

Nature-inspired optimization in Dynamic Environments

- An Introduction -

Jürgen Branke
Institute AIFB, University of Karlsruhe
Germany
branke@aifb.uni-karlsruhe.de

Motivation

- Many real-world applications are dynamic
 - Scheduling
 - Control problems
 - Vehicle routing
 - Portfolio optimization
 - etc.
 - Also: Co-evolutionary approaches, model-refinement
- Current approaches
 - Ignore dynamics and re-optimize regularly
 - Use very simple control rules
- Large potential when dynamism is addressed explicitly
- Nature-inspired optimization algorithms seem particularly promising, as nature is a continuously changing environment

Robustness or adaptability

To succeed in a dynamic environment

- Be robust (show good performance in a variety of environments)
- Adapt (adjust quickly to changed conditions)
 - The problem of convergence
 - Remedies
 - Benchmarks(in particular: Moving Peaks)
 - Additional aspects
 - Learning
 - Theory
 - Other metaheuristics
 - Ant Colony Optimization
 - Particle Swarm Optimization

Nature is able to adapt

Dynamic Optimization Problems

The problem of convergence

For static optimization problems, convergence is desired. If the problem is dynamic, convergence is dangerous.

Possible Remedies

Restart after a change
 (only choice if changes are too severe)

But: Too slow

- 2. Generate diversity after a change
 - Hypermutation [Cobb 1990]
 - Variable Local Search [Vavak et al. 1997]

But: Randomization destroys information, only local search or similar to restart

Possible Remedies (2)

3. Maintain diversity throughout the run

- Random Immigrants [Grefenstette 1992]
- Sharing/Crowding [Andersen 1991, Cedeno & Vemuri 1997]
- Thermodynamical GA [Mori et al. 1996]
- Sentinels [Morrison 2004]
- Diversity as second objective [Bui et al. 2005]

But: Disturbes optimization process

4. Memory-enhanced EAs

- Implicit memory [Goldberg & Smith 1987, Ng & Wong1995, Lewis et al. 1998]
 - Redundant genetic representation (e.g. diploid)
 - EA is free to use additional memory
- Explicit memory [Ramsey & Grefenstette 1993, Trojanowski et al. 1997, Mori et al. 1997, Branke 1999, Yang 2005]
 - Explicit rules which information to store in and retrieve from the memory

But: Only useful when optimum reappears at old location, Problem of convergence remains

Possible Remedies (3)

- 5. Multi-Population approaches
 - Maintain different subpopulations on different peaks
 - adaptive memory
 - · able to detect new optima
 - distance/similarity metric required
 - Self-Organizing Scouts [Branke et al. 2000, Branke 2001]
 - Multi-National EA [Ursem 2000]

Maintains useful diversity

- 6. Anticipation & Prediction
 - -> see next talk

Thermodynamical GA [Mori et al. 1996]

- Select next parent generation such that they are a good compromise between quality and diversity
- Select parents one by one such that the resulting (incomplete) parent generation minimizes

- Requires to tune parameter T
- Computationally expensive

Memory/Search-Approach [Branke 1999]

- Explicit memorization of individuals
- Keep the better of the two most similar

Sensible balance of exploration vs. exploitation

Self Organizing Scouts (SOS) [Branke 2001]

- Idea: Collect information about search space
- Whenever a local optimum has been found
 - watch it with some scouts
- Base population should search for new peak
- Scouts should be able to track "their" peak

How does it work, really?

• When a cluster is detected in basis population

Forking [Tsutsui et al. 1997]

How does it work, really?

- When a cluster is detected in basis population
 Forking
- Invalid individuals are replaced by random individuals
 Diversification

- Size of the scout population's search space
 - Shrinks continuously
 - Is increased when two scout populations merge
 - **→** Adaptation

Typical benchmark problems

- Moving Peaks Benchmark [Branke 1999, Morrison & DeJong 1999]
- XOR problem generator [Yang & Yao, 2005]
- Dynamic knapsack problem, e.g. [Mori et al. 1996, Branke et al. 2005]
- Dynamic bit-matching, e.g. [Stanhope & Daida 1999, Droste 2003]
- Scheduling with new jobs arriving over time, e.g. [Mattfeld & Bierwirth 2004]
- Greenhouse control problem [Ursem et al. 2002]

XOR benchmark generator [Yang & Yao 2005]

- For any problem/algorithm with bitstring representation
- Idea: before evaluation, XOR individual with mask

Individual: 0110100

⊗ Mask: 1101001

Evaluate: 1011101

- Inverts each bit where mask is "1"
- Dynamics: modify m bits in mask
- Change severity = m
- Landscape characteristics remain the same

Moving peaks benchmark [Branke 1999] available at http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks

- Multi-modal environment characterised by moving peaks of varying widths and heights
- Small continuous changes in f can lead to discontinuous changes in x_{opt}

- Change frequency
- Number of peaks
- Severity (length of shift vector, height and width)
- Correlation of shifts
- Number of dimensions
- Shape of the peaks

Performance Measure: Offline Error

Difficulty: best solution found is not sufficient

 \Longrightarrow Use modified offline error $\varepsilon^*(T)$

$$\varepsilon^{*}(T) = \frac{1}{T} \sum_{t=1}^{T} (opt_{t} - e'_{t})$$

$$e'_{t} = \max(e_{\tau}, e_{\tau+1}, ..., e_{t})$$

$$e'_{t} = \max(e_{\tau}, e_{\tau+1}, ..., e_{t})$$

au: time of last change

Demo: Self-Organizing Scouts

Comparison of offline error

Percentage of covered peaks

Influence of step size

Summary of Observations

- Standard EA gets stuck on single peak
- Diversity preservation slows down convergence
- Random immigrants introduce high diversity from the beginning, but benefit is limited
- Memory without diversity preservation is counterproductive
- Non-adaptive memory suffers significantly if peaks move
- Self-organizing scouts performs best

References

- [Andersen 1991] H. C. Andersen. An investigation into genetic algorithms, and the relationship between speciation and the tracking of optima in dynamic functions. Honours thesis, Queensland University of Technology, Brisbane, Australia
- [Arnold& Beyer 2002] D. V. Arnold and H.-G. Beyer. Random Dynamics Optimum Tracking with Evolution Strategies. In J.J. Merelo, P. Adamidis, H.-G. Beyer, J.L. Fernández-Villacañas, and H.-P. Schwefel, editors, *Parallel Problem Solving from Nature*, pages 3-12, Springer.
- [Blackwell & Bentley 2002] T. M. Blackwell, and P. J. Bentley, P.J.: Dynamic search with charged swarms. *Genetic and Evolutionary Computation Conference*, pages 19-26
- [Blackwell & Branke 2004] T. M. Blackwell, and J. Branke. Multi-swarm optimization in dynamic environments. In: G. Raidl et al. (eds), Applications of Evolutionary Computing. Springer, LNCS 3005, pages 489-500
- [Branke 1999] J. Branke. Memory enhanced evolutionary algorithms for changing optimization problems. In *Congress on Evolutionary Computation CEC99*, Volume 3, pages 1875-1882. IEEE
- [Branke et al. 2000] J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck. A multi-population approach to dynamic optimization problems. In *Adaptive Computing in Design and Manufacturing*. Springer
- [Branke 2001] J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer
- [Branke 2001b] J. Branke. Reducing the sampling variance when searching for robust solutions. In: Genetic and Evolutionary Computation Conference, L. Spector et al. (eds.), Morgan Kaufmann, pages 235-242
- [Branke & Mattfeld 2000] J. Branke and D. Mattfeld. Anticipation in dynamic optimization: The scheduling case. In: *Parallel Problem Solving from Nature*, Springer, pages 253-262
- [Branke & Mattfeld 2005] J. Branke and D. Mattfeld. Anticipation and flexibility in dynamic scheduling. In: International Journal of Production Research, to appear
- [Branke et al. 2005] J. Branke, E. Salihoglu, S. Uyar. Towards an analysis of dynamic environments. In: Genetic and Evolutionary Computation Conference, ACM, 2005

- [Bui et al. 2005] L. T. Bui and J. Branke and H. Abbass. Multiobjective optimization for dynamic environments. Congresson Evolutionary Computation, IEEE, 2005, pages 2349-2356
- [Carlisle & Dozier 2000] Carlisle, A. and Dozier, G.: Adapting Particle Swarm Optimization to Dynamic Environments. *Int. Conference on Artificial Intelligence*. pages 429-434
- [Cedeno & Vemuri 1997] W. Cedeno and V. R. Vemuri. On the use of niching for dynamic landscapes. In *International Conference on Evolutionary Computation*. IEEE.
- [Cobb 1990] H. G. Cobb. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuouis, time-dependent nonstationary environments. Technical Report AIC-90-001, Naval Research Laboratory, Washington, USA.
- [Droste 2003] S. Droste. Analysis of the (1+1) EA for a dynamically bitwise changing OneMax. In E. Cantu-Paz, editor, *Genetic and Evolutionary Computation Conference*, volume 2723 of *LNCS*, pages 909-921. Springer
- [Goldberg & Smith 1987] D. E. Goldberg and R. E. Smith. Nonstationary function optimization using genetic algorithms with dominance and diploidy. In J. J. Grefenstette, editor, *Second International Conference on Genetic Algorithms*, pages 59-68. Lawrence Erlbaum Associates, 1987
- [Grefenstette 1992] J. Grefenstette. Genetic algorithms for changing environments. In R. Maenner and B. Manderick, editors, *Parallel Problem Solving from Nature 2*, pages 137-144. North Holland
- [Hu & Eberhart 2002] X. Hu, and R. C. Eberhart. Adaptive particle swarm optimisation: detection and response to dynamic systems. *Congress on Evolutionary Computation*. Pages 1666-1670
- [Janson & Middendorf 2004] T. S. Janson and M. Middendorf. A hierarchical particle swarm optimizer for dynamic optimization problems. In: G. Raidl et al. (eds), Applications of Evolutionary Computing. Springer, LNCS 3005, pages 513-524
- [Jin & Sendhoff 2003] Y. Jin and B. Sendhoff. Trade-off between optimality and robustness: An evolutionary multiobjective approach. In: Intl. Conference on Evolutionary Multi-criterition Optimization, LNCS 2632, Springer, pages 237-251
- [Jin & Branke 2005] Y. Jin and J. Branke. Evolutionary optimization in uncertain environments A survey. In: IEEE Transactions on Evolutionary Computation, to appear
- [Lewis et al. 1998] J. Lewis, E. Hart, and G. Ritchie. A comparison of dominance mechanisms and simple mutation on non-stationary problems. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, *Parallel Problem Solving from Nature*, number 1498 in LNCS, pages 139-148. Springer

- [Loughlin & Ranjithan 1999] D. H. Loughlin and S. Ranjithan. Chance-constrained genetic algorithms. In: Banzhaf et al. (eds.), *Genetic and Evolutionary Computation Conference*, Morgan Kaufmann, pages 369-376
- [Mattfeld & Bierwirth 2004] D. C. Mattfeld and C. Bierwirth. An efficient genetic algorithm for job shop scheduling with tardiness objectives. *European Journal of Operational Research* 155(3), pages 616-630
- [Mori et al. 1996] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing environment by means of the thermodynamical genetic algorithm. In H.-M. Voigt, editor, *Parallel Problem Solving from Nature*, number 1141 in LNCS, pages 513-522. Springer
- [Mori et al. 1997] N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptation to changing environments by means of the memory based thermodynamical genetic algorithm. In T. Bäck, editor, *Seventh International Conference on Genetic Algorithms*, pages 299-306. Morgan Kaufmann.
- [Morrison 2004] R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environments. Springer
- [Morrison & DeJong 1999] R. W. Morrison and K. A. DeJong. A test problem generator for non-stationary environments. In *Congress on Evolutionary Computation*, volume 3, pages 2047-2053. IEEE
- [Ng & Wong 1995] K. P. Ng and K. C. Wong. A new diploid scheme and dominance change mechanism for non-stationary function optimization. In *Sixth International Conference on Genetic Algorithms*, pages 159-166. Morgan Kaufmann
- [Parrott & Li 2004] D. Parrott and X. Li. A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: Congress on Evolutionary Computation, pages 98-103, IEEE
- [Ramsey & Grefenstette 1993] C. L. Ramsey and J. J. Grefenstette. Case-based initialization of genetic algorithms. In S. Forrest, editor, *Fifth International Conference on Genetic Algorithms*, pages 84-91. Morgan Kaufmann.
- [Ray 2002] T. Ray. Constrained robust optimal design using a multi-objective evolutionary algorithm. In: Congress on Evolutionary Computation, IEEE, pages 419-424
- [Ronnewinkel et al. 2001] C. Ronnewinkel and C. O. Wilke and T. Martinetz. Genetic algorithms in time-dependent environments. In: L. Kallel et al. (eds.), Theoretical Aspects of Evolutionary Computing. Springer
- [Sasaki & Tokoro 1999] T. Sasaki and M. Tokoro. Evolving learnable neural networks under changing environments with various rates of inheritance of acquired characters: Comparison between darwinian and lamarckian evolution. *Artificial Life*, 5(3):203-223

- [Stanhope & Daida 1999] S. A. Stanhope and J. M. Daida. Genetic algorithm fitness dynamics in a changing environment. In *Congress on Evolutionary Computation*, volume 3, pages 1851-1858. IEEE
- [Tsutsui & Ghosh 1997] S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution searching scheme. *IEEE Transactions on Evolutionary Computation* 1(3): 201-208
- [Tsutsui et al. 1997] S. Tsutsui, Y. Fjimoto, and A. Ghosh. Forking genetic algorithms: Gas with serach space division schemes. *Evolutionary Computation* 5(1), pages 61-80
- [Trojanowski et al. 1997] K. Trojanowski, Z. Michalewicz, and Jing Xiao. Adding memory to the evolutionary planner/navigator. In *IEEE Intl. Conference on Evolutionary Computation*, pages 483-487.
- [Ursem 2000] R. K. Ursem. Multinational GA optimization techniques in dynamic environments. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer, editors, *Genetic and Evolutionary Computation Conference*, pages 19-26. Morgan Kaufmann
- [Ursem et al. 2002] R. K. Ursem, T. Krink, M.T. Jensen, and Z. Michalewicz: Analysis and modeling of control tasks in dynamic systems. In: IEEE Transactions on Evolutionary Computation, 6(4), Pates 378-389
- [Vavak et al. 1997] F. Vavak, K. Jukes, and T. C. Fogarty. Adaptive combustion balancing in multiple burner boiler using a genetic algorithm with variable range of local search. In T. Bäck, editor, *Seventh International Conference on Genetic Algorithms*, pages 719-726. Morgan Kaufmann.
- [Yang 2005] S. Yang. Memory-based immigrants for genetic algorithms in dynamic environments. *Proceedings of the 2005 Genetic and Evolutionary Computation Conference*, Vol. 2, pp. 1115-1122, 2005. ACM Press
- [Yang & Yao 2005] S. Yang and X. Yao. Experimental study on population-based incremental learning algorithms for dynamic optimization problems. In: Soft Computing Journal, to appear
- [Weicker 2003] K. Weicker: "Evolutionary Algorithms and Dynamic Optimization Problems", Der Andere Verlag

Questions ?