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Motivation
• Many real-world applications are dynamic– Scheduling– Control problems– Vehicle routing– Portfolio optimization– etc.– Also: Co-evolutionary approaches, model-refinement• Current approaches– Ignore dynamics and re-optimize regularly– Use very simple control rules• Large potential when dynamism is addressed explicitly• Nature-inspired optimization algorithms seem particularlypromising, as nature is a continuously changingenvironment



Robustness or adaptability
To succeed in a dynamic environment• Be robust (show good performance in a variety of environments)1. Adapt (adjust quickly to changed conditions)

– The problem of convergence
– Remedies
– Benchmarks(in particular: Moving Peaks)
– Additional aspects

• Learning
• Theory

– Other metaheuristics
• Ant Colony Optimization
• Particle Swarm Optimization



Nature is able to adapt

EvolutionaryAlgorithms
DynamicOptimizationProblems

Application seems promising
Successful?Important Aspects?



The problem of convergence

For static optimization problems, convergence is desired.If the problem is dynamic, convergence is dangerous.



Possible Remedies
1. Restart after a change(only choice if changes are too severe)But: Too slow

2. Generate diversity after a change– Hypermutation [Cobb 1990]– Variable Local Search [Vavak et al. 1997]But: Randomization destroys information,only local search or similar to restart



Possible Remedies (2)
3. Maintain diversity throughout the run– Random Immigrants [Grefenstette 1992]– Sharing/Crowding [Andersen 1991, Cedeno & Vemuri 1997]– Thermodynamical GA [Mori et al. 1996]– Sentinels [Morrison 2004]– Diversity as second objective [Bui et al. 2005]But: Disturbes optimization process4. Memory-enhanced EAs– Implicit memory [Goldberg & Smith 1987, Ng & Wong1995,Lewis et al. 1998]• Redundant genetic representation (e.g. diploid)• EA is free to use additional memory– Explicit memory [Ramsey & Grefenstette 1993, Trojanowski et al.1997, Mori et al. 1997, Branke 1999, Yang 2005]• Explicit rules which information to store in and retrieve from the memoryBut: Only useful when optimum reappears at old location,    Problem of convergence remains



Possible Remedies (3)
5. Multi-Population approaches– Maintain different subpopulations on different peaks

• adaptive memory• able to detect new optima• distance/similarity metric required– Self-Organizing Scouts [Branke et al. 2000, Branke 2001]– Multi-National EA [Ursem 2000]Maintains useful diversity
6. Anticipation & Prediction

-> see next talk



Thermodynamical GA [Mori et al. 1996]
• Select next parent generation such that they are a goodcompromise between quality and diversity• Select parents one by one such that the resulting(incomplete) parent generation minimizes

• Requires to tune parameter T• Computationally expensive
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• Explicit memorization of individuals

• Memory only useful incombination withdiversification
Population 2(random initialization after convergence)

Memory

Population 1
store storeretrieve

• Keep the better of the two most similar

Sensible balance of exploration vs. exploitation

Memory/Search-Approach [Branke 1999]



Self Organizing Scouts (SOS) [Branke 2001]
• Idea: Collect information about search space
• Whenever a local optimum has been found    watch it with some scouts• Base population should search for new peak• Scouts should be able to track “their” peak



How does it work, really?
• When a cluster is detected in basis population Forking



Forking [Tsutsui et al. 1997]
Basis populationScout population 1

Forking
Scout population 2

Forking



How does it work, really?
• When a cluster is detected in basis population Forking• Invalid individuals are replaced by random individuals Diversification• Best individual defines center     Tracking• Number of individuals in scout population depends onquality and trend        Efficiency• Size of the scout population’s search space– Shrinks continuously– Is increased when two scout populations mergeAdaptation



Typical benchmark problems
• Moving Peaks Benchmark [Branke 1999, Morrison & DeJong 1999]• XOR problem generator  [Yang & Yao, 2005]• Dynamic knapsack problem, e.g. [Mori et al. 1996, Branke et al.2005]• Dynamic bit-matching, e.g. [Stanhope & Daida 1999, Droste 2003]• Scheduling with new jobs arriving over time, e.g. [Mattfeld &Bierwirth 2004]• Greenhouse control problem [Ursem et al. 2002]



XOR benchmark generator [Yang & Yao 2005]
• For any problem/algorithm with bitstring representation• Idea: before evaluation, XOR individual with mask

• Inverts each bit where mask is “1”• Dynamics: modify m bits in mask• Change severity = m• Landscape characteristics remain the same

Individual:  0110100

  Mask:         1101001

Evaluate:    1011101



Moving peaks benchmark [Branke 1999]available at http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks
• Multi-modal environmentcharacterised by movingpeaks of varying widths andheights• Small continuous changes in fcan lead to discontinuouschanges in xopt• Parameters:– Change frequency– Number of peaks– Severity (length of shift vector, height and width)– Correlation of shifts– Number of dimensions– Shape of the peaks



Performance measure
Use modified offline error *

(T )

: time of last change

Difficulty: best solution found is not sufficient
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Performance Measure: Offline Error



Demo: Self-Organizing Scouts



Comparison of offline error
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Offl
ine E

rror

(Population size 100, 10 peaks, step size 1.0)



Percentage of covered peaks

Evaluations
(Population size 100, 10 peaks, step size 2.0)

Perc
enta

geo
f co

vere
d pe

aks



Influence of step size

(After 5000 generations, 10 peaks)
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Summary of Observations
• Standard EA gets stuck on single peak• Diversity preservation slows down convergence• Random immigrants introduce high diversity from thebeginning, but benefit is limited• Memory without diversity preservation is counterproductive• Non-adaptive memory suffers significantly if peaks move• Self-organizing scouts performs best
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