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 Social Network Benchmark: schema  
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Database Benchmark Design  
Desirable properties: 
• Relevant.  
• Representative. 
• Understandable. 
• Economical.  
• Accepted. 
• Scalable. 
• Portable. 
• Fair. 
• Evolvable. 
• Public.  

 Jim Gray (1991) The Benchmark Handbook for Database  
  and Transaction Processing Systems 
 
 Dina Bitton, David J. DeWitt, Carolyn Turbyfill  (1993) 
  Benchmarking Database Systems: A Systematic Approach  
 
Multiple TPCTC papers, e.g. 
 Karl Huppler (2009) The Art of Building a Good Benchmark 
 

 “Choke Points” 



www.cwi.nl/~boncz/snb-challenge 

Stimulating Technical Progress 
• An aspect of ‘Relevant’ 
• The benchmark metric 

– depends on,  
– or, rewards: 
solving certain  
technical challenges 
 
“Choke Point” 
 
(not commonly solved by technology at 

benchmark design time)   
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Benchmark Design with Choke Points 

Choke-Point = well-chosen difficulty in the workload 

• “difficulties in the workloads” 
– arise from Data (distribs)+Query+Workload 
– there may be different technical solutions to 

address the choke point 
• or, there may not yet exist optimizations 
 lot’s of research opportunities! 
 

 
 

 
TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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Example: TPC-H choke points 
• Even though it was designed without specific choke 

point analysis 
• TPC-H contained a lot of interesting challenges 

– many more than Star Schema Benchmark 
– considerably more than Xmark (XML DB benchmark) 
– not sure about TPC-DS (yet) 

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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CP1.4 Dependent GroupBy Keys 
SELECT c_custkey,  c_name, c_acctbal,  
 sum(l_extendedprice * (1 - l_discount)) as revenue,  

n_name,  c_address,  c_phone, c_comment 
FROM  customer, orders,  lineitem,  nation 
WHERE  c_custkey = o_custkey and l_orderkey = 

o_orderkey 
 and o_orderdate >= date '[DATE]' 
 and o_orderdate < date '[DATE]' + interval '3' 

month 
 and l_returnflag = 'R‘ and c_nationkey = 

n_nationkey 
GROUP BY  
 c_custkey, c_name,   c_acctbal,  c_phone,  n_name,  
 c_address, c_comment 
ORDER BY revenue DESC 

Q10 

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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CP1.4 Dependent GroupBy Keys 
SELECT c_custkey,  c_name, c_acctbal,  
 sum(l_extendedprice * (1 - l_discount)) as revenue,  

n_name,  c_address,  c_phone, c_comment 
FROM  customer, orders,  lineitem,  nation 
WHERE  c_custkey = o_custkey and l_orderkey = 

o_orderkey 
 and o_orderdate >= date '[DATE]' 
 and o_orderdate < date '[DATE]' + interval '3' 

month 
 and l_returnflag = 'R‘ and c_nationkey = 

n_nationkey 
GROUP BY  
 c_custkey, c_name,   c_acctbal,  c_phone,  
 c_address, c_comment, n_name 
ORDER BY revenue DESC 

Q10 

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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CP1.4 Dependent GroupBy Keys 
• Functional dependencies: 
 c_custkey  c_name,   c_acctbal,  c_phone, 

c_address, c_comment, c_nationkey  n_name 

• Group-by hash table should exclude the 
colored attrs  less CPU+ mem footprint 

• in TPC-H, one can choose to declare 
primary and foreign keys (all or nothing) 
– this optimization requires declared keys 
– Key checking slows down RF (insert/delete) 

 

Exasol: 
“foreign key check” phase after load 

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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CP2.2 Sparse Joins 

• Foreign key (N:1) joins towards a relation with 
a selection condition  
– Most tuples will *not* find a match 
– Probing (index, hash) is the most expensive 

activity in TPC-H 
 

• Can we do better? 
– Bloom filters! 

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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CP2.2 Sparse Joins 

• Foreign key (N:1) joins towards a relation with 
a selection condition  

2G cycles        29M probes    cost would have been 14G cycles ~= 7 sec  

1.5G cycles    200M probes     85% eliminated 

probed: 200M tuples 
result: 8M tuples 
 1:25 join hit ratio 

Q21 

Vectorwise:  
TPC-H joins typically accelerate 4x 

Queries accelerate 2x  
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CP4.1 Raw Expression Arithmetic 
How fast is a query processor in computing, e.g.  
• Numerical Arithmetic 
• Aggregates 
• String Matching 

 
SELECT  
 l_returnflag, l_linestatus, count(*),  
 sum(l_quantity),sum(l_extendedprice),  
 sum(l_extendedprice*(1-l_discount)), 
 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),  
 avg(l_quantity),avg(l_extendedprice),avg(l_discount), 
FROM lineitem 
WHERE l_shipdate <= date '1998-12-01' - interval 

'[DELTA]' day (3) 
GROUP BY l_returnflag, l_linestatus 
ORDER BY l_returnflag, l_linestatus 
 
 
 
 

Q1 

SIMD? Interpreter Overhead? 
Vectorwise, Virtuoso, SQLserver cstore  vectorized execution 

Hyper, Netteza, ParAccel  JIT query compilation 
Kickfire, ParStream  hardware compilation (FPGA/GPU) 

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and 
Lessons Learned from an Influential Benchmark” 
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CP5.2 Subquery Rewrite 
SELECT sum(l_extendedprice) / 7.0 as avg_yearly 
FROM lineitem,  part 
WHERE p_partkey = l_partkey  
 and p_brand = '[BRAND]' 
 and p_container = '[CONTAINER]'  
 and l_quantity <( SELECT 0.2 * avg(l_quantity) 
    FROM lineitem 
    WHERE l_partkey = p_partkey) 

This subquery can be extended with restrictions from 
the outer query. 

    SELECT 0.2 * avg(l_quantity) 
    FROM lineitem 
    WHERE l_partkey = p_partkey  
      and p_brand = '[BRAND]'  
      and p_container = '[CONTAINER]' 

+ CP5.3 Overlap between Outer- and Subquery. 
 

Q17 

Hyper: 
CP5.1+CP5.2+CP5.3 

results in 500x faster 
Q17 
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Choke Point Wrap up 
Choke-point based benchmark design 
 
• What are Choke-points? 

– examples from good-old TPC-H 
 

• Graph benchmark Choke-Point, in-depth: 
– Structural Correlation in Graphs 
– and what we do about it in LDBC 
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Graphalytics Choke Points 

• Excessive network utilization 
• Large graph memory footprint 
• Poor Access Locality 
• Skewed Execution Intensity 

GRADES 2015: “Graphalytics: A Big Data Benchmark for 
Graph-Processing Platforms” 
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DATAGEN: social network generator 

advanced generation of: 
• network structure 

– Power law distributions, small diameter 
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Friendship Degree Distribution 
• Based on “Anatomy of Facebook” blogpost (2013) 
• Diameter increases logarithmically with scale factor  

– New: 
 function has been  
 made pluggable 
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DATAGEN: social network generator 

advanced generation of: 
• network structure 

– Power law distributions, small diameter 

• property values 
– realistic, correlated value distributions 



Data correlations between attributes 

SELECT personID from person 

WHERE firstName =           AND addressCountry = ‘Germany’ ‘Joachim’ 

SELECT personID from person 

WHERE firstName =           AND addressCountry = ‘Italy’ ‘Cesare’ 

 
 Query optimizers may underestimate or  overestimate the result size of 
conjunctive predicates  

 

Anti-Correlation 

Loew Prandelli Joachim Cesare Cesare Joachim 



SELECT COUNT(*) 

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID 

     paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID 

WHERE pa1.author = pa2.author   AND 

  cn1.name = ‘VLDB’  AND  cn2.name =  

Data correlations between attributes 

‘SIGMOD’ 
 



SELECT COUNT(*) 

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID 

     paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID 

WHERE pa1.author = pa2.author   AND 

  cn1.name = ‘VLDB’  AND  cn2.name =  

Data correlations over joins 

‘Nature’ 
 
‘SIGMOD’ 
 

 A challenge to the optimizers to adjust estimated join hit ratio  
    pa1.author = pa2.author  

    depending on other predicates  

 Correlated predicates are still a frontier area in database research 
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Realistic Correlated Value Distributions 
• Person.firstname correlates 
 with Person.location 

– Values taken from DBpedia 
 
• Many other correlations 
 and dependencies.. 

– e.g. university depends on location 
  
 
• In forum discussions, people read DBpedia articles to each other    

(= correlation between message text and discussion topic) 
– Topic = DBpedia article title 
– Text = one sentence of the article 

 

Person.location 
=<Germany> 

Person.location 
=<China> 



 How do data generators generate values?      E.g.  FirstName 

 

 Value Dictionary D()  
• a fixed set of values, e.g., 

  {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }  
 

 Probability density function F()  
• steers how the generator chooses values 
− cumulative distribution over dictionary entries determines which value to pick 

• could be anything: uniform, binomial, geometric, etc… 
− geometric (discrete exponential) seems to explain many natural phenomena  

Generating Property Values 



 How do data generators generate values? E.g.  FirstName 

 

 Value Dictionary D()  
  

 Probability density function F()  
 

 Ranking Function R() 
• Gives each value a unique rank between one and |D| 
−determines which value gets which probability 

• Depends on some parameters (parameterized function) 
− value frequency distribution becomes correlated by the parameters or R()  

 
 
 

Generating Correlated Property Values 



 How do data generators generate values? E.g.  FirstName 

 

 Value Dictionary D()  
{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Or
  

 Probability density function F() 
    geometric distribution  

 

 Ranking Function R(gender,country,birthyear) 
• gender, country, birthyear  correlation parameters 

 
 

 

Generating Correlated Property Values 

How to implement R()? 
 

We need a table storing  
 

|Gender| X |Country| X  |BirthYear| X |D| 

Solution: 
- Just store the rank of the top-N values, not  all|D| 
- Assign the rank of the other dictionary values randomly 

 

limited #combinations 

Potentially 
Many!  



Compact Correlated Property Value Generation 
Using geometric distribution for function F() 

Only store per country 
top-10 ranking.   

(other values are ranked 
randomly) 



 Main source of dictionary values from DBpedia (http://dbpedia.org) 

 

Correlated Value Property in LDBC SNB 

http://dbpedia.org/


www.cwi.nl/~boncz/snb-challenge 

DATAGEN: social network generator 

advanced generation of: 
• network structure 

– Power law distributions, small diameter 

• property values 
– realistic, correlated value distributions 
– temporal correlations / “flash mobs” 

• correlations between values and structure 
– 2 correlation “dimensions”: location & interests 



 

  

Correlated Edge Generation 

P4 

P5 

Student 
“Anna” 

“University of 
Leipzig” 

“Germany” 

“1990” 

P1 

“University 
of Leipzig” 

“Laura” 

“1990” 

<Britney 
Spears> 

<Britney 
Spears> 

P3 

“University 
of Leipzig” 

“1990” 

P2 

“University of 
Amsterdam” 

“Netherlands” 



 

  

Simple approach 

P
4 

P
5 

Student 

“Anna” 

“University of 
Leipzig” 

“Germany” 

“1990” 

P
1 

“University 
of Leipzig” 

“Laura” 

“1990” 

<Britney Spears> 

<Britney Spears> 

P
3 

“University 
of Leipzig” 

“1990” 

P
2 

“University of 
Amsterdam” 

“Netherlands” 

Danger: this is very expensive to compute on a large graph! 
(quadratic, random access) 

• Compute similarity of two nodes 
based on their (correlated) properties. 

• Use a probability density function 
wrt to this similarity for connecting 
nodes 

 
 
 
 
 
 

connection 
probability 
 

highly similar  less similar 
 



 

  

Our observation 

P
4 

P
5 

Student 
“Anna” 

“University of 
Leipzig” 

“Germany” 

“1990” 

P
1 

“University 
of Leipzig” 

“Laura” 

“1990” 

<Britney Spears> 

<Britney 
Spears> 

P
3 

“University 
of Leipzig” 

“1990” 

P
2 

“University of 
Amsterdam” 

“Netherlands” 

Probability that two nodes are connected is skewed w.r.t the 
similarity between the nodes (due to probability distr.) 

 
 
 
 
 
 

connection 
probability 
 

highly similar  less similar 
 

Window 

Trick:  disregard nodes with too large similarity distance 
(only connect nodes in a similarity window) 



MapReduce data generation: 
one map pass per Correlation Dimension 

 
 
 
 
 

TPCTC 2012:   “S3G2: A Scalable Structure-correlated Social Graph Generator” 
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DATAGEN: social network generator 

advanced generation of: 
• network structure 

– Power law distributions, small diameter 

• property values 
– realistic, correlated value distributions 
– temporal correlations / “flash mobs” 
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Temporal Effects (Flash Mobs) 

• Forum posts generation spikes in time for 
certain topics: 
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DATAGEN: Scaling 
• Scale Factor (SF) is the size of the CSV input data in GB 
• Some Virtuoso SQL stats at SF=30: 
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DATAGEN: Graph Characteristics  
Livejournal LFR3 (synthetic) LDBC DATAGEN 

GRADES2014 “How community-like is the structure of synthetically generated 
graphs” - Arnau Prat(DAMA-UPC); David Domínguez-Sal (Sparsity Technologies) 
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Interactive Workload 
MapReduce-base data generation 
• Generate 3 years of network activity for a certain amount of persons 

– 33 months of data  bulk load 
– 3 months of data  insert queries 

• Scalable (SF1000 in one hour on 10 small compute nodes) 
– can also be used without a cluster (pseudo-distributed) 

 
During data generation, we perform Parameter Curation to derive suitable 

parameters for the complex-read-only query set 
 



SNB Interactive Workload 
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Choke-Point: shortest paths 

• compute weights over a recursive forum traversal 
– on the fly, or  
– materialized, but then maintain them under updates 

• compute shortest paths using these weights in the 
friends graph 



SNB Interactive Workload 
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Choke-Point: outdegree correlation 

• Travel is correlated with location 
– People travel more often to nearby countries 

• Outdegree after (countryX,countryY) selection varies a lot 
– (Australia,NZ): high outdegree (“join hit ratio”) 
– (Australia,Belgium): low outdegree  different query plan,               
                                        or navigation strategy  likely wins  
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SNB Query Driver 
• Window-based parallel query generation 

– Problem: friends graph has complex dependencies (non-
partitionable). Could cause large checking overhead. 

– Solution: Window based approach for checking 
dependencies  (Global Completion Time) 
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Problem: Parameter Sensitivity 

 

SNB Interactive Q5:  
 
explores the 2-hop friend neighbourhood, of one  start person 
 
Observation:  depending on  the start person, there is  a large runtime variance 
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Parameter Curation 
• Example: Q3 

– Problem: value correlations cause very large variance 
– Solution: data mine for stable parameter equivalence classes 

TPCTC2014 “Parameter Curation for Benchmark 
Queries” Andrey Gubichev (TUM) & Peter Boncz (CWI) 
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Query Mix & Metric 
Query Mix 
• Insert queries (~10% of time):  

 challenge: execute parallel but respect data dependencies in the graph 
• Read-only Complex Queries (~50% of time)  

 challenge: generate query parameters with stable query behavior 
Parameter Curation  to find “equivalence classes” in parameters 

• Simple Read-only Queries (~40% of time) 
– Retrieve Post / Retrieve Person Profile 

 
Metric 
• Acceleration Factor (AF) that can be sustained (+ AF/$ weighted by cost) 

– with 99th percentile of query latency within maximal query time 
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SNB Query Driver 
• Dependency-aware parallel query generation 

– Problem: friends graph is non-partitionable, but imposes 
ordering constraints.  

 Could cause large checking overhead, impeding driver 
parallelism. 

– Solution: Window-based checking approach for keeping driver 
threads roughly synchronized on a global timestamp. 

 Is helped by DATAGEN properties that ensure there is a minimal 
latency between certain dependencies (e.g. entering the network 
and making friends, or posting on a new friend’s forum). This 
minimal latency provides synchronization headroom. 
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Summary 
• LDBC 

– Graph and RDF benchmark council 
– Choke-point driven benchmark design (user+system expert involvement) 

• Social Network Benchmark 
– Advanced social network generator 

• skewed distributions, power laws, value/structure correlations, flash mobs 

– 3 workloads: Interactive (focus of this paper), BI, Analytics 
• Interactive Query Mix & Metrics 
• Parallel Query Driver that respects dependencies efficiently 
• Parameter Curation for stable results 

 
7th LDBC Technical User Community meeting 
November 9+10 2015, IBM TJ Watson (NJ) 
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Assignment 1: Querying a Social Graph 
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The Naïve Implementation 
The “cruncher” program 

 

Go through the persons P sequentially 

• counting how many of the artists A2,A3,A4 are liked as the score  

 for those with score>0: 

– visit all persons F known to P.  

 For each F: 

• checks on equal location  

• check whether F already likes A1 

• check whether F also knows P  

if all this succeeds (score,P,F) is added to a result table. 
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Naïve Query Implementation 
• “cruncher”  

 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 

knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

results 
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Improving Bad Access Patterns 
• Minimize Random Memory Access 

– Apply filters first. Less accesses is better.  

• Denormalize the Schema 
– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger) 

• Trade Random Access For Sequential Access 
– perform a 100K random key lookups in a large table 
  put 100K keys in a hash table, then 
  scan table and lookup keys in hash table  

• Try to make the randomly accessed region smaller 
– Remove unused data from the structure 
– Apply data compression 
– Cluster or Partition the data (improve locality) …hard for social graphs 

• If the random lookups often fail to find a result 
– Use a Bloom Filter 



www.cwi.nl/~boncz/snb-challenge 

Sequential Query Implementation 
• “cruncher” 

– Pass 1: for each person calculate score 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 

knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

score 
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Sequential Query Implementation 
• “cruncher”-2 

– Pass 1: for each person calculate score 
– Pass 2:  for each friend, look for persons with score >1 

  
 

Person.bin 

Knows.bin 
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knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

score 

results 
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Sequential Query Implementation 
• “cruncher”-2 

– Pass 1: for each person calculate score 
– Pass 2:  for each friend, look for persons with score >1 
– Pass 3: filter results on mutual (P,F) 

 
 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 

knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

score 

results 
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Improving Bad Access Patterns 
• Minimize Random Memory Access 

– Apply filters first. Less accesses is better.  

• Denormalize the Schema 
– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger) 

• Trade Random Access For Sequential Access 
– perform a 100K random key lookups in a large table 
  put 100K keys in a hash table, then 
  scan table and lookup keys in hash table  

• Try to make the randomly accessed region smaller 
– Remove unused data from the structure 
– Apply data compression 
– Cluster or Partition the data (improve locality) …hard for social graphs 

• If the random lookups often fail to find a result 
– Use a Bloom Filter 
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The Naïve Implementation 
The “cruncher” program 

 

Go through the persons P sequentially, and for those in birthday range 
• count how many of the artists A2,A3,A4 are liked as the score  
 for those with score>0 and who do not like A1: 

– visit all persons F known to P.  

 For each F: 

• checks on equal location  
• check whether F already likes A1 
• check whether F also knows P  
if all this succeeds (score,P,F) is added to a result table. 
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Reducing The Problem 
• knows.bin   

– is big (larger than RAM) 
– is accessed randomly 

• random access unavoidable (denormalization too costly) 
Ideas: 
• Only keep mutual-knows 

– Idea: remove non-mutual knows in reorg 
• Advantage: queries do not need to check (only reorg), queries get faster 
• Problem: 99% of knows in this dataset is mutual (no reduction) 
• Problem: finding non-mutual knows is costly (requires full sort on person-id) 
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Reducing The Problem 
• knows.bin   

– is big (larger than RAM) 
– is accessed randomly 

• random access unavoidable (denormalization too costly) 
Ideas: 
• Only keep mutual-knows 
• Only keep local-knows 

– Idea: remove knows where persons live in different cities (50x less: 150  3 friends) 
• Reorg:  one pass with random access in a ‘location’ array (2b * 8.9M) 

– Idea: remove persons with zero friends left-over (halves it) 
• 8.9M  5M persons, 8.9*23M  5*23M interests 

– Idea: remove non-mutual local friends after removing the above (smaller knows!) 
• Can be done with random access  

– Reorg: write a localknows.tmp file, mmap it, use it i.s.o. knows.bin to filter 
– localknows.tmp = 5*3M=15M knows = 60MB random access 
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Reduced Random Access Solution 
• Hannes solution 

– Most time spent in interests checking 
 Idea: enhance using SSE instructions? 

   8 comparisons of 16bit integers per instruction.. 

Person.bin 

Knows.bin 
 
 
 
 
 
 
 
 
 
 
 

i
n
t
e
r
e
s
t
s
.
b
i
n
 

knows_first 

knows_n 

2bytes  
* 204M 

48bytes  
* 8.9M 

4bytes  
* 1.3B 

4bytes  
* 15M 

person.bin 

16bytes  
* 5M 

in
te

re
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s.b
in

 

2bytes  
* 115M 
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The Naïve Implementation 
The “cruncher” program 

 

Go through the persons P sequentially, and for those in birthday range 
• count how many of the artists A2,A3,A4 are liked as the score  
 for those with score>0 and who do not like A1: 

– visit all persons F known to P.  

 For each F: 

• checks on equal location  
• check whether F already likes A1 
• check whether F also knows P  
if all this succeeds (score,P,F) is added to a result table. 
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Idea: using Inverted Files 
The search engine data structure 
• For each term (keyword), a list of document IDs 

 
Here: for each Tag (e.g. A1,A2,A3,A4) a list of 
                                                                            persons 
 

 

in
te

re
st

s.b
in

 

2bytes  
* 115M 

A2 
 
A3 
 
A4 
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Inverted File on Tags 

4bytes  
* 15M 

 
person.bin 

 

16bytes  
* 5M 

po
st

in
gs

.b
in

 

4bytes  
* 115M 

tags postings 
mutual_local_knows 
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Inverted File on Tags 

 
person.bin 

 

16bytes  
* 5M 

po
st

in
gs

.b
in

 

4bytes  
* 115M 

A2 

A3 

A2 

A4 

A1 

bitmap 

Merge 
lists 
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Inverted File Cruncher Implementation 
Create a A1-bitmap (1bit for each person) based on the inverted list of A1 
 0.5MB bitmap (even fits CPU cache) 
 

Merge inverted lists A2,A3,A4 computing a score and for each person P 

• for those with score>0, in birthday range and who are not in A1-bitmap: 

– visit all persons F known to P.  

 For each F: 

• check whether F is set in A1-bitmap 
if all this succeeds (score,P,F) is added to a result table. 
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Idea: use Table Partitioning 
Goals:  
• make birthdate comparisons faster 
• remove birthdate column (no longer needed, implicit) 
• Increase locality in person.bin and knows.bin! 
   

 
partition person.bin by birthdate  
• 366 partitions (one for each day) 
Problem:  
• friends would point across all 366 tables 
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Inverted Files Revisted 
The birthdate clustering gives us for a birthdate range a person range 
• Say people with bday in February are at positions between [4,50] 
• Idea: binary search in the postings lists for artists (A2,A3,A4) 
 

 
A1 
 
A2 
 
A3 
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Clustered + Inverted File Cruncher 
“Peter approach” 
 

Create a A1-bitmap (1bit for each person) based on the inverted list of A1 
 0.5MB bitmap (even fits CPU cache) 
 

Binary search (restrict on birthdate range) and merge inverted lists 
A2,A3,A4 computing a score and for each person P 

• for those with score>0, who are not in A1-bitmap: 

– visit all persons F known to P.  

 For each F: 

• check whether F is set in A1-bitmap 
if all this succeeds (score,P,F) is added to a result table. 
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