Point process

A point process X on W C R? is a random mechanism
for generating locally finite point patterns in W.

This week, we shall consider simple examples of such
mechanisms:

e Uniformly random point;

e Binomial point process;

e Po0oisson process.



Finite point process

To define a finite point process, one must specify

e a probability mass function (pn)neNo for the total
number of points;

e a family of symmetric joint probability densities

jn(xl, s e 73371)7

n €N, on (R2)™ for the locations of the points given
that there are n of them.



Uniformly random point — definition

Let W be a bounded subset of R? with area |W| > 0.

Set
p1 = 1,
pn, = 0 forn+1,
and
, 1
ji(z) = —.

W



Uniformly random point on rectangle

If W =1[0,a] x[0,b], a,b > 0, is a rectangle, write (X,Y)
for the coordinates.

Then, for x € [0,a], y € [0, b],

LY

r ry 1
P(X <z;Y <vy) =/ / —dudv = —=
0 JO ab ab

=P(X <a2)P(Y <vy).

Hence X and Y are independent and uniformly dis-
tributed on, respectively, [0,a] and [0, b].



Uniformly random point on disc

If W = B(0,t), t > 0, is a disc, write (R,®) for the
polar coordinates.

Then, for r € [0,t], ¢ € [0, 27),

P(R < -¢<¢)—/T/¢1 dsdyp =
=TT ==y Jo w27 T

=P(R < 7)P(P < ¢).

Hence R and & are independent, & is uniformly dis-
tributed on [0,27) and R? is uniformly distributed on
[0, ¢4].



Uniformly random point — restriction property

Suppose that B C A, 0 < |B|, |A| < o0, and consider
uniformly random points X4 on A and Xg on B. Then

P(X4€C|X4€ B)=P(Xpel)
for all C C B.

Proof: Note that
P(X4€ D)= D—d:c =

for all D C A. Hence for C C B C A,
P(X4€C; X4 € B)
P(X 4 € B)
|CnBJ/|A] _ |C]

= TBjlA B TXBEO)

P(X4€C|X4€B) =




Uniformly random point — composition property

Suppose that A = Ul_; A; and consider a uniformly
random point X4 on A.

Then
| Al
| A

IP)(XA c Az) =



Simulation
In spatstat, the command
runifpoint(n, win, nsim=1)

generates n independent uniformly random points in the
window win.

As we saw, this is easy for circular and rectangular
windows. For complex windows, the function samples
in a rectangle that contains the window and uses the
restriction property.

For windows that consist of several connected compo-
nents, use the composition property.



Examples — rectangle and disc

n = 100



Examples — complex window

XA <- runifpoint(n=500, win=austates, nsim=1)
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Binomial point process

Let W be a bounded subset of R? with area W >
0. Let, for fixed n € Ng, Xq,...,Xn be n independent
uniformly random points. Then

X ={Xq,...,Xn}

IS the binomial point process with
Pn
Pm

. (1"
jn(ml,...,mn)—<m> .

1,
O for m #= n,

and
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Binomial point process — void probability
For AC W and k€ {0,...,n},

k n—~k
P(Nx(4) = k) = (}) (%) (1 _ %)

since a uniformly random point X; has probability |A|/|W|
of falling in A.

In particular, for kK = 0, we obtain the void probability

_ |A|>n
v(A) = — | .
4 ( Wi
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Binomial point process — intensity function

Let X be a binomial point process with n points on W.
Then, for A C W,

n|Al _

mn
EN+(A :—_/—d.
XD =17 = o ™

Hence the intensity function

(1) _
pr(x) =
144

does not depend on z € W.
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Binomial point process — 2nd moment measure
Let X = {Xq,...,Xn} CW be a binomial point process.

Then, for A, BC W,

E[Nx(A)Nx(B)] =E f: f: 1{X; € A; X; € B}
i=1j=1

=Y Y P(X; € A;X;€B)+ Y P(X; € AN B).
1=1 571 i=1

Since the Xz' are independent,
AllB ANB

(2) _
w’(Ax B)=n(n—1)
W12 (W
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Binomial point process — pair correlation function

The second order factorial moment measure

oA x B)=puDAx B)— V(AN B)

equals
|A|| B / / n(n —1)
—1 —_— dxd
M= DT = s wE B
hence
(2) _ n(n—1)
P (z,y) W
and
p(2)($,y) _n—= 1

< 1.

KoV = D@Dy~ n
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CSR — Complete Spatial Randomness

A simple point process satisfies CSR if the following
hold:

1. The points have no preference for any spatial loca-
tion (homogeneity).

2. Information about the outcome in one region has no
influence on that in other regions (independence).
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Binomial point process and CSR

The binomial point process X does not satisfy the in-
dependence assumption. Indeed, form =0 and AC W
such that 0 < |A| < W],
. A"
IP)(NX(A) — n, NX(W\A) — 0) — W
but
Al

2n
P(Nx (A) = n)P(Ny (W \ A) = 0) = (W) |
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Limit of binomial point processes

Let B,, C R? be a series of growing balls centred at the
origin such that n/|Bp| = X is constant (0 < A < o0).

Then any bounded set A is covered by B,, for n suffi-
ciently large, and, in this case, for k < n,

k n—k
PM(N(A) = k) = (Z) <||Bin||> (1 - %) |

writing P(") for the distribution of the binomial point
process of n points in By,.

Claim: For fixed k € Ny,

P (N(A) = k) — e MNAl(AADF/E!

daS n — O0.
18



Proof: If n > kK and A C By, then

D) () -

AF nn—1 n—k+1 ( |A|>”k
X |1 :

< _
k! |Bn| |Bnl | Bn| | Bn|
Note that
n n—k-+1 .
| Bn| | | Bn| /
and

n—k |Bn|(n—k)/|Bn|
A A
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Limit of binomial point processes (ctd)
If AnNB =0, for k,l € Ng, take n > k + [ so large that
AUB C By,. Then
P (N(A) =k N(B) =1) =
k l —k—1
k7 \|Bnl l | Bn| | B
which, as n — oo, tends to

L AIA] (>‘|A|)ke—>\|B| (AIB)!
k! [!

In the limit, Nx(A) and Nx(B) are independent.
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The homogeneous Poisson process

A point process X on R? is a homogeneous Poisson
process with intensity \ > O if

e Nx(A) is Poisson distributed with mean M\|A| for
every bounded set A C R?:

e for any k disjoint bounded sets Aq,..., A, k € N,
the random variables Nx(A1),...,Nx(A) are inde-
pendent.

The process therefore satisfies CSR.
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Poisson process — conditionally independent points

Let X be a homogeneous Poisson process on R2 with
intensity A > 0 and A C R? bounded with |A| > 0.

Claim: Conditionally on the event {Nx(A) = n}, X
restricted to A is a binomial point process of n points.
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Proof
Clearly, conditionally on Nx(A) =n, p, =1 and p,, = 0 for m # n.

Fix z1,...,z, € A and set B; = B(z;,e) for € small enough to make the B;
disjoint. Then

P(Nx(B1) =1, Nx(Bn) = 1|[Nx(A) = n)

_ P(Nx(B1) = 1;--- i Nx(Bn) = 1; Nx(A\UB)) = 0)
IP>(Nx(A) =n)

Using the two defining properties, we get

A Bile MBil .. A|ByleMBale=NAUBIL 1 1o 5
M| Alre—MAl/nl _\A|nH| |

Upon dividing by n!, the number of permutations of n points, in an infinitesimal
sense, the probability that X4 falls in dz1, X5 in dxo,... is

1
gn(x1,.. ., xn|Nx(A) =n)dz;...dx, = del .dxy,

the scatter density of a binomial point process on A.
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The homogeneous Poisson process — properties
Since Nx(A) is Poisson distributed with mean A|A|, the
void probability of A is

v(A) = exp[-A|A]]
and

ENy (A) = /A \da.

The intensity function
pD(2) = A

IS constant.
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Poisson process — 2nd order moment measure
Let X be a homogeneous Poisson process on R2.

For bounded A, B C R?, conditionally on Nx(AUB) = n,
E[Nx(A)Nx(B)|Nx(AUB) = n]

AllBl_, AN B
|AU B|? |AU B|
Recalling ENx (AU B) = A\|AU B| and

=n(n—1)

E[Nx(AUB)(Nx(AUB) —1)] = (\|[AU B|)?
we get
12 (A x B) = N2|A||B| + A\|AN B|.
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Poisson process — pair correlation function

The second order factorial moment measure

oA x B)=uPAxB)-aM(AanB)

Adzd
[, Jy ¥ e

hence p(2)(z,y) = A2 and

equals

g(z,y) =1

regardless of x,y.
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Simulation

rpoispp(lambda=100, win=square(l), nsim=1)
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Monte Carlo testing

To test whether the points of data pattern x = {z1,
.,xm} C W are scattered independently and uniformly:

e Choose some statistic V;

e calculate V; =V (X1),...,V,,_1 =V(X,,_1) forn—1
independent binomial pomt processes X1,...,X,_1
on W, each having m points;

e calculate V, = V(x);

e if V), iIs among the k£ most extreme values, reject
the null hypothesis.

28



Monte Carlo testing — remarks

The level of this test is k/n.

T he procedure is valid since under the null hypoth-
esis any permutation of the V; is equally likely.

The test conditions on the number of points.

One-sided tests for clustering/inhibition, or two-
sided tests both apply.

The test may be conservative, that is, have low
power (Myllymaki et al., 2017).
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Point process statistics — K-function

For r > O,

K(r) = / g(0, 2)dz.

B(0,r)

Under the null hypothesis, for » such that B(0,r) C W,
m—1 m—1

K(r)=/ dz =

B(0O,r) m m
for a Poisson process with intensity \

™re,

— — 2
K(r) = /B(O,T) ldz = nr<.
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Estimating the K-function

Let X be a stationary point process, x a realisation in
W. Then

AN2K(r) = N2K(r;x) = Z Z# {ly —=[| <r}
rex yex |W M Wy—a:|

is an unbiased estimator of \2K (r).

For a homogeneous Poisson process,

Nx(W)(Nx(W) = 1)) _ a@DW xW) _ 15
w2 W

E

SO

n(x)(n(x) — 1)
W2

is an unbiased estimator for \2.
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Proof

If X is stationary, by the Campbell-Mecke formula,

= lly —a|| < Lly — =l <
W N Wy—s| wtw (W N Wyl

T€EXNW yeXNW

By stationarity, p@ (z,y) = p@(0,y — ) and substituting z = y —  gives

Hilz|| <r
/ (/ ﬁ/“‘/ F‘W‘ ‘}/ }p(2>(0,z)dz> dx
W W—z z
which is equal to

1
/ (/ —d:L’) p?(0,2)dz = / A2¢(0, 2)dz = N2K(r)
B(0,r) Wnw_, (W N W B(0,r)

after changing the order of integration.

32



Example: Redwood data

0.20

0.20

0.15
0.15

ny\y)

0.10
ny\y)

0.10

0.05
0.05

0.00
0.00

000 005 010 015 020 025 000 005 010 015 020 025

Kest (redwood, correction="translate")
envelope (redwood, fun=Kest, correction="translate",
nsim=99, nrank=5)

Note: two.sided so level of pointwise test is 10/100.
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Point process statistics — F-function

Define the empty space function as
F(r) =P(0,X)<r), r=>0.

If X is stationary, the definition does not depend on the
choice of origin.

Under the null hypothesis, for » such that B(0,r) C W,

7T7"2 m
F(r)=1—v(B(O,’r))=1—<1——> ;
for a Poisson process with intensity \

F(r)=1—-v(B(0,7r)) =1 —exp [—Awﬂ .
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Estimating empty space function — edge effects

In general, d(l,X) Zd(, X NW).
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Estimating the empty space function

Let X be a stationary point process, x a realisation in
W, and L C W a lattice of points. Write d(-,-) for the
Euclidean distance.

For » > 0O,

1{d(l,x) <r;d(l,W°) > d(l,x)}
#{lc L:d({l,Wwe)>d(l,x)}

Firy=F(rix)=Y
leL

(0/0 = 0) is an unbiased estimator (Chiu and Stoyan,
1998).

Crucial observation:
d(il,XNW) <d{I, W) =dl,XNnW) =d(,X).
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Proof

leL

. [Z 1{d(l, X " W) < r;d(l, W) > d(l, X N W)}]

H#{ e L:dl,Wwe)>dl, XNnW)}

1{d(l, X) < r;d(l, We) > d(l, X " W) = d(l, X)}

:ZE[

leL

le

#{l € L:d(l,We) > d(l,X)}

#{cL:d(I,wWe) > s}

— Z/ H{d(, W*) 2 s} dF(s) = F(r).
0

L

|
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Example: Redwood data

1.0
1.0

0.8
0.8

0.6
0.6

r(r
A

0.4
0.4

0.2
0.2

0.0
0.0

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15

Fest (redwood, correction="cs", r=seq(0,0.2,by=0.001))
envelope (redwood, fun=Fest, correction="cs",

nsim=99, nrank=5)
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Deviation test

The K- or F-function may be used in a Monte Carlo
test.

e V(x) = K(rg;x) for a fixed rg > 0;
o V(%) = Sup,<p, | K(r;x) — mr2]

or

V(x) = /O UK x) — )2 dr
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Max absolute deviation test and global envelopes

The Monte Carlo test with

V(x) = sup |K(r; x) — w2

r<rg

IS implemented in spatstat:

mad.test (redwood, fun=Kest, correction="translate",

nsim=19)

A graphical illustration is to plot envelopes with a con-
stant width equal to twice max{V(X;) :i=1,...,n—1}:

envelope(redwood, fun=Kest, correction="translate",
nsim=99, nrank=5, global=TRUE)
40



Example: Redwood data

0.20

0.15

ny\rj)

0.10
ny\rj)

-0.05 0.00 0.05 0.10 0.15 0.20

0.05

0.00

000 005 010 015 020 025 000 005 010 015 020 025

Middle: local envelope; Right: global envelope.

CSR is rejected at level nrank / (nsim + 1 ) = 5%.
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Inhomogeneous Poisson process

Suppose that counts in disjoint sets are independent
and for every bounded set A C R?, Nx(A) is Poisson
distributed with mean

A(A) = /A)\(x)d:v

for some integrable function A : R? — [0, o0).

Then X is a Poisson process with intensity function
.
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Inhomogeneous Poisson process — moments

Let X be a Poisson process with intensity function A(-).
Then

p(z) = A(x)

and

p2) (z,y) = A(@)A(y).

Consequently

g(z,y) = 1.
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Proof
Since Nx(A) is Poisson distributed with mean A(A),

aM(A) = ENx(A) = A(A) = / M z)dz,
A

and pM(2) = A\(x).
For A, B C R?,
pP (A x B) =E[Nx(A)Nx(B)] =
E[{Nx(ANB)+ Nx(A\ B)H{Nx(ANB) + Nx(B\ A)}].

Since counts in disjoint sets are independent and Poisson distributed, u(z)(AxB)
is equal to

E [Nx(ANB)?| + A(ANB)A(B\ A) + A(A\ B) [A(AN B) + A(B\ A)]

=ANANB)>2+ANANB)+AANB)A(B\ A) + A(A\ B)A(B)
=ANANB)A(B)+AN(An B) +AN(A\ B)A(B) = AN(A)A(B) + \N(AN B).
The claim follows upon recalling that
(A x B)=a®(Ax B)+aM(A4AnB).
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Example: Linear trend

A(x,y) = 250z,

IS implemented by

lambdal <- function(x,y)

{
return( 250 * x )

(z,y) € [0, 1]?
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Example: Radial trend

Ae,y) = 1000 (1/2 = /(e — 1/2)2+ (v - 1/2)2),

(z,y) € {(u,v) €ER?: (u—1/2)?+ (v—1/2)? < 1/4}

IS implemented by

lambda2 <- function(x,y)

{
dist <- sqrt( ( x - 0.5 )72+ (y - 0.5 )72 )
return ( 1000 * ( 0.5 - dist ) )
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Examples
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Implementation

X1 <- rpoispp(lambda=lambdal, lmax=250,
win=owin(c(0,1), c(0,1)))

X2 <- rpoispp(lambda=lambda2, lmax=500,
win=disc(radius=1/2, centre=c(1/2, 1/2)))

1lmax, the maximal value of the intensity function is op-
tional, but results in faster simulation.

Instead of a function, a pixel image may be used for
lambda.
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Poisson process — thinning property

Let X be a homogeneous Poisson process on the bound-
ed window W with intensity L and A a function such
that

0 < A(z,y) < L.

Construct the point process Y by retaining each point
of X with probability

Mz, y)
L
independently of other points.

Claim: Y is a Poisson process with intensity function
.
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Proof
Counts in disjoint sets are independent by construction.

We show that Ny (A) is Poisson distributed by conditioning on Nx(A). In-
deed, since Nx(A) is Poisson distributed with mean L|A|, and conditionally on
Nx(A) = k, the points of X are uniformly scattered in A before being subjected

to thinning,
P(Ny(A) =n) =

e~ LIA| T T;
_Z L (!L|A‘)k|;\k / /HA( ) H (1_>\( )>d1 o
i=n+1
—Z

—LIAI

Ay = o HANA”
(%) (L1A] = A AQayT = e HAIREL il

where

/\(A)Z/A(:B)da:.
A
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Assessment

T he R-package spatstat contains a number of mapped
patterns of pine trees.

For each of finpines, japanesepines, longleaf and
swedishpines, test whether the CSR assumptions are
satisfied.

Discuss and interpret your results!
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