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ABSTRACT   

Some of the hardest problems in deformable image registration are problems where large anatomical differences occur 
between image acquisitions (e.g. large deformations due to images acquired in prone and supine positions and 
(dis)appearing structures between image acquisitions due to surgery). In this work we developed and studied, within a 
previously introduced multi-objective optimization framework, a dual-dynamic transformation model to be able to tackle 
such hard problems. This model consists of two non-fixed grids: one for the source image and one for the target image. 
By not requiring a fixed, i.e. pre-determined, association of the grid with the source image, we can accommodate for 
both large deformations and (dis)appearing structures. To find the transformation that aligns the source with the target 
image we used an advanced, powerful model-based evolutionary algorithm that exploits features of a problem’s structure 
in a principled manner via probabilistic modeling. The actual transformation is given by the association of coordinates 
with each point in the two grids. Linear interpolation inside a simplex was used to extend the correspondence (i.e. 
transformation) as found for the grid to the rest of the volume. As a proof of concept we performed tests on both artificial 
and real data with disappearing structures. Furthermore, the case of prone-supine image registration for 2D axial slices of 
breast MRI scans was evaluated. Results demonstrate strong potential of the proposed approach to account for large 
deformations and (dis)appearing structures in deformable image registration.   
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1. INTRODUCTION  
Existing deformable image registration methods (e.g. solely using biomechanical model-based or non-rigid intensity-
based image registration methods) have limited success when large anatomical differences are involved. A hybrid 
method that was recently introduced proved to be more successful but reported registration accuracies were still not very 
good.1 Further, so far, only a few studies addressed the issue of disappearing structures (e.g. due to tissue excision 
between image acquisitions).2-7 Moreover, in these works the identification of the disappearing structures is considered a 
separate task, often as part of segmentation. Furthermore, when the focus is on intra-operative guidance, the assumption 
is used that disappeared tissue has been replaced by “air”.7 This will, however, not always be the case. For example in 
the case of breast-conserving surgery for breast cancer, the excision cavity is often closed for an improved cosmetic 
result. Post-surgery radiotherapy is subsequently planned on a CT scan acquired after surgery since this is most 
representative for the anatomy to be treated, making it, however, difficult to define the original tumor position (Figure 1). 
Radiotherapy planning could benefit extremely from deformable registration of pre- and post-operative imaging data.  

We recently introduced the concept of multi-objective optimization for deformable image registration.8 The rationale is 
that such an approach removes the need for a predetermined singular combination of objectives. By computing and 
presenting multiple outcomes that represent efficient trade-offs between the objectives (a so-called Pareto front) at once,  
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Figure 1. Left and middle: Pre- and post-operative breast CT scan example slices. Right: pre- and post-operative CT scan 
after rigid registration based on the ribs. 

 

this approach allows for more insightful tuning of the manner in which to combine important objectives in deformable 
image registration such as transformation effort and similarity measure. 

Finding optimal solutions, i.e. the optimal Pareto front of all non-dominated solutions, to high-dimensional multi-
objective optimization problems is a non-trivial task. In practice, the goal is therefore often to find high-quality 
approximations of the optimal Pareto front. To find such high-quality approximations, we used a particular type of 
evolutionary algorithm, known as EDA (Estimation-of-Distribution Algorithm) which aims to exploit features of a 
problem’s structure automatically in a principled manner via probabilistic modeling.9-12 Moreover, we recently studied 
the use of a new variant of the EDA that we previously employed. This new variant has the advantage of converging 
faster while obtaining solutions of the same quality.13 This allows us to use more fine-grained grids (that have more 
variables to be optimized) for the registration task, which is of importance for more complex registration tasks, 
especially when considering disappearing structures. 

In this paper, we developed and studied, within the previously introduced multi-objective optimization framework, a 
dual-dynamic transformation model. We propose to consider the challenging problem of identifying (dis)appearing 
structures to be part of the overall optimization process, thereby letting the optimization algorithm decide and identify, 
using the dual-dynamic transformation model, which parts are most likely to have (dis)appeared, all at once during the 
registration process. 

 

2. MATERIALS AND METHODS 
 

2.1 Dual dynamic transformation model  

Image registration is the process that determines the transformation that maps points in the source image to 
corresponding points in the target image. The transformation model, i.e. the representation of possible transformations is 
often based on a regular grid of points. The actual transformation then is given by the association of coordinates with 
each point in the grid. A means of interpolation is required to extend the so-established correspondence between grids to 
create the transformed source image. The number of real-valued parameters to be optimized equals the number of grid 
points (ng) times the spatial dimensionality of the image (e.g., ng×2 for a 2-dimensional image). 

Instead of a fixed grid for the source image and a non-fixed grid for the target image, we will use two non-fixed irregular 
grids: one for the source image and one for the target image. No longer requiring a fixed, i.e. pre-determined, association 
of the grid with the source image provides the potential to correlate the grid in the source image better with underlying 
image structures. Moreover, both disappearing and appearing structures can be accommodated. Specifically, the location 
of each grid point in both target and source images can now be determined. To make a structure disappear, the grid 
points that in the source image delineate a structure that has disappeared can be placed on top of each other in the grid in 
the target image. Conversely, to make a structure appear, grid points that in the target image delineate a structure that has 
appeared can be placed on top of each other in the source grid. In this pilot study, however, we restrict ourselves to 
disappearing structures. 
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In this paper, linear interpolation inside a simplex after grid triangulation was used to extend the correspondence between 
grids (i.e. transformation) as found for the grid points to the rest of the volume to create the transformed source image. 
An advantage of this choice is that it can cope with non-convex grid elements. 

 

2.2 Registration as an optimization problem 

The task of deformable image registration, i.e. the process of aligning a source image with a target image, can be well 
posed as an optimization problem. For the task of image registration two issues are of prime interest. 1) Quality of fit: 
intensity similarity, i.e. the degree of similarity between intensity patterns in the target image and the transformed source 
image. 2) Smoothness of deformation: transformation effort, i.e., the amount of energy required to accomplish the 
transformation. 

Our methodology can be combined with state-of-the-art similarity measures and deformation models. The main purpose 
of this study, however, was to observe the feasibility of using the dual-dynamic grid transformation model in order to 
tackle large deformations and (dis)appearing structures all at once. Therefore, in the following we provide rudimentary, 
but computationally useful models. We model similarity in intensity with a measure (to be minimized) that is defined as 
the sum of the squared differences in grey value between the target image and the transformed source image. The 
transformation effort is modeled by the use of Hooke’s law.14 The required energy to perform a transformation is 
computed on the basis of changes in the lengths of edges in the grid. For this purpose and to ensure that various shape 
changes result in an increase in required energy, all possible combinations between corner points, points halfway on a 
grid line, and combinations between corner points and points halfway on a gridline are considered (Figure 2). Now, if we 
denote the set of considered edges by E, we can define total energy Utotal-deform to be minimized as follows: 
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edeform eeleU −=  ,              ∑
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where le is an elasticity constant associated with the tissue that edge e crosses. 

 

2.3 Optimization algorithm  

The underlying optimization problem in practice is multi-objective, i.e. find transformations that on the one hand 
maximize the similarity between source and target image (objective 1) and on the other hand minimize the amount of 
required energy (objective 2). In multi-objective optimization, the optimum is a set of solutions, called the optimal Pareto 
front, because many solutions may be equally good, e.g. solution a may be better in the first objective than solution b, 
but worse in the second objective. Therefore, a collection of outcomes (a so-called Pareto front) that represents efficient 
trade-offs between the objectives is computed and presented at once. 

 

 
 

Figure 2. Left: Grid of points used as a basis for the transformation model. Right: Grid of points with all connections taken 
into account in the calculation of the required energy to accomplish the transformation. 
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By investigating deformable image registration from a multi-objective optimization perspective we remove the need to 
set a predetermined singular linear combination of objectives, which is commonly required and used in existing 
techniques for image registration. A multi-objective approach is inherently more powerful because potentially not all 
Pareto-optimal outcomes can be found when running existing single-objective registration techniques multiple times 
with different weights, depending on whether (parts of) the optimal Pareto front is convex or concave. Moreover, 
selecting a uniform spread of weight combinations may not necessarily result in a uniform spread of solutions along the 
Pareto front. To better understand the true possible outcomes of registration, it is therefore important to use a multi-
objective approach. Then, after studying the possible outcomes, we can decide which outcomes are preferable for the 
application at hand. 

Population-based methods such as evolutionary algorithms (EAs) are among the state-of-the-art in solving multi-
objective optimization problems.15 For optimization, we used a particular type of EA known as EDA (Estimation-of-
Distribution Algorithm), that aims to exploit features of a problem’s structure in a principled manner via probabilistic 
modeling.9-11 This makes this type of EA typically more robust and capable of solving a large class of optimization 
problems reliably without using any problem-specific knowledge. 

The specific EDA that we use, is known as iMAMaLGaM-X+ (incremental Multi-objective Adapted Maximum-
Likelihood Gaussian Model miXture).13 In previous work where we first introduced our multi-objective approach to 
registration8, we considered the non-incremental version of this algorithm. MAMaLGaM-X uses a population of 
solutions, selects 35% of the best solutions according to a domination-rank ordering, estimates an l-dimensional normal 
mixture distribution (where l is the number of real-valued variables to be optimized) from these selected solutions and 
generates new solutions by sampling the estimated distribution. Using adaptive techniques that scale the covariance 
matrices of the normal distributions in the mixture according to improvements found during optimization, the risk of 
premature convergence is minimized. The + annotation, i.e. MAMaLGaM-X+, indicates a variant that is capable of 
obtaining an ever better spread of solutions by maintaining m additional components in the mixture distribution, one for 
each objective. Selection for these components is done completely independently on the basis of each respective 
individual objective, thereby specifically targeting convergence at the extreme regions of the Pareto front. Solutions from 
these specific clusters are furthermore also integrated into the selection procedure for the other components in the 
mixture distribution. In iMAMaLGaM-X+, incremental model learning is additionally used. This means that for every 
component in the mixture distribution the Gaussian model is updated using incremental updates, thereby strongly 
reducing the population size for each of the mixture components that is minimally required to ensure reliable 
convergence. Because the overall algorithm uses many mixture components (20 mixture components were previously 
suggested13), the increase in convergence speed is substantial. Experimental results furthermore showed no loss in 
approximation quality. For the application at hand, this improvement allows us to use more fine-grained grids (that have 
more variables to be optimized) for the registration task, which is of importance for more complex registration tasks, 
especially when considering disappearing structures. 

 

2.4 Proof of principle experiments 

To test whether the proposed approach is able to tackle large deformations in deformable image registration we selected 
2D slices from MRI scans acquired from a healthy volunteer. One from an MRI scan acquired with the volunteer in 
prone orientation and one from an MRI scan acquired with the volunteer in supine orientation. Prior to selection of the 
2D slices, the 3D MRI scans were rigidly registered on the bony anatomy. The prone image served as the source image 
and the supine image as the target image. 

To demonstrate the ability of taking into account disappearing structures, we created an artificial 2D example. 
Additionally, pre-operatively and post-operatively acquired computed tomography (CT) scans from a patient suffering 
from breast cancer were used for this purpose. Similar to the MRI example 2D slices were selected from the CT scans 
after rigid registration of the scans on the bony anatomy.  

For all examples, first two 9×9 grids, corresponding to 324 parameters for the optimization algorithm, were defined and 
used in our multi-objective optimization framework. The outcomes were studied and for two selected trade-offs between 
the objectives we ran a single-objective variant of the optimization algorithm with a higher resolution of the grid (17×17 
points for each grid) for illustration purposes. Here a multi-scale initialization method was used, whereby the outcome of 
a coarser grid was iteratively used to create a finer grid that served as a basis for initialization: from 3×3 to 5×5 to 9×9 to 
17×17. The cost function for the single-objective optimization algorithm is a linear combination of the objectives. These 
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weight factors can easily be determined from the Pareto fronts by finding a straight line tangent to the convex Pareto 
front (note that where the Pareto front is concave, this is impossible). Furthermore, in this pilot study, we did not further 
distinguish between different tissue types and therefore used only one flexibility value.  

 

3. RESULTS 
It is important to note that because for this proof of principle 2D slices were used that only comprises part of a 3D data 
set a perfect registration is often not obtainable without extreme, anatomically incorrect, deformations. The illustrated 
test cases should therefore be seen only as proof of concepts that illustrate the capacity of the proposed approach. 

From the results in Figure 3, we first note that desirable behavior is observed in the sense that the large deformations 
required for prone-supine matching are found, in just one run of the algorithm. Moreover, in both the artificial and the 
real-world CT breast example the approach is capable of removing parts that have disappeared, again in just one run. 

The CT breast example illustrates that the homogeneity in grey values in breast tissue makes it difficult to determine 
whether a part of the tissue has been removed or has been largely deformed. Although the tumor is successfully removed 
by the approach, the change in shape of the breast is mainly achieved by deforming the breast instead of correctly 
identifying that a larger piece of tissue surrounding the tumor has been operatively removed. The observed manner of 
deformation is a direct result of the optimization algorithm exploiting the modeling of tissue deformation in the objective 
function. Therefore, it is important to realize that this does not diminish the usefulness of the combination of the dual-
dynamic grid model and the powerful optimization framework. It does indicate, however, that in future work an 
improved modeling of deformation is required to ensure the desired manner of deformation is achieved.  

Overall, although these examples are still preliminary, it illustrates plausible and desirable behavior of the proposed 
methodology. In future work, we will include the possibility to adaptively subdivide the grid, use local optimization of 
subdivisions to speed-up the overall process, and extend it to 3D volumes. 

 

4. DISCUSSION AND CONCLUSIONS 
In this work we developed and studied, within a previously introduced multi-objective optimization framework8,13, a 
dual-dynamic transformation model to be able to tackle the hardest problems in deformable image registration, i.e. 
problems where large anatomical differences occur between image acquisitions. In this proof of principle we illustrate 
that the proposed model is an elegant and powerful approach that, when combined with proper optimization techniques, 
is capable of tackling different hard registration problems, e.g. in which large deformations occur due to images acquired 
in prone and supine positions and in which structures between image acquisitions disappeared due to surgery. 

Currently, these hard image registration problems can still not be solved satisfactorily using existing registration 
approaches. In the few publications 2-7 that address (dis)appearing structures, these structures need to be explicitly 
identified which is often considered as a separate (segmentation) task, which is not required in the approach presented 
here. 

A major strength of our methodology is that the objectives can be easily reformulated as required. It can therefore be 
combined with state-of-the-art similarity measures and deformation models. Our methodology can be used to obtain an 
improved understanding of the interaction between the obtained registration outcome and one or more regularization 
terms and objectives for typical medical image registration problems, allowing improved tuning of existing algorithms to 
specific problems. Moreover, the preliminary results presented in this paper indicate that the presented methodology is 
also highly likely capable of paving the road to an elegant solution to some of the hardest deformable image registration 
problems. 
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Figure 3. From top to bottom: prone and supine breast MRI, artificial example with a disappearing structure, breast CT data 
pre and post surgical removal of a tumor. From left to right: source and target image, Pareto front with the locations of the 
selected solutions indicated (horizontal axis: transformation effort; vertical axis: similarity measure; scales omitted because 
actual values are irrelevant), Transformation 1 and 2: two solutions selected from Pareto front, Transformation 3 and 4: 
associated single-objective results. For each transformation the grid associated with the source image (green) and the grid 
associated with the target image (yellow) are shown as an overlay on the source and transformed source image, respectively. 
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