document/6468039/ (visited on 08/05/2025).

[9] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. “Deterministic

and Efficiently Searchable Encryption”. In:Advances in Cryptology - CRYPTO

2007. Ed. by Alfred Menezes. Vol. 4622. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2007, pp. 535–552. isbn: 978-3-540-74142-8. doi: 10.

1007/978-3-540-74143-5_30. url: http://link.springer.com/10.

1007/978-3-540-74143-5_30 (visited on 08/04/2025).

[10] Bloom Filter Indexes. API Documentation. url: https://docs.databricks.

com/aws/en/optimizations/bloom-filters (visited on 07/30/2025).

[11] Bloom Filters Explained. Mar. 2023. url: https://systemdesign.one/

bloom-filters-explained/ (visited on 02/17/2025).

[12] Alexandra Boldyreva et al. “Order-Preserving Symmetric Encryption”.

In: Advances in Cryptology - EUROCRYPT 2009. Ed. by Antoine Joux.

Vol. 5479. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 224–

241. isbn: 978-3-642-01000-2 978-3-642-01001-9. doi: 10.1007/978-3-

642-01001-9_13. url: http://link.springer.com/10.1007/978-3-

642-01001-9_13 (visited on 08/04/2025).

[13] Alexandra Boldyreva et al.Order-Preserving Symmetric Encryption. 2012.

url: https://eprint.iacr.org/2012/624 (visited on 02/17/2025).

[14] Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100: Hyper-

pipelining Query Execution”. In: Conference on Innovative Data Systems

Research. 2005. url: https://api.semanticscholar.org/CorpusID:

1379707.

[15] Boudewijn Braams. “Predicate Pushdown in Parquet and Apache Spark

Author :” in: 2018. url: https://api.semanticscholar.org/CorpusID:

148564722.

[16] Andrei Broder and Michael Mitzenmacher. “Network Applications of Bloom

Filters: A Survey”. In: Internet Mathematics 1.4 (Jan. 2004), pp. 485–509.

issn: 1542-7951, 1944-9488. doi: 10.1080/15427951.2004.10129096.

url: http://www.internetmathematicsjournal.com/article/1393

(visited on 07/03/2025).

123

https://doi.org/10.1109/TKDE.2013.38
http://ieeexplore.ieee.org/document/6468039/
http://ieeexplore.ieee.org/document/6468039/
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
http://link.springer.com/10.1007/978-3-540-74143-5_30
http://link.springer.com/10.1007/978-3-540-74143-5_30
https://docs.databricks.com/aws/en/optimizations/bloom-filters
https://docs.databricks.com/aws/en/optimizations/bloom-filters
https://systemdesign.one/bloom-filters-explained/
https://systemdesign.one/bloom-filters-explained/
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-01001-9_13
http://link.springer.com/10.1007/978-3-642-01001-9_13
http://link.springer.com/10.1007/978-3-642-01001-9_13
https://eprint.iacr.org/2012/624
https://api.semanticscholar.org/CorpusID:1379707
https://api.semanticscholar.org/CorpusID:1379707
https://api.semanticscholar.org/CorpusID:148564722
https://api.semanticscholar.org/CorpusID:148564722
https://doi.org/10.1080/15427951.2004.10129096
http://www.internetmathematicsjournal.com/article/1393

[17] Nathan Chenette et al. “Practical Order-Revealing Encryption with Lim-

ited Leakage”. In: Fast Software Encryption. Ed. by Thomas Peyrin. Vol. 9783.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 474–493. isbn:

978-3-662-52992-8 978-3-662-52993-5. doi: 10.1007/978-3-662-52993-

5_24. url: http://link.springer.com/10.1007/978-3-662-52993-

5_24 (visited on 08/04/2025).

[18] ClickHouse Cloud | Cloud Based DBMS | ClickHouse. url: https://
clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_

search&utm_campaign=21862172336_169330245109&utm_content=

719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=

0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-

FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE

(visited on 02/26/2025).

[19] Cryptographic Hash Functions | IBM Quantum Learning. url: https:

//learning.quantum.ibm.com/course/practical- introduction-

to- quantum- safe- cryptography/cryptographic- hash- functions

(visited on 05/06/2025).

[20] Data Skipping for Delta Lake. url: https://docs.databricks.com

(visited on 02/17/2025).

[21] Database Data Warehousing Guide - About Zone Maps. url: https://

docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG8935

(visited on 02/17/2025).

[22] F. Betül Durak, Thomas M. DuBuisson, and David Cash. “What Else

Is Revealed by Order-Revealing Encryption?” In: Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security.

Vienna Austria: ACM, Oct. 2016, pp. 1155–1166. isbn: 978-1-4503-4139-4.

doi: 10.1145/2976749.2978379. url: https://dl.acm.org/doi/10.

1145/2976749.2978379 (visited on 08/04/2025).

[23] T. Elgamal. “A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms”. In: IEEE Transactions on Information Theory

31.4 (July 1985), pp. 469–472. issn: 0018-9448, 1557-9654. doi: 10.1109/

tit.1985.1057074. url: https://ieeexplore.ieee.org/document/

1057074/ (visited on 07/21/2025).

[24] Saba Eskandarian and Matei Zaharia. “ObliDB: Oblivious Query Pro-

cessing for Secure Databases”. In: Proceedings of the VLDB Endowment

13.2 (Oct. 2019), pp. 169–183. issn: 2150-8097. doi: 10.14778/3364324.

3364331. url: https://dl.acm.org/doi/10.14778/3364324.3364331

(visited on 07/25/2025).

124

https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1007/978-3-662-52993-5_24
http://link.springer.com/10.1007/978-3-662-52993-5_24
http://link.springer.com/10.1007/978-3-662-52993-5_24
https://clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_search&utm_campaign=21862172336_169330245109&utm_content=719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE
https://clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_search&utm_campaign=21862172336_169330245109&utm_content=719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE
https://clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_search&utm_campaign=21862172336_169330245109&utm_content=719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE
https://clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_search&utm_campaign=21862172336_169330245109&utm_content=719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE
https://clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_search&utm_campaign=21862172336_169330245109&utm_content=719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE
https://clickhouse.com/cloud?utm_source=google.com&utm_medium=paid_search&utm_campaign=21862172336_169330245109&utm_content=719379733837&utm_term=clickhouse_g_c&gad_source=1&gbraid=0AAAAAocOPCYqN-SjfAICf37kfUBvek8xt&gclid=CjwKCAiAlPu9BhAjEiwA5NDSAwMxmV-FuLSuxxbx2s_Zsa9cr-bImWHtKpSs-6zyu4bmnDFolTaLaBoCNskQAvD_BwE
https://learning.quantum.ibm.com/course/practical-introduction-to-quantum-safe-cryptography/cryptographic-hash-functions
https://learning.quantum.ibm.com/course/practical-introduction-to-quantum-safe-cryptography/cryptographic-hash-functions
https://learning.quantum.ibm.com/course/practical-introduction-to-quantum-safe-cryptography/cryptographic-hash-functions
https://docs.databricks.com
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG8935
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm#DWHSG8935
https://doi.org/10.1145/2976749.2978379
https://dl.acm.org/doi/10.1145/2976749.2978379
https://dl.acm.org/doi/10.1145/2976749.2978379
https://doi.org/10.1109/tit.1985.1057074
https://doi.org/10.1109/tit.1985.1057074
https://ieeexplore.ieee.org/document/1057074/
https://ieeexplore.ieee.org/document/1057074/
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
https://dl.acm.org/doi/10.14778/3364324.3364331

[25] Charlotte Felius and Peter A. Boncz. “VCrypt: Leveraging Vectorized

and Compressed Execution for Client-Side Encryption”. In: International

Conference on Extending Database Technology. 2025. url: https://api.

semanticscholar.org/CorpusID:276903952.

[26] Hellman Fredrik. “Study And Comparison Of Data Lakehouse Systems”.

MA thesis. Sweden: Åbo Akademi University, 2023.

[27] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”.

In: Proceedings of the Forty-First Annual ACM Symposium on Theory

of Computing. Bethesda MD USA: ACM, May 2009, pp. 169–178. doi:

10.1145/1536414.1536440. url: https://dl.acm.org/doi/10.1145/

1536414.1536440 (visited on 07/21/2025).

[28] Ali Ghodsi. Databricks Kicks off Data + AI Summit 2025. Dec. 2025. url:

https://www.youtube.com/watch?v=PFVJL7_W4dI.

[29] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simu-

lation on Oblivious RAMs”. In: Journal of the ACM 43.3 (May 1996),

pp. 431–473. issn: 0004-5411, 1557-735X. doi: 10.1145/233551.233553.

url: https://dl.acm.org/doi/10.1145/233551.233553 (visited on

07/25/2025).

[30] Google Benchmark. Google. url: https://github.com/google/benchmark.

[31] Paul Grubbs et al. “Leakage-Abuse Attacks against Order-Revealing En-

cryption”. In: 2017 IEEE Symposium on Security and Privacy (SP). San

Jose, CA, USA: IEEE, May 2017, pp. 655–672. isbn: 978-1-5090-5533-

3. doi: 10.1109/SP.2017.44. url: http://ieeexplore.ieee.org/

document/7958603/ (visited on 08/04/2025).

[32] Huawei Cloud Academy. openGauss Overview. url: https://r.huaweistatic.

com/s/kunpengstatic/lst/files/pdf/learn/courses/openGauss%

20Overview.pdf.

[33] Iceberg Java API. API Documentation. url: https://iceberg.apache.

org/docs/1.4.3/api/ (visited on 07/29/2025).

[34] Paras Jain et al. “Analyzing and Comparing Lakehouse Storage Systems”.

In: Conference on Innovative Data Systems Research. 2023. url: https:

//api.semanticscholar.org/CorpusID:259267242.

[35] Julian James Stephen et al. “Program Analysis for Secure Big Data Pro-

cessing”. In: Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering. Vasteras Sweden: ACM, Sept. 2014,

pp. 277–288. isbn: 978-1-4503-3013-8. doi: 10.1145/2642937.2643006.

url: https://dl.acm.org/doi/10.1145/2642937.2643006 (visited on

07/27/2025).

125

https://api.semanticscholar.org/CorpusID:276903952
https://api.semanticscholar.org/CorpusID:276903952
https://doi.org/10.1145/1536414.1536440
https://dl.acm.org/doi/10.1145/1536414.1536440
https://dl.acm.org/doi/10.1145/1536414.1536440
https://www.youtube.com/watch?v=PFVJL7_W4dI
https://doi.org/10.1145/233551.233553
https://dl.acm.org/doi/10.1145/233551.233553
https://github.com/google/benchmark
https://doi.org/10.1109/SP.2017.44
http://ieeexplore.ieee.org/document/7958603/
http://ieeexplore.ieee.org/document/7958603/
https://r.huaweistatic.com/s/kunpengstatic/lst/files/pdf/learn/courses/openGauss%20Overview.pdf
https://r.huaweistatic.com/s/kunpengstatic/lst/files/pdf/learn/courses/openGauss%20Overview.pdf
https://r.huaweistatic.com/s/kunpengstatic/lst/files/pdf/learn/courses/openGauss%20Overview.pdf
https://iceberg.apache.org/docs/1.4.3/api/
https://iceberg.apache.org/docs/1.4.3/api/
https://api.semanticscholar.org/CorpusID:259267242
https://api.semanticscholar.org/CorpusID:259267242
https://doi.org/10.1145/2642937.2643006
https://dl.acm.org/doi/10.1145/2642937.2643006

[36] Adam Kirsch and Michael Mitzenmacher. “Less Hashing, Same Perfor-

mance: Building a Better Bloom Filter”. In: Random Structures & Algo-

rithms 33 (2006). url: https://api.semanticscholar.org/CorpusID:

2754699.

[37] Jeremy Kun. A High-Level Technical Overview of Fully Homomorphic En-

cryption. May 2024. doi: 10.59350/a7m2z-wz087. url: https://www.

jeremykun.com/2024/05/04/fhe-overview (visited on 07/21/2025).

[38] Harald Lang et al. “Performance-Optimal Filtering: Bloom Overtakes

Cuckoo at High Throughput”. In: Proc. VLDB Endow. 12.5 (Jan. 2019),

pp. 502–515. issn: 2150-8097. doi: 10.14778/3303753.3303757. url:

https://doi.org/10.14778/3303753.3303757 (visited on 03/19/2025).

[39] Kevin Lewi and David J. Wu. “Order-Revealing Encryption: New Con-

structions, Applications, and Lower Bounds”. In: Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security.

Vienna Austria: ACM, Oct. 2016, pp. 1167–1178. doi: 10.1145/2976749.

2978376. url: https://dl.acm.org/doi/10.1145/2976749.2978376

(visited on 07/19/2025).

[40] Hui Li et al. Enc2DB: A Hybrid and Adaptive Encrypted Query Processing

Framework. Apr. 2024. doi: 10.48550/arXiv.2404.06819. arXiv: 2404.

06819 [cs]. url: http :/ / arxiv. org /abs / 2404. 06819 (visited on

07/15/2025).

[41] Marilex Rea Llave. “Data Lakes in Business Intelligence: Reporting from

the Trenches”. In: Procedia Computer Science 138 (2018), pp. 516–524.

issn: 18770509. doi: 10.1016/j.procs.2018.10.071. url: https://

linkinghub.elsevier.com/retrieve/pii/S1877050918317046 (visited

on 02/17/2025).

[42] Yanbin Lu. “Privacy-Preserving Logarithmic-Time Search on Encrypted

Data in Cloud”. In: Network and Distributed System Security Symposium.

2012. url: https://api.semanticscholar.org/CorpusID:15980765.

[43] Angel Conde Manjon, Diego Colombatto, and Sandeep Adwankar. Com-

paction Support for Avro and ORC File Formats in Apache Iceberg Tables

in Amazon S3. July 2025. url: https://aws.amazon.com/blogs/big-

data/compaction-support-for-avro-and-orc-file-formats-in-

apache-iceberg-tables-in-amazon-s3/ (visited on 07/29/2025).

[44] Modern Bloom Filters: 22x Faster! url: https://save-buffer.github.

io/bloom_filter.html (visited on 02/21/2025).

[45] Hannes Mühleisen. Parquet Bloom Filters in DuckDB. Mar. 2025. url:

https://duckdb.org/2025/03/07/parquet- bloom- filters- in-

duckdb.html#writing (visited on 07/30/2025).

126

https://api.semanticscholar.org/CorpusID:2754699
https://api.semanticscholar.org/CorpusID:2754699
https://doi.org/10.59350/a7m2z-wz087
https://www.jeremykun.com/2024/05/04/fhe-overview
https://www.jeremykun.com/2024/05/04/fhe-overview
https://doi.org/10.14778/3303753.3303757
https://doi.org/10.14778/3303753.3303757
https://doi.org/10.1145/2976749.2978376
https://doi.org/10.1145/2976749.2978376
https://dl.acm.org/doi/10.1145/2976749.2978376
https://doi.org/10.48550/arXiv.2404.06819
https://arxiv.org/abs/2404.06819
https://arxiv.org/abs/2404.06819
http://arxiv.org/abs/2404.06819
https://doi.org/10.1016/j.procs.2018.10.071
https://linkinghub.elsevier.com/retrieve/pii/S1877050918317046
https://linkinghub.elsevier.com/retrieve/pii/S1877050918317046
https://api.semanticscholar.org/CorpusID:15980765
https://aws.amazon.com/blogs/big-data/compaction-support-for-avro-and-orc-file-formats-in-apache-iceberg-tables-in-amazon-s3/
https://aws.amazon.com/blogs/big-data/compaction-support-for-avro-and-orc-file-formats-in-apache-iceberg-tables-in-amazon-s3/
https://aws.amazon.com/blogs/big-data/compaction-support-for-avro-and-orc-file-formats-in-apache-iceberg-tables-in-amazon-s3/
https://save-buffer.github.io/bloom_filter.html
https://save-buffer.github.io/bloom_filter.html
https://duckdb.org/2025/03/07/parquet-bloom-filters-in-duckdb.html#writing
https://duckdb.org/2025/03/07/parquet-bloom-filters-in-duckdb.html#writing

[46] MySQL :: MySQL 8.4 Reference Manual :: 26.4 Partition Pruning. url:

https : / / dev . mysql . com / doc / refman / 8 . 4 / en / partitioning -

pruning.html (visited on 02/17/2025).

[47] National Institute of Standards and Technology (US). Secure Hash Stan-

dard. Tech. rep. Washington, D.C.: National Institute of Standards and

Technology, 2015. doi: 10.6028/nist.fips.180- 4. url: https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (visited on

07/22/2025).

[48] Muhammad Naveed, Seny Kamara, and Charles V. Wright. “Inference

Attacks on Property-Preserving Encrypted Databases”. In: Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications

Security. Denver Colorado USA: ACM, Oct. 2015, pp. 644–655. doi: 10.

1145/2810103.2813651. url: https://dl.acm.org/doi/10.1145/

2810103.2813651 (visited on 07/15/2025).

[49] NextiaJD Reddit Comments Dataset. url: https://event.cwi.nl/da/

NextiaJD/.

[50] Jack O’Connor et al. “One Function, Fast Everywhere”. url: https:

//github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf.

[51] Open Table Formats: Which Table Format to Choose. url: https://

www.starburst.io/data-glossary/open-table-formats/ (visited on

02/17/2025).

[52] “Order-Preserving Encryption Revisited: Improved Security Analysis and

Alternative Solutions”. In: Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 578–595. isbn: 978-3-

642-22791-2 978-3-642-22792-9. doi: 10.1007/978-3-642-22792-9_33.

url: http://link.springer.com/10.1007/978-3-642-22792-9_33

(visited on 07/21/2025).

[53] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes”. In: Advances in Cryptology — EUROCRYPT ’99.

Ed. by Jacques Stern. Vol. 1592. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 1999, pp. 223–238. isbn: 978-3-540-65889-4. doi: 10.1007/3-

540-48910-X_16. url: http://link.springer.com/10.1007/3-540-

48910-X_16 (visited on 02/18/2025).

[54] Marut Pandya. Performance Evaluation of Hashing Algorithms on Com-

modity Hardware. July 2024. doi: 10.48550/arXiv.2407.08284. arXiv:

2407.08284 [cs]. url: http://arxiv.org/abs/2407.08284 (visited on

07/22/2025).

127

https://dev.mysql.com/doc/refman/8.4/en/partitioning-pruning.html
https://dev.mysql.com/doc/refman/8.4/en/partitioning-pruning.html
https://doi.org/10.6028/nist.fips.180-4
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://dl.acm.org/doi/10.1145/2810103.2813651
https://dl.acm.org/doi/10.1145/2810103.2813651
https://event.cwi.nl/da/NextiaJD/
https://event.cwi.nl/da/NextiaJD/
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://www.starburst.io/data-glossary/open-table-formats/
https://www.starburst.io/data-glossary/open-table-formats/
https://doi.org/10.1007/978-3-642-22792-9_33
http://link.springer.com/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
http://link.springer.com/10.1007/3-540-48910-X_16
http://link.springer.com/10.1007/3-540-48910-X_16
https://doi.org/10.48550/arXiv.2407.08284
https://arxiv.org/abs/2407.08284
http://arxiv.org/abs/2407.08284

[55] Raluca Ada Popa et al. “CryptDB: Protecting Confidentiality with En-

crypted Query Processing”. In: Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles. Cascais Portugal: ACM,

Oct. 2011, pp. 85–100. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.

2043566. url: https://dl.acm.org/doi/10.1145/2043556.2043566

(visited on 08/05/2025).

[56] Mark Raasveldt and Hannes Mühleisen. “DuckDB: An Embeddable Ana-

lytical Database”. In: Proceedings of the 2019 International Conference on

Management of Data. Amsterdam Netherlands: ACM, June 2019, pp. 1981–

1984. isbn: 978-1-4503-5643-5. doi: 10.1145/3299869.3320212. url:

https://dl.acm.org/doi/10.1145/3299869.3320212 (visited on

02/26/2025).

[57] Mark Raasveldt and Hannes Mühleisen. DuckLake: SQL as a Lakehouse

Format. May 2025. url: https://duckdb.org/2025/05/27/ducklake.

html (visited on 05/08/2025).

[58] Daniel S. Roche, Adam Aviv, and Seung Geol Choi. “A Practical Oblivious

Map Data Structure with Secure Deletion and History Independence”.

In: 2016 IEEE Symposium on Security and Privacy (SP). San Jose, CA:

IEEE, May 2016, pp. 178–197. doi: 10.1109/sp.2016.19. url: http:

//ieeexplore.ieee.org/document/7546502/ (visited on 07/25/2025).

[59] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. “Efficient

Confidentiality-Preserving Data Analytics over Symmetrically Encrypted

Datasets”. In: Proceedings of the VLDB Endowment 13.8 (Apr. 2020),

pp. 1290–1303. issn: 2150-8097. doi: 10.14778/3389133.3389144. url:

https://dl.acm.org/doi/10.14778/3389133.3389144 (visited on

07/15/2025).

[60] Savvas Savvides et al. “Secure Data Types: A Simple Abstraction for

Confidentiality-Preserving Data Analytics”. In: Proceedings of the 2017

Symposium on Cloud Computing. Santa Clara California: ACM, Sept.

2017, pp. 479–492. doi: 10.1145/3127479.3129256. url: https://

dl.acm.org/doi/10.1145/3127479.3129256 (visited on 07/15/2025).

[61] “Semantically Secure Order-Revealing Encryption: Multi-input Functional

Encryption Without Obfuscation”. In: Lecture Notes in Computer Sci-

ence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 563–594.

isbn: 978-3-662-46802-9 978-3-662-46803-6. doi: 10.1007/978-3-662-

46803-6_19. url: http://link.springer.com/10.1007/978-3-662-

46803-6_19 (visited on 07/21/2025).

128

https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://dl.acm.org/doi/10.1145/2043556.2043566
https://doi.org/10.1145/3299869.3320212
https://dl.acm.org/doi/10.1145/3299869.3320212
https://duckdb.org/2025/05/27/ducklake.html
https://duckdb.org/2025/05/27/ducklake.html
https://doi.org/10.1109/sp.2016.19
http://ieeexplore.ieee.org/document/7546502/
http://ieeexplore.ieee.org/document/7546502/
https://doi.org/10.14778/3389133.3389144
https://dl.acm.org/doi/10.14778/3389133.3389144
https://doi.org/10.1145/3127479.3129256
https://dl.acm.org/doi/10.1145/3127479.3129256
https://dl.acm.org/doi/10.1145/3127479.3129256
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
http://link.springer.com/10.1007/978-3-662-46803-6_19
http://link.springer.com/10.1007/978-3-662-46803-6_19

[62] Elaine Shi et al. “Multi-Dimensional Range Query over Encrypted Data”.

In: 2007 IEEE Symposium on Security and Privacy (SP ’07). Berkeley,

CA: IEEE, May 2007, pp. 350–364. isbn: 978-0-7695-2848-9. doi: 10.

1109/SP.2007.29. url: http://ieeexplore.ieee.org/document/

4223238/ (visited on 02/24/2025).

[63] Tomer Shiran. Apache Iceberg: The Definitive Guide. 1st ed. Sebastopol:

O’Reilly Media, Incorporated, 2024. isbn: 978-1-0981-4862-1 978-1-0981-

4859-1.

[64] Vasily Sidorov, Ethan Yi Fan Wei, and Wee Keong Ng. Comprehensive

Performance Analysis of Homomorphic Cryptosystems for Practical Data

Processing. Feb. 2022. doi: 10.48550/arXiv.2202.02960. arXiv: 2202.

02960 [cs]. url: http :/ / arxiv. org /abs / 2202. 02960 (visited on

07/21/2025).

[65] “SQL on Structurally-Encrypted Databases”. In: Lecture Notes in Com-

puter Science. Cham: Springer International Publishing, 2018, pp. 149–

180. isbn: 978-3-030-03325-5 978-3-030-03326-2. doi: 10.1007/978-3-

030-03326-2_6. url: https://link.springer.com/10.1007/978-3-

030-03326-2_6 (visited on 07/24/2025).

[66] Stanford. Order-Revealing Encryption. url: https://crypto.stanford.

edu/ore/ (visited on 07/22/2025).

[67] Ignacio G. Terrizzano et al. “Data Wrangling: The Challenging Yourney

from the Wild to the Lake”. In: Conference on Innovative Data Systems

Research. 2015. url: https://api.semanticscholar.org/CorpusID:

17462093.

[68] Stephen Tu et al. “Processing Analytical Queries over Encrypted Data”.

In: Proceedings of the VLDB Endowment 6.5 (Mar. 2013), pp. 289–300.

issn: 2150-8097. doi: 10.14778/2535573.2488336. url: https://dl.

acm.org/doi/10.14778/2535573.2488336 (visited on 02/17/2025).

[69] Dandan Yuan. “Practical and Secure Searchable Symmetric Encryption

Constructions”. PhD thesis. Auckland: University of Auckland, 2023.

[70] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Pro-

cessing”. In: Communications of the ACM 59.11 (Oct. 2016), pp. 56–

65. issn: 0001-0782, 1557-7317. doi: 10.1145/2934664. url: https:

//dl.acm.org/doi/10.1145/2934664 (visited on 07/25/2025).

[71] Zheguang Zhao and Stanley B. Zdonik. “Encrypted Databases: From The-

ory to Systems”. In: Conference on Innovative Data Systems Research.

2021. url: https://api.semanticscholar.org/CorpusID:231750594.

129

https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1109/SP.2007.29
http://ieeexplore.ieee.org/document/4223238/
http://ieeexplore.ieee.org/document/4223238/
https://doi.org/10.48550/arXiv.2202.02960
https://arxiv.org/abs/2202.02960
https://arxiv.org/abs/2202.02960
http://arxiv.org/abs/2202.02960
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-03326-2_6
https://link.springer.com/10.1007/978-3-030-03326-2_6
https://link.springer.com/10.1007/978-3-030-03326-2_6
https://crypto.stanford.edu/ore/
https://crypto.stanford.edu/ore/
https://api.semanticscholar.org/CorpusID:17462093
https://api.semanticscholar.org/CorpusID:17462093
https://doi.org/10.14778/2535573.2488336
https://dl.acm.org/doi/10.14778/2535573.2488336
https://dl.acm.org/doi/10.14778/2535573.2488336
https://doi.org/10.1145/2934664
https://dl.acm.org/doi/10.1145/2934664
https://dl.acm.org/doi/10.1145/2934664
https://api.semanticscholar.org/CorpusID:231750594

[72] Wenting Zheng et al. “Opaque: An Oblivious and Encrypted Distributed

Analytics Platform”. In: Proceedings of the 14th USENIX Conference on

Networked Systems Design and Implementation. NSDI’17. Boston, MA,

USA and USA: USENIX Association, 2017, pp. 283–298. isbn: 978-1-

931971-37-9.

[73] Jinwei Zhu et al. “Full Encryption: An End to End Encryption Mechanism

in GaussDB”. In: Proceedings of the VLDB Endowment 14.12 (July 2021),

pp. 2811–2814. issn: 2150-8097. doi: 10.14778/3476311.3476351. url:

https://dl.acm.org/doi/10.14778/3476311.3476351 (visited on

07/15/2025).

[74] Zone Maps in Data Lake Relational Engine (SAP HANA DB-Managed)

| SAP Help Portal. url: https://help.sap.com/docs/hana-cloud-

data-lake/performance-and-tuning-for-data-lake-relational-

engine-basics/zone-maps (visited on 02/17/2025).

130

https://doi.org/10.14778/3476311.3476351
https://dl.acm.org/doi/10.14778/3476311.3476351
https://help.sap.com/docs/hana-cloud-data-lake/performance-and-tuning-for-data-lake-relational-engine-basics/zone-maps
https://help.sap.com/docs/hana-cloud-data-lake/performance-and-tuning-for-data-lake-relational-engine-basics/zone-maps
https://help.sap.com/docs/hana-cloud-data-lake/performance-and-tuning-for-data-lake-relational-engine-basics/zone-maps

	Introduction
	Contributions
	Outline

	Background
	Cryptographic Primitives
	Security Parameter
	Property Preserving Encryption
	Homomorphic Encryption
	Pseudorandom Functions

	Binary Interval Trees
	Node Coverage And Coverage Set
	Minimum Coverage Set
	Determining Range Intersections

	Bloom Filters
	Register Blocked Bloom Filters
	Split Block Bloom Filters

	Data Lakehouse
	Data Lakes
	Open Table Formats
	Data Skipping In Data Lakehouse Systems

	Related Works
	Software-Only EDBMSs
	Trusted Hardware
	Dedicated Trusted Hardware
	Trusted Execution Environments

	Hybrid Query Execution
	Hybrid Software & Trusted Hardware Query Execution
	Multi-Party Hybrid Query Execution

	Comparison
	Functionality
	Security
	Performance

	Bloom Filter Based Encrypted Data Skipping
	Problem Statement
	Threat Model
	The Scheme
	Bloom Filter Encryption
	Querying Using Query Tokens
	Security Analysis

	Implementing Bloom Filter Based Encrypted Data Skipping
	Binary Interval Trees
	Coverage Set
	Minimum Coverage Set

	Hash Functions
	Bloom Filters
	Basic Bloom Filters
	Register Blocked Bloom Filters
	Split Block Bloom Filters

	BF-EDS Library
	Iceberg
	Creating Iceberg Tables
	Adding Bloom Filters To Manifest Files
	Adding BF-EDS To DuckDB Iceberg

	Range Mapping
	Signed Integers
	Strings
	NULL Values

	Evaluation
	Preliminaries
	Binary Interval Trees
	Node ID Calculation
	Coverage Set Calculation
	Minimum Coverage Set Calculation

	Hash Functions
	Performance
	Uniformity

	Bloom Filters
	Split Block Bloom Filter Comparison
	Bloom Filter Comparison
	Encryption Methods Comparison

	String Range Mapping
	Perfect Accuracy
	Benchmarks On Real World Data

	DuckDB Iceberg Manifest Querying Performance
	Querying Increasing Range Sizes
	Performance With Larger Bloom Filter Bitsets
	Increasing Manifest Batch Size
	Regular Iceberg Performance Comparison
	TPC-H Performance

	Order Revealing Encryption Performance Comparison
	Manifest Querying Performance
	Ciphertext Generation

	Discussion & Future Work
	Conclusion
	Appendix
	Range Generation Seeds
	Keyed Hash Function Keys

	References

