
Point process

A point process X on W ⊂ R2 is a random mechanism

for generating locally finite point patterns in W .

This week, we shall consider simple examples of such

mechanisms:

• Uniformly random point;

• Binomial point process;

• Poisson process.
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Finite point process

To define a finite point process, one must specify

• a probability mass function (pn)n∈N0
for the total

number of points;

• a family of symmetric joint probability densities

jn(x1, . . . , xn),

n ∈ N, on (R2)n for the locations of the points given

that there are n of them.
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Uniformly random point – definition

Let W be a bounded subset of R2 with area |W | > 0.

Set {
p1 = 1,
pn = 0 for n 6= 1,

and

j1(x) =
1

|W |
.

3



Uniformly random point on rectangle

If W = [0, a]× [0, b], a, b > 0, is a rectangle, write (X, Y )

for the coordinates.

Then, for x ∈ [0, a], y ∈ [0, b],

P(X ≤ x;Y ≤ y) =

∫ x
0

∫ y
0

1

ab
dudv =

x

a

y

b

= P(X ≤ x)P(Y ≤ y).

Hence X and Y are independent and uniformly dis-

tributed on, respectively, [0, a] and [0, b].
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Uniformly random point on disc

If W = B(0, t), t > 0, is a disc, write (R,Φ) for the

polar coordinates.

Then, for r ∈ [0, t], φ ∈ [0,2π),

P(R ≤ r;Φ ≤ φ) =

∫ r
0

∫ φ
0

1

πt2
sdsdψ =

r2

t2
φ

2π

= P(R ≤ r)P(Φ ≤ φ).

Hence R and Φ are independent, Φ is uniformly dis-

tributed on [0,2π) and R2 is uniformly distributed on

[0, t2].
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Uniformly random point – restriction property

Suppose that B ⊂ A, 0 < |B|, |A| < ∞, and consider

uniformly random points XA on A and XB on B. Then

P(XA ∈ C|XA ∈ B) = P(XB ∈ C)

for all C ⊂ B.

Proof: Note that

P(XA ∈ D) =

∫

D

1

|A|
dx =

|D|

|A|

for all D ⊂ A. Hence for C ⊂ B ⊂ A,

P(XA ∈ C|XA ∈ B) =
P(XA ∈ C;XA ∈ B)

P(XA ∈ B)

=
|C ∩B|/|A|

|B|/|A|
=

|C|

|B|
= P(XB ∈ C).
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Uniformly random point – composition property

Suppose that A =
⋃n
i=1Ai and consider a uniformly

random point XA on A.

Then

P(XA ∈ Ai) =
|Ai|

|A|
.
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Simulation

In spatstat, the command

runifpoint(n, win, nsim=1)

generates n independent uniformly random points in the

window win.

As we saw, this is easy for circular and rectangular

windows. For complex windows, the function samples

in a rectangle that contains the window and uses the

restriction property.

For windows that consist of several connected compo-

nents, use the composition property.
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Examples – rectangle and disc

n = 100
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Examples – complex window

  

XA <- runifpoint(n=500, win=austates, nsim=1)
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Binomial point process

Let W be a bounded subset of R2 with area |W | >

0. Let, for fixed n ∈ N0, X1, . . . , Xn be n independent

uniformly random points. Then

X = {X1, . . . , Xn}

is the binomial point process with
{
pn = 1,
pm = 0 for m 6= n,

and

jn(x1, . . . , xn) =

(
1

|W |

)n
.
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Binomial point process – void probability

For A ⊂W and k ∈ {0, . . . , n},

P(NX(A) = k) =
(n
k

)( |A|

|W |

)k (
1−

|A|

|W |

)n−k

since a uniformly random point Xi has probability |A|/|W |

of falling in A.

In particular, for k = 0, we obtain the void probability

v(A) =

(
1−

|A|

|W |

)n
.
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Binomial point process – intensity function

Let X be a binomial point process with n points on W .

Then, for A ⊂ W ,

ENX(A) =
n|A|

|W |
=

∫

A

n

|W |
dx.

Hence the intensity function

ρ(1)(x) =
n

|W |

does not depend on x ∈W .
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Binomial point process – 2nd moment measure

Let X = {X1, . . . , Xn} ⊂W be a binomial point process.

Then, for A,B ⊂W ,

E [NX(A)NX(B)] = E



n∑

i=1

n∑

j=1

1{Xi ∈ A;Xj ∈ B}




=
n∑

i=1

∑

j 6=i

P(Xi ∈ A;Xj ∈ B) +
n∑

i=1

P(Xi ∈ A ∩B).

Since the Xi are independent,

µ(2)(A×B) = n(n− 1)
|A||B|

|W |2
+ n

|A ∩B|

|W |
.
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Binomial point process – pair correlation function

The second order factorial moment measure

α(2)(A×B) = µ(2)(A×B)− α(1)(A ∩B)

equals

n(n− 1)
|A||B|

|W |2
=

∫

A

∫

B

n(n− 1)

|W |2
dxdy

hence

ρ(2)(x, y) =
n(n− 1)

|W |2

and

g(x, y) =
ρ(2)(x, y)

ρ(1)(x)ρ(1)(y)
=
n− 1

n
< 1.
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CSR – Complete Spatial Randomness

A simple point process satisfies CSR if the following

hold:

1. The points have no preference for any spatial loca-

tion (homogeneity).

2. Information about the outcome in one region has no

influence on that in other regions (independence).
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Binomial point process and CSR

The binomial point process X does not satisfy the in-

dependence assumption. Indeed, for n 6= 0 and A ⊂W

such that 0 < |A| < |W |,

P(NX(A) = n;NX(W \A) = 0) =

(
|A|

|W |

)n

but

P(NX(A) = n)P(NX(W \A) = 0) =

(
|A|

|W |

)2n
.
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Limit of binomial point processes

Let Bn ⊂ R2 be a series of growing balls centred at the

origin such that n/|Bn| ≡ λ is constant (0 < λ < ∞).

Then any bounded set A is covered by Bn for n suffi-

ciently large, and, in this case, for k ≤ n,

P
(n)(N(A) = k) =

(n
k

)( |A|

|Bn|

)k (
1−

|A|

|Bn|

)n−k
,

writing P(n) for the distribution of the binomial point

process of n points in Bn.

Claim: For fixed k ∈ N0,

P
(n)(N(A) = k) → e−λ|A|(λ|A|)k/k!

as n→ ∞.
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Proof: If n ≥ k and A ⊂ Bn, then

(n
k

)( |A|

|Bn|

)k (
1−

|A|

|Bn|

)n−k
=

|A|k

k!
×

n

|Bn|

n− 1

|Bn|
· · ·

n− k+1

|Bn|
×

(
1−

|A|

|Bn|

)n−k
.

Note that

n

|Bn|
→ λ;

n− k+1

|Bn|
→ λ

and
(
1−

|A|

|Bn|

)n−k
=

(
1−

|A|

|Bn|

)|Bn|(n−k)/|Bn|
→ exp[−λ|A|].
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Limit of binomial point processes (ctd)

If A ∩ B = ∅, for k, l ∈ N0, take n ≥ k+ l so large that

A ∪B ⊂ Bn. Then

P
(n)(N(A) = k;N(B) = l) =

(n
k

)( |A|

|Bn|

)k (n− k

l

)( |B|

|Bn|

)l (
1−

|A ∪ B|

|Bn|

)n−k−l

which, as n→ ∞, tends to

e−λ|A|(λ|A|)k

k!
e−λ|B|(λ|B|)l

l!
.

In the limit, NX(A) and NX(B) are independent.
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The homogeneous Poisson process

A point process X on R2 is a homogeneous Poisson

process with intensity λ > 0 if

• NX(A) is Poisson distributed with mean λ|A| for

every bounded set A ⊂ R2;

• for any k disjoint bounded sets A1, . . . , Ak, k ∈ N,

the random variables NX(A1), . . . , NX(Ak) are inde-

pendent.

The process therefore satisfies CSR.
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Poisson process – conditionally independent points

Let X be a homogeneous Poisson process on R2 with

intensity λ > 0 and A ⊂ R2 bounded with |A| > 0.

Claim: Conditionally on the event {NX(A) = n}, X

restricted to A is a binomial point process of n points.
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Proof

Clearly, conditionally on NX(A) = n, pn = 1 and pm = 0 for m 6= n.

Fix x1, . . . , xn ∈ A and set Bi = B(xi, ǫ) for ǫ small enough to make the Bi

disjoint. Then

P(NX(B1) = 1; · · · ;NX(Bn) = 1|NX(A) = n)

=
P(NX(B1) = 1; · · · ;NX(Bn) = 1;NX(A \ ∪Bi) = 0)

P(NX(A) = n)
.

Using the two defining properties, we get

λ|B1|e−λ|B1| · · ·λ|Bn|e−λ|Bn|e−λ|A\∪Bi|

λn|A|ne−λ|A|/n!
=

n!

|A|n

n∏

i=1

|Bi|.

Upon dividing by n!, the number of permutations of n points, in an infinitesimal
sense, the probability that X1 falls in dx1, X2 in dx2, . . . is

jn(x1, . . . , xn|NX(A) = n)dx1 . . . dxn =
1

|A|n
dx1 . . . dxn,

the scatter density of a binomial point process on A.
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The homogeneous Poisson process – properties

Since NX(A) is Poisson distributed with mean λ|A|, the

void probability of A is

v(A) = exp [−λ|A|]

and

ENX(A) =

∫

A
λdx.

The intensity function

ρ(1)(x) = λ

is constant.
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Poisson process – 2nd order moment measure

Let X be a homogeneous Poisson process on R2.

For bounded A,B ⊂ R2, conditionally on NX(A∪B) = n,

E [NX(A)NX(B)|NX(A ∪B) = n]

= n(n− 1)
|A||B|

|A ∪B|2
+ n

|A ∩B|

|A ∪B|
.

Recalling ENX(A ∪B) = λ|A ∪B| and

E [NX(A ∪B)(NX(A ∪B)− 1)] = (λ|A ∪B|)2

we get

µ(2)(A×B) = λ2|A||B|+ λ|A ∩B|.
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Poisson process – pair correlation function

The second order factorial moment measure

α(2)(A×B) = µ(2)(A×B)− α(1)(A ∩B)

equals
∫

A

∫

B
λ2dxdy

hence ρ(2)(x, y) = λ2 and

g(x, y) = 1

regardless of x, y.
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Simulation

  

rpoispp(lambda=100, win=square(1), nsim=1)
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Monte Carlo testing

To test whether the points of data pattern x = {x1,
. . . , xm} ⊂ W are scattered independently and uniformly:

• choose some statistic V ;

• calculate V1 = V (X1), . . . , Vn−1 = V (Xn−1) for n−1
independent binomial point processes X1, . . . , Xn−1
on W , each having m points;

• calculate Vn = V (x);

• if Vn is among the k most extreme values, reject
the null hypothesis.
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Monte Carlo testing – remarks

• The level of this test is k/n.

• The procedure is valid since under the null hypoth-

esis any permutation of the Vi is equally likely.

• The test conditions on the number of points.

• One-sided tests for clustering/inhibition, or two-

sided tests both apply.

• The test may be conservative, that is, have low

power (Myllymäki et al., 2017).
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Point process statistics – K-function

For r ≥ 0,

K(r) =
∫

B(0,r)
g(0, z)dz.

Under the null hypothesis, for r such that B(0, r) ⊂ W ,

K(r) =
∫

B(0,r)

m− 1

m
dz =

m− 1

m
πr2;

for a Poisson process with intensity λ

K(r) =
∫

B(0,r)
1dz = πr2.
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Estimating the K-function

Let X be a stationary point process, x a realisation in

W . Then

̂λ2K(r) = ̂λ2K(r;x) =
∑

x∈x

∑6=

y∈x

1{||y − x|| ≤ r}

|W ∩Wy−x|

is an unbiased estimator of λ2K(r).

For a homogeneous Poisson process,

E

[
NX(W )(NX(W )− 1)

|W |2

]
=
α(2)(W ×W )

|W |2
= λ2

so

n(x)(n(x)− 1)

|W |2

is an unbiased estimator for λ2.
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Proof

If X is stationary, by the Campbell–Mecke formula,

E

[ ∑

x∈X∩W

∑6=

y∈X∩W

1{||y − x|| ≤ r}

|W ∩Wy−x|

]
=

∫

W

∫

W

1{||y − x|| ≤ r}

|W ∩Wy−x|
ρ(2)(x, y)dxdy.

By stationarity, ρ(2)(x, y) = ρ(2)(0, y − x) and substituting z = y − x gives

∫

W

(∫

W−x

1{||z|| ≤ r}

|W ∩Wz|
ρ(2)(0, z)dz

)
dx

which is equal to
∫

B(0,r)

(∫

W∩W−z

1

|W ∩Wz|
dx

)
ρ(2)(0, z)dz =

∫

B(0,r)

λ2g(0, z)dz = λ2K(r)

after changing the order of integration.
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Example: Redwood data
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Note: two.sided so level of pointwise test is 10/100.
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Point process statistics – F-function

Define the empty space function as

F(r) = P(d(0, X) ≤ r), r ≥ 0.

If X is stationary, the definition does not depend on the

choice of origin.

Under the null hypothesis, for r such that B(0, r) ⊂ W ,

F(r) = 1− v(B(0, r)) = 1−

(
1−

πr2

|W |

)m
;

for a Poisson process with intensity λ

F(r) = 1− v(B(0, r)) = 1− exp
[
−λπr2

]
.
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Estimating empty space function – edge effects

In general, d(l, X) 6= d(l, X ∩W ).
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Estimating the empty space function

Let X be a stationary point process, x a realisation in

W , and L ⊂ W a lattice of points. Write d(·, ·) for the

Euclidean distance.

For r ≥ 0,

F̂(r) = F̂(r;x) =
∑

l∈L

1{d(l,x) ≤ r; d(l,W c) ≥ d(l,x)}

#{l̃ ∈ L : d(l̃,W c) ≥ d(l,x)}

(0/0 = 0) is an unbiased estimator (Chiu and Stoyan,

1998).

Crucial observation:

d(l, X ∩W ) ≤ d(l,W c) ⇒ d(l, X ∩W ) = d(l, X).
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Proof

E

[∑

l∈L

1{d(l, X ∩W ) ≤ r; d(l,W c) ≥ d(l, X ∩W )}

#{l̃ ∈ L : d(l̃,W c) ≥ d(l,X ∩W )}

]

=
∑

l∈L

E

[
1{d(l,X) ≤ r; d(l,W c) ≥ d(l,X ∩W ) = d(l,X)}

#{l̃ ∈ L : d(l̃,W c) ≥ d(l,X)}

]

=
∑

l∈L

∫ r

0

1{d(l,W c) ≥ s}

#{l̃ ∈ L : d(l̃,W c) ≥ s}
dF (s) = F (r).
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Example: Redwood data
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Deviation test

The K- or F -function may be used in a Monte Carlo

test.

• V (x) = K̂(r0;x) for a fixed r0 > 0;

• V (x) = supr≤r0 |K̂(r;x)− πr2|

or

V (x) =

∫ r0
0

{K̂(r;x)− πr2}2 dr.
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Max absolute deviation test and global envelopes

The Monte Carlo test with

V (x) = sup
r≤r0

|K̂(r;x)− πr2|

is implemented in spatstat:

mad.test(redwood, fun=Kest, correction="translate",

nsim=19)

A graphical illustration is to plot envelopes with a con-

stant width equal to twice max{V (Xi) : i = 1, . . . , n−1}:

envelope(redwood, fun=Kest, correction="translate",

nsim=99, nrank=5, global=TRUE)
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Example: Redwood data
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Middle: local envelope; Right: global envelope.

CSR is rejected at level nrank / (nsim + 1 ) = 5%.
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Inhomogeneous Poisson process

Suppose that counts in disjoint sets are independent

and for every bounded set A ⊂ R2, NX(A) is Poisson

distributed with mean

Λ(A) =

∫

A
λ(x)dx

for some integrable function λ : R2 → [0,∞).

Then X is a Poisson process with intensity function

λ.
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Inhomogeneous Poisson process – moments

Let X be a Poisson process with intensity function λ(·).

Then

ρ(1)(x) = λ(x)

and

ρ(2)(x, y) = λ(x)λ(y).

Consequently

g(x, y) = 1.
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Proof

Since NX(A) is Poisson distributed with mean Λ(A),

α(1)(A) = ENX(A) = Λ(A) =

∫

A

λ(x)dx,

and ρ(1)(x) = λ(x).

For A,B ⊂ R2,

µ(2)(A×B) = E [NX(A)NX(B)] =

E [{NX(A ∩ B) +NX(A \B)}{NX(A ∩ B) +NX(B \A)}] .

Since counts in disjoint sets are independent and Poisson distributed, µ(2)(A×B)
is equal to

E
[
NX(A ∩B)2

]
+Λ(A ∩B)Λ(B \A) + Λ(A \B) [Λ(A ∩B) + Λ(B \A)]

= Λ(A ∩ B)2 +Λ(A ∩ B) + Λ(A ∩B)Λ(B \A) + Λ(A \B)Λ(B)

= Λ(A ∩ B)Λ(B) + Λ(A ∩ B) + Λ(A \B)Λ(B) = Λ(A)Λ(B) + Λ(A ∩B).

The claim follows upon recalling that

µ(2)(A×B) = α(2)(A×B) + α(1)(A ∩ B).
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Example: Linear trend

λ(x, y) = 250x, (x, y) ∈ [0,1]2

is implemented by

lambda1 <- function(x,y)

{

return( 250 * x )

}
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Example: Radial trend

λ(x, y) = 1000

(
1/2−

√
(x− 1/2)2 + (y − 1/2)2

)
,

(x, y) ∈ {(u, v) ∈ R
2 : (u−1/2)2+(v−1/2)2 ≤ 1/4}

is implemented by

lambda2 <- function(x,y)

{

dist <- sqrt( ( x - 0.5 )^2 + ( y - 0.5 )^2 )

return ( 1000 * ( 0.5 - dist ) )

}
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Examples

47



Implementation

X1 <- rpoispp(lambda=lambda1, lmax=250,

win=owin(c(0,1), c(0,1)))

X2 <- rpoispp(lambda=lambda2, lmax=500,

win=disc(radius=1/2, centre=c(1/2, 1/2)))

lmax, the maximal value of the intensity function is op-

tional, but results in faster simulation.

Instead of a function, a pixel image may be used for

lambda.
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Poisson process – thinning property

Let X be a homogeneous Poisson process on the bound-

ed window W with intensity L and λ a function such

that

0 ≤ λ(x, y) ≤ L.

Construct the point process Y by retaining each point

of X with probability

λ(x, y)

L
independently of other points.

Claim: Y is a Poisson process with intensity function

λ.
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Proof

Counts in disjoint sets are independent by construction.

We show that NY (A) is Poisson distributed by conditioning on NX(A). In-
deed, since NX(A) is Poisson distributed with mean L|A|, and conditionally on
NX(A) = k, the points of X are uniformly scattered in A before being subjected
to thinning,

P(NY (A) = n) =

=

∞∑

k=n

e−L|A|(L|A|)k

k!

1

|A|k

(k
n

)∫

A

· · ·

∫

A

n∏

i=1

λ(xi)

L

k∏

i=n+1

(
1−

λ(xi)

L

)
dx1 . . . dxk

=

∞∑

k=n

e−L|A|

k!

(k
n

)
(L|A| − Λ(A))

k−nΛ(A)n = e−L|A|
Λ(A)n

n!
eL|A|−Λ|A|,

where

Λ(A) =

∫

A

λ(x)dx.
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Assessment

The R-package spatstat contains a number of mapped

patterns of pine trees.

For each of finpines, japanesepines, longleaf and

swedishpines, test whether the CSR assumptions are

satisfied.

Discuss and interpret your results!
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