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Abstract

We describe a parameter-free estimation-of-distribution algorithm (EDA) called the
adapted maximum-likelihood Gaussian model iterated density-estimation evolution-
ary algorithm (AMaLGaM-IDEA, or AMalLGaM for short) for numerical optimiza-
tion. AMaLGaM is benchmarked within the 2009 black box optimization benchmark-
ing (BBOB) framework and compared to a variant with incremental model building
(iAMaLGaM). We study the implications of factorizing the covariance matrix in the
Gaussian distribution, to use only a few or no covariances. Further, AMaLGaM and
iAMaLGaM are also evaluated on the noisy BBOB problems and we assess how well
multiple evaluations per solution can average out noise. Experimental evidence sug-
gests that parameter-free AMaLGaM can solve a wide range of problems efficiently
with perceived polynomial scalability, including multimodal problems, obtaining the
best or near-best results among all algorithms tested in 2009 on functions such as the
step-ellipsoid and Katsuuras, but failing to locate the optimum within the time limit
on skew Rastrigin-Bueche separable and Lunacek bi-Rastrigin in higher dimensions.
AMaLGaM is found to be more robust to noise than iAMalL.GaM due to the larger
required population size. Using few or no covariances hinders the EDA from deal-
ing with rotations of the search space. Finally, the use of noise averaging is found to
be less efficient than the direct application of the EDA unless the noise is uniformly
distributed. AMaLGaM was among the best performing algorithms submitted to the
BBOB workshop in 2009.
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1 Introduction

Estimation-of-distribution algorithms (EDAs) are an important strand of research on
black box optimization (BBO). In BBO, either no prior knowledge on the function to be
optimized is available, or the function cannot be expressed in closed form, for example,
when solutions are evaluated using simulations. Still, the optimization problem can
have exploitable structural features. One type of structure is dependencies between
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problem variables. Identifying and using dependencies during optimization can lead
to more efficient search. EDAs provide a principled way of doing this in a stochastic
manner.

EDAs belong to the class of evolutionary algorithms (EAs) and as such maintain a
population of solutions that are subject to selection and variation. The first population is
usually generated randomly. Each solution’s fitness is evaluated and the better solutions
are selected for variation. Selection pushes the population into promising regions of
the search space. New candidate solutions are generated by estimating a probability
distribution from the selected solutions and randomly drawing new samples from this
distribution. These newly generated solutions replace parts of the old population or
the entire old population. The new population is evaluated and the better solutions are
kept. This process is iterated until a convergence criterion is met.

EDAs mark an important contribution to BBO research. The main operator is the
estimation (also called learning) of a probability distribution and resampling the prob-
ability distribution to generate offspring. This classifies the EDA as a model-based
optimization technique. Probability distributions provide a principled way of model-
ing dependencies between problem variables, allowing EDAs to successfully exploit
problem dependencies during the search. As a result, they are often more flexible and
efficient at performing BBO than other EAs. Different EDAs have been proposed that
use different probability distributions. For an overview, we refer the interested reader
to the literature (Lozano et al., 2006; Pelikan et al., 2006).

The BBOB (black box optimization benchmarking) framework for real-valued op-
timization was introduced in 2009. BBOB is an extensive benchmark consisting of both
an experimental setup (Hansen et al., 2009a) and carefully chosen functions (Finck et al.,
2009; Hansen et al., 2009b). The reader should be familiar with the BBOB framework
prior to reading the experimental results provided in this article.

In this article, we give a detailed description of an EDA for real-valued optimization,
benchmark it within the BBOB framework, and discuss our findings. The EDA uses a
Gaussian probability distribution and is known as the adapted maximum-likelihood
Gaussian model iterated density-estimation evolutionary algorithm (Bosman et al.,
2008; Bosman, 2009; AMaLGaM-IDEA, or AMaLGaM for short).

This article is organized as follows. In Section 2, we describe AMaLGaM and three
variants using (1) a fully multivariate Gaussian distribution, (2) a Bayesian factorization
of the Gaussian distribution, or (3) a univariately factorized Gaussian distribution.
Section 3 explains how the Gaussian distribution can be learned incrementally over
multiple generations rather than anew in each generation, the goal of which is to
reduce the required population size. Section 4 describes our approach to removing all
parameters and introduces a restart mechanism to improve the EDA’s performance on
multimodal problems. We provide pseudocode in Section 5 and present the results on
the non-noisy and noisy functions in the BBOB framework in Section 6. The article ends
with concluding remarks and an outlook on future research.

2 AMalLGaM

AMaLGaM represents the current state in a line of research on using Gaussian distri-
butions in EDAs for numerical optimization. Some initial publications used maximum-
likelihood (ML) parameter estimates (Bosman and Thierens, 2000; Larrafiaga et al.,
2000). Studies of the behaviour of such models revealed important shortcomings and
led to the development of AMaLGaM. In the following, we review the basic principles
of Gaussian distributions and the adaptations incorporated into AMaLGaM. For a more
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in-depth discussion of the design of various components, we refer the interested reader
elsewhere (Bosman and Thierens, 2000; Grahl et al., 2006; Bosman et al., 2007; Bosman
et al., 2008; Bosman, 2009).

21 Gaussian Probability Distribution

We introduce a random variable X; for each real-valued problem variable x;, i €
{0,1,...,1 —1} where [ is the problem dimensionality. Let v be a vector of |v| unique
indices, v; € {0, 1, ...,1 — 1}. Using v we can distinguish between the case of having a
distribution over all variables (i.e., v =1{0,1, ...,/ — 1}) and a distribution over a sub-
set of all variables, which is important in the context of factorizations (see below).
The Gaussian probability distribution P('LNv .z (Xy) for a vector of random variables
Xy = (Xyy, Xy ..., Xy,,) is parameterized by a vector u, of means and a symmetric
covariance matrix X” comprising a total of §[v|> + 2|v| parameters to be estimated. It is
defined as follows:

[v]

@2m) =
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P(MNWZH)(X,, =x)=

2.2 Maximum-Likelihood Estimates

ML parameter estimation is a common way of estimating parameters of probability
distributions. It effectively minimizes the empirical error and maximizes the fit between
the probability distribution and all given data (Vapnik, 1995). Let S denote a vector of
data that in AMaLGaM will correspond to the selected solutions. An ML estimation
for parameters of the Gaussian probability distribution is obtained from & if u, and
X" are estimated by the sample average and sample covariance matrix, respectively
(Anderson, 1958; Tatsuoka, 1971):
IS|-1 511

o = L ] 3" = — Do — 1 N —a )\
by =g g(sm, 2= JZ:;;((S")” RS )0 — ) 2

2.3 Random Sampling

To draw new random samples for a single Gaussian-distributed random variable with
a mean parameter of 0 and a variance parameter of 1, elementary algorithms exist (see,
e.g., Knuth, 1981, Section 3.4.1, Algorithm C).

To draw random samples from a multivariate Gaussian P(j/\[u 5+ the Cholesky de-
composition of the covariance matrix can be computed L*L"* = X". Then, the vector
i+ L"(zo, 21, . . ., Zjp-1), where z; is a single-dimensional Gaussian random variable with

mean 0 and variance 1, is a |v|-dimensional random sample drawn from P(/I\[ )

2.4 Gaussian Factorization Selection

Initial EDAs that used the Gaussian distribution employed a univariate factorization
(Rudlof and Koppen, 1996; Sebag and Ducoulombier, 1998), which corresponds to
modeling no dependencies. Let X = (Xy, X1, ..., X;.1) be a vector containing all random
variables. The univariate factorization is then defined as

-1
P(x)=]]PX). 3)

i=0
Estimating a univariate Gaussian factorization entails the estimation of / means and

variances. Sampling a new solution is also straightforward and entails sampling the
associated one-dimensional Gaussian distribution for each of the [ variables.
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To incorporate dependencies, the full covariance matrix can be used instead, that
is, use Equation (1) with X, = X and Equation (2) with v = {0, 1, ..., — 1}. Note that
the univariate factorization is equivalent to having a diagonal covariance matrix. Al-
ternatively, it is possible to determine and use the most important dependencies only.
To this end, one can estimate a Bayesian factorization. The vector of random variables
indicated by X, on which X; is conditioned in the Bayesian factorization is called the
vector of parents of X;. A Bayesian factorization can now be written as

-1
P(X) =[] P(XilXx,). €Y
i=0
As described elsewhere (Pelikan et al., 1999; Miihlenbein and Mahnig, 1999; Bosman
and Thierens, 2000; Larrafiaga et al., 2000) greedy algorithms are the standard approach
to compute Bayesian factorizations because this problem itself is NP-hard. The fac-
torization expresses a subset of all dependencies between the variables. The density
contours of a (factorized) Gaussian probability distribution are ellipsoids. Depending
on the dependencies modeled by the factorization, these ellipsoids can be aligned along
any axis. If there is no dependency between a set of random variables (i.e., the univari-
ate factorization), the projected density contours in those dimensions are aligned along
the main axes. In any case, a Gaussian distribution is only capable of modeling linear
dependencies.

To estimate the conditional distributions PV (X;|X,,) when constructing Bayesian
factorizations, let W* be the inverse of the symmetric covariance matrix for variables
Xy = (Xop» Xvps oo Xy, ), thatis, W* = (Z°). Matrix W? is commonly called the pre-
cision matrix. An ML estimate of PV (X;|X ;) can be expressed in terms of Equation (2)
(Bosman and Thierens, 2000):

1 i)
> 2
PN(X,- =X | Xﬂi = xn’_) =———°¢ 27 (5)
(6;,4/27)
o) i1 N i)
5 . AiWoo V=200 (X Ry )W (4
where §; = ﬁ and i; = 00 0 (i;,)j 7)) G0
Woo ! WUO

00
Equation (5) is a single-dimensional Gaussian distribution. Sampling from Bayesian

factorizations is thus straightforward once all computations have been performed.

25 AVS

The smaller the variance, the smaller the area of exploration for the EDA. The variance
in the Gaussian distribution is stored in the covariance matrix X. Using ML estimates
directly, the variance may decrease too rapidly for the EDA to have sufficient time for
exploration. As a remedy, the variance can be scaled (adaptively) beyond its ML estimate
(Ocenasek et al., 2004; Yuan and Gallagher, 2005; Grahl et al., 2006). The technique used
in AMaLGaM is called adaptive variance scaling (AVS; Grahl et al., 2006).

A distribution multiplier ¢M"Pler js maintained and upon sampling new solutions,
the covariance matrix used is cMUPiery instead of just X. If the best fitness value
improves in one generation, then the current size of the variance allows for progress.
A further enlargement of the variance may allow further improvement in the next
generation. To fight the variance-diminishing effect of selection, the size of ¢MultiPlier jg
scaled by n™N¢ > 1. If, on the other hand, the best fitness does not improve, the range
of exploration may be too large to be effective and the variance multiplier should be
decreased by a factor of nPEC € [0, 1]. For symmetry, nPE¢ = 1/™NC,

448 Evolutionary Computation ~ Volume 21, Number 3



Benchmarking Parameter-Free AMaLGaM on Functions With and Without Noise

The AVS technique is also used to detect termination. To this end, ¢Multiplier 1
is allowed if no improvement has been found in more than a predefined number
of subsequent generations while ¢MultiPlier — 1. When this happens, the mean of the
distribution is set to the best solution. This allows the EDA to focus on a single peak:
the one to which the currently best solution belongs. If an improvement is found during
this phase, cMultiPlier jg reset to 1. Termination is enforced if ¢Multiplier < 1010,

It has previously been observed that nPE€ = 0.9 gives good results (Grahl et al.,
2006). The number of subsequent generations before ¢MuliPlier < 1 s allowed, that is,
the maximum no-improvement-stretch NISM*X, is set to 25 + I, which was empirically
observed to give good results. This number varies with [ since convergence speed
typically decreases for increasing /.

26 SDR

AVS increases cMUIPlier when fitness values improve. However, improved fitness values
do not always mean that the variance needs to be enlarged. This is the case when the
Gaussian kernel is already near the optimum. Increasing the variance will then only
slow down convergence, as the EDA is unnecessarily forced to explore a larger area of
the search space. It is therefore sensible to attempt to separate two cases: traversing a
slope, and searching around an optimum.

To this end, the standard deviation ratio (SDR) approach (Bosman et al., 2007) relates
the distance of the improvements to the mean in parameter space. If improvements
mostly take place far away from the mean, then AVSis used. If most of the improvements
are obtained near the mean, then the EDA with ML parameters is focused around the
optimum and variance enlargement is not required.

Let X*8™P denote the average of all new samples that were an improvement over
the set of selected solutions in the same generation. The distance between ¥*'6"™ and
the current mean is decomposed along the [ principal axes of the Gaussian distribution.
If along any of these / axes the distance exceeds the standard deviation more than a
threshold 65PR € [0, oo] times, further enlargement of (MUltiPlier jg trigoered. Otherwise,
the distribution multiplier remains unchanged. Note that this trigger is independent of
the sample range and has a fixed, predefined notion of being “close” to the mean. From
previous work, 85PR = 1 is known to give good results (Bosman et al., 2007).

2.7 AMS

Estimating the distribution using the selected solutions of the current generation only,
the density contours can become aligned with directions that contain only solutions of
similar quality (Hansen, 2006; Yunpeng et al., 2007; Bosman et al., 2008). Methods that
scale the covariance matrix, such as SDR-AVS, do not help much as they almost solely
increase search effort in the direction perpendicular to the direction of improvement.
One remedy is to use the anticipated mean shift (AMS; Bosman et al., 2008). The
AMS is computed as the difference between the means of subsequent generations,
that is, A%M(r) = fu(r) — fu(r — 1). A part, specifically «*M5100%, of the newly sampled
solutions is then moved in the direction of the AMS, that is, x < x 4+ §AMSgShift(y),
The rationale is that solutions changed by AMS are further down the slope (assuming
minimization). Selecting those solutions as well as solutions not changed by AMS
aligns the distribution better with the direction of improvement. In a population of
size n (where | tn] solutions are selected, n®1! solutions are maintained and n — nelitist
new solutions are generated), proportioning the selected solutions perfectly between
unaltered and AMS-altered solutions requires that «®MS(n — n®list) = 175 and thus
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oS = 11— From previous work, n¢it = 1 and §M = 2 are known to give good

results (Bosman, 2009).

2.8 AMS-SDR-AVS = AMaLGaM

AMaLGaM combines AMS, SDR, and AVS. Traversing a slope is further sped up by
multiplying the movement of solutions in the direction of the AMS by the same mul-
tiplier used for the covariance matrix, that is, x < x + ¢Multiplier§AMS 3 5hift(;) The same
multiplier is used as for enlarging the values in the covariance matrix, because the
multiplier relates to finding improvements far away from the mean, which is indicative
that larger movements in the direction of the AMS are beneficial.

3 iAMalLGaM

Distribution estimation in AMaLGaM is done from scratch each generation. However,
subsequent generations have much in common and therefore the required population
size can be reduced by incremental learning, that is, combining the distribution esti-
mated from the currently selected solutions with the distribution used in the previous
generation. In iAMalLGaM, a memory-decay approach is taken to this end.

Most of the parameters are stored in the covariance matrix X. The covariance matrix
is also the main reason why the population size has to grow faster with / than when only
the variances are considered. More samples are required for the maximum-likelihood
estimate of the covariance matrix to ensure that it is conditioned well.

A memory for the covariance matrix leads to a smaller population size requirement.
Although a reduction in population size also reduces the reliability of the estimate for
the mean, a memory for the mean is undesirable. If the mean needs to shift much before
centering over a (local) optimum, a memory will slow this shift down. A memory for
the AMS is desirable. With less reliable mean estimates, the AMS may oscillate around
its optimal direction. A memory can smooth these oscillations out. The equations for
incrementally estimating the covariance matrix and the AMS are

\S|-1
20)=(1-n")Ee -1+ UEE Z (Si — _() (Si — p()"
i=0

(6)
ﬂShift(l) — (1 _ nShift)ﬂShift(t _ 1) + nShift (ﬂ,([) _ ﬁ(f _ 1)) )

Values for the learning-rate parameters were determined empirically in previous
work. Specifically, the function class for each n parameter is 1 — exp (ag|S|*/1%?) where
|S] is the selection size and [ the number of variables. The o; parameters were deter-
mined by means of regression on the best results found on a set of test problems up to
dimensionality [ = 40 (Bosman, 2009). The resulting parameter settings are shown in
Table 1.

4 Parameter-Free (i) AMaLGaM

EDAs and other EAs typically have many parameters. Removing them greatly eases
their use although it may come at the cost of losing the optimal settings for specific
problems. Typically, and this has also been the case for AMaLGaM (see, e.g., Bosman,
2009), guidelines are derived from testing the algorithm on a set of problems and taking
the worst-case or average-case for parameter settings. In real-valued optimization,
this set of problems typically consists of various forms of unimodal problems, most
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Table 1: Univariate, Bayesian, and full parameter settings.

Univariate Bayesian Full
= yhift n® yohift n® hift
o —0.40 -0.31 -0.33 -0.52 -1.1 -1.2
o 0.15 0.27 15 0.70 1.2 0.31
oo —0.034 0.067 1.1 0.65 1.6 0.50

Table 2: (i)AMaLGaM parameters.

Parameter Part Definition

T General Selection percentile (select v - 100% best solutions)

n General Population size

X Distribution Covariance matrix of the Gaussian distribution

n Distribution Mean vector of the Gaussian distribution

n™NC AVS Distribution-multiplier increase factor

nPEC AVS Distribution-multiplier decrease factor

NISMAX AVS Threshold on subsequent generations without improvement
before cMultiplier 1 jg allowed

6SPR SDR Threshold on ratio of distance of improvements and standard
deviation for triggering AVS

aAMS AMS Percentile of generated solutions to apply AMS to

SAMS AMS Factor of mean shift for moving generated solutions

pelitist AMS/General  Number of elitist solutions (generate n — n°litist anew)

n* Incremental Learning rate for covariance matrix

pShift Incremental Learning rate for mean shift

of which are also included in BBOB, and typically includes the Rosenbrock function
(which is bimodal) as well, which is also in BBOB. In this section, we summarize the
guidelines that have been developed for all parameters in iAMaLGaM on the basis of
which parameter-free versions can be designed. First, we summarize all parameters in
iAMaLGaM, as shown in Table 2.

In AMaLGaM, the parameters X and p for the Gaussian distribution are esti-
mated with maximum likelihood. In iAMaLGaM these estimations are updated using
memory-decay with empirically determined functions for the learning rates n* and
nhift as described in Section 3. Guidelines for setting all parameters in AMS, SDR, and
AVS are given above and are based on previous work. The parameters for estimation
and variation are thereby defined. For the selection step, truncation selection with a
truncation percentile of r = 0.35 (i.e., select the 35% best solutions) is known to give
good results (Bosman, 2009).

What remains is an important parameter: the population size n. To overcome the
burden of tuning its value, an EA can be restarted after convergence with an expo-
nentially increasing population size (see e.g., Auger and Hansen, 2005). With a small
population the EA is expected to terminate quickly, wasting only few evaluations if the
optimum is not found. However, for real-valued optimization with a Gaussian EDA,
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enlarging the population size may not always be the most effective approach, because
a single Gaussian essentially represents a centered search. Therefore, increasing the
population size does not necessarily mean that the probability of locating the global
optimum far away from the mean of the Gaussian kernel significantly increases. The
population size may have to be greatly increased before initialization favorably places
solutions well inside the global optimum at better values than solutions at other local
optima. Therefore, (i)AMaLGaM uses a different approach (Bosman, 2009).

The number of solutions is increased upon each restart by alternating between two
approaches: a single run with a larger population and several parallel runs. To maximize
the joint global effect of the parallel runs, they are started in separate regions obtained
from clustering the search space. When increasing the number of parallel runs, the
subpopulation size is also increased slightly so as to increase the robustness of the more
localized searches. Let 1R denote the number of restarts so far (i.e., the first run has
Restart — 0) and let m denote the number of parallel executions of subpopulation size
nS® (i.e., mnS® = n). The restart mechanism in (i)AMaLGaM is:

o if tRestart is even, then nSub — (1 + LtRestart/zj) nBase, m = 2|_1Resmn/2J;

. . Restart
o if tRestart i 5dd then nSUP = Q1+L7""/2], Base 4, — 1
Here, n% is a baseline population size. Previous work suggests the following values:

e Full covariance matrix

AMaLGaM: n®%¢ = 17 + 3/, iAMaLGaM: n®%¢ = 10/%°

e Bayesian factorization

AMaLGaM: n®%¢ = 12 + 8/%7, iAMaLGaM: nPas¢ = 70

e Univariate factorization

AMaLGaM: n®¢ = 10/%%, iAMaLGaM: nBas¢ = 4705

5 Pseudocode

For technical completeness, pseudocode is presented for AMalGaM itself (see
Algorithm 1) as well as its parameter-free version (see Algorithm 2), which can be
seen as a wrapper.

The external functions in the pseudocode differ depending on the type of distri-
bution factorization or whether incremental learning is used. Function SETBASEPOP-
ULATIONSIZE refers to the base population settings provided in Section 4. Function
ESTIMATEDISTRIBUTIONPARAMETERS refers to the ML estimates provided in Section 2.2
combined with the factorization of choice in Section 2.4 and the definition of the mean
shift in Section 2.7. With incremental learning the covariance matrix and the mean shift
to be used in the distribution are to be computed according to Equation (6) in Section 3.
In that case, the proper settings for n* and M are also required, which can be found
in Section 3. Finally, computing the SDR (function COMPUTESDR) requires computing
the standard deviation ratio associated with the point of average improvement. For
the univariately factorized case, the SDR is given by maxo<;<1 {|(fog_lmp — {1;)/oi|}. For
the Bayesian factorized case it is max05i51_1{|(x?Vg_lmp — [1;)/6:|}. For the case of the full
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Algorithm 1 Pseudocode for (i)AMaLGaM
(i)AMaLGaM

1 CMultiplier

— 1
2 nAMS — aAMS(n _ 1)
3 NIS«—0
4 t—0
5 do
6 8 < thebest |7n] solutions in P (truncation selection)
7  ESTIMATEDISTRIBUTIONPARAMETERS()
8 Py « the best solutionin S
9 fori—1...n—1do
10 P — DRAWRANDOMSAMPLE()
11 for n*¥® randomly chosen solutions P; (1 <i <n —1) do
12 P, — P+ (Multiplier §AMS ﬂShm(t)
13 if any P, better than Py (1 <i <n—1)

14  then
15 NIS — 0
16 if Multiplier 1 fhen Multiplier 1

17 ™8™ — average of all P; better than Py (1 <i<n—1)
18 COMPUTESDR()

19 if SDR > GSDR then CMultiplier — nINC CMultiplier

20 else

21 if Multiptier < 1 then NIS « NIS + 1

22 if (Multelier > 1) or (NIS > NISY™)

23 then Multiplier _ DEC Multiplier
24 if (Mltrler < 1) and (NTIS < NISMY) then cMutipter 1
25 t—t+1

26 while optimum not found, maximum number of evaluations not reached and

CMultiplier > 10° 10

covariance matrix, let LL* be the Cholesky decomposition of ¥; then the SDR is given
by maxo<i<{|(L7 (x&™ — @)},

6 BBOB Results
6.1 Without Noise

BBOB experiments were performed with random inital solutions in [-5, 5]’ and at most
10°/ function evaluations. Here we describe the results on functions without noise.

6.1.1 AMaLGaM-Full

The results for the parameter-free version of AMaLGaM with a full covariance matrix
are given in Table 3 and Figure 1.

Table 3 shows that compared to the best results obtained in the BBOB-2009 work-
shop, AMaLGaM’s median performance over all benchmark functions becomes less
favorable with increasing problem size. The scalability of AMaLGaM in terms of func-
tion evaluations is worse than the best known results. Figure 1 underlines this result.
The difference in scalability is specifically clear for the Sphere function.
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Algorithm 2 Pseudocode for the parameter-free version of (i)AMaLGaM

(i)AMaLGaM-Free
1 nPs « SETBASEPOPULATIONSIZE()
2 2tRestart
3 do
4 if (1Rt mod 2) = 0
then
nSub — (1 + LtRestart/zj) nBase
m e 2LtRestart/2J

5
6
7
8 else
9
0
1

—0

Restart
nSub 91+ [t /2] ) Base

m«—1
Run (i) AMaLGaM with population size n* and m parallel runs, starting from
the clustering of n®"*m randomly generated solutions into m clusters and using
nDEC — 09’ nINC — 1/nDEC’ GSDR — 1’ T = 0357 aAMS — %T(nSub/(nSub _ 1))7 6AMS =9
and NIS"™ = 25 +1
12 tRestart — tRestart + 1
13 while optimum not found and maximum number of evaluations not reached

1
1

Table 3: ERT loss ratio (see Figure 1) compared to the respective best result from BBOB-
2009 for budgets given in the first column. The last row RLys/D gives the number
of function evaluations in unsuccessful runs divided by dimension. Shown are the
smallest, 10th percentile, 25th percentile, 50th percentile (median), and 90th percentile
values (smaller values are better).

#FEs/D Best 10% 25% Median 75% 90% |#FEs/D Best 10% 25% Median 75% 90%

2 1.0 19 22 3.1 42 85 2 1.0 37 11 31 40 40
10 1.7 31 34 39 56 11 10 48 74 15 1.2e2  2.0e2 2.0e2
100 1.0 16 29 6.1 8.0 30 100 42 65 10 27 35 2.7e2
1e3 11 21 27 84 21 77 le3 1.0 1.7 46 20 66 2.4e2
led 1.0 14 33 78 41 66 led 1.0 1.7 23 12 86 6.2e2
leb 1.0 14 33 52 32 15e2| 1e5 1.0 12 22 19 4.5e2 1.1e3
le6 1.0 14 33 53 28 1.7e2| 1le6 1.0 12 22 12 2.6e2 3.1e3

RLys/D 1le6 1le6 1eb le6 le6 1leb le7 1.0 12 22 12 3.5e2 2.7¢4
RLys/D 1le6 1le6 1le6 le6 le6 1leb

Left: f1—f24 in 5D, maxFE/D = 1.00e6. Right: fi—f24 in 20D, maxFE/D = 1.00e6.

On most benchmark functions up to I = 40, AMaLGaM identifies the optimum
within the highest measured precision. Its perceived scalability is polynomial, even
on multimodal problems. It is known from a related recent experimental study that
includes some of the BBOB functions and a dimensionality up to I = 200, that the
perceived scalability remains polynomial (Bosman, 2009), namely O(/'“!) for Sphere,
O(1°*) for Ellipsoid, O(I'83) for Sharp ridge, and O(I>4?) for Rosenbrock. These results
let us conclude that AMaLGaM'’s scalability is robust. It was found experimentally that
on a set of linear and quadratic functions the perceived scalability of AMaLGaM with
a full covariance matrix is approximately quadratic (Bosman, 2009).
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Figure 1: Expected running time (ERT, o) to reach font + Af and median number of
f-evaluations from successful trials (+), for Af = 10t+1.0:12-3.58} (the exponent is given
in the legend of f; and f»4) versus dimension in log-log presentation. For each function
and dimension, ERT(A f) equals to #FEs(A f) divided by the number of successful trials,
where a trial is successful if fopt + Af was surpassed. The #FEs(A f) are the total number
(sum) of f-evaluations while fo,: + A f was not surpassed in the trial, from all (successful
and unsuccessful) trials, and f;p: is the optimal function value. Crosses (x) indicate the
total number of f-evaluations, #FEs(—oc), divided by the number of trials. Numbers
above ERT symbols indicate the number of successful trials. Y axis annotations are
decimal logarithms. The thick light line with diamonds shows the single best results
from BBOB-2009 for Af = 10%. Additional grid lines show linear and quadratic scaling.

Evolutionary Computation ~ Volume 21, Number 3 455



P. A. N. Bosman, J. Grahl, and D. Thierens

5D
1.0 : —
— 1| 7 24 - |[— +1:24024
— 1 ; / — -1:23/23 /
@ | 4| - I -4:23/23 /
= -8 / / -8:23/23
G ! -
£05 s /o J
e J ! |
o ‘ 1
Q. r/ ¢
Al |
o /,/ ) /
00"" / = 1-24
o T2 3 TF s 6 4 3 2 1 0 1 2 3 a
log10 of FEvals / DIM log10 of FEvals(Al)/FEvals(A0)
20D
1.0 :
— 41 fl2a =77 |[— +1:2323 —
— 1 // — 1:19/19 //
- ' " = | -4:18/19
8

- / R g -8: 18/19 /

/ // /:/J f1-24

5 6 -3

proportion of trials
o

0.0, 3

2 3 4 -2 -1 0 1 2
log10 of FEvals / DIM log10 of FEvals(Al)/FEvals(A0)

Figure 2: Empirical cumulative distributions (ECDF) of run lengths and speedup ra-
tios in 5D (top) and 20D (bottom) over all functions. Left subcolumns: ECDF of the
number of function evaluations divided by dimension D (FEvals/D) to reach a target
value fopt + Af with Af = 10, where k € {1, —1, —4, —8} is given by the first value
in the legend, for iAMaLGaM-Full (solid) and AMaLGaM-Full (dashed). Light lines
show the ECDF of FEvals for target value A f = 10® of algorithms benchmarked during
BBOB-2009. Right subcolumns: ECDF of FEval ratios of iAMalLGaM-Full divided by
AMaLGaM-Full, all trial pairs for each function. Pairs where both trials failed are disre-
garded, pairs where one trial failed are visible in the limits being >0 or <1. The legends
indicate the number of functions that were solved in at least one trial iAMaLGaM-Full
first).

AMaLGaM’s scalability on other functions is not always approximately quadratic
and 10/ evaluations are not always enough to obtain the optimum within the highest
precision. The hardest problems for AMalL.GaM are 4 and 24. However, the results for
lower precision again suggest polynomial scalability. This suggests that AMaLGaM-
Full is a robust algorithm able to overcome rotation and, using restarts, multimodality
without losing polynomial scalability. Figure 2 shows the percentile of successfully
tackled benchmark problems. AMaLGaM efficiently solves a wide range of problems
and is among the most successful algorithms in the BBOB-2009 workshop.

456 Evolutionary Computation ~ Volume 21, Number 3



Benchmarking Parameter-Free AMaLGaM on Functions With and Without Noise

8 2
5 2 s 3 e
2 g S
s o
4 T T 6 o a
s § 5 ] 4 57
2 3 ? @ e o i
=% 5 % +
7] - 1= 7, 3 3 3095
2 3 2 gy e g
- = 5
a 17 2
J = O H
w L ! <
N ™ 2]
T 2 3 45 T2 3 i s T2 3 45678 ~ T 2 3 4 5 6 7
= 5 5 ERE
@ 4 £ 8 >
Q S <] =
o » 4 2 4 & O 4
o 2 = o7 s
5 3 2 ﬁ ¥ [
= T * =
i} o 3 o 3 - 8 3
£ o © Q c
= 3 : = » * 2
0 Jl < 2 2 5 o 2
~
v © 14 Gl
© £
1 2 3 7 12 3 4 5 T2 3 4 s T2 3 4 5
o
® 5 E E
T .9
S T S
= 4 S 4 8 4 2
x @ 54 5]
8 k=3 @ = 4
S 3 o 3 [SIE o)
= ~ o
2 S A N 3
O 2y 2 2 -
o b2 e
=
T2 3 4 5 T2 3 4 5 T2 3 4 5 3 1 5
» .
. S s 7 & 7
o % 6f o 8 2
(s} a 4 c a 4
2 4 : =) O &
= & = 1 @ o
o S 3 o £ 24 e
e T© 4 =
8 3 S o o 3 -l
4 € T o o = 5
® > - © 2 -
-~ 2 (72 * - >
< P 2 1 o
T2 3 TS T 2 3 45 T2 35 4 5 6 7T T 2 3 4 5 6 7
o
o 4 S S g 8
- o 7 <} =
T b 5 7 IR
5 T 6 S £
O o S [ *:
~ o - 5 QO: E! = 5 j
It w4 % 4 54 “‘,°’
S 3 P = v
T 3 3 0.
% £ 4 = S v,
£ 2 © T 2 3 2 ;
@ 5 & °
- 1 @ O IS
- © . 2]
T 2 3 4 5 6 7 < 2 T 5 6 7 - T 2 3 45678 T 23 45678
2 3§ 9 7 7 £ 8
© ¥ ° =3
S 7 S g § i = 7
o a ° 173 ]
6 o Flad A 2 & T 6
b= - 5 : o &
2 5 LM ~ El P T o5
4 4| b el
5 4 o g % S 4 .
= 3 S @
> 3 < 2 A b4 - 3 3 %
ko) e = i @ 5 <
3 2 & T 2 ~ S 2
U] O 1 a
1 ~ 1
- N <
o~ ]
T 2 345678 T 2 3 4 5 6 7 T 2 3 4 5 6 7 T 2 345678

Figure 3: Expected running time (ERT in log10 of number of function evaluations) of
iAMaLGaM-Full versus AMaLGaM-Full for 46 target values Af € [108,10] in each
dimension for functions fi—f»4. Markers on the upper or right edge indicate that the
target value was never reached by iAMaLGaM-Full or AMalL.GaM-Full, respectively.
Markers represent dimension: 2:4, 3:V, 5:%, 10:0, 20:00, 40:<.

6.1.2 The Impact of Incremental Learning

We also tested AMaLGaM with incremental model building. Results for comparing
non-incremental model building to incremental model building using a full covariance
matrix (i.e., (i)AMaLGaM-Full) are shown in Figures 2 and 3. Further experiments were
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performed to study incremental model building using factorized Gaussian distribu-
tions. The impact of incremental model building was found to be similar.

Figure 3 shows that incremental model building impacts the performance of AMal-
GaM, but not uniformly positively or negatively. On unimodal problems such as Sphere,
Ellipsoid, and Linear slope, results foriAMaLGaM are better and the difference increases
with dimensionality and target quality. This is in agreement with the aforementioned
study in which the perceived scalability of iAMaLGaM-Full remains polynomial, but
slightly better than for AMaLGaM-Full (Bosman, 2009), namely O(/'8!) for Sphere,
O(1#) for Ellipsoid, O(I'7?) for Sharp ridge, and O(/*%) for Rosenbrock.

For multimodal problems, for example, Rastrigin, Weierstrass, and Griewank-
Rosenbrock, nonincremental AMaLGaM performs better. This is most likely due to
its larger base-population size. iAMaLGaM is sometimes unable to find the optimum
within the predetermined limit of function evaluations because it starts from a smaller
base population size. Hence, if memory resources are not very important, a larger
base-population size helps in optimizing multimodal problems.

AMaLGaM and iAMaLGaM solve a similar percentile of problems, as shown in
Figure 2. If nothing is known about the problem, that is, in a true BBO setting, unless
larger population sizes are problematic, the nonincremental version may be preferred
because when considering all problems it obtains slightly better results using fewer
function evaluations.

6.1.3 The Impact of Factorization

We compared AMaLGaM-Full with AMaLGaM using a Bayesian factorization with
few parents, or a univariate factorization (see Section 2.4). We allowed at most five
parents per variable in the Bayesian factorization. The results comparing the full covari-
ance matrix with the Bayesian factorization are shown in Figures 4 and 5. The results
comparing the full covariance matrix with the univariate factorization are shown in
Figures 6 and 7.

Without a full covariance matrix, not all pairwise dependencies can be processed
and not all ellipsoid density contours can be aligned with an arbitrary direction. This
can lead to an inefficient representation of promising areas of the search space and there-
fore to inefficient exploitation of the structure of the landscape. For low dimensional
problems having I < 5, this problem is absent for the Bayesian factorization, since five
parents are allowed. The cumulative results in Figure 5 show little difference between
the two algorithms for / = 5. As the problem dimensionality is increased, the proportion
of dependencies that can be expressed decreases, making the Bayesian-factorization
approach increasingly similar to the univariate-factorization approach regarding per-
formance. Whereas for | = 5 the Bayesian factorization is still capable of solving most
problems, the univariate factorization can solve a smaller number of problems, as shown
in Figure 6. The only significant difference between using a Bayesian factorization and
a univariate factorization for higher-dimensional problems appears when the num-
ber of dependencies in the problem is not too high, which is the case for function 8,
Rosenbrock. Here the use of the Bayesian factorization outperforms the use of the uni-
variate factorization and even remains more efficient than the use of the full covariance
matrix.

Computing a Bayesian factorization is time-consuming even using a greedy heuris-
tic. Although less costly than working with a full covariance matrix, the expected added
benefit quickly vanishes with an increase in problem dimensionality unless the number
of dependencies between problem variables is known to be small. Computing Bayesian
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Figure 4: Expected running time (ERT in log10 of number of function evaluations) of
AMaLGaM-Bayesian versus AMalL.GaM-Full for 46 target values Af € [108, 10] in each
dimension for functions fi—f,4. Markers on the upper or right edge indicate that the tar-
get value was never reached by AMalL.GaM-Bayesian or AMaLGaM-Full, respectively.
Markers represent dimension: 2:4-, 3:V, 5:%, 10:0, 20:00, 40:<.

factorizations for Gaussian distributions is thus arguably not worth the effort and one
can focus on either using the full covariance matrix or using the univariate factorization.
The results in Figure 7 show that for problems with no dependencies, the use of univari-
ate factorization is more efficient. Polynomial scalability was also found to be favorable
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Figure 5: Empirical cumulative distributions (ECDF) of run lengths and speedup ra-
tios in 5D (top) and 20D (bottom) over all functions. Left subcolumns: ECDF of the
number of function evaluations divided by dimension D (FEvals/D) to reach a target
value Jopt +Af with Af = 10%, where k € {1, —1, —4, —8} is given by the first value
in the legend, for AMaLGaM-Bayesian (solid) and AMaLGaM-Full (dashed). Light
lines show the ECDF of FEvals for target value Af = 108 of algorithms benchmarked
during BBOB-2009. Right subcolumns: ECDF of FEval ratios of AMaLGaM-Bayesian
divided by AMaLGaM-Full, all trial pairs for each function. Pairs where both trials
failed are disregarded, pairs where one trial failed are visible in the limits being >0 or
<1. The legends indicate the number of functions that were solved in at least one trial
(AMaLGaM-Bayesian first).

(Bosman, 2009), namely O(/'1®) for Sphere, O(/*'®) for Ellipsoid separable, and O(1°%)
for Sharp ridge. The use of a univariate factorization is also much faster in terms of actual
computation time. Polynomial scalability then is slightly above quadratic, compared to
halfway between cubic and quartic for the full covariance matrix. This makes problem
dimensionality and actual time for a function evaluation the most important discrimi-
nators in choosing the most appropriate EDA. Considering only function evaluations,
the use of the full covariance matrix is superior.

460 Evolutionary Computation ~ Volume 21, Number 3



Benchmarking Parameter-Free AMaLGaM on Functions With and Without Noise

5D
1.0 : SR
— ] ”}i/fﬂ ot |[— +1:28124 //_/—
— 1 / — -1:24/23 / //
m -4 |y a5 , -4: 21/23
5 8| [ / -8:18/23 /
o K K
5 0.5 ' i’
o i
a o / //
/ - _~ -

0.0

0 1 2 3 4 5 6 4 -3 -2 -1 0 1 2 3 4
log10 of FEvals / DIM log10 of FEvals(Al)/FEvals(A0)
20D
1.0 ,
— 41 fl2d — +1:23/23 v
— 1 N — -1:18/19 / Vs
o | -4 / - L -4: 14/19
, / /
'E -8 f/ o P -8:10/19 / /
ks
c 0.5 ﬁ / / /
S U9 - ‘ _
€ PR ey ars J
: i a
a / T
I e o oo — f1-24
0 1 5 6 -5 -4 3 4 5

2 3 4 -3 2 -1 0 1 2
log10 of FEvals / DIM log10 of FEvals(Al)/FEvals(AO)

Figure 6: Empirical cumulative distributions (ECDF) of run lengths and speedup ra-
tios in 5D (top) and 20D (bottom) over all functions. Left subcolumns: ECDF of the
number of function evaluations divided by dimension D (FEvals/D) to reach a target
value fopt +Af with Af = 10%, where k € {1, —1, —4, —8} is given by the first value
in the legend, for AMaLGaM-Univariate (solid) and AMaLGaM-Full (dashed). Light
lines show the ECDF of FEvals for target value Af = 108 of algorithms benchmarked
during BBOB-2009. Right subcolumns: ECDF of FEval ratios of AMaL.GaM-Univariate
divided by AMaLGaM-Full, all trial pairs for each function. Pairs where both trials
failed are disregarded, pairs where one trial failed are visible in the limits being >0 or
<1. The legends indicate the number of functions that were solved in at least one trial
(AMaLGaM-Univariate first).

6.2  With Noise
6.21 AMaLGaM-Full
The results for running parameter-free AMalL.GaM with a full covariance matrix and no
adaptations to specifically tackle noise are given in Table 4 and Figure 8.
Table 4 shows that, similar to the case without noise, AMaLGaM compared to the

best results from BBOB 2009 become less favorable with increasing dimensionality,
although the decline appears to be smaller.

Evolutionary Computation ~ Volume 21, Number 3 461



P. A. N. Bosman, J. Grahl, and D. Thierens

of 2
st o T 2 % S 7 -
= 8 7t ¢ 8 o
o 5 & 6 @ o*
<4 Q4 : 5 & o - = H
[} Q : 8 5 £ =) 0
< 3 » 9 =4 5
= T (E— c 4 : - 3 +%
0 o : =) ¢, @ 3
- 2 @ = 3t & = o
o @ > 2t
= H ; g 2 H
w ['4 1 X~ 1
o~ ) »
T2 35 435 S B R T 2345678 ~ T2 35 4 5 6 7
n P T 6 : i
af 5 7 of : : £
L2 ]
3 5] S #8 5 g 5 i :
o) Q 4l @ 5t 2 o
o o 4 a
" o = 0 o 5 4
g Z 5 9 g
s} a 3 v 8
£ ) © Q c 3 o
3 4 kS ! o
2 : = 3! 3
© / S ~ 2
£ © 1F o
©
k 2 3 g 5 W2 3 4 5 %1235 45 6 7 W2 3 4 5 6
L 0.
o o Iy | 8 8|
2 7 7t 7ps : :
: . g
I R o 6 w 8 g o : :
% R 3 4 S / S
3 4 £ Q @ = 7
<} = 4 = 4 c 4
8 i} o 5] +
c 3 3 ~ 3 o 3 s
S o -~ o~
a A 2 - 2
Qe
x4 1 1 1
)
T2 735 7 5 s 78 T2 345678 1T 2345678
¢ 54
g ) o 8
o s ] | L e RIS
i 8 i ’ ‘ g
o Z 9 [ 6f @ 14
D 6 aQ c D ppot e £
kel . 5 =) o v 85
= 5 S 2 5 £ ol goss
a S 4 7 &
g 4 ‘s T 4 _g 4 .
< 3 A o
n 3 € d 0 . ¥ = S
2 3 @ : - 4 e 4
bl < 1 WA Jl
-
K 1T 2 3 4 5 6 7 W23 4 5 6 7 1 2 345678
S x
e 4 S 4 g e " e,oo; g
b=l <o 3 7 D X 7
S 5 ° c e £
Q IS o 6l T & 6
o Q  6f 17} * "
< 4 o S s % E
- o =
"',: I ~ 4 v e % ab 5 0:
9] =4 c E 3
= {4} T 3 3 2 3 ORI
S = £ = 5}
@ 1 £ 147 = 2
*, (=]
~ (2] O 1 N £
- ) <
T2 35 4 5 6 = 12 56 7 8 - T2 34 5678 T2 345678
7] [ e c W0/
0 7 o -
T < g = 5
3 7 S 7 o = -
a 2 " 17
< 6 o o e G 6
o = o e
2 s N S s I 5 :
o 54 2 S
o 4 2 o 2 4 > 4 g
< S 3 1 i @ ] *
[ e ® X 3 o 3 *
ks v X*o = o 15}
T & © & 2 c 2
© 8 S
O 1 1 P
~ 7
- q <
o~ 0 ~
T 234567 8 T 2 3 4 5 6 7 T 23 4567 8 123 45¢6 78

Figure 7: Expected running time (ERT in logl0 of number of function evaluations)
of AMalLGaM-Univariate versus AMaLGaM-Full for 46 target values Af € [108,10]
in each dimension for functions fi—f4. Markers on the upper or right edge indicate
that the target value was never reached by AMaLGaM-Univariate or AMaLGaM-Full,
respectively. Markers represent dimension: 2:+, 3:V, 5:%, 10:0, 20:01, 40:<.

Figure 8 indicates that the perceived polynomial scalability is upheld even in the
presence of noise, though at a higher degree. More evaluations are required and the
optimum is not always found. AMaLGaM is robust and again among the best algorithms
submitted to the BBOB-2009 workshop, as shown in Figure 9.
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Table 4: ERT loss ratio (see Figure 1) compared to the respective best result from BBOB-
2009 for budgets given in the first column. The last row RLys/D gives the number
of function evaluations in unsuccessful runs divided by dimension. Shown are the
smallest, 10th percentile, 25th percentile, 50th percentile (median), and 90th percentile
values (smaller values are better).

#FEs/D Best 10% 25% Median 75% 90% |#FEs/D Best 10% 25% Median 75% 90%

2 1.0 12 16 21 56 10 2 1.0 1.0 38 23 40 40
10 1.1 14 18 3.4 50 28 10 1.0 24 10 1.3e2 2.0e2 2.0e2
100 1.0 1.0 21 55 17 28e2| 100 1.0 10 14 8.1 28  1.0e3
1e3 1.0 42 87 18 49  2.6e3| 1e3 1.0 1.0 23 13 32 2.0e4
led 10 14 72 18 30 25ed| led 1.0 23 55 14 56 1.0e5
leb5 1.0 14 40 16 51 24e2| 1e5 10 12 55 19 1.1e2 1.0e6
le6 1.0 14 82 18 80 24e2| 1leb 1.0 11 55 23 1.3e2 7.1e2

RLys/D 1e6 1e6 1leb le6 le6 1leb le7 1.0 11 4.2 29 1.3e2 1.3e3
RLys/D 1le6 1le6 1leb le6 le6 1leb

Left: f1017f130 in 5D, maxFE/D = 1.00e6. Right: f1017f130 in ZOD, maxFE/D = 1.00e6.

Problems with uniform noise are the hardest for AMaLGaM. Here its scalability
declines strongly. The noise strength becomes more severe near the optimum in the case
of uniform noise. This makes it harder for the algorithm to zoom in on the region of
the best function values and an increasing number of additional generations is required
to overcome decision errors. Note that Cauchy noise is applied sparingly, and not on
every sample. This is much less problematic for AMaLGaM.

6.2.2 The Impact of Noise Averaging

EDAs, including AMaLGaM, are not specifically designed to handle noise. Function
evaluations are assumed to be without noise so that selection always returns the better
solutions. The lack of explicit noise modeling (in the distribution) is not necessarily a
drawback of EDAs as arguably modeling noise can already be done in the selection
phase, possibly including a memory for previous generations to get a more reliable
ordering of solutions before selecting the better ones for probabilistic modeling.

Here we consider one of the simplest adaptations aimed at getting more robust
results in the presence of noise: any evaluation of a solution is the sample average
of multiple evaluations of the actual, noisy, function. This potentially smoothes out
noise, but the question is whether such costly evaluation benefits the performance of
AMaLGaM. We compare AMalLGaM with a full covariance matrix to the same EDA
in which evaluations are averaged over 10 trials. The results are given in Figures 9
and 10. AMaLGaM with noise averaging is allowed 10 times more function evalua-
tions. The resulting increase in computation time prohibited us from obtaining results
for I = 40.

AMaLGaM is hardly influenced on functions with moderate noise; see Figure 10.
The ERT for the algorithm with averaging lies on the first diagonal to the top of the main
diagonal, that is, indicating a performance decrease of a factor 10, exactly the number
of trials used for averaging. For moderate Cauchy noise, the algorithm that employs
averaging actually gets worse. This can be seen for Cauchy noise in general. Since
the sample average of a Cauchy distribution follows the same distribution as a single
sample drawn from the same Cauchy distribution, we would expect the performance of
AMaLGaM with averaging over 10 trials in the presence of Cauchy noise to be exactly
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Figure 8: Expected running time (ERT, o) to reach f,nt + Af and median number of
f-evaluations from successful trials (+), for Af = 10{“*0?'1*'2"3"5"8} (the exponent is given
in the legend of fi01 and fi30) versus dimension in log-log presentation. For each function
and dimension, ERT(A f) equals to #FEs(A f) divided by the number of successful trials,
where a trial is successful if fopc + Af was surpassed. The #FEs(A f) are the total number
(sum) of f-evaluations while f,,; + Af was not surpassed in the trial, from all (successful
and unsuccessful) trials, and fop is the optimal function value. Crosses (x) indicate the
total number of f-evaluations, #FEs(—oc0), divided by the number of trials. Numbers
above ERT symbols indicate the number of successful trials. Y axis annotations are
decimal logarithms. The thick light line with diamonds shows the single best results
from BBOB-2009 for Af = 10%. Additional grid lines show linear and quadratic scaling.

10 times worse. However, Cauchy noise is applied seldom in the BBOB framework.
When averaging over multiple trials, the number of times the evaluation procedure
for a single solution contains Cauchy noise strongly increases. As a result, the search
actually becomes more noisy with noise averaging.
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Figure 9: Empirical cumulative distributions (ECDF) of run lengths and speedup ra-
tios in 5D (top) and 20D (bottom) over all functions. Left subcolumns: ECDF of the
number of function evaluations divided by dimension D (FEvals/D) to reach a target
value fopt + Af with Af = 10, where k € {1, —1, —4, —8} is given by the first value
in the legend, for AMaLGaM-Full-avgl0 (solid) and AMaLGaM-Full (dashed). Light
lines show the ECDF of FEvals for target value Af = 107 of algorithms benchmarked
during BBOB-2009. Right subcolumns: ECDF of FEval ratios of AMaLGaM-Full-avg10
divided by AMaLGaM-Full, all trial pairs for each function. Pairs where both trials
failed are disregarded, pairs where one trial failed are visible in the limits being >0 or
<1. The legends indicate the number of functions that were solved in at least one trial
(AMaLGaM-Full-avg10 first).

For Gaussian noise, averaging over 10 trials and no averaging yield similar results.
In some cases, such as Griewank-Rosenbrock, averaging even surpasses no averaging.
For uniform noise, which in the case of the BBOB framework is more severe, there is
almost always an improvement with the use of averaging, especially for higher dimen-
sionality. The uniform distribution obeys the conditions of the central limit theorem and
therefore the sample average, in the limit, follows a Gaussian distribution (with shrink-
ing variance as more trials are used in the averaging). From the results on Gaussian
noise we already know that AMaLGaM is capable of handling this type of noise and
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Figure 10: Expected running time (ERT in log10 of number of function evaluations)
of AMaLGaM-Full-avg10 versus AMaLGaM-Full for 46 target values Af € [10%,10]
in each dimension for functions fin—fi30. Markers on the upper or right edge indicate
that the target value was never reached by AMaL.GaM-Full-avg10 or AMaLGaM-Full,
respectively. Markers represent dimension: 2:+, 3:V, 5:%, 10:0, 20:0, 40:.

466 Evolutionary Computation ~ Volume 21, Number 3



Benchmarking Parameter-Free AMaLGaM on Functions With and Without Noise

5D
10—t - — o

— +1] .. _f01-130 /ﬂ‘ 1 |[— +1:30/30

— 1 " — -1:30/29
L -4 » -4:26/27
< -8 / J -8: 21/25 J
b ; ’ /’
o r’ '
§ 0.5 /,'
Q K /
<] ) /
a . /

7 /
/ / ’4 f101-130

001534 56 7 8 65 4 3210173554 5%

log10 of FEvals / DIM log10 of FEvals(Al)/FEvals(A0)

Figure 11: Empirical cumulative distributions (ECDF) of run lengths and speedup ra-
tios in 5D (top) and 20D (bottom) over all functions. Left subcolumns: ECDF of the
number of function evaluations divided by dimension D (FEvals/D) to reach a target
value fopt +Af with Af = 10%, where k € {1, —1, —4, —8} is given by the first value
in the legend, for AMaLGaM-Full-avg100 (solid) and AMaLGaM-Full (dashed). Light
lines show the ECDF of FEvals for target value Af = 108 of algorithms benchmarked
during BBOB-2009. Right subcolumns: ECDF of FEval ratios of AMaLGaM-Full-avg100
divided by AMaLGaM-Full, all trial pairs for each function. Pairs where both trials
failed are disregarded, pairs where one trial failed are visible in the limits being >0 or
<1. The legends indicate the number of functions that were solved in at least one trial
(AMaLGaM-Full-avg100 first).

that the impact of noise averaging becomes more substantial with increasing problem
dimensionality. Hence, it is a matter of how severe the noise is. The larger the noise
variance, the more need for noise averaging and the bigger the impact.

Regarding the entire benchmark, noise averaging does not improve overall com-
petence, as shown in Figure 9. It slows the EDA down by almost the same factor as
the number of trials used to average over, especially for large dimensionality. This is
underlined by the results obtained using 100 trials, as shown in Figure 11. Given the
number of required evaluations and the available time, experiments were performed
up to ! = 10. The gap between AMaLGaM with and without noise averaging increases
to a factor of ~100.

Tackling noise more efficiently can be important because many real-life problems
are noisy. One issue is to detect the frequency of noise. Infrequent noise may lead to
an increase in stochasticity as a result of averaging, which may be detected and used
to reduce or disable noise averaging. In general, noise averaging was found only to
be useful for uniform noise or for severe-enough Gaussian noise and for large-enough
problem dimensionalities. A second issue that may be detected is whether the noise
comes from a model that satisfies the conditions for the central limit theorem to hold
and whether the variance for an evaluation decreases. We further suppose that noise
can be addressed more effectively if it is explicitly modeled in EDAs. A separate model
could be maintained which explicitly models uncertainty. This model could be used to
guide selection and make fewer decision errors regarding which solution is better.
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7 Conclusions

We have given an overview of a real-valued EDA called AMaLGaM that is based on the
Gaussian distribution and benchmarked it on non-noisy and noisy functions within the
BBOB framework. We tested variants in which the Gaussian distribution was factorized
and in which incremental learning over multiple generations was used.

Experimental evidence suggests that AMaLGaM is a robust algorithm that solves
the benchmark functions with similar polynomial scalability in terms of required num-
ber of function evaluations for similar (quadratic or linear) functions, regardless of
rotations. Combined with a restart scheme that increases the population size and runs
multiple instances of AMaLGaM in parallel, the algorithm is robust to noise and mul-
timodality. In the presence of noise, AMaLGaM still appears to obtain polynomial scal-
ability, albeit of higher degree. AMaLGaM was among the best performing algorithms
submitted to the BBOB-2009 workshop.

Averaging evaluations over multiple trials to smooth out noise was found to make
the EDA less efficient unless the problem is of high dimensionality and the noise satisfies
the conditions of the central limit theorem. For future work, we have pointed out that
explicitly modeling noise in EDAs may be beneficial.
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