
Benchmarking  
Graph Data Management Systems 

EDBT Summer School 2015 
 

Peter Boncz 
boncz@cwi.nl 

1. LDBC Social Network Benchmark 
Tuesday:  LDBC & SNB introduction 
Friday:  SNB in depth 

2. SNB Programming Challenge    www.cwi.nl/~boncz/snb-challenge 

Tuesday:  what it is about & hardware properties & tips 
Friday:  the solution space & winners 



www.cwi.nl/~boncz/snb-challenge 

• make 
competing 
products 
comparable 

 
• accelerate 

progress, make 
technology 
viable 
 

Why Benchmarking? 

© Jim Gray, 2005 



www.cwi.nl/~boncz/snb-challenge 

What is the LDBC? 
 
Linked Data Benchmark Council = LDBC 
• Industry entity similar to TPC (www.tpc.org) 
• Focusing on graph and RDF store benchmarking 
 

http://www.tpc.org/


www.cwi.nl/~boncz/snb-challenge 

LDBC Organization (non-profit) 

“sponsors” 

+ non-profit members (FORTH, STI2) & personal members 
+ Task Forces, volunteers developing benchmarks 
+ TUC: Technical User Community (6 workshops, 36 graph 

and RDF user case studies, 12 vendor presentations)  
 



www.cwi.nl/~boncz/snb-challenge 

ldbcouncil.org 



www.cwi.nl/~boncz/snb-challenge 

What does a benchmark consist of? 

• Four main elements: 
– data schema: defines the structure of the data 
– workloads: defines the set of operations to perform 
– performance metrics: used to measure (quantitatively) 

the performance of the systems 
– execution rules: defined to assure that the results 

from different executions of the benchmark are valid 
and comparable 

• Software as Open Source (GitHub) 
– data generator, query drivers, validation tools, ... 

 
 



www.cwi.nl/~boncz/snb-challenge 

LDBC Task Forces 
• Semantic Publishing Benchmark Task Force 

– Develops industry-grade RDF benchmark 

• Social Network Benchmark Task Force 
– Develops benchmark for graph data management systems 
– Broad coverage: three workloads 

• Graph Analytics Task Force 
– Spin-off from the SNB task force 

• Graph Query Language Task Force 
– Not strictly about benchmarking 
– Studies features of graph database query languages 
 

 



www.cwi.nl/~boncz/snb-challenge 

Semantic Publishing Benchmark (SPB) 



www.cwi.nl/~boncz/snb-challenge 

SPB scope 
• The scenario involves a media/ publisher 

organization that maintains semantic metadata 
about its Journalistic assets (articles, photos, 
videos, papers, books, etc), also called Creative 
Works 

• The Semantic Publishing Benchmark simulates: 
– Consumption of RDF metadata (Creative Works) 
– Updates of RDF metadata, related to Annotations 

• Aims to be an industrially mature RDF database 
benchmark (SPARQL1.1, some reasoning, text 
and GIS queries, backup&restore)  

 



www.cwi.nl/~boncz/snb-challenge 

Social Network Benchmark (SNB) 
• Intuitive: everybody knows what a SN is 

– Facebook, Twitter, LinkedIn, … 
• SNs can be easily represented as a graph 

– Entities are the nodes (Person, Group, Tag, Post, ...) 
– Relationships are the edges (Friend, Likes, Follows, …) 

• Different scales: from small to very large SNs 
– Up to billions of nodes and edges 

• Multiple query needs: 
– interactive, analytical, transactional 

• Multiple types of uses: 
– marketing, recommendation, social interactions, fraud 

detection, ... 
 



www.cwi.nl/~boncz/snb-challenge 

Audience 
• For developers facing graph processing tasks 

– recognizable scenario to compare merits of different 
products and technologies 

• For vendors of graph database technology 
– checklist of features and performance characteristics 

• For researchers, both industrial and academic 
– challenges in multiple choke-point areas such as graph 

query optimization and (distributed) graph analysis 

 



www.cwi.nl/~boncz/snb-challenge 

Data Schema 
• Specified in UML for portability 

– Classes 
– associations between classes 
– Attributes for classes and associations 

• Some of the relationships represent dimensions  
– Time (Y,QT,Month,Day) 
– Geography (Continent,Country,Place) 

• Data Formats 
– CSV 
– RDF (Turtle + N3) 

 
 



www.cwi.nl/~boncz/snb-challenge 

 Social Network Benchmark: schema  



www.cwi.nl/~boncz/snb-challenge 

Benchmark Workloads 
• Interactive: tests throughput running short queries 

while consistently handling  concurrent updates 
– Show all photos posted by my friends that I was tagged in 

 
• Business Intelligence: consists of complex structured 

queries for analyzing online behavior 
– Influential people the topic of open source development? 

 
• Graph Analytics: tests the functionality and scalability 

on most of the data as a single operation 
– PageRank, Shortest Path(s), Community Detection 

 GRADES2015 “Graphalytics: A Big Data Benchmark for Graph-Processing 
Platforms ” -  Mihai Capota, Tim Hegeman, Alexandru Iosup(TU Delft); Arnau 
Prat (UPC),  Orri Erling (OpenLink Technologies), Peter Boncz (CWI) 

More details will follow in the second lecture 

Draft queries available on ldbcouncil.org website (deliverable D2.2.4) & github 



www.cwi.nl/~boncz/snb-challenge 

Interactive (On-line) Workload 

• Test online ACID features and scalability 
• The system under test is expected to run in a 

steady state, providing durable storage 
• Updates are typically small 
• Updates will conflict a small percentage of the 

time 
• Queries typically touch a small fraction of the 

database 
 



SNB Interactive Workload 



www.cwi.nl/~boncz/snb-challenge 

Example: Q5 - SPARQL 
select ?group count (*) 

where { 

 {select distinct ?fr 

  where { 

   {%Person% snvoc:knows ?fr.} union 

   {%Person% snvoc:knows ?fr2. 

    ?fr2 snvoc:knows ?fr. filter (?fr != %Person%)} 

  } 

 } . 

 ?group snvoc:hasMember ?mem . ?mem snvoc:hasPerson ?fr . 

 ?mem snvoc:joinDate ?date . filter (?date >= "%Date0%"^^xsd:date) . 

 ?post snvoc:hasCreator ?fr . ?group snvoc:containerOf ?post 

} 

group by ?group 

order by desc(2) ?group 

limit 20 



www.cwi.nl/~boncz/snb-challenge 

Example: Q5 - Cypher 
MATCH (person:Person)-[:KNOWS*1..2]-(friend:Person) 

WHERE person.id={person_id} 

MATCH (friend)<-[membership:HAS_MEMBER]-(forum:Forum) 

WHERE membership.joinDate>{join_date} 

MATCH (friend)<-[:HAS_CREATOR]-(comment:Comment) 

WHERE (comment)-[:REPLY_OF*0..]->(:Comment)-[:REPLY_OF]->(:Post)<-
[:CONTAINER_OF]-(forum) 

RETURN forum.title AS forum, count(comment) AS commentCount 

ORDER BY commentCount DESC 

MATCH (person:Person)-[:KNOWS*1..2]-(friend:Person) 

WHERE person.id={person_id} 

MATCH (friend)<-[membership:HAS_MEMBER]-(forum:Forum) 

WHERE membership.joinDate>{join_date} 

MATCH (friend)<-[:HAS_CREATOR]-(post:Post)<-[:CONTAINER_OF]-(forum) 

RETURN forum.title AS forum, count(post) AS postCount 

ORDER BY postCount DESC 



www.cwi.nl/~boncz/snb-challenge 

Example: Q5 - Sparksee 
v.setLongVoid(personId); 
long personOID = graph.findObject(personId, v); 
Objects friends = graph.neighbors(personOID, knows, EdgesDirection.Outgoing); 
Objects allFriends = graph.neighbors(friends, knows, EdgesDirection.Outgoing); 
allFriends.union(friends); 
allFriends.remove(personOID); 
friends.close(); 
Objects members = graph.explode(allFriends, hasMember, EdgesDirection.Ingoing); 
v.setTimestampVoid(date); 
Objects candidate = graph.select(joinDate, Condition.GreaterEqual, v, members); 
Objects finalSelection = graph.tails(candidate); 
candidate.close(); 
members.close(); 
Objects posts = graph.neighbors(allFriends, hasCreator, EdgesDirection.Ingoing); 
ObjectsIterator iterator = finalSelection.iterator(); 
while (iterator.hasNext()) { 
 long oid = iterator.next(); 
 Container c = new Container(); 
 Objects postsGroup = graph.neighbors(oid, containerOf, EdgesDirection.Outgoing); 
 Objects moderators = graph.neighbors(oid, hasModerator, EdgesDirection.Outgoing); 
 long moderatorOid = moderators.any(); 
 moderators.close(); 
 Objects postsModerator = graph.neighbors(moderatorOid, hasCreator, EdgesDirection.Ingoing); 
 postsGroup.difference(postsModerator); 
 postsModerator.close(); 
 postsGroup.intersection(posts); 
 long count = postsGroup.size(); 
 if (count > 0) { 
  graph.getAttribute(oid, forumId, v); 
  c.row[0] = db.getForumURI(v.getLong()); 
  c.compare2 = String.valueOf(v.getLong()); 
  c.row[1] = String.valueOf(count); 
  c.compare = count; 
  results.add(c); 
 } 
 postsGroup.close() 
} 



www.cwi.nl/~boncz/snb-challenge 

Business Intelligence Workload 

• The workload stresses query execution and 
optimization 

• Queries typically touch a large fraction of the 
data 

• The queries are concurrent with trickle load 
• The queries touch more data as the database 

grows 



www.cwi.nl/~boncz/snb-challenge 

Graph Analytics Workload (Graphalytics) 

• The analytics is done on most of the data in 
the graph as a single operation 

• The analysis itself produces large intermediate 
results 

• The analysis transactional: no need for 
isolation from possible concurrent updates 

GRADES 2015: “Graphalytics: A Big Data Benchmark for 
Graph-Processing Platforms” 



www.cwi.nl/~boncz/snb-challenge 

Graphalytics Architecture 

GRADES 2015: “Graphalytics: A Big Data Benchmark for 
Graph-Processing Platforms” 



www.cwi.nl/~boncz/snb-challenge 

Graphalytics Algorithms 

• general statistics (STATS)  
– counts the numbers of vertices and edges in the graph and computes 

the mean local clustering coefficients 
• breadth-first search (BFS)  

– traverses the graph starting from a seed vertex, visiting first all the 
neighbors of a vertex before moving to the neighbors of the neighbors.  

• connected components (CONN) algorithm  
– determines for each vertex the connected component it belongs to.  

• community detection (CD) algorithm  
– detects groups of nodes that are connected to each other stronger 

than they are connected to the rest of the graph  
• graph evolution (EVO) 

– predicts the evolution of the graph according to the “forest fire” 
model 

GRADES 2015: “Graphalytics: A Big Data Benchmark for 
Graph-Processing Platforms” 



www.cwi.nl/~boncz/snb-challenge 

Systems 
• Graph database systems 

– e.g. Neo4j, InfiniteGraph, DEX, Titan 
• Graph programming frameworks 

– e.g. Giraph, Signal/Collect, Graphlab, Green Marl, Grappa 
• RDF database systems 

– e.g. OWLIM, Virtuoso, BigData, Jena TDB, Stardog, Allegrograph 
• Relational database systems 

– e.g. Postgres, MySQL, Oracle, DB2, SQLServer, Virtuoso, 
MonetDB, Vectorwise, Vertica 

• noSQL database systems 
– e.g. HBase, REDIS, MongoDB, CouchDB, or even 

MapReduce systems like Hadoop and Pig 
 
 



www.cwi.nl/~boncz/snb-challenge 

Workloads by system 
System Interactive Business Intelligence Graph Analytics 

Graph databases Yes Yes Maybe 

Graph programming 
frameworks - Yes Yes 

RDF databases Yes Yes - 

Relational databases Yes Yes 

Maybe, by keeping 
state in temporary 

tables, and using the 
functional features of 

PL-SQL 

NoSQL Key-value Maybe Maybe - 

NoSQL MapReduce - Maybe Yes 



www.cwi.nl/~boncz/snb-challenge 

More Information 
http://www.ldbcouncil.org http://github.com/ldbc 

Blogs 
Specifications 
Early Result FDRs 
Videos of TUC talks 
Developer info 
Code, Issue Tracking 



www.cwi.nl/~boncz/snb-challenge 

SNB Challenge: Querying a Social Graph 

 



www.cwi.nl/~boncz/snb-challenge 

LDBC SNB Data generator 
• Synthetic dataset available in different scale factors 

– SF100  for quick testing  
– SF3000  the real deal 

• Very complex graph 
– Power laws (e.g. degree) 
– Huge Connected Component 
– Small diameter 
– Data correlations 
 Chinese have more Chinese names 
– Structure correlations 
 Chinese have more Chinese friends 

 



www.cwi.nl/~boncz/snb-challenge 

CSV file schema 
• See: http://wikistats.ins.cwi.nl/lsde-data/practical_1 
• Counts for sf3000 (total 37GB) 

Person (9M) 
PersonId  PK 
FirstName 
LastName 
Gender 
Birthday 
CreationDate 
LocationIP 
BrowserUsed 
LocatedIn 

Knows(1.3B) 
PersonFrom 
PersonTo 

interests(.2B) 
PersonID 
tagID 

Tags (16K) 
TagID 
Name 
URL 

Place(1.4K 
PlaceID PK 
URL 
type 

http://wikistats.ins.cwi.nl/lsde-data/practical_1


www.cwi.nl/~boncz/snb-challenge 

The Query 
• The marketeers of a social network have been data mining the 

musical preferences of their users. They have built statistical models 
which predict given an interest in say artists A2 and A3, that the 
person would also like A1 (i.e. rules of the form: A2 and A3  A1). 
Now, they are commercially exploiting this knowledge by selling 
targeted ads to the management of artists who, in turn, want to sell 
concert tickets to the public but in the process also want to expand 
their artists' fanbase. 

• The ad is a suggestion for people who already are interested in A1 
to buy concert tickets of artist A1 (with a discount!) as a birthday 
present for a friend ("who we know will love it" - the social network 
says) who lives in the same city, who is not yet interested in A1 yet, 
but is interested in other artists A2, A3 and A4 that the data mining 
model predicts to be correlated with A1. 



www.cwi.nl/~boncz/snb-challenge 

The Query 
For all persons P : 
• who have their birthday on or in between D1..D2  
• who do not like A1 yet 
 we give a score of  

– 1 for liking any of the artists A2, A3 and A4 and  
– 0 if not  
the final score, the sum, hence is a number between 0 and 3. 
Further, we look for friends F: 
– Where P and F who know each other mutually 
– Where P and F live in the same city and  
– Where F already likes A1 
 The answer of the query is a table (score, P, F) with only scores > 

0 



www.cwi.nl/~boncz/snb-challenge 

Binary files 
• Created by “loader” program in example github repo 
• Total size: 6GB 

 

Person.bin 
PersonId  PK 
Birthday 
LocatedIn 
Knows_first 
Knows_n 
Interests_first 
Interests_n 
 

Knows.bin 
PersonPos 

interests.bin 
tagID 



www.cwi.nl/~boncz/snb-challenge 

What it looks like 
• Created by “loader” program in example github repo 
• Total size: 6GB 

 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 



www.cwi.nl/~boncz/snb-challenge 

The Naïve Implementation 
The “cruncher” program 
 
Go through the persons P sequentially 
• counting how many of the artists A2,A3,A4 are liked as 

the score  
 for those with score>0: 

– visit all persons F known to P.  
 For each F: 

• checks on equal location  
• check whether F already likes A1 
• check whether F also knows P  
if all this succeeds (score,P,F) is added to a result table. 



www.cwi.nl/~boncz/snb-challenge 

Naïve Query Implementation 
• “cruncher”  

 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

results 



www.cwi.nl/~boncz/snb-challenge 

Memory Hierarchy 



www.cwi.nl/~boncz/snb-challenge 

Hardware Progress 

Transistors  CPU performance 



www.cwi.nl/~boncz/snb-challenge 

RAM,Disk Improvement Over the Years 

 RAM  Magnetic Disk 



www.cwi.nl/~boncz/snb-challenge 

Latency Lags Bandwidth 

• Communications of the ACM, 2004 



www.cwi.nl/~boncz/snb-challenge 

Geeks on Latency 



www.cwi.nl/~boncz/snb-challenge 

Sequential Access Hides Latency 
• Sequential RAM access 

– CPU prefetching: multiple consecutive cache lines 
being requested concurrently 

• Sequential Magnetic Disk Access 
– Disk head moved once 
– Data is streamed as the disk spins under the head 

• Sequential Network Access 
– Full network packets 
– Multiple packets in transit concurrently 

 
 



www.cwi.nl/~boncz/snb-challenge 

Consequences For Algorithms 
• Analyze the main data structures 

– How big are they? 
• Are they bigger than RAM? 
• Are they bigger than CPU cache (a few MB)? 

– How are they laid out in memory or on disk? 
• One area, multiple areas? 

Java Object Data Structure  
vs 
memory pages (or cache lines)  



www.cwi.nl/~boncz/snb-challenge 

Consequences For Algorithms 
• Analyze your access patterns 

– Sequential: you’re OK 
– Random: it better fit in cache!  

• What is the access granularity? 
• Is there temporal locality?  Is there spatial locality? 

 

lo
ca

tio
n 

time time 



www.cwi.nl/~boncz/snb-challenge 

Improving Bad Access Patterns 
• Minimize Random Memory Access 

– Apply filters first. Less accesses is better.  
• Denormalize the Schema 

– Remove joins/lookups, add looked up stuff to the table (but.. makes it 
bigger) 

• Trade Random Access For Sequential Access 
– perform a 100K random key lookups in a large table 
  put 100K keys in a hash table, then 
  scan table and lookup keys in hash table  

• Try to make the randomly accessed region smaller 
– Remove unused data from the structure 
– Apply data compression 
– Cluster or Partition the data (improve locality) …hard for social graphs 



www.cwi.nl/~boncz/snb-challenge 

Naïve Query Implementation 
• “cruncher”  

 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

results 


	Benchmarking �Graph Data Management Systems�EDBT Summer School 2015��Peter Boncz�boncz@cwi.nl
	Why Benchmarking?
	What is the LDBC?
	LDBC Organization (non-profit)
	ldbcouncil.org
	What does a benchmark consist of?
	LDBC Task Forces
	Semantic Publishing Benchmark (SPB)
	SPB scope
	Social Network Benchmark (SNB)
	Audience
	Data Schema
	 Social Network Benchmark: schema 
	Benchmark Workloads
	Interactive (On-line) Workload
	Slide Number 16
	Example: Q5 - SPARQL
	Example: Q5 - Cypher
	Example: Q5 - Sparksee
	Business Intelligence Workload
	Graph Analytics Workload (Graphalytics)
	Graphalytics Architecture
	Graphalytics Algorithms
	Systems
	Workloads by system
	More Information
	SNB Challenge: Querying a Social Graph
	LDBC SNB Data generator
	CSV file schema
	The Query
	The Query
	Binary files
	What it looks like
	The Naïve Implementation
	Naïve Query Implementation
	Memory Hierarchy
	Hardware Progress
	RAM,Disk Improvement Over the Years
	Latency Lags Bandwidth
	Geeks on Latency
	Sequential Access Hides Latency
	Consequences For Algorithms
	Consequences For Algorithms
	Improving Bad Access Patterns
	Naïve Query Implementation

