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Abstract

In this paper, we analyze the most prominent features in model selection criteria that
have been used so far in iterated density estimation evolutionary algorithms (IDEAs, EDAs,
PMBGAs). These algorithms build probabilistic models and estimate probability densities
based upon a selection of available points. We show that the negative log–likelihood is a
basis of the inference features when the Kullback–Leibler divergence is used. We show how
previously found to be problematic issues in the case of continuous random variables can be
resolved by starting from the derived basics. By doing so, we have a probabilistic model
search metric that can be justified through the use of statistical hypothesis tests. This in turn
reduces the need for additional complexity penalties.

1 Introduction

The past few years, new probabilistic optimization algorithms inspired by evolutionary algorithms
have appeared [17]. The algorithms that have been introduced in this field, apply search criteria
to the space of probability distributions to find a suitable probabilistic model, given a vector of
selected samples. The resulting probability distribution is subsequently used to draw more samples
from, after which selection takes place again. Even though efficient algorithms have already been
proposed in this field, the motivation of the search criteria for finding a suitable probabilistic
model is often not thoroughly investigated. Our goal in this paper is to take a closer look at
one such search criterion which is based on the Kullback–Leibler (KL) divergence. Different
algorithms [2, 3, 4, 6, 7, 14] have been proposed that use this divergence. We want to emphasize
the background of the KL divergence through its correspondence with likelihood maximization in
probability theory. By doing so, we give a unifying background regarding these topics. Using the
basic notion of likelihood, we aim to derive general probabilistic model selection criteria that in
addition to previous approaches can be justified through the use of statistical hypothesis testing.

The remainder of this paper is organized as follows. First, we introduce some notation in
section 2 and give a general framework for the algorithms themselves in section 3. Next, in
section 4, we formalize the statistical tools that have been used in these algorithms and show how
they together constitute some of the methods of induction used so far. In this same section, we
unify these statistical tools by looking at their relation with a basic notion of fit in probability
theory, being the likelihood. By taking a closer look at the negative log–likelihood, we come across
a few subtle details. We go into these details and show how some of the previous algorithms can be
simplified by statistical hypothesis testing on the basis of the negative log–likelihood. As a result,
some problems that have been encountered in the expansion of discrete to continuous optimization
algorithms [7] disappear. In section 5, we give some practical examples of the theoretic work
described in this paper. Subsequently, in section 6, we summarize our results and discuss some
topics of interest. Finally, we conclude this paper in section 7.
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2 Some notation and statistics

We write a = (a0,a1, . . . ,a|a|−1) for a vector a of length |a|. The ordering of the elements in
a vector is relevant. We assume to have l random variables available, meaning that each sample
point is an l dimensional vector. We introduce the notation a〈c〉 = (ac0 , ac1 , . . . , ac|c|−1). Let
L = (0, 1, . . . , l − 1) be a vector of l numbers and let a � L, meaning that a contains only
elements of L. We assume the alphabet for each discrete random variable to be the same, just as
we do for the range of each continuous random variable. We denote the alphabet for the discrete
random variables by A. We can now define the multivariate joint probability mass function (pmf):

pa(x〈a〉) = P (∀i∈a〈Xi = xi〉) such that
∑

c∈A|a|

pa(c) = 1, and pa(·) ≥ 0 (1)

We write P (X〈a〉)(x〈a〉) for pa(x〈a〉), making P (X〈a〉) a pmf. In the continuous case, we
cannot use a pmf. Let dy〈a〉 =

∏|a|−1
i=0 dyai

be shorthand notation for the multivariate derivative.
Using the notation shorthand

∫
for

∫ ∞
−∞, the multivariate joint probability density function (pdf)

is the following:
∫ c0

b0

∫ c1

b1

. . .

∫ c|a|−1

b|a|−1

fa(y〈a〉)dy〈a〉 = P (Y 〈a〉 ∈ A) (2)

such that
∫∫

. . .

∫
fa(y〈a〉)dy〈a〉 = 1, fa(·) ≥ 0, and A =


|a|−1∏

i=0

[bi, ci]


 ⊆ R

|a|

We write P (Y 〈a〉)(y〈a〉) for fa(y〈a〉), making P (Y 〈a〉) a pdf. We use Y to denote continuous
random variables and X to denote discrete random variables. If we do not distinguish between
these cases, we write Z.

We let b � L and define a � b to be the splicing of the two vectors so that the elements of b
are placed behind the elements of a, giving |a� b| = |a|+ |b|. Using the definition of multivariate
probability, we can define conditional probability by:

P (Z〈a〉|Z〈b〉) =
P (Z〈a � b〉)

P (Z〈b〉) (3)

Shannon [20] has defined the multivariate entropy measure. In the case of discrete random
variables, this measure is defined as:

H(P (X〈a〉)) = −
∑

c∈A|a|

P (X〈a〉)(c)ln(P (X〈a〉)(c)) (4)

In the continuous case we use the term differential entropy, which is:

h(P (Y 〈a〉)) = −
∫∫

. . .

∫
P (Y 〈a〉)(y〈a〉)ln(P (Y 〈a〉)(y〈a〉))dy〈a〉 (5)

Let X = X〈L〉, Y = Y 〈L〉 and Z = Z〈L〉. A well known distance metric from one proba-
bility distribution P0(Z) to another probability distribution P1(Z), is the Kullback–Leibler (KL)
divergence. The KL divergence is also called relative entropy [13]. In the case of discrete random
variables, this distance metric equals:

D(P0(X )||P1(X )) =
∑
c∈Al

P0(X )(c)ln
(

P0(X )(c)
P1(X )(c)

)
(6)

In the continuous case, the KL metric is equal to:

d(P0(Y)||P1(Y)) =
∫∫

. . .

∫
P0(Y)(y〈L〉)ln

(
P0(Y)(y〈L〉)
P1(Y)(y〈L〉)

)
dy〈a〉 (7)
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As a final statistical tool, we make use of the sample vector S. We let S = (z0,z1, . . . ,z|S|−1)
be the vector of sample points, so that zi = (zi

0, z
i
1, . . . , z

i
l−1) = zi〈L〉. The sample vector S is

taken to be a vector of independently drawn samples from a distribution P (Z). We denote
this by S s←P (Z). The sample vector is used to find some probability distribution P̂ (Z) as an
approximation to the true distribution P (Z). The likelihood that the samples were drawn from
some given distribution P̂ (Z), is defined as:

L(S|P̂ (Z)) =
|S|−1∏
i=0

P̂ (Z)(zi) (8)

It is common practise to use the negative logarithm of the likelihood measure as it is often
computationally more convenient. The resulting expression is called the negative log–likelihood :

−ln(L(S|P̂ (Z))) = −
|S|−1∑
i=0

ln(P̂ (Z)(zi)) (9)

3 Evolutionary optimization by iterated density estimation

Evolutionary optimization algorithms that make use of iterated density estimation, attempt to
catch the probability distribution of a selected vector of samples. Using the estimated probability
distribution, more samples are generated and mixed with the existing samples to get a new sample
vector. Assume that we have an l dimensional cost function C(z〈L〉), which without loss of
generality we seek to minimize. We let P θ(Z) be a probability distribution that is uniform over
all vectors z〈L〉 with C(z〈L〉) ≤ θ and 0 otherwise. Sampling from P θ(Z) gives more samples
that evaluate to a value below θ. Moreover, if we know θ∗ = minz〈L〉{C(z〈L〉)}, sampling from
P θ∗

(Z) gives an optimal solution. This rationale has led to the definition of the IDEA (Iterated
Density Estimation Evolutionary Algorithm) framework [4]. The greatest difference between other
similar approaches and the IDEA, is that the IDEA has mostly been used to focus on continuous
optimization problems [4, 6, 7].

We cannot expect to efficiently solve every structured optimization problem with just any
probabilistic model. This has been demonstrated on problems in which a multiple of variables
interact [5, 18]. Therefore, a higher order probability distribution such as P̂ (Z0, Z1) instead of
P̂ (Z0)P̂ (Z1) is sometimes required. However, the higher the order of complexity, the larger the
amount of required computational resources are in order to be able to compute the probabilistic
model. Therefore, the interactions between the problem variables are attempted to be inferred
from the given sample vector to find a probabilistic model M. The notion of a probabilistic model
is used as a computational implementation of a probability distribution. A probabilistic model M
uniquely corresponds to a probability distribution. It can be seen to consist of some structure ς
and a vector of parameters θ that defines the pdfs to be fit over each joint multivariate structure
implied by ς. An example of a structure ς is the notion of a factorization, which we denote by f.
A factorization factors the probability distribution over Y to get a product of pdfs. An example
in the case of l = 3 is P (Y) = P (Y0, Y1)P (Y2). Once a structure ς is given, the parameters that
have to be estimated can be derived from the multivariate pdfs that have to be fit. Since the
way in which the parameters θ are fit, is predefined on beforehand together with the pdfs to fit,
we denote the parameter vector that is obtained in this manner by θ fit←− ς. This implies that
whereas we formally define a probabilistic model to be M = (ς,θ), in our practical case, we can
write M = (ς,θ fit←− ς). As a probability distribution can therefore be identified using only the
structure ς, we denote it by Pς(Y). The definition of the IDEA framework can now be given as
follows:

3



IDEA(n, τ , m, sel(), rep(), ter(), sea(), est(), sam())

Initialize an empty vector of samples P ← ()
Add and evaluate n random samples for i ← 0 to n − 1 do

P ← P � NewRandomVector()
c[P i] ← C(P i)

Initialize the iteration counter t ← 0
Iterate until termination while ¬ter() do

Select �τn� samples (z0〈L〉, z1〈L〉, . . . , z�τn�−1〈L〉) ← sel()

Set θt to the worst selected cost θt ← c[zk〈L〉] such that

∀i∈Nτ 〈c[zi〈L〉] ≤ c[zk〈L〉]〉
Search for a structure ς ς ← sea()
Estimate the parameters θ fit←− ς θ ← est()
Create an empty vector of new samples O ← ()

Sample m new samples from P̂ς(Z) for i ← 0 to m − 1 do
O ← O � sam()

Replace a part of P with a part of O rep()
Evaluate the new samples in P for each unevaluated P i do

c[P i] ← C(P i)
Update the generation counter t ← t + 1
Denote the required iterations by tend tend ← t

In the IDEA framework, we have that Nτ = (0, 1, . . . , �τn�−1), τ ∈ [ 1
n , 1], sel() is the selection

operator, rep() replaces a subset of P with a subset of O, ter() is the termination condition, sea()
is a model structure search algorithm, est() estimates the parameters that are implied by both
the structure ς as well as predefined pdfs and sam() generates a single sample using the estimated
densities. The evolutionary algorithm characteristic of the IDEA lies in the fact that a population
of individuals is used from which individuals are selected to generate new offspring with. Using
these offspring along with the parent individuals and the current population, a new population is
constructed.

Once ς has been selected, the actual pdfs are computed. During the course of deriving ς
however, the required pdfs will often have already been computed [4]. In whatever way, using
equation 3, computing the pdfs can functionally be restricted to computing multivariate joint
pdfs. In the discrete case, there has been only one way in which these functions are computed,
which is the most straightforward way. The probabilities equal the frequency in which some
combination of values appears in the sample vector1, divided by the total amount of samples:

P̂ (X〈a〉)(c〈a〉)=
1
|S|

|S|−1∑
j=0

{
1 if ∀i∈a〈ci = xj

i 〉
0 otherwise

(10)

In the case of continuous random variables, such a most straightforward way to compute the
probabilities does not exist. In general, some model is fit to the data as good as possible by
specifying its parameters. For instance, a multivariate normal pdf can be used, which is fully
specified by its covariance matrix and its mean vector. This discrepancy between discrete and
continuous random variables is important in certain model selection techniques as we shall see.

4 Negative log–likelihood as the basis of statistical model
selection

The algorithms in the IDEA field that have been proposed so far, can roughly be divided into three
categories. One category consists of the methods that use a univariate distribution in which none of
the variables interact with other variables. We make no statement of any kind on these algorithms
as they perform no induction on the model since ς is fixed. The methods in another category use

1Note that in the IDEA framework we have that the samples we are referring to are the result of the selection
operation S ← sel().
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a higher order structure and for instance use the KL divergence with the full joint probability
distribution to guide the search. For factorizations, it has been noted before [6] that using the
KL divergence should be accompanied by strong restrictions on f because otherwise minimizing
the divergence will give just the full joint probability distribution. In case of a factorization, the
heavy restrictions are usually embodied by a parameter κ which denotes the amount of variables
any one variable is allowed to interact with. To do away with κ, the methods in a third category
have been invented. These methods add a penalty term to the search metric in order to penalize
more complex models. The amount of penelization is however usually parameterized again.

4.1 Negative log–likelihood and sample entropy

To start out, we first note that there is a correspondence between equations 4 and 9 as well as
between equations 5 and 9. We first focus on the discrete case, which is the most simple.

We split up S into |A|l mutually disjoint subvectors so that each subvector contains only one
type of truncated sample point. If we define a
b to be the order dependent intersection of vectors
a and b such that each element of a is preserved if it occurs in b, we can rewrite equation 9 by
summing over all possible subvectors of S as they together are exactly equal to S:

−ln(L(S|P̂ (X ))) =−
∑
c∈Al

|S�c|−1∑
i=0

ln(P̂ (X )(c))=−
∑
c∈Al

|S 
 c|ln(P̂ (X )(c)) (11)

Note that |S 
 c| is just the amount of times that vector c occurs in the sample vector. Using
equation 10, this means that we have |S 
 c| = |S|P̂ (X )(c), so we may conclude:

−ln(L(S|P̂ (X ))) =−
∑
c∈Al

|S|P̂ (X )(c)ln(P̂ (X )(c)) = |S|H(P̂ (X )) (12)

In the discrete case we thus have that the negative log–likelihood equals |S| times the multi-
variate entropy of the estimated model. The reason for this is that the estimated model in the
discrete case fits over the sample points with a maximum likelihood. The entropy measures are
exact in the sense that they go over the probabilities of every domain element. Alternatively, we
can define sample entropies that compute the measure given a vector of samples |S ′| s← P̂ (Z).
Note that it is essential that the samples were sampled from the probability distribution for which
we are computing the entropy. As the sample entropy is the same in the discrete as well as the
continuous case, we have only a single definition for it:

H(S ′, P̂ (Z)) =
−1
|S ′|

|S′|−1∑
i=0

ln(P̂ (Z)(S ′
i)) such that S ′ s← P̂ (Z) (13)

Note that the definition of the sample entropy is closely related to that of the negative log–
likelihood. To be exact, −ln(L(S ′|P̂ (Z))) = |S ′|H(S ′, P̂ (Z)). The difference is that the definition
of sample entropy is only valid if S ′ s← P̂ (Z), which we do not require in the case of the negative
log–likelihood.

In the derivation of equation 12 from 11, we have used that |S 
 c| = |S|P̂ (X )(c). But,
S s←P (X ) and not S s← P̂ (X ). Therefore it should be noted that only in the limit of |S ′| → ∞
we have that H(S ′, P̂ (X )) → H(P̂ (X )), |S ′| s← P̂ (X ). Furthermore, in the limit of |S| → ∞, we
have that |S 
 c| = |S|P (X )(c), since then P̂ (X )(c) → P (X )(c) and thus in the additional limit
of |S ′| → ∞, |S ′| s← P̂ (X ), we have that H(S ′, P̂ (X )) → H(P (X )). We therefore have:

lim
|S| → ∞

− ln(L(S|P̂ (X ))) = −|S|
∑

c∈A|a|

P (X )(c)ln(P̂ (X )(c)) = (14)

−|S|
∑

c∈A|a|

P (X )(c)ln(P (X )(c)) = −|S|H(P (X ))
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In the continuous case, things are more complex. We discretize each variable so that it consists
of equidistant intervals of length m and let M = 〈. . . , [−2m,−m〉, [−m, 0〉, [0,m〉, [m, 2m〉, . . .〉.
Note that (S 
 A)i is the i–th sample from the sample vector that falls into area A. Recalling
that S s←P (Y), equation 9 becomes:

−ln(L(S|P̂ (Y))) = −
∑

A∈M l

|S�A|−1∑
i=0

ln(P̂ (Y)((S 
 A)i)) (15)

Now in the limit of |S| → ∞, we have that |S 
 A| → |S|P (Y ∈ A). We may thus write:

lim
|S| → ∞

− ln(L(S|P̂ (Y))) = −
∑

A∈M l

|S|P (Y∈A)−1∑
i=0

ln(P̂ (Y)((S 
 A)i)) (16)

If we now let m → 0, the area A becomes infinitely small and is therefore shrunk to a single
point. The discrete sum over all areas then becomes an integral over all points:

lim
|S| → ∞

− ln(L(S|P̂ (Y))) = −
∫∫

. . .

∫ |S|P (Y)(y〈L〉)−1∑
i=0

ln(P̂ (Y)(y〈L〉))dy〈L〉 = (17)

−|S|
∫∫

. . .

∫
P (Y)(y〈L〉)ln(P̂ (Y)(y〈L〉))dy〈L〉

From equation 17 it follows that in the limit of |S ′| → ∞, H(S ′, P̂ (Y)) → h(P̂ (Y)) if and only
if S ′ s← P̂ (Y). Note that we cannot enforce the same further relation as we derived for the discrete
case. The relation that we have in the discrete case that in the limits of |S| → ∞, |S ′| → ∞, the
sample entropy over P̂ (X ) becomes equal to the entropy over the actual underlying probability
distribution P (X ), does not hold in general in the continuous case. Actually, it does not hold
in general in the discrete case either, but we have assumed that in the discrete case we always
approximate probabilities by using definition 10. As the definition in equation 10 becomes equal
to P (X ) in the limit of |S| → ∞, this is clearly true. However, in the continuous case, we hardly
ever have that in the limit of |S| → ∞ we get P̂ (Y) → P (Y). So we can neither conclude that
the entropy of the true distribution becomes equal to the entropy of the estimated distribution.
In order for that to hold in general, we require a special pdf:

∫ b0

a0

∫ b1

a1

. . .

∫ bl−1

al−1

P̂ (Y)(y〈L〉)dy〈L〉 =
S 
 ∏l−1

i=0[ai, bi]
|S| (18)

Clearly, the pdf so constructed is too specific with respect to the sample vector and is therefore
said to overfit the data. This is a very important aspect of density estimation and is termed
generalization. As in a practical application we shall use a more generalizing model for P̂ (Y), we
cannot enforce that in the limits of |S| → ∞, |S ′| → ∞, H(S ′, P̂ (Y)) → h(P (Y)), S ′ s← P̂ (Y).

There is however one final important issue. In the discrete case, we found that the entropy
of the estimated distribution equals |S| times the negative log–likelihood over the sample vector
(equation 12). We have however not established this in the continuous case. In our derivation,
we have directly derived that given an infinite amount of samples, the sample entropy becomes
equal to the actual differential entropy over the estimated model. As a matter of fact, we do
not in general have the same relation between the entropy and the negative log–likelihood in the
continuous case as we do in the discrete case. The reason why it does hold in the discrete case,
is because equation 10 is a maximum likelihood estimate of the sample vector. As we have not
assumed that our fit in the continuous case is a maximum likelihood fit unless we use equation 18,
we have not enforced this relation in the continuous case. However, Kullback [13] has shown that
if and only if P̂ (Y) is a maximum likelihood estimate over S, the equality holds both in the
discrete case as well as the continuous case. Let ϑ be the vector of parameters for P̂ (Z) and Θ
be the vector space of all possible values for the parameters ϑ, we can then formalize this by:
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P̂ (Z) = arg max{L(S|P) | P ∈ {P̂ (Z|ϑ) | ϑ ∈ Θ}} ⇐⇒ −ln(L(S|P̂ (Z)) = |S|h(P̂ (Z)) (19)

4.2 KL divergence and negative log–likelihood model selection

In the methods in the second mentioned category, model selection is performed subject to certain
constraints. Let Cς be the set of all model structures that satisfy the constraints, ς ∈ Cς . The
constraints on the model have varied over the past from none [1, 19] to those of chain dependen-
cies [3], tree dependencies [2], conditional dependencies with a maximum of κ conditionals per
variable [4, 6, 7, 14, 15, 16] and marginal product models [11]. Prior to the IDEA framework, all
of the higher order models were regarded in the case of discrete (binary) random variables.

The basic idea is then to minimize the distance between the true probability distribution and
the estimated probability distribution. As a distance measure, the KL divergence between two
probability distributions can be used in which one probability distribution is the most complex
probability distribution P (Z) and the other is the estimate P̂ς(Z).

In the case of factorizations, an algorithm to approximately find the best factorization can
start from the complete univariate factorization in which each variable is taken independently and
incrementally build a more complex factorization. Each step in the incremental algorithm is based
upon the change that brings about the largest decrease in the KL divergence to P̂ (Z). In the
case of a model structure in general, this means that if we let P̂ς0(Z) be the current model, we
test it against a (more complex) model P̂ς1(Z) by observing the change in the KL divergence to
the most complex probability distribution. The model that brings about the greatest decrease is
selected as the new current model. The metric that has been used in the discrete case, has only
been applied to factorizations and is computed with respect to the full joint factorization:

D(P̂ (X )||P̂f0(X )) − D(P̂ (X )||P̂f1(X )) = (20)∑
c∈Al

P̂ (X )(c)ln(P̂f1(X )(c)) −
∑
c∈Al

P̂ (X )(c)ln(P̂f0(X )(c))

We note that by using conditional probabilities, we can specify any factorization of the proba-
bility distribution using multivariate joint pdfs as its elemental building blocks. With equation 3,
we therefore have that both sums in equation 20 are actually sums over sums over certain vectors
a of P̂ (X )(c)ln(P̂ (X〈a〉)(c〈a〉)) with c ∈ Al. As given some vector k � a, the theorem of total
probability gives us that

∑
c∈A|k|P (X〈k〉)(c)=

∑
c∈A|a|P (X〈a〉)(c), equation 20 transforms into:

D(P̂ (X )||P̂f0(X )) − D(P̂ (X )||P̂f1(X )) = H(P̂f0(X )) − H(P̂f1(X )) (21)

In the continuous case, we can use similar arguments to show that we have:

d(P̂ (Y)||P̂f0(Y)) − d(P̂ (Y)||P̂f1(Y)) = h(P̂f0(Y)) − h(P̂f1(Y)) (22)

The resulting expression in equation 22 has been used so far in continuous IDEAs [4, 6, 7] as a
logical expansion over the discrete case. This requires however the computation of a multivariate
integral over a given pdf. For the normal pdf [4], this expression can be derived analytically.
However, in the case of the normal kernels pdf [7], this is no longer possible. The same is the case
for the use of a normal mixture pdf. The latter two pdfs are however very useful in the IDEA
approach. In order to use them anyhow, the integrals may be computed numerically. There are
many ways to do this and mostly this requires an exponential amount of time in the dimensionality
of the integral. However, we have seen in this paper that we can use an approximation. If
we can efficiently sample points from the estimation P̂f(Y), equation 17 tells us that we may
use H(S ′, P̂f(Y)) with S ′ s← P̂f(Y), as an approximation to the true entropy over the estimated
model. This resolves the problems regarding the computation of the entropy in the search metric
as encountered so far in continuous IDEAs [6, 7]. Summarizing, for finding f, the methods using
the KL divergence have used:
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{
minf∈Cf

{H(P̂f(X ))} (Discrete case)
minf∈Cf

{h(P̂f(Y))} (Continuous case)
(23)

As an approximation, the sample entropy can be used:

minf∈Cf
{H(S ′, P̂f(Z))} (24)

Note that even though equation 23 consists of exact definitions, the estimated distributions
are based upon samples. Therefore, both optimization problems are inherently sample based.
The divergence that we have minimized so far in the discrete and continuous case however, is a
divergence between some probability distribution and the most complex probability distribution
that we have estimated. This only works if the most complex distribution of our model can be fit
to the sample vector to be a good estimator. It is however far from likely that this will always be
the case. The problem lies not in the use of the KL divergence, but in the use of the most complex
probability distribution to which we are computing the KL divergence. What we should be using
as a distance metric is the distance between our estimated model and the actual probability
distribution P (Z). The reason for this is that we want our estimated model to resemble the
true distribution as good as possible. By doing so, using the KL divergence becomes a maximum
likelihood optimization of our estimated model, which is exactly what we want. At this point, we
no longer solely have to regard factorizations as the model structure. In the discrete case, we thus
want to look at the following KL divergence difference:

D(P (X )||P̂ς0(X )) − D(P (X )||P̂ς1(X )) = (25)∑
c∈Al

P (X )(c)ln(P̂ς1(X )(c)) −
∑
c∈Al

P (X )(c)ln(P̂ς0(X )(c))

We now face sums over a probability distribution P (X ) that we do not know. However,
equation 14 tells us that we can use the negative log–likelihood as a sample estimator to the
expressions in the true KL divergence difference to obtain:

D(P (X )||P̂ς0(X )) − D(P (X )||P̂ς1(X )) ≈ 1
|S| (ln(L(S|P̂ς1(X ))) − ln(L(S|P̂ς0(X )))) (26)

In the continuous case, the true KL difference is:

d(P (Y)||P̂ς0(Y)) − d(P (Y)||P̂ς1(Y)) = (27)∫∫
. . .

∫
P (Y)(y〈L〉)ln(P̂ς1(Y)(y〈L〉))dy〈L〉−

∫∫
. . .

∫
P (Y)(y〈L〉)ln(P̂ς0(Y)(y〈L〉))dy〈L〉

We again face explicit multivariate integrals as we implicitly did in equation 22 because of
the differential entropies. The additional problem with equation 27 is that, just as we had in the
discrete case, we have to integrate over a probability distribution P (Y) that we do not know.
However, using equation 17, we get an approximation that is similar to the one in the discrete
case based on the negative log–likelihood:

d(P (Y)||P̂ς0(Y)) − d(P (Y)||P̂ς1(Y)) ≈ 1
|S| (ln(L(S|P̂ς1(Y))) − ln(L(S|P̂ς0(Y)))) (28)

We have thus simplified the approaches so far in continuous IDEAs [4, 6, 7]. Even though
using equation 24, we already no longer had the need to explicitly evaluate the integrals, we still
had to be able to draw samples from the distribution. By using equation 28 however, we can
directly use the given sample points and evaluate the estimated pdf at those points. The use of
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the KL divergence leads to the testing of the appropriateness of two different models through the
use of the negative log–likelihood. Consequently, the search for good model structures is guided
by the maximum likelihood of the sample vector, given some probabilistic model. The best fitting
model is taken to be the one with the minimum negative log–likelihood. From now on, we call this
procedure minimum log–likelihood model selection. In effect, the approaches using this selection
attempt to solve:

minς∈Cς
{−ln(L(S|P̂ς(Z)))} (29)

At this point, we have three different optimization problems as defined in equations 23, 24
and 29. We have already argued that in the limit of |S ′| → ∞, |S ′| s← P̂ (Z), optimization prob-
lems 23 and 24 are identical. The previous approaches using the KL divergence have all used
the optimization problem in equation 23. However, because of equation 19, the newly proposed
optimization problem in equation 29 is identical to the so far used optimization problem under the
condition that the estimated model is a maximum likelihood estimate. So in effect, the methods so
far have also been attempting to maximize the likelihood of the probabilistic model with respect
to |S| but only because maximum likelihood pmf or pdf estimates were used.

4.3 Justifying sample based model selection

We have defined minimum log–likelihood model selection as discriminating between probabilistic
models on the basis of the log–likelihood value in equation 9. This value is based on samples
just as is the sample entropy. It has gone unmentioned that this is also the case for using the
exact entropy over the estimation as defined in equation 23, since the estimation itself is based on
samples. Because of the fact that samples are involved, a random variable can be identified for
the resulting value that we are using.

If we have some random variable R along with N values r0, r1, . . . , rN−1 for it, its sample mean
R and its unbiased sample standard deviation s̃R are:

R =
1
N

N−1∑
i=0

ri, s̃R =

√√√√ 1
N − 1

N−1∑
i=0

(ri − R)2 (30)

Because of the central limit theorem, the sample mean is approximately normally distributed.
Now observe the following statistic:

T =
√

N(R − h)
s̃R

(31)

It can be shown (see for instance [12]) that the T statistic is distributed according to Student’s
T distribution. Given some value for R, when the first N − 1 values are set, the value for rN−1

cannot be chosen freely anymore and must be fixed if the definitions in equation 30 are to be
obeyed. Therefore, we say that the T statistic has δ = N − 1 degrees of freedom. It can be shown
(see for instance [12]) that the T statistic has the following pdf with δ degrees of freedom:

fT (δ, y) =
Γ( δ+1

2 )

Γ( δ
2 )
√

δπ

(
1 +

y2

δ

)− δ+1
2

(32)

In the definition of fT we have used Euler’s Gamma function Γ(y):

Γ(y) =
∫ ∞

0

xy−1e−x dx, y > 0 (33)

To evaluate Γ(y) efficiently, we can use a result by Feller [10]:

Γ(y) ≈ yy− 1
2 e−y

√
2π

(
1 +

1
12y

)
(34)
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We can now state that given some hypothesized value h for the actual mean µR of R, the
value of T can be computed and it can be tested at the significance level α whether or not the
hypothesized value is a valid assumption or not. Since the T distribution is symmetric, this can
be done by finding the value t1−α

2
such that

∫ ∞
t1− α

2

fT (N − 1, y)dy = α
2 . The hypothesis is then

rejected if |T | > t1−α
2

and accepted otherwise. If we now assume to have two random variables
R0 and R1, for which we both have N samples, we observe:

T =

√
N(R0 − R1 − h)√

s̃2
R0

+ s̃2
R1

(35)

It can be shown that the T statistic (see for instance [12]) is also distributed according to
Student’s T distribution with δ = 2(N − 1) degrees of freedom, where h is now an hypothesis for
the value of the difference between µR0 and µR1 .

If we let Ri stand for the negative log–likelihood of the samples under model P̂ςi(Z), i ∈ {0, 1},
we can use the T statistic to test whether the average value of the negative log–likelihood of P̂ς1(Z)
is significantly smaller than P̂ς0(Z). If this is so, P̂ς1(Z) is selected in favor of P̂ς0(Z). In order to
do this, we set the hypothesized value h to 0 and perform a right sided test. This means that we
are testing whether the expected value of R0 − R1 is greater than 0 and thus whether R0 > R1.
The amount of degrees of freedom in our case is δ = 2(|S| − 1) − |θ|. For each parameter θi that
is to be estimated, we lose one degree of freedom. The fact that we use the average value, means
that we are minimizing 1/|S| times the negative log–likelihood, but as this factor is the same over
all models, the structure of the minimization problem remains unaltered.

5 Examples and experiments

In this section, we give some examples in both the discrete as well as the continuous case that bring
the theoretical derivations into practice. Furthermore, we test the results on real optimization
functions using continuous IDEAs.

5.1 Examples

In all of our examples, we regard only two random variables Z0 and Z1 and factorizations f for
the model structure ς. We attempt to infer whether it is more beneficial to use P̂f1 = P̂ (Z0, Z1)
instead of P̂f0 = P̂ (Z0)P̂ (Z1). We start out with discrete random variables and restrict ourselves to
the elementary case of binary random variables with alphabet A = {0, 1}. Lets assume that our
underlying pmf P (Z0, Z1) is completely random, meaning that ∀(c,d)∈A2〈P (X0,X1)(c, d) = 1

4 〉.
Now lets assume that we have 41 samples. Instead of drawing them randomly from the true
distribution, we let the first 40 samples be 10 groups of 4 samples of all possible combinations
for X0 and X1. Over the first 40 samples, the empirical probabilities computed according to
equation 10 are thus equal to the true distribution. Whatever we let the 41–st sample be, it
will distort the approximation. We choose to let the 41–st sample to be (0, 0). We can now
compute the discrete approximation from equation 10, the entropy of the estimated pmf by using
equation 4, the sample entropy of the estimated pmf by using equation 13 and drawing 100 random
samples from the approximated pmf, and the negative log–likelihood of the estimated pmf by using
equation 9. The results for the two different models are the following2:

f P̂f H(P̂f) H(S ′, P̂f) − 1
|S| ln(L(S|P̂f))

f0 441
1681 , 420

1681 , 420
1681 , 400

1681 1.385699 1.387865 1.385699
f1 11

41 , 10
41 , 10

41 , 10
41 1.385416 1.388113 1.385416

2The probabilities in the table are for the respective combinations (0, 0), (0, 1), (1, 0), (1, 1).
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As expected from our derivations in equations 12 and 19, the negative log–likelihood is equal
to the entropy over the discrete estimated pmf in equation 10 and the sample entropy is close this
value. Based on the KL divergence, the approach so far has been to use equation 23 and select the
model with the minimal entropy value. In this case, even though the difference between the two
models is only very slight, the absolute difference leads to select Pf1(X0,X1) over Pf0(X0,X1). If
we now compute the statistics as proposed in section 4.3, we get:

Rf0 s̃f0 Rf1 s̃f1 T

1.385699 0.035331 1.385416 0.042754 0.032726

At the significance level of α = 5%, the critical value of Student’s T distribution is 1.668 at
δ = 2(41− 1)− 2− 3 = 75 degrees of freedom. This implies that if we start with the simple model
Pf0(X0,X1) and want to decide whether Pf1(X0,X1) is a better choice, using our new approach,
we would reject this decision. Note that this is of course what we want, since the source is just
a univariate probability distribution that does not need to be described by higher order complex
models.

As a second example, we take the pmf that equals 0 over combinations (0, 1) and (1, 0) and
equals 1

2 over combinations (0, 0) and (1, 1). As a vector of 41 samples, we take 20 occurrences
of (0, 0) and (1, 1) each and let the 41–st sample be (1, 0) as some very slight noise on the input.
Clearly, we cannot describe this distribution satisfactorily with the product model Pf0(X0,X1).
In this case, we want our approach to agree with the previous approaches and select model
Pf1(X0,X1) instead at the significance level of α = 5%. We therefore first compute the entropy,
sample entropy and negative log–likelihood:

f P̂f H(P̂f) H(S ′, P̂f) − 1
|S| ln(L(S|P̂f))

f0 420
1681 , 400

1681 , 441
1681 , 400

1681 1.385699 1.384450 1.385699
f1 20

41 , 0, 1
41 , 20

41 0.790906 0.807712 0.790906

Again, we observe that using merely the entropy difference, we would prefer Pf1(X0,X1) over
Pf0(X0,X1). The required statistics are the following:

Rf0 s̃f0 Rf1 s̃f1 T

1.385699 0.007620 0.790906 0.467858 8.139338

This time, the T statistic is larger than the critical value of 1.668. This implies that using our
approach too, the joint model would be preferred.

Moving to the case of continuous random variables, we take the domain of the variables to be
[−1, 1]. Again, we work with 41 samples. Using two different cases, we want to show that for
continuous random variables, we get similar results. The first sample vector is a set of 40 points
from a uniform distribution such that the points are placed on a grid of 8 × 5. The 41–st sample
distorts the uniform characteristic of the sample vector slightly and is placed at (−0.9, 0.9). The
second sample vector is a joint sample vector and consists of points that are equidistantly placed
along two lines that are parallel to Y1 = Y0. The 41–st sample lies in the center and equals (0, 0).
To keep computations simple, we use a parametric approximation to the sample vector. Our
parametric function is the normal pdf. A maximum likelihood fit for the normal pdf over a sample
vector given random variables Y 〈a〉, can be found by computing the sample mean and sample
covariances as described in equation 36 below. The resulting estimations are shown in figure 1.

f(y〈a〉) =
(2π)−

|a|
2

(det S(a))
1
2
e−

1
2 (y〈a〉−Y 〈a〉)T (S(a))−1(y〈a〉−Y 〈a〉) (36)

where Y 〈a〉 =
1
|S|

|S|−1∑
i=0

yi〈a〉, S(a) =
1
|S|

|S|−1∑
i=0

(yi〈a〉 − Y 〈a〉)(yi〈a〉 − Y 〈a〉)T
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S P̂f0 (Y0, Y1) = P̂ (Y0)P̂ (Y1) P̂f1 (Y0, Y1) = P̂ (Y0, Y1)
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Figure 1: Density contours of maximum likelihood normal pdf estimates using a univariate product
model (second column) and a multivariate joint model (third column). The results are shown over
two different sample vectors (first column).

The entropy of a joint multivariate normal pdf can be shown [8] to be:

h(y〈a〉) =
1
2
(|a| + ln((2π)|a|(det S(a)))) (37)

Using this information, we can compute the actual entropy of the estimated distribution as well
as the sample entropy over 100 samples and the negative log–likelihood over the sample vector.
The results are the following:

Univariate sample vector

f P̂f descriptors h(P̂f) H(S ′, P̂f) − 1
|S| ln(L(S|P̂f))

f0
Y0 = −0.021951,S((0)) = [0.507079]
Y1 = 0.021951,S((1)) = [0.437393]

2.084871 2.086227 2.084871

f1
(Y0, Y1)=(−0.021951, 0.021951)

S((0, 1))=
[

0.507079 −0.019274
−0.019274 0.437393

]
2.084033 2.071505 2.084033

Joint sample vector

f P̂f descriptors h(P̂f) H(S ′, P̂f) − 1
|S| ln(L(S|P̂f))

f0
Y0 = 0.000000,S((0)) = [0.359435]
Y1 = 0.000000,S((1)) = [0.374679]

1.835424 1.781525 1.835424

f1
(Y0, Y1)=(0.000000, 0.000000)

S((0, 1))=
[
0.359435 0.359435
0.359435 0.374679

]
0.234478 0.215413 0.234478

Because of equation 19 and the fact that we have used a maximum likelihood estimation, we find
that −ln(L(S|P̂f(Y))) = |S|h(P̂f(Y)), just as we did in the discrete case. In both cases we would
prefer the two dimensional joint probability distribution if we decide solely on the entropy over
P̂fi(Y0, Y1). However, we again see that this absolute difference is very small in the uniform sample
vector. To see if this difference is significant, we compute the required statistics for Student’s T
difference test and find:
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HT

No
Yes

C0 n RT

9999999.96 350 130.17
9999999.86 250 1251.56

C1 n RT

7.50 275 44.32
6.32 225 1299.03

C2 n RT

27.73 550 4.95
18.75 350 244.71

Figure 2: Results of the experiments over C0, C1 and C2.

Univariate sample vector
Rf0 s̃f0 Rf1 s̃f1 T

2.084871 0.604633 2.084033 0.605166 0.006274

Joint sample vector
Rf0 s̃f0 Rf1 s̃f1 T

1.835424 0.931245 0.234478 0.483911 9.767834

At the significance level of α = 5% and the accompanying critical value of Student’s T distri-
bution of 1.669 at 2(41 − 1) − 4 − 5 = 71 degrees of freedom, the joint probabilistic model is only
selected in the case of the joint sample vector as expected. In the continuous case, we can thus
also conclude that our approach results in desirable behavior of the probabilistic model selection
process.

5.2 Experiments

In addition to the examples in the previous section, we give the results of some experiments to
demonstrate the use of the statistical testing in practice. We have used the following continuous
function maximization problems:

C0 γi = 24
1000

(i + 2) − yi y〈L〉 ∈ [−3, 3]l

C1 γ0 = y0, γi = yi + γi−1 y〈L〉 ∈ [−3, 3]l

C2 γ0 = y0, γi = yi + sin(γi−1) y〈L〉 ∈ [−3, 3]l
Ci =

100

10−5 +
∑l−1

i=0 |γi|

To compare our experiments with prior results [6] where no statistical hypothesis testing was
used, we use the same settings. We have l = 100, a maximum of 200000 function evaluations and
we average the results over 20 runs. The pdf we use is the normal pdf and we use the special
case conditional graph search algorithm based on Edmonds algorithm [9] for optimum branchings.
The arcs that were available to Edmonds algorithm were those that resulted in a T value over the
critical Student’s T value at the α = 25% significance level. Repeating earlier reported results [6],
figure 2 shows that our new approaches obtain comparable results. The tables contain whether
hypothesis testing was used, the average cost Ci, the best value for n, and the relative time
RT. Let ne be the required amount of function evaluations, FT(x) the time to perform x random
function evaluations and TT the total algorithm time including the ne function evaluations. Then,
RT = (TT − FT(ne))/FT(ne).

Note that the approaches that result by using the statistical hypothesis tests are quite a
lot slower. The reason for this is that for every arc that has to be justified, O(τn) additional
involved computations have to be done, whereas in the case of using the normal pdf and the
entropy value, this is O(1). Since there are O(l2) such arcs, the running times are strongly
influenced. Furthermore, the obtained results are not as good as the results that were obtained
by the previous approach. The function that we tested has a very high order structure, namely
the full joint probability distribution. Therefore, incorporating more dependencies will result in
a better problem value. However, the normal pdf is quite unsensitive to the hypothesis test.
Since the normal pdf is very general, the samples are almost always underfit. Furthermore, the
population size is kept small in our example since only a fixed amount of evaluations is allowed.
As a result, the structure of the problem is harder to find. Therefore, a lower significance value
should be used so as to be less conservative towards possible dependencies.
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There are two more important issues to note. First of all, if we only use the normal pdf for
simplicity, the issue of inferring the structure of the problem is not as important as in the case of
discrete random variables or the histogram pdf for continuous random variables. In the latter two
cases, the amount of parameters that has to be determined grows exponentially with the amount
of incorporated dependencies. For the full joint distribution, the amount of parameters in the
case of binary random variables is 2l − 1. However, in the case of the normal pdf, the amount of
parameters for the full joint distribution is 1

2 l2 + 3
2 l. The IDEA instance that results if the normal

pdf and the full joint distribution are used, indeed runs in polynomial time [4]. It can therefore
be argued that finding structure in the case of continuous random variables is less important.
However, since the polynomial time is bounded only by O(l4), it is still beneficial to use lower
order structures if possible from a practical point of view.

Another issue to point out is that using only the normal pdf is too insensitive to be truly
effective on a wide range of problems. Higher order interactions such as clusters that cannot be
fit well by the normal pdf, will cause a higher order fit to be only slightly better than multiple
lower order normal pdfs. Therefore, adding clustering methods to remove non–linear interactions
will improve the effectiveness of the approaches proposed so far in the case of continuous random
variables. Furthermore, the statistical hypothesis test as we introduced in this paper will then also
contribute more to the search. An illustrative example is given in figure 3. A symmetric sample
vector shows non–linear behaviour that cannot be fit well by a single multivariate normal pdf.
The obtained result is almost identical to the product of two univariate normal pdfs. However, if
two clusters are identified, the symmetry over the horizontal axis is removed and two multivariate
normal pdfs can be fit over these individual sample vectors. The result is a well fitting distribution
as can be seen in figure 3. Note that the negative log–likelihood hypothesis test over each cluster
separately would have resulted in the displayed fit because of the strong correlation that is observed
within each cluster separately.

6 Summary and discussion

We have shown that previous approaches using the KL divergence have attempted to find a
factorization f by minimizing the entropy of the estimated distribution P̂f(Z) (equation 23).

In the continuous case, problems have been encountered to compute the differential entropy
because of the integrals. We have shown that as an approximation, a model may be found from
minimizing the sample entropy of the estimated distribution P̂ς(Z) over S ′ s← P̂ς(Z) (equation 24).

We have shown that in the limit of |S ′| → ∞, the two optimization problems are identical.
We have also shown that both optimization problems are guided by a metric that is a distance
from some probabilistic model to the estimated most complex probability model. This is however
not the desired distance to the actual most complex probability model. Alternatively, we have
shown that the best descriptive model can be found from minimizing the negative log–likelihood
of S s←P (Z) given the estimated distribution P̂ς(Z) (equation 29).

All approaches using the KL divergence so far, have essentially been attempting to minimize
the entropy over the estimated distribution that has been fit using maximum likelihood estimate
pmfs or pdfs. From equation 19, we have that these approaches have been doing the same as
minimizing the negative log–likelihood over the estimated distribution.

What has gone unmentioned in all previous work however, is that all three optimization prob-
lems are based upon samples. In the first optimization problem this is implicitly the case whereas
in the other two optimization problems, this is explicitly so. Deciding between probabilistic mod-
els during optimization should therefore be justified by using a statistical hypothesis test. We
have shown that Student’s T difference test on the average negative log–likelihood over the given
samples S is the required justification approach.

We might now argue that there is no more need for additional constraints on the probabilistic
model. The use of the KL divergence in the first optimization problem and no constraints leads to
a search algorithm that in a greedy fashion tries to incorporate as many dependencies as possible.
Therefore, additional constraints are needed to find the best matching constrained model with
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Figure 3: Density contours of maximum likelihood normal pdf estimates on a non–linear sample
vector (top left). The density contours are shown for the product of two one dimensional normal
pdfs (top right), a single two dimensional normal pdf (bottom left) and two normal pdfs in two
dimensions that have been fit after the sample vector was clustered (bottom right).
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respect to the most complex model. In the last optimization algorithm however, each higher order
model has to be justified by being a better fit of the sample points. Hence, we can argue that
we no longer require additional constraints as the dependencies that will be incorporated in the
estimated model will have been justified. Still, penalizing more complex models can be useful from
a computational point of view.

An important remark is that in the continuous case, using Student’s T test in combination with
only a normal pdf, is very sensitive to outliers. As such outliers are expected to occur frequently in
optimization by iterated density estimation, either more complex models, such as normal mixture
models, or means of clustering are required. By performing all of the steps in clusters of S, the
tests will be more reliable if the amount of samples in each cluster does not become too small and
the form of the clusters does not deviate too much from the possible density contours of a normal
pdf. An advantage of this approach is that clusters can efficiently break up non–linear behavior in
the original sample vector that cannot be fit well by a single normal pdf. Also, simple but effective
clustering methods are computationally efficient as well.

Because of the results of this paper, we can now easily use an approach in which we additionally
penalize more complex models. This leads to metrics such as the MDL [11] and the BIC [14]
that have been used previously in iterated density estimation evolutionary algorithms. Using our
results, the general idea is to use the negative log–likelihood as a measure of goodness of fit and use
some function of the amount of parameters in the probabilistic model, which inherently determines
its complexity, as an additional term. For instance, we might use a constant times an exponential
in the amount of parameters of our distribution estimation. In the case of a multivariate normal
pdf in N dimensions, this equals 1

2N2 + 3
2N for the unique parameters in the covariance matrix

and the mean vector.

7 Conclusions

So far, algorithms based on the KL divergence have guided the search for a probabilistic model
by computing the (differential) entropy over the estimated distribution. By attempting to min-
imize the negative log–likelihood over the estimated distribution instead, we do away with the
problematic issue of computing the integrals in the differential entropy. However, under the as-
sumption that the pmf or pdf estimates are of maximum likelihood, these minimization problems
are identical. Furthermore, the metric that is computed using the negative log–likelihood, is a
definition of how well a probabilistic model describes a certain vector of samples. By justifying
the preference for one model over another on the basis of Student’s T difference test, we have a
robust scheme that infers the dependencies between the variables from the maximum likelihood.
As a result, there is arguably no more need for additional constraints on the probabilistic model
as the dependencies are attempted to be inferred through the use of justifiable statistics.
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