| CHL_ _
Benchmarking

Graph Data Management Systems
EDBT Summer School 2015

Peter Boncz
boncz@cwi.nl

1. LDBC Social Network Benchmark
Tuesday: LDBC & SNB introduction
Friday: SNB in depth
2. SNB Programming Challenge www.cwi.nl/~boncz/snb-challenge

Tuesday: whatitis about & hardware properties & tips
Friday: the solution space & winners

The LDBC

Social Network Benchmark
Interactive Workload

The graph & RDF
L D B C benchmark reference
http://www.ldbcouncil.org

Orri Erling Alex Averbuch Josep Larriba-Pe
OpenLink Software, UK Neo Technology, Sweden Sparsity Technologies, Spain
oerling@openlinksw.com alex.averbuch@ larri@sparsity-
neotechnology.com technologies.com
Norbert Martinez
Hassan Chafi Andrey Gubichev Arnau Prat
Oracle Labs, USA TU Munich, Germany Universitat Politécnica de
hassan.chafi@oracle.com gubichev@in.tum.de Catalunya, Spain
Thomas Neumann, Linnea Passing aprat@ac.upc.edu
Minh-Duc Pham Peter Boncz J2vid Dominguez
VU University Amsterdam, CWI, Amsterdam, The | Xavier Sanchez
The Netherlands Netherlands

m.d.pham@vu.nl
Renzo Angles (U. Talca)

SEVENTH FRAMEWORK SNB “Task Force” acknowledgements

PROGRAMME

Centrum Wiskunde & Informatica

www.cwi.nl/~boncz/snb-challenge

Social Network Benchmark: schema

follows
Tag hasType
0.+ hasinterest 0.+ | T name: string _0_‘;-_
Person — 4
o.* 0.*
knows | * CreationDate: datetime hasMggierator v 0.*

+ firstName: string 0.1 orum

+ lastName: string " -~ - hasTag

+ gender: string + title: _strlng) 0.+P 0.*
Lt birthday: date + creationDate: datetime

+ email: string[1..*] S~ 0.+ TagClass

+ speaks: string[1.*]

isLocated! + browserlsed: string hasMember 1 + name: string 0.+
IsLoc, n i . i
eogrer” {+ locationlP: string + joinDate: datetime
o.* 0.*
containert isSubclassOf
0.*
hasTag
1>
[
I
Post
likes 0.+ Comment
- 0..* | + content: string[0..1]
+ creationDate: datetime + language: string[0..1] + content: string
+ imageFile: string[0..1]
workAt - , s 0.*
study At r
v + workFrom: int hasCreator I' 7
+ classYear: int 1 .«I
1
i,
0.+ v 5] replyOf
<<interface>>
University Company 0.* Message
+ creationDate: datetime
0.* + browserlsed: string
0.* + locationIP: string 1
isLocatedin isLocatedin K
isLocated| ‘Organisation
+ name: string
1 1 1
City isPartOf Country isPartOf Continent
L 4 1 T+ ¥ 1

LDBC®

Place

+ name: string

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Database Benchmark Design

Desirable properties:

* Relevant. =» “Choke Points”
* Representative.

e Understandable.

. 4
e Economical. (3
* Acce pted y Jim Gray (1991) The Benchmark Handbook for Database
e Scalable. and Transaction Processing Systems
(
Po.rtable. Dina Bitton, David J. DeWitt, Carolyn Turbyfill (1993)

* Fair. Benchmarking Database Systems: A Systematic Approach
e Evolvable.
e Publi Multiple TPCTC papers, e.g.

ublic. Karl Huppler (2009) The Art of Building a Good Benchmark

€)

LDBC®

m o www.cwi.nl/~boncz/snb-challenge
Stimulating Technical Progress

* An aspect of ‘Relevant’

e The benchmark metric
— depends on,
— or, rewards:
solving certain
technical challenges

SpaceShipOne

Q
» \O
R/2¢ FOUNDA

(not commonly solved by technology at
R benchmark design time)
LDBC

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

Benchmark Desigh with Choke Points

Choke-Point = well-chosen difficulty in the workload
e “difficulties in the workloads”

— arise from Data (distribs)+Query+Workload

— there may be different technical solutions to
address the choke point
e or, there may not yet exist optimizations
=>»lot’s of research opportunities!

I_DBC.® = TPCTC 2013: “TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark”

mmmde & Informatica www.cwi.nl/~boncz/snb-challenge
Example: TPC-H choke points

 Even though it was designed without specific choke
point analysis

e TPC-H contained a lot of interesting challenges
— many more than Star Schema Benchmark

— considerably more than Xmark (XML DB benchmark)
— not sure about TPC-DS (yet)

I_DBC.® = TPCTC 2013: “TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark”

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

CP1.4 Dependent GroupBy Keys

SELECT c_custkey, c¢ _name, c_acctbal,
sum(l_extendedprice * (1 - I _discount)) as revenue,
n_name, c_address, c¢_phone, c_comment

-ROM customer, orders, Hlineitem, nation

WHERE c _custkey = o custkey and 1 orderkey =
0_orderkey

and o _orderdate >= date "[DATE]"

and o_orderdate < date "[DATE]" + interval "3"
month

and 1 _returnflag = "R“ and c_nhationkey =
n_nationkey

GROUP BY
c_custkey, c _name, c_acctbal, c¢ phone, n_name,
c_address, c_comment

ORDER BY revenue DESC

LDBC'® = TPCTC 2013: “TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark”

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

CP1.4 Dependent GroupBy Keys

SELECT c_custkey, c¢ _name, c_acctbal,
sum(l_extendedprice * (1 - I _discount)) as revenue,
n_name, c_address, c¢_phone, c_comment

-ROM customer, orders, Hlineitem, nation

WHERE c _custkey = o custkey and 1 orderkey =
0_orderkey

and o _orderdate >= date "[DATE]"

and o_orderdate < date "[DATE]" + interval "3"
month

and 1 _returnflag = "R“ and c_nhationkey =
n_nationkey

GROUP BY
c_custkey, c name, c_acctbal, c_phone,
c_address, c_comment, n_name

ORDER BY revenue DESC

I_DBC.® = TPCTC 2013: “TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark”

W Exasol: www.cwi.nl/~boncz/snb-challenge
nnnnnnnnnnnnn — “foreign key check” phase after load

CP1.4 Dependent GroupBy Keys

 Functional dependencies:

Cc_custkey = c name, c_acctbal, c phone,
c_address, c_comment, c_nationkey = n_name

* Group-by hash table should exclude the
colored attrs =» less CPU+ mem footprint

 in TPC-H, one can choose to declare
primary and foreign keys (all or nothing)
— this optimization requires declared keys
— Key checking slows down RF (insert/delete)

LDBC® = TPCTC 2013: “TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark”

mm nnnnnnnnnnnnnnn . www.cwi.nl/~boncz/snb-challenge
CP2.2 Sparse Joins

* Foreign key (N:1) joins towards a relation with
a selection condition

— Most tuples will *not™ find a match

— Probing (index, hash) is the most expensive
activity in TPC-H

e Can we do better?

— Bloom filters!

I_DBC.® = TPCTC 2013: “TPC-H Analyzed: Hidden Messages and

Lessons Learned from an Influential Benchmark”

m T www.cwi.nl/~boncz/snb-challenge
CP2.2 Sparse Joins

with

e Foreign key (N:1) joins to
a.ro!ection condition

probed: 200M tuples ' HashJoin01 @ 10 ,
result: 8M tuples tlmE—S 053,398, 2!9 (8. 30%) (U' 06% in bld)

=» 1:25 join hit ratio i

buuld l, 634 964 (D%
est_cost=4, 644 284 160 est = 1/1 x

949,980

Vectorwise:
TPC-H joins typically accelerate 4x
Queries accelerate 2x

2G cycles 29M probes =» cost would have been 14G cycles ~= 7 sec
#PRDEI.Savg rdtsc 307565 calls vht lookup key=()} "vht lockup key=" in con

#PEROH T.8avg rdtsc 307534 calls sel bitfiltercheck uchr col slng val sint
LDE 1.5G cycles 200M probes =2 85% eliminated

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

CP4.1 Raw Expression Arithmetic

How fast is a query processor in computing, e.g.
 Numerical Arithmetic

* Aggregates

e String Matching

SELECT
I _returnflag, 1 _linestatus, count(®),
sum(l_quantity),sum(l_extendedprice),
sum(l_extendedprice*(1-1_discount)),
sum(l_extendedprice*(1-1_discount)*(1+1_tax)),
avg(l_quantity),avg(l_extendedprice),avg(l_discount),
FROM Bino=#t--

SIMD? Interpreter Overhead?
Vectorwise, Virtuoso, SQLserver cstore =» vectorized execution
Hyper, Netteza, ParAccel = JIT query compilation
Kickfire, ParStream =2 hardware compilation (FPGA/GPU)

TPCTC 2013: “TPC-H Analyzed: Hidden Messages and
Lessons Learned from an Influential Benchmark”

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

CP5.2 Subquery Rewrite

SELECT sum(l_extendedprice) /7 7.0 as avg_yearly
~ROM lineitem, part
WHERE p_ partkey = 1 partkey
and p_brand = "[BRAND]"
and p_container = "[CONTAINER]"
and 1 _quantity <(SELECT 0.2 * avg(l quantity)
FROM Tineitem
WHERE 1 partkey = p_ partkey)

This subquery can be extended with restrictions from
the outer query.

SEIECT 0.2 * avg(l _quantity)

Hyper: hinertem
CP5.1+CP5.2+CP5.3 vartkey = p_partkey
results in 500x faster orand = "[BRAND]"
Q17 p_container = "[CONTAINER]"

+ Lro.o uveniap vecween Outer- and Subquery.

LDBC®

mwukunde&lnformatica www.cwi.nl/~boncz/snb-challenge
Choke Point Wrap up

Choke-point based benchmark design

 What are Choke-points?
— examples from good-old TPC-H

 Graph benchmark Choke-Point, in-depth:
— Structural Correlation in Graphs
— and what we do about it in LDBC

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

Graphalytics Choke Points

e Excessive network utilization

e Large graph memory footprint
e Poor Access Locality

e Skewed Execution Intensity

LDBC.® === GRADES 2015: “Graphalytics: A Big Data Benchmark for

Graph-Processing Platforms”

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

DATAGEN: social network generator

advanced generation of:

e network structure

— Power law distributions, small diameter

LDBC®

mwukunde&lnformatica www.cwi.nl/~boncz/snb-challenge
Friendship Degree Distribution

e Based on “Anatomy of Facebook” blogpost (2013)

 Diameter increases logarithmically with scale factor
— New:
function has been
made pluggable

max

| | | |
] 20

MJ

chn

=]

on

- =
3

percentile

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

DATAGEN: social network generator

advanced generation of:

e network structure

— Power law distributions, small diameter

e property values

— realistic, correlated value distributions

LDBC®

Data correlations between attributes

SELECT personlD from person
WHERE firstName = <Joachim” AND addressCountry = “Germany’

SELECT personlD from person Anti-Correlation
WHERE firstName = <Cesare” AND addressCountry = “ltaly”’

* Query optimizers may underestimate or overestimate the result size of
conjunctive predicates

Jdaekine Loew fJoachienPrandelli

Data correlations between attributes

SELECT COUNT(*)
FROM paper pal JOIN conferences cnl ON pal.journal = jnl.ID
paper pa2 JOIN conferences cn2 ON paZ2.journal jn2.1D
WHERE pal.author = pa2.author AND
cnl.name = “VLDB> AND cn2.name = ‘SIGMOD’

Data correlations over joins

SELECT COUNT(™)
‘FROM paper pal JOIN conferences cnl ON pal.journal = cnl.ID
paper pa2 JOIN conferences cn2 ON paZ2.journal = cn2.1D

WHERE pal.author = pa2.author AND
cnl.name = “VLDB” AND cn2.name = ‘Sl&&ZMED’

= A challenge to the optimizers to adjust estimated join hit ratio
pal.author = pa2.author

depending on other predicates

Correlated predicates are still a frontier area in database research

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Realistic Correlated Value Distributions

e Person.firstname correlates Person.location Person.location
_ _ =<Germany> =<China>

W|th Person-locat|0n Name Number Name | Number

— Values taken from DBpedia Karl 215 Yang | 961

Hans 190 Chen 029

Wolfgang 174 Wei 88T

e Many other correlations Fritz e Lei 59

. Rudolf 159 Jun (it

and dependencies.. Walter 150 Jie 77

. . . Franz 115 Li 562

e.g. university depends on location - 109 T e

Otto 99 Lin 456

Wilhelm 74 Peng 448

* |nforum discussions, people read DBpedia articles to each other
(= correlation between message text and discussion topic)
— Topic = DBpedia article title
— Text = one sentence of the article

LDBC®

Generating Property Values

= How do data generators generate values? E.g. FirstName

= Value Dictionary D()

* a fixed set of values, e.g.,

{“Andrea’,“Anna”,*“Cesare”,“Camilla’,“Duc”,Joachim”, .. }

= Probability density function F()
* steers how the generator chooses values
— cumulative distribution over dictionary entries determines which value to pick

¢ could be anything: uniform, binomial, geometric, etc...

— geometric (discrete exponential) seems to explain many natural phenomena

Generating Correlated Property Values

= How do data generators generate values? E.g. FirstName
= Value Dictionary D()
= Probability density function F()

= Ranking Function R()
* Gives each value a unique rank between one and |D|
—determines which value gets which probability

* Depends on some parameters (parameterized function)

— value frequency distribution becomes correlated by the parameters or R()

Generating Correlated Property Values

= How do data generators generate values? E.g. FirstName

= Value Dictiom})/ H . I R ’ \
{“Andrea”, ow to implement R()? lo
- We need a table storin
* Probability d limited #combinations oring
geometric d

= Ranking Function R(gender,country, Potentially

. . !
* gender, country, birthyear = correlation parameters Many! ®

Solution:
- Just store the rank of the values, not all

- Assign the rank of the other dictionary values randomly

Compact Coyrelated Property Value Generation

Using geometric distribution for function F()

| T
randomly ranked —

. ranked from table -
Only store per country
top-10 ranking.

(other values are ranked

randomly) |
A £ Frangesco
40 50
I
Erllgs?ssgr?dro R[rmale Italy,2010]= randomly ranked —
| | Andrea <Francesco, Alessandro, Andrea, ranked from table —— _
Lk 0 Lorenzo, Matteo, Mattia, Gabriele,
B 0.08 ' ' ' ' Ly Riccardo, Davide, Leonardo> -
2 06 HilllH]
< SERRERRERRER
g. L L
0.04 {4 11111]!1]!]Leonardd =
0.02 Rttty -
SRERIRRERR AR LR =t
g Liiliiiitiitiniiiiig | Lucas Ben
0 10 20 30 40 50

rank in dictionary

Correlated Value Property in LDBC SNB

= Main source of dictionary values from DBpedia (

4 person.location, typical naomes
| person.gender) person.interests {popular artist)
person.location person.last Name typical naomes
person.university {nearby universities)
PETSOI. COMPALLY {in country)
person.langunages {spoken in country)
person. ansuape person.forum.messare.languape speaks

person.interests person.forum.post.topic
post. topic post.text {DBpedia article lines)
post.comment.text {DBpedia article lines)
person.employer person.emal Deompany, Quniversity
(friendship.userldl, friendship.terminator (=one of the two)
friendship.userld2)
message, photoLocation |message.latitude {matches location)
message longitude {matches location)
friendship.requestDate |friendship.approveDate (=)
friendship.deniedDate (=)
person.birthDate person.createdDate (=)
person.createdDate person.forum.message. created Date (=)
person.forum.createdDate (=)
forum.createdDate message. photoTime (=)
forum.post.created Date (=)
forum.groupmembership.joined Date (=)
message.created Date message.comment.createdDate (=)

http://dbpedia.org/

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

DATAGEN: social network generator

advanced generation of:

e network structure

— Power law distributions, small diameter

e property values
— realistic, correlated value distributions
— temporal correlations / “flash mobs”

e correlations between values and structure

— 2 correlation “dimensions”: location & interests

LDBC®

Correlated Edge Generation

«1990” J <Britney
P4 L\\\" Spears>
Student
“Un|\.[el".SI1’Z’)’ Vs 4 (007 “Anna”’
of Leipzig > r,'d‘@
AN
<firstnam <liveAtZ, «Germany”
“Laura”
<b;
rthyear>
Y‘\ €€ I 990”
. (¢’
<Britney %;
>
Spears ‘VQ
P2 “University of

Leipzig”

“University

“Uni . f
of Leipzig” niversity o

“1990” Amsterdam”’

“Netherlands”

Simple approach

<D .24 [<

“1990”

“University
of Leipzig”

<Britney Spears>

e Compute similarity of two nodes

e Use a probability density function

based on their (correlated) properties.

wrt to this similarity for connecting
nodes

connection
probability

Our observation

< <Britney
W NS
“1990”
Trick: disregard nodes with too large similarity distance
“University (only connect nodes in a similarity window)
of Leipzig”

connection
probability

<Britney Spears>

highly similar = less similar

‘- \ \B Y, |
Probability that two nodes are connected is skewed w.r.t the
similarity between the nodes (due to probability distr.)

MapReduce data generation: E
one map pass per Correlation Dimension

1.0 4

propbability
o
¥y

Person|[Location, University, Studied year]
P.INL, UVA, 2000] P[NL, UVA, 1997]
P..[NL, UVA, 2000] Ps[NL, VU, 2000]
PINL, UVA, 2000] Py, [NL, VU, 1998]
P, [NL, UVA, 1999]

‘|‘||II|||
P

0.1
e P;|Pas| Ps P1y b Pys|Ps|Pgy |°°*
Sensns Person the friendships will N

be generated for

sliding window

Persons sorted by 1% correlation dimension

TPCTC 2012: “S3G2:A Scalable Structure-correlated Social Graph Generator”

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

DATAGEN: social network generator

advanced generation of:

e network structure

— Power law distributions, small diameter

e property values
— realistic, correlated value distributions
— temporal correlations / “flash mobs”

LDBC®

Temporal Effects (Flash I\/Iobs)

 Forum posts generation spikes in time for
certain topics:

=
E)
u:l E Ir_:l_ -
o
EvantGeneratlnn
uniform
:’ auant-drwen
|:| —
I | | |
Feb'10 Feb'11 Feb'1Z Feb'13
Timeline

LDBC®

E Centrum Wiskunde & Informatica

www.cwi.nl/~boncz/snb-challenge

DATAGEN: Scaling

e Scale Factor (SF) is the size of the CSV input data in GB
e Some Virtuoso SQL stats at SF=30:

SFs Number of entities (x 1000000
Edges | Persons | Friends | Messages|| Forums
30 655.4 0.18 14.2 1.8
100 2154.9 0.50 46.6 5.0
300 6292.5 1.25| 136.2 12.6
1000 2930.7§ 20704.6 3.60| 447.2 36.1
Table Size (MB) | Largest Index (MB)
post 76815 ps_content (41697)
likes 23645 |_creationdate (11308)
forum_person | 9343 fp_creationdate (5957)

LDBC®

mmm e 8 Informatica www.cwi.nl/~boncz/snb-challenge
DATAGEN: Graph Characteristics

Livejournal LFR3 (synthetic) LDBC DATAGEN
3 3 ‘ ‘| ‘I' ‘I“ 3 P
(a) Clustering Coefficient (b) TPR (a) Clustering Coefficient (b) TPR (a) Clustering Coefficient (b) TPR
i i i 3
000 Lllll oot oot b
o o . o 2 [TE TE D) E] [E] C] o [[X 1 £ E] E] g3

(C] Brldge Ratio (d) Diameter (c) Bridges Ratio {d) Diameter (C) Bridges Ratio (l‘.‘l) Diameter
5: : mUI : il : :
oz o4 s 10 o -) || | -) o oo [¥] X [EC) 1 o

(e) Conductance (f) log10(Size) e) Conductance () logl0(Size) (e) Conductance (f) logl0(Size)

GRADES2014 “How community-like is the structure of synthetically generated
graphs” - Arnau Prat(DAMA-UPC); David Dominguez-Sal (Sparsity Technologies)

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Interactive Workload

MapReduce-base data generation

* Generate 3 years of network activity for a certain amount of persons
— 33 months of data = bulk load
— 3 months of data = insert queries

e Scalable (SF1000 in one hour on 10 small compute nodes)

— can also be used without a cluster (pseudo-distributed)

During data generation, we perform Parameter Curation to derive suitable
parameters for the complex-read-only query set

LDBC®

E Centrum Wiskunde & Informatica

Q1. Erxtract description of friends with a given name Given
a person’s firstName, return up to 20 people with the same first
name, sorted by increasing distance (max 3) from a given person,
and for people within the same distance sorted by last name.
Results should include the list of workplaces and places of study.

Q2. Find the newest 20 posts and comments from your friends.
(Given a start Person, find (most recent) Posts and Comments
from all of that Person’s friends, that were created before (and
including) a given Date. Return the top 20 Posts/Comments, and
the Person that created each of them. Sort results descending by
creation date, and then ascending by Post identifier.

Q3. Friends within 2 steps that have recently traveled to coun-
tries X and Y. Find friends and friends of friends of a given Per-
son who have made a post or a comment in the foreign CountryX
and CountryY within a specified period of DurationInDays after
a startDate. Heturn top 20 Persons, sorted descending by total
number of posts.

Q4. New Topics. Given a start Person, find the top 10 most
popular Tags (by total number of posts with the tag) that are
attached to Posts that were created by that Person's friends. Only
include Tags that were attached to Posts created within a given
time interval, and that were never attached to Posts created
before this interval.

Q5. New groups. Given a start Person, find the top 20 Fo-
rums which that Person’s friends and friends of friends became
members of after a given Date. Sort results descending by the
number of Posts in each Forum that were created by any of these
Persons.

Q6. Tag co-osccurrence. Given a start Person and some Tag,
find the other Tags that occur together with this Tag on Posts
that were created by start Person’s friends and friends of friends.
Return top 10 Tags, sorted descending by the count of Posts that
were created by these Persons, which contain both this Tag and
the given Tag.

Q7. Recent likes. For the specified Person get the most recent
likes of any of the person’s posts, and the latency between the
corresponding post and the like. Flag Likes from outside the
direct connections. Return top 20 Likes, ordered descending by
creation date of the like.

SNB Interactive Workload

Q7. Recent likes. For the specified Person get the most recent
likes of any of the person’s posts, and the latency between the
corresponding post and the like. Flag Likes from outside the
direct connections. Return top 20 Likes, ordered descending by
creation date of the like.

Q8. Most recent replies. This query retrieves the 20 most
recent reply comments to all the posts and comments of Person,
ordered descending by creation date.

Q8. Latest Posts. Find the most recent 20 posts and comments
from all friends, or friends-of-friends of Person, but created before
a Date. Heturn posts, their creators and creation dates, sort
descending by creation date.

Q10. Friend recommendation. Find a friend of a friend who
posts much about the interests of Person and little about topics
that are not in the interests of the user. The search is restricted
by the candidate’s horoscope3ign. Returns 10 Persons for whom
the difference between the total number of their posts about the
interests of the specified user and the total number of their posts
that are not in the interests of the user, is as large as possible.
Sort the result descending by this difference.

Q11. Job referral. Find a friend of the specified Person, or a
friend of her friend (excluding the specified perscn), who has long
worked in a company in a specified Country. Sort ascending by
start date, and then ascending by person identifier. Top 10 result
should be shown.

Q12. Expert Search. Find friends of a Person who have replied
the most to posts with a tag in a given TagCategory. Count the
number of these reply Comments, and collect the Tags that were
attached to the Posts they replied to. Return top 20 persons,
sorted descending by number of replies.

Q13. Single shortest path. Given PersonX and PersonY | find
the shortest path between them in the subgraph induced by the

Ql4. Weighted paths. Given Farsnnl and PersonY , find al
weighted paths of the shortest length between them in the sub

graph induced by the Knows relationship. The weight of the pat
takes into consideration amount of Posts/Comments exchanged.

w Wiskunde & Informatica www.cwi.nl/~boncz/snb-challenge
Choke-Point: shortest paths

Q14. Weighted paths. Given PersonX and PersonY , find all
weighted paths of the shortest length between them in the sub-
graph induced by the Knows relationship. The weight of the path
takes into consideration amount of Posts/Comments exchanged.

e compute weights over a recursive forum traversal
— on the fly, or
— materialized, but then maintain them under updates

* compute shortest paths using these weights in the
friends graph

LDBC®

E Centrum Wiskunde & Informatica

Q1. Erxtract description of friends with a given name Given
a person’s firstName, return up to 20 people with the same first
name, sorted by increasing distance (max 3) from a given person,
and for people within the same distance sorted by last name.
Results should include the list of workplaces and places of study.

Q2. Find the newest 20 posts and comments from your friends.
(Given a start Person, find (most recent) Posts and Comments
from all of that Person’s friends, that were created before (and
including) a given Date. Return the top 20 Posts/Comments, and
the Person that created each of them. Sort results descending by

Q3. Friends uwithin 2 steps that have recently traveled to coun-
tries X and Y. Find friends and friends of friends of a given Per-

son who have made a post or a comment in the foreign CountryX
and CountryY within a specified period of DurationInDays after
a startDate. Heturn top 20 Persons, sorted descending by total

Ll £ Ll LK J=a

Qs Tl =L el S0,] C ATl
popular Tags (by total number of posts with the tag) that are
attached to Posts that were created by that Person’s friends. Only
include Tags that were attached to Posts created within a given
time interval, and that were never attached to Posts created
betore this interval.

Q5. New groups. Given a start Person, find the top 20 Fo-
rums which that Person’s friends and friends of friends became
members of after a given Date. Sort results descending by the
number of Posts in each Forum that were created by any of these
Persons.

Q6. Tag co-osccurrence. Given a start Person and some Tag,
find the other Tags that occur together with this Tag on Posts
that were created by start Person’s friends and friends of friends.
Return top 10 Tags, sorted descending by the count of Posts that
were created by these Persons, which contain both this Tag and
the given Tag.

Q7. Recent likes. For the specified Person get the most recent
likes of any of the person’s posts, and the latency between the
corresponding post and the like. Flag Likes from outside the
direct connections. Return top 20 Likes, ordered descending by
creation date of the like.

SNB Interactive Workload

Q7. Recent likes. For the specified Person get the most recent
likes of any of the person’s posts, and the latency between the
corresponding post and the like. Flag Likes from outside the
direct connections. Return top 20 Likes, ordered descending by
creation date of the like.

Q8. Most recent replies. This query retrieves the 20 most
recent reply comments to all the posts and comments of Person,
ordered descending by creation date.

Q8. Latest Posts. Find the most recent 20 posts and comments
from all friends, or friends-of-friend=s of Person, but created before
a Date. Heturn posts, their creators and creation dates, sort
descending by creation date.

Q10. Friend recommendation. Find a friend of a friend who
posts much about the interests of Person and little about topics
that are not in the interests of the user. The search is restricted
by the candidate’s horoscope3ign. Returns 10 Persons for whom
the difference between the total number of their posts about the
interests of the specified user and the total number of their posts
that are not in the interests of the user, is as large as possible.
Sort the result descending by this difference.

Q11. Job referral. Find a friend of the specified Person, or a
friend of her friend (excluding the specified perscn), who has long
worked in a company in a specified Country. Sort ascending by
start date, and then ascending by person identifier. Top 10 result
should be shown.

Q12. Expert Search. Find friends of a Person who have replied
the most to posts with a tag in a given TagCategory. Count the
number of these reply Comments, and collect the Tags that were
attached to the Posts they replied to. Return top 20 persons,
sorted descending by number of replies.

Q13. Single shortest path. Given PersonX and PersonY | find
the shortest path between them in the subgraph induced by the

Ql4. Weighted paths. Given FBrS{mI and PersonY , find al
weighted paths of the shortest length between them in the sub

graph induced by the Knows relationship. The weight of the pat
takes into consideration amount of Posts/Comments exchanged.

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica
|

Choke-Point: outdegree correlation

Q3. Friends within 2 steps that recently traveled to countries X
and Y. Find top 20 friends and friends of friends of a given Person
who have made a post or a comment in the foreign CountryX
and CountryY within a specified period of DurationInDays after
a startDate. Sorted results descending by total number of posts.

* Travel is correlated with location
— People travel more often to nearby countries
e Qutdegree after (countryx,countryy) selection varies a lot
— (Australia,NZ): high outdegree (“join hit ratio”)
— (Australia,Belgium): low outdegree €= different query plan,
or navigation strategy likely wins

LDBC®

m T www.cwi.nl/~boncz/snb-challenge
SNB Query Driver

 Window-based parallel query generation

— Problem: friends graph has complex dependencies (non-
partitionable). Could cause large checking overhead.

— Solution: Window based approach for checking
dependencies (Global Completion Time)

Thread 1 GCT: 90 Thread 2
GC?-:_\

CreateProfile(User A) W} CreateProfile(User B)
he

CreatePost(User A, Post P)
DueTime:100, DepTime:80
AddComment(User B, Post P)

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Problem: Parameter Sensitivity

16000 -

50-
3000 -
2000 - 40 -
8000 -
= € 1000-
8 4000 - 8
[&] (]
2000 -
0 200 400 600 0 10000 20000
Node degree #2-hop friends
1 3 5 7 9 11
SNB Interactive Q5:

Runtime, seconds

explores the 2-hop friend neighbourhood, of one start person

Observation: depending on the start person, there is a large runtime variance

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Parameter Curation

e E le: O3 TPCTC2014 “Parameter Curation for Benchmark
Xample. Q Queries” Andrey Gubichev (TUM) & Peter Boncz (CWI)

— Problem: value correlations cause very large variance

— Solution: data mine for stable parameter equivalence classes
r2

- PersoniD
rPersonID ‘ PersonID | <, | D1,
‘ X 1542
N / \ 1673
/// \\\ 7511
X Posts 958
Person Friends / \ 1367

Person Friends
« form sliding windows ot rows
* pick sub-window with the

smallest variance in the next
column

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Query Mix & Metric

Query Mix
e Insert queries (~¥10% of time):

=» challenge: execute parallel but respect data dependencies in the graph
e Read-only Complex Queries (~*50% of time)

=» challenge: generate query parameters with stable query behavior
Parameter Curation to find “equivalence classes” in parameters

 Simple Read-only Queries (~40% of time)
— Retrieve Post / Retrieve Person Profile

Metric
» Acceleration Factor (AF) that can be sustained (+ AF/S weighted by cost)

— with 99t percentile of query latency within maximal query time

LDBC®

mmmde & Informatica www.cwi.nl/~boncz/snb-challenge
SNB Query Driver

e Dependency-aware parallel query generation

— Problem: friends graph is non-partitionable, but imposes
ordering constraints.

Could cause large checking overhead, impeding driver
parallelism.

— Solution: Window-based checking approach for keeping driver
threads roughly synchronized on a global timestamp.

Is helped by DATAGEN properties that ensure there is a minimal
latency between certain dependencies (e.g. entering the network
and making friends, or posting on a new friend’s forum). This
minimal latency provides synchronization headroom.

LDBC®

W www.cwi.nl/~boncz/snb-challenge
Centrum Wiskunde & Informatica

Summary

* LDBC
— Graph and RDF benchmark council
— Choke-point driven benchmark design (user+system expert involvement)

e Social Network Benchmark
— Advanced social network generator
e skewed distributions, power laws, value/structure correlations, flash mobs
— 3 workloads: Interactive (€=focus of this paper), Bl, Analytics
* Interactive Query Mix & Metrics

e Parallel Query Driver that respects dependencies efficiently
e Parameter Curation for stable results

7t LDBC Technical User Community meeting
November 9+10 2015, IBM TJ Watson (NJ)

LDBC®

CWIl
Assignment 1: Querying a Social Graph

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatica

The Naive Implementation

The “cruncher” program

Go through the persons P sequentially
« counting how many of the artists A2,A3,A4 are liked as the score
for those with score>0:
— visit all persons F known to P.
For each F:
» checks on equal location
» check whether F already likes Al
» check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

\CWL

Naive Query Implementation Abytes
e “cruncher” *1.3B
KIOWS bin

48bytes
* 8.9M

1

*204M

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatica

Improving Bad Access Patterns

* Minimize Random Memory Access

— Apply filters first. Less accesses is better.

Denormalize the Schema

— Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

Trade Random Access For Sequential Access
— perform a 100K random key lookups in a large table
=>» put 100K keys in a hash table, then

scan table and lookup keys in hash table

Try to make the randomly accessed region smaller
— Remove unused data from the structure
— Apply data compression

— Cluster or Partition the data (improve locality) ...hard for social graphs

If the random lookups often fail to find a result

— Use a Bloom Filter

www.cwi.nl/~boncz/snb-challenge

\CWL

Sequential Query Implementation apytes

*
e “cruncher” 1.3B

— Pass 1: for each person calculate score KﬂOWS b in

knows_Ffirst

M

48bytes
* 8 QM score

2bytes
* 204M

www.cwi.nl/~boncz/snb-challenge

\CWL

Sequential Query Implementation apytes
*1.3B

Lbin

e “cruncher”-2

— Pass 1. for each person calculate score

— Pass 2: for each friend, look for persons with score >1

z

O

)

S

2bytes
*204M

48bytes
* 8.9M

K oWs

nows_ First

M

sScore

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatic:

Sequential Query Implementation apytes

*
e “cruncher”-2 1.3B

— Pass 1. for each person calculate score Kﬂ OWS L b i n

— Pass 2: for each friend, look for persons with score >1

— Pass 3: filter results on mutual (P,F)

H—

Q, knows_Ffirst A
j ¢>\:Be:&s;eua:l&m:ms_nI
48bytes
* 8 QM Score
2bytes

* 204M |

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatica

Improving Bad Access Patterns

* Minimize Random Memory Access

— Apply filters first. Less accesses is better.

Denormalize the Schema

— Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

Trade Random Access For Sequential Access
— perform a 100K random key lookups in a large table
=>» put 100K keys in a hash table, then

scan table and lookup keys in hash table

Try to make the randomly accessed region smaller
— Remove unused data from the structure
— Apply data compression

— Cluster or Partition the data (improve locality) ...hard for social graphs

If the random lookups often fail to find a result

— Use a Bloom Filter

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatic:

The Naive Implementation

The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1l:
— visit all persons F known to P.
For each F:
» checks on equal location
» check whether F already likes Al
e check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

Reducing The Problem

* knows.bin
— is big (larger than RAM)
— is accessed randomly
e random access unavoidable (denormalization too costly)
ldeas:
e Only keep mutual-knows
— ldea: remove non-mutual knows in reorg
» Advantage: queries do not need to check (only reorg), queries get faster
* Problem: 99% of knows in this dataset is mutual (no reduction)

e Problem: finding non-mutual knows is costly (requires full sort on person-id)

www.cwi.nl/~boncz/snb-challenge

Reducing The Problem

e knows.bin
— is big (larger than RAM)
— is accessed randomly
e random access unavoidable (denormalization too costly)
|deas:
e Only keep mutual-knows
e Only keep local-knows
— ldea: remove knows where persons live in different cities (50x less: 150 =» 3 friends)
* Reorg: one pass with random access in a ‘location’ array (2b * 8.9M)
— ldea: remove persons with zero friends left-over (halves it)
* 8.9M = 5M persons, 8.9*23M = 5*23M interests
— ldea: remove non-mutual local friends after removing the above (smaller knows!)
« Can be done with random access
— Reorg: write a localknows.tmp file, mmap it, use it i.s.0. knows.bin to filter

— localknows.tmp = 5*3M=15M knows = 60MB random access

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatica

Reduced Random Access Solution gpyes

x*
* Hannes solution 1.3B

— Most time spent in interests checking Knows Lbiin

= Ildea: enhance using SSE instructions?

A.E 8 comparisons of 16bit integers per instruction..
1

Q knows first

; ¢)\:Bezlestetla:l&m:/

Nnows_n

48bytes
* 8.9M

nll
Zhytes 16bytes 4b)/tes
* TT5M * SM * 15 ww.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatic:

The Naive Implementation

The “cruncher” program

Go through the persons P sequentially, and for those in birthday range
« count how many of the artists A2,A3,A4 are liked as the score
for those with score>0 and who do not like A1l:
— visit all persons F known to P.
For each F:
» checks on equal location
» check whether F already likes Al
e check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatica

|dea: using Inverted Files

The search engine data structure

» For each term (keyword), a list of document IDs

Here: for each Tag (e.g. A1,A2,A3,A4) a list of

persons
A2] Brutus | — [1] 2] 4] 11 [31[45 173 [174]
A3| Caesar | — |1]| 2| 4| 5] 6|16 57 [132]... |
A4 [Calpurnia | — [2]31 [54 [101]

interests.bin

Zbytes . : 5 ;
icionary Postings
*I11SM

» Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

www.cwi.nl/~boncz/snb-challenge

\CWL

Inverted File on Tags

mutual local _knows

www.cwi.nl/~boncz/snb-challenge

\CWL

Inverted File on Tags

POStINGs 0.5MB

mutual_local knows

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatic:

Inverted File Cruncher Implementation

Create a Al-bitmap (1bit for each person) based on the inverted list of A1
0.5MB bitmap (even fits CPU cache)

Merge inverted lists A2,A3,A4 computing a score and for each person P
 for those with score>0, in and who are not in Al-bitmap:
— visit all persons F known to P.
For each F:
» check whether F is set in Al-bitmap

if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatica

|dea: use Table Partitioning

Goals:

* make birthdate comparisons faster

* remove birthdate column (no longer needed, implicit)

* Increase locality in person.bin and knows.bin!

<>

File1
Fis1

File2

SalesJanuary

-k

01/01/03
2 (010103

n|o1r31/03

SalesFebruary

F&2 B

File12
FG12

-k

02/01/03
2|02101/03

n|ozrzai03

—— {2 (010103

SalesDecember

=&

12/01/03
211210/03

n 123103

YearlySales (view)

1 (0101803

n 1231103

Partitioned View
SalesJanuary
UNION ALL
SalesFebruary

www.cwi.nl/~boncz/snb-challenge

\CWL

Inverted File on Tags

person.bin

30 dec

~boncz/snb-challenge

E Centrum Wiskunde & Informatica

Inverted Files Revisted

The birthdate clustering gives us for a birthdate range a person range
« Say people with bday in are at positions between
. binary search in the postings lists for artists (A2,A3,A4)

ALT Brutus | — [T7-2 _41 11131145 7374
A2] Caesar | — [-L[-2 4] 5] 616 «57-[132-[=]
A3 [Calpumnia | — [31 |54 101]

ST R : - .
Dictionary Postings

» Figure 1.3 The two parts of an inverted index. The dictionary is commonly kept
in memory, with pointers to each postings list, which is stored on disk.

www.cwi.nl/~boncz/snb-challenge

\CWL

Inverted File on Tags

HOStINGs

0.5MB

bitmap

person.bin %

4b};es
* JSM

mutual local_knows

www.cwi.nl/~boncz/snb-challenge

E Centrum Wiskunde & Informatic:

Clustered + Inverted File Cruncher

“Peter approach”

Create a Al-bitmap (1bit for each person) based on the inverted list of A1
0.5MB bitmap (even fits CPU cache)

Binary search (restrict on birthdate range) and merge inverted lists
A2,A3,A4 computing a score and for each person P

 for those with score>0, who are not in Al-bitmap:
— visit all persons F known to P.
For each F:
» check whether F is set in Al-bitmap

if all this succeeds (score,P,F) is added to a result table.

www.cwi.nl/~boncz/snb-challenge

	Benchmarking �Graph Data Management Systems�EDBT Summer School 2015��Peter Boncz�boncz@cwi.nl
	The LDBC�Social Network Benchmark�Interactive Workload�
	 Social Network Benchmark: schema
	Database Benchmark Design
	Stimulating Technical Progress
	Benchmark Design with Choke Points
	Example: TPC-H choke points
	CP1.4 Dependent GroupBy Keys
	CP1.4 Dependent GroupBy Keys
	CP1.4 Dependent GroupBy Keys
	CP2.2 Sparse Joins
	CP2.2 Sparse Joins
	CP4.1 Raw Expression Arithmetic
	CP5.2 Subquery Rewrite
	Choke Point Wrap up
	Graphalytics Choke Points
	DATAGEN: social network generator
	Friendship Degree Distribution
	DATAGEN: social network generator
	Data correlations between attributes
	Data correlations between attributes
	Data correlations over joins
	Realistic Correlated Value Distributions
	Generating Property Values
	Generating Correlated Property Values
	Generating Correlated Property Values
	Compact Correlated Property Value Generation
	Correlated Value Property in LDBC SNB
	DATAGEN: social network generator
	Correlated Edge Generation
	Simple approach
	Our observation
	MapReduce data generation:�one map pass per Correlation Dimension
	DATAGEN: social network generator
	Temporal Effects (Flash Mobs)
	DATAGEN: Scaling
	DATAGEN: Graph Characteristics
	Interactive Workload
	Slide Number 40
	Choke-Point: shortest paths
	Slide Number 42
	Choke-Point: outdegree correlation
	SNB Query Driver
	Problem: Parameter Sensitivity
	Parameter Curation
	Query Mix & Metric
	SNB Query Driver
	Summary
	Assignment 1: Querying a Social Graph
	The Naïve Implementation
	Naïve Query Implementation
	Improving Bad Access Patterns
	Sequential Query Implementation
	Sequential Query Implementation
	Sequential Query Implementation
	Improving Bad Access Patterns
	The Naïve Implementation
	Reducing The Problem
	Reducing The Problem
	Reduced Random Access Solution
	The Naïve Implementation
	Idea: using Inverted Files
	Inverted File on Tags
	Inverted File on Tags
	Inverted File Cruncher Implementation
	Idea: use Table Partitioning
	Inverted File on Tags
	Inverted Files Revisted
	Inverted File on Tags
	Clustered + Inverted File Cruncher

