
Benchmarking
Graph Data Management Systems

EDBT Summer School 2015

Peter Boncz
boncz@cwi.nl

1. LDBC Social Network Benchmark
Tuesday: LDBC & SNB introduction
Friday: SNB in depth

2. SNB Programming Challenge www.cwi.nl/~boncz/snb-challenge

Tuesday: what it is about & hardware properties & tips
Friday: the solution space & winners

The LDBC
Social Network Benchmark

Interactive Workload

Thomas Neumann, Linnea Passing

Renzo Angles (U. Talca)

Norbert Martinez

David Dominguez
 Xavier Sanchez

SNB “Task Force” acknowledgements

http://www.ldbcouncil.org

www.cwi.nl/~boncz/snb-challenge

 Social Network Benchmark: schema

www.cwi.nl/~boncz/snb-challenge

Database Benchmark Design
Desirable properties:
• Relevant.
• Representative.
• Understandable.
• Economical.
• Accepted.
• Scalable.
• Portable.
• Fair.
• Evolvable.
• Public.

 Jim Gray (1991) The Benchmark Handbook for Database
 and Transaction Processing Systems

 Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)
 Benchmarking Database Systems: A Systematic Approach

Multiple TPCTC papers, e.g.
 Karl Huppler (2009) The Art of Building a Good Benchmark

 “Choke Points”

www.cwi.nl/~boncz/snb-challenge

Stimulating Technical Progress
• An aspect of ‘Relevant’
• The benchmark metric

– depends on,
– or, rewards:
solving certain
technical challenges

“Choke Point”

(not commonly solved by technology at

benchmark design time)

www.cwi.nl/~boncz/snb-challenge

Benchmark Design with Choke Points

Choke-Point = well-chosen difficulty in the workload

• “difficulties in the workloads”
– arise from Data (distribs)+Query+Workload
– there may be different technical solutions to

address the choke point
• or, there may not yet exist optimizations
 lot’s of research opportunities!

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

Example: TPC-H choke points
• Even though it was designed without specific choke

point analysis
• TPC-H contained a lot of interesting challenges

– many more than Star Schema Benchmark
– considerably more than Xmark (XML DB benchmark)
– not sure about TPC-DS (yet)

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,
 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment
FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey and l_orderkey =

o_orderkey
 and o_orderdate >= date '[DATE]'
 and o_orderdate < date '[DATE]' + interval '3'

month
 and l_returnflag = 'R‘ and c_nationkey =

n_nationkey
GROUP BY
 c_custkey, c_name, c_acctbal, c_phone, n_name,
 c_address, c_comment
ORDER BY revenue DESC

Q10

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

CP1.4 Dependent GroupBy Keys
SELECT c_custkey, c_name, c_acctbal,
 sum(l_extendedprice * (1 - l_discount)) as revenue,

n_name, c_address, c_phone, c_comment
FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey and l_orderkey =

o_orderkey
 and o_orderdate >= date '[DATE]'
 and o_orderdate < date '[DATE]' + interval '3'

month
 and l_returnflag = 'R‘ and c_nationkey =

n_nationkey
GROUP BY
 c_custkey, c_name, c_acctbal, c_phone,
 c_address, c_comment, n_name
ORDER BY revenue DESC

Q10

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

CP1.4 Dependent GroupBy Keys
• Functional dependencies:
 c_custkey  c_name, c_acctbal, c_phone,

c_address, c_comment, c_nationkey  n_name

• Group-by hash table should exclude the
colored attrs  less CPU+ mem footprint

• in TPC-H, one can choose to declare
primary and foreign keys (all or nothing)
– this optimization requires declared keys
– Key checking slows down RF (insert/delete)

Exasol:
“foreign key check” phase after load

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

CP2.2 Sparse Joins

• Foreign key (N:1) joins towards a relation with
a selection condition
– Most tuples will *not* find a match
– Probing (index, hash) is the most expensive

activity in TPC-H

• Can we do better?
– Bloom filters!

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

CP2.2 Sparse Joins

• Foreign key (N:1) joins towards a relation with
a selection condition

2G cycles 29M probes  cost would have been 14G cycles ~= 7 sec

1.5G cycles 200M probes  85% eliminated

probed: 200M tuples
result: 8M tuples
 1:25 join hit ratio

Q21

Vectorwise:
TPC-H joins typically accelerate 4x

Queries accelerate 2x

www.cwi.nl/~boncz/snb-challenge

CP4.1 Raw Expression Arithmetic
How fast is a query processor in computing, e.g.
• Numerical Arithmetic
• Aggregates
• String Matching

SELECT
 l_returnflag, l_linestatus, count(*),
 sum(l_quantity),sum(l_extendedprice),
 sum(l_extendedprice*(1-l_discount)),
 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),
 avg(l_quantity),avg(l_extendedprice),avg(l_discount),
FROM lineitem
WHERE l_shipdate <= date '1998-12-01' - interval

'[DELTA]' day (3)
GROUP BY l_returnflag, l_linestatus
ORDER BY l_returnflag, l_linestatus

Q1

SIMD? Interpreter Overhead?
Vectorwise, Virtuoso, SQLserver cstore  vectorized execution

Hyper, Netteza, ParAccel  JIT query compilation
Kickfire, ParStream  hardware compilation (FPGA/GPU)

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

www.cwi.nl/~boncz/snb-challenge

CP5.2 Subquery Rewrite
SELECT sum(l_extendedprice) / 7.0 as avg_yearly
FROM lineitem, part
WHERE p_partkey = l_partkey
 and p_brand = '[BRAND]'
 and p_container = '[CONTAINER]'
 and l_quantity <(SELECT 0.2 * avg(l_quantity)
 FROM lineitem
 WHERE l_partkey = p_partkey)

This subquery can be extended with restrictions from
the outer query.

 SELECT 0.2 * avg(l_quantity)
 FROM lineitem
 WHERE l_partkey = p_partkey
 and p_brand = '[BRAND]'
 and p_container = '[CONTAINER]'

+ CP5.3 Overlap between Outer- and Subquery.

Q17

Hyper:
CP5.1+CP5.2+CP5.3

results in 500x faster
Q17

www.cwi.nl/~boncz/snb-challenge

Choke Point Wrap up
Choke-point based benchmark design

• What are Choke-points?

– examples from good-old TPC-H

• Graph benchmark Choke-Point, in-depth:
– Structural Correlation in Graphs
– and what we do about it in LDBC

www.cwi.nl/~boncz/snb-challenge

Graphalytics Choke Points

• Excessive network utilization
• Large graph memory footprint
• Poor Access Locality
• Skewed Execution Intensity

GRADES 2015: “Graphalytics: A Big Data Benchmark for
Graph-Processing Platforms”

www.cwi.nl/~boncz/snb-challenge

DATAGEN: social network generator

advanced generation of:
• network structure

– Power law distributions, small diameter

www.cwi.nl/~boncz/snb-challenge

Friendship Degree Distribution
• Based on “Anatomy of Facebook” blogpost (2013)
• Diameter increases logarithmically with scale factor

– New:
 function has been
 made pluggable

www.cwi.nl/~boncz/snb-challenge

DATAGEN: social network generator

advanced generation of:
• network structure

– Power law distributions, small diameter

• property values
– realistic, correlated value distributions

Data correlations between attributes

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Germany’ ‘Joachim’

SELECT personID from person

WHERE firstName = AND addressCountry = ‘Italy’ ‘Cesare’

 Query optimizers may underestimate or overestimate the result size of
conjunctive predicates

Anti-Correlation

Loew Prandelli Joachim Cesare Cesare Joachim

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = jn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = jn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations between attributes

‘SIGMOD’

SELECT COUNT(*)

FROM paper pa1 JOIN conferences cn1 ON pa1.journal = cn1.ID

 paper pa2 JOIN conferences cn2 ON pa2.journal = cn2.ID

WHERE pa1.author = pa2.author AND

 cn1.name = ‘VLDB’ AND cn2.name =

Data correlations over joins

‘Nature’

‘SIGMOD’

 A challenge to the optimizers to adjust estimated join hit ratio
 pa1.author = pa2.author

 depending on other predicates

 Correlated predicates are still a frontier area in database research

www.cwi.nl/~boncz/snb-challenge

Realistic Correlated Value Distributions
• Person.firstname correlates
 with Person.location

– Values taken from DBpedia

• Many other correlations
 and dependencies..

– e.g. university depends on location

• In forum discussions, people read DBpedia articles to each other

(= correlation between message text and discussion topic)
– Topic = DBpedia article title
– Text = one sentence of the article

Person.location
=<Germany>

Person.location
=<China>

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()
• a fixed set of values, e.g.,

 {“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”, .. }

 Probability density function F()
• steers how the generator chooses values
− cumulative distribution over dictionary entries determines which value to pick

• could be anything: uniform, binomial, geometric, etc…
− geometric (discrete exponential) seems to explain many natural phenomena

Generating Property Values

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()

 Probability density function F()

 Ranking Function R()
• Gives each value a unique rank between one and |D|
−determines which value gets which probability

• Depends on some parameters (parameterized function)
− value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

 How do data generators generate values? E.g. FirstName

 Value Dictionary D()
{“Andrea”,“Anna”,“Cesare”,“Camilla”,“Duc”,“Joachim”,“Leon”,“Or

 Probability density function F()
 geometric distribution

 Ranking Function R(gender,country,birthyear)
• gender, country, birthyear  correlation parameters

Generating Correlated Property Values

How to implement R()?

We need a table storing

|Gender| X |Country| X |BirthYear| X |D|

Solution:
- Just store the rank of the top-N values, not all|D|
- Assign the rank of the other dictionary values randomly

limited #combinations

Potentially
Many! 

Compact Correlated Property Value Generation
Using geometric distribution for function F()

Only store per country
top-10 ranking.

(other values are ranked
randomly)

 Main source of dictionary values from DBpedia (http://dbpedia.org)

Correlated Value Property in LDBC SNB

http://dbpedia.org/

www.cwi.nl/~boncz/snb-challenge

DATAGEN: social network generator

advanced generation of:
• network structure

– Power law distributions, small diameter

• property values
– realistic, correlated value distributions
– temporal correlations / “flash mobs”

• correlations between values and structure
– 2 correlation “dimensions”: location & interests

Correlated Edge Generation

P4

P5

Student
“Anna”

“University of
Leipzig”

“Germany”

“1990”

P1

“University
of Leipzig”

“Laura”

“1990”

<Britney
Spears>

<Britney
Spears>

P3

“University
of Leipzig”

“1990”

P2

“University of
Amsterdam”

“Netherlands”

Simple approach

P
4

P
5

Student

“Anna”

“University of
Leipzig”

“Germany”

“1990”

P
1

“University
of Leipzig”

“Laura”

“1990”

<Britney Spears>

<Britney Spears>

P
3

“University
of Leipzig”

“1990”

P
2

“University of
Amsterdam”

“Netherlands”

Danger: this is very expensive to compute on a large graph!
(quadratic, random access)

• Compute similarity of two nodes
based on their (correlated) properties.

• Use a probability density function
wrt to this similarity for connecting
nodes

connection
probability

highly similar  less similar

Our observation

P
4

P
5

Student
“Anna”

“University of
Leipzig”

“Germany”

“1990”

P
1

“University
of Leipzig”

“Laura”

“1990”

<Britney Spears>

<Britney
Spears>

P
3

“University
of Leipzig”

“1990”

P
2

“University of
Amsterdam”

“Netherlands”

Probability that two nodes are connected is skewed w.r.t the
similarity between the nodes (due to probability distr.)

connection
probability

highly similar  less similar

Window

Trick: disregard nodes with too large similarity distance
(only connect nodes in a similarity window)

MapReduce data generation:
one map pass per Correlation Dimension

TPCTC 2012: “S3G2: A Scalable Structure-correlated Social Graph Generator”

www.cwi.nl/~boncz/snb-challenge

DATAGEN: social network generator

advanced generation of:
• network structure

– Power law distributions, small diameter

• property values
– realistic, correlated value distributions
– temporal correlations / “flash mobs”

www.cwi.nl/~boncz/snb-challenge

Temporal Effects (Flash Mobs)

• Forum posts generation spikes in time for
certain topics:

www.cwi.nl/~boncz/snb-challenge

DATAGEN: Scaling
• Scale Factor (SF) is the size of the CSV input data in GB
• Some Virtuoso SQL stats at SF=30:

www.cwi.nl/~boncz/snb-challenge

DATAGEN: Graph Characteristics
Livejournal LFR3 (synthetic) LDBC DATAGEN

GRADES2014 “How community-like is the structure of synthetically generated
graphs” - Arnau Prat(DAMA-UPC); David Domínguez-Sal (Sparsity Technologies)

www.cwi.nl/~boncz/snb-challenge

Interactive Workload
MapReduce-base data generation
• Generate 3 years of network activity for a certain amount of persons

– 33 months of data  bulk load
– 3 months of data  insert queries

• Scalable (SF1000 in one hour on 10 small compute nodes)
– can also be used without a cluster (pseudo-distributed)

During data generation, we perform Parameter Curation to derive suitable

parameters for the complex-read-only query set

SNB Interactive Workload

www.cwi.nl/~boncz/snb-challenge

Choke-Point: shortest paths

• compute weights over a recursive forum traversal
– on the fly, or
– materialized, but then maintain them under updates

• compute shortest paths using these weights in the
friends graph

SNB Interactive Workload

www.cwi.nl/~boncz/snb-challenge

Choke-Point: outdegree correlation

• Travel is correlated with location
– People travel more often to nearby countries

• Outdegree after (countryX,countryY) selection varies a lot
– (Australia,NZ): high outdegree (“join hit ratio”)
– (Australia,Belgium): low outdegree  different query plan,
 or navigation strategy likely wins

www.cwi.nl/~boncz/snb-challenge

SNB Query Driver
• Window-based parallel query generation

– Problem: friends graph has complex dependencies (non-
partitionable). Could cause large checking overhead.

– Solution: Window based approach for checking
dependencies (Global Completion Time)

www.cwi.nl/~boncz/snb-challenge

Problem: Parameter Sensitivity

SNB Interactive Q5:

explores the 2-hop friend neighbourhood, of one start person

Observation: depending on the start person, there is a large runtime variance

www.cwi.nl/~boncz/snb-challenge

Parameter Curation
• Example: Q3

– Problem: value correlations cause very large variance
– Solution: data mine for stable parameter equivalence classes

TPCTC2014 “Parameter Curation for Benchmark
Queries” Andrey Gubichev (TUM) & Peter Boncz (CWI)

www.cwi.nl/~boncz/snb-challenge

Query Mix & Metric
Query Mix
• Insert queries (~10% of time):

 challenge: execute parallel but respect data dependencies in the graph
• Read-only Complex Queries (~50% of time)

 challenge: generate query parameters with stable query behavior
Parameter Curation to find “equivalence classes” in parameters

• Simple Read-only Queries (~40% of time)
– Retrieve Post / Retrieve Person Profile

Metric
• Acceleration Factor (AF) that can be sustained (+ AF/$ weighted by cost)

– with 99th percentile of query latency within maximal query time

www.cwi.nl/~boncz/snb-challenge

SNB Query Driver
• Dependency-aware parallel query generation

– Problem: friends graph is non-partitionable, but imposes
ordering constraints.

 Could cause large checking overhead, impeding driver
parallelism.

– Solution: Window-based checking approach for keeping driver
threads roughly synchronized on a global timestamp.

 Is helped by DATAGEN properties that ensure there is a minimal
latency between certain dependencies (e.g. entering the network
and making friends, or posting on a new friend’s forum). This
minimal latency provides synchronization headroom.

www.cwi.nl/~boncz/snb-challenge

Summary
• LDBC

– Graph and RDF benchmark council
– Choke-point driven benchmark design (user+system expert involvement)

• Social Network Benchmark
– Advanced social network generator

• skewed distributions, power laws, value/structure correlations, flash mobs

– 3 workloads: Interactive (focus of this paper), BI, Analytics
• Interactive Query Mix & Metrics
• Parallel Query Driver that respects dependencies efficiently
• Parameter Curation for stable results

7th LDBC Technical User Community meeting
November 9+10 2015, IBM TJ Watson (NJ)

www.cwi.nl/~boncz/snb-challenge

Assignment 1: Querying a Social Graph

www.cwi.nl/~boncz/snb-challenge

The Naïve Implementation
The “cruncher” program

Go through the persons P sequentially

• counting how many of the artists A2,A3,A4 are liked as the score

 for those with score>0:

– visit all persons F known to P.

 For each F:

• checks on equal location

• check whether F already likes A1

• check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

Naïve Query Implementation
• “cruncher”

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

48bytes
* 8.9M

4bytes
* 1.3B

results

www.cwi.nl/~boncz/snb-challenge

Improving Bad Access Patterns
• Minimize Random Memory Access

– Apply filters first. Less accesses is better.

• Denormalize the Schema
– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

• Trade Random Access For Sequential Access
– perform a 100K random key lookups in a large table
  put 100K keys in a hash table, then
 scan table and lookup keys in hash table

• Try to make the randomly accessed region smaller
– Remove unused data from the structure
– Apply data compression
– Cluster or Partition the data (improve locality) …hard for social graphs

• If the random lookups often fail to find a result
– Use a Bloom Filter

www.cwi.nl/~boncz/snb-challenge

Sequential Query Implementation
• “cruncher”

– Pass 1: for each person calculate score

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

48bytes
* 8.9M

4bytes
* 1.3B

score

www.cwi.nl/~boncz/snb-challenge

Sequential Query Implementation
• “cruncher”-2

– Pass 1: for each person calculate score
– Pass 2: for each friend, look for persons with score >1

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

48bytes
* 8.9M

4bytes
* 1.3B

score

results

www.cwi.nl/~boncz/snb-challenge

Sequential Query Implementation
• “cruncher”-2

– Pass 1: for each person calculate score
– Pass 2: for each friend, look for persons with score >1
– Pass 3: filter results on mutual (P,F)

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

48bytes
* 8.9M

4bytes
* 1.3B

score

results

www.cwi.nl/~boncz/snb-challenge

Improving Bad Access Patterns
• Minimize Random Memory Access

– Apply filters first. Less accesses is better.

• Denormalize the Schema
– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

• Trade Random Access For Sequential Access
– perform a 100K random key lookups in a large table
  put 100K keys in a hash table, then
 scan table and lookup keys in hash table

• Try to make the randomly accessed region smaller
– Remove unused data from the structure
– Apply data compression
– Cluster or Partition the data (improve locality) …hard for social graphs

• If the random lookups often fail to find a result
– Use a Bloom Filter

www.cwi.nl/~boncz/snb-challenge

The Naïve Implementation
The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
• count how many of the artists A2,A3,A4 are liked as the score
 for those with score>0 and who do not like A1:

– visit all persons F known to P.

 For each F:

• checks on equal location
• check whether F already likes A1
• check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

Reducing The Problem
• knows.bin

– is big (larger than RAM)
– is accessed randomly

• random access unavoidable (denormalization too costly)
Ideas:
• Only keep mutual-knows

– Idea: remove non-mutual knows in reorg
• Advantage: queries do not need to check (only reorg), queries get faster
• Problem: 99% of knows in this dataset is mutual (no reduction)
• Problem: finding non-mutual knows is costly (requires full sort on person-id)

www.cwi.nl/~boncz/snb-challenge

Reducing The Problem
• knows.bin

– is big (larger than RAM)
– is accessed randomly

• random access unavoidable (denormalization too costly)
Ideas:
• Only keep mutual-knows
• Only keep local-knows

– Idea: remove knows where persons live in different cities (50x less: 150  3 friends)
• Reorg: one pass with random access in a ‘location’ array (2b * 8.9M)

– Idea: remove persons with zero friends left-over (halves it)
• 8.9M  5M persons, 8.9*23M  5*23M interests

– Idea: remove non-mutual local friends after removing the above (smaller knows!)
• Can be done with random access

– Reorg: write a localknows.tmp file, mmap it, use it i.s.o. knows.bin to filter
– localknows.tmp = 5*3M=15M knows = 60MB random access

www.cwi.nl/~boncz/snb-challenge

Reduced Random Access Solution
• Hannes solution

– Most time spent in interests checking
 Idea: enhance using SSE instructions?

 8 comparisons of 16bit integers per instruction..

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

48bytes
* 8.9M

4bytes
* 1.3B

4bytes
* 15M

person.bin

16bytes
* 5M

in
te

re
st

s.b
in

2bytes
* 115M

www.cwi.nl/~boncz/snb-challenge

The Naïve Implementation
The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
• count how many of the artists A2,A3,A4 are liked as the score
 for those with score>0 and who do not like A1:

– visit all persons F known to P.

 For each F:

• checks on equal location
• check whether F already likes A1
• check whether F also knows P
if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

Idea: using Inverted Files
The search engine data structure
• For each term (keyword), a list of document IDs

Here: for each Tag (e.g. A1,A2,A3,A4) a list of
 persons

in
te

re
st

s.b
in

2bytes
* 115M

A2

A3

A4

www.cwi.nl/~boncz/snb-challenge

Inverted File on Tags

4bytes
* 15M

person.bin

16bytes
* 5M

po
st

in
gs

.b
in

4bytes
* 115M

tags postings
mutual_local_knows

www.cwi.nl/~boncz/snb-challenge

Inverted File on Tags

person.bin

16bytes
* 5M

po
st

in
gs

.b
in

4bytes
* 115M

A2

A3

A2

A4

A1

bitmap

Merge
lists

4bytes
* 15M

0.5MB tags postings
mutual_local_knows

www.cwi.nl/~boncz/snb-challenge

Inverted File Cruncher Implementation
Create a A1-bitmap (1bit for each person) based on the inverted list of A1
 0.5MB bitmap (even fits CPU cache)

Merge inverted lists A2,A3,A4 computing a score and for each person P

• for those with score>0, in birthday range and who are not in A1-bitmap:

– visit all persons F known to P.

 For each F:

• check whether F is set in A1-bitmap
if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

Idea: use Table Partitioning
Goals:
• make birthdate comparisons faster
• remove birthdate column (no longer needed, implicit)
• Increase locality in person.bin and knows.bin!

partition person.bin by birthdate
• 366 partitions (one for each day)
Problem:
• friends would point across all 366 tables

www.cwi.nl/~boncz/snb-challenge

4bytes
* 15M

Inverted File on Tags

person.bin

16bytes
* 5M

po
st

in
gs

.b
in

4bytes
* 115M

tags postings
mutual_local_knows

person.bin

03 jan

30 dec

www.cwi.nl/~boncz/snb-challenge

Inverted Files Revisted
The birthdate clustering gives us for a birthdate range a person range
• Say people with bday in February are at positions between [4,50]
• Idea: binary search in the postings lists for artists (A2,A3,A4)

A1

A2

A3

www.cwi.nl/~boncz/snb-challenge

Inverted File on Tags

person.bin

16bytes
* 5M

po
st

in
gs

.b
in

4bytes
* 115M

A2

A3

A2

A4

A1

bitmap february

bi
na

ry
 se

ar
ch

 o
n

fe
br

ua
ry

 ra
ng

e

Merge
lists

4bytes
* 15M

0.5MB tags postings
mutual_local_knows

www.cwi.nl/~boncz/snb-challenge

Clustered + Inverted File Cruncher
“Peter approach”

Create a A1-bitmap (1bit for each person) based on the inverted list of A1
 0.5MB bitmap (even fits CPU cache)

Binary search (restrict on birthdate range) and merge inverted lists
A2,A3,A4 computing a score and for each person P

• for those with score>0, who are not in A1-bitmap:

– visit all persons F known to P.

 For each F:

• check whether F is set in A1-bitmap
if all this succeeds (score,P,F) is added to a result table.

	Benchmarking �Graph Data Management Systems�EDBT Summer School 2015��Peter Boncz�boncz@cwi.nl
	The LDBC�Social Network Benchmark�Interactive Workload�
	 Social Network Benchmark: schema
	Database Benchmark Design
	Stimulating Technical Progress
	Benchmark Design with Choke Points
	Example: TPC-H choke points
	CP1.4 Dependent GroupBy Keys
	CP1.4 Dependent GroupBy Keys
	CP1.4 Dependent GroupBy Keys
	CP2.2 Sparse Joins
	CP2.2 Sparse Joins
	CP4.1 Raw Expression Arithmetic
	CP5.2 Subquery Rewrite
	Choke Point Wrap up
	Graphalytics Choke Points
	DATAGEN: social network generator
	Friendship Degree Distribution
	DATAGEN: social network generator
	Data correlations between attributes
	Data correlations between attributes
	Data correlations over joins
	Realistic Correlated Value Distributions
	Generating Property Values
	Generating Correlated Property Values
	Generating Correlated Property Values
	Compact Correlated Property Value Generation
	Correlated Value Property in LDBC SNB
	DATAGEN: social network generator
	Correlated Edge Generation
	Simple approach
	Our observation
	MapReduce data generation:�one map pass per Correlation Dimension
	DATAGEN: social network generator
	Temporal Effects (Flash Mobs)
	DATAGEN: Scaling
	DATAGEN: Graph Characteristics
	Interactive Workload
	Slide Number 40
	Choke-Point: shortest paths
	Slide Number 42
	Choke-Point: outdegree correlation
	SNB Query Driver
	Problem: Parameter Sensitivity
	Parameter Curation
	Query Mix & Metric
	SNB Query Driver
	Summary
	Assignment 1: Querying a Social Graph
	The Naïve Implementation
	Naïve Query Implementation
	Improving Bad Access Patterns
	Sequential Query Implementation
	Sequential Query Implementation
	Sequential Query Implementation
	Improving Bad Access Patterns
	The Naïve Implementation
	Reducing The Problem
	Reducing The Problem
	Reduced Random Access Solution
	The Naïve Implementation
	Idea: using Inverted Files
	Inverted File on Tags
	Inverted File on Tags
	Inverted File Cruncher Implementation
	Idea: use Table Partitioning
	Inverted File on Tags
	Inverted Files Revisted
	Inverted File on Tags
	Clustered + Inverted File Cruncher

