
Finite point processes

To define a finite point process X on a bounded window

W , one may specify

• a discrete probability distribution (pn)n∈N0
for the

total number of points;

• a family of symmetric joint probability densities

jn(x1, . . . , xn),

n ∈ N, on (R2)n for the locations of the points given

that there are n of them.
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Density function

The pn and jn may be combined in a single function

f({x1, . . . , xn}) = e|W |n!pnjn(x1, . . . , xn),

the density function of X.

The factor n! in the right hand side occurs because f is

a function of unordered sets, whereas jn has ordered

vectors as its argument.

The constant e|W | is a normalisation.
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Example – Poisson process

For a Poisson process with intensity function λ : W →
[0,∞),

pn = e−Λ(W)Λ(W )n/n!,

and

jn(x1, . . . , xn) =
n
∏

i=1

λ(xi)

Λ(W )

where Λ(W ) =
∫

W λ(w)dw.

Hence

f({x1, . . . , xn}) = exp

[
∫

W
(1− λ(w))dw

] n
∏

i=1

λ(xi).

Note: If λ ≡ 1 then also f ≡ 1.
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Recovering pn and jn

Density function f is defined uniquely in terms of pn

and jn. The reverse is also true. Indeed,

p0 = e−|W |f(∅).

For n ∈ N,

pn =
e−|W |

n!

∫

W
· · ·

∫

W
f({u1, . . . , un})du1 · · · dun

and

jn(x1, . . . , xn) =
f({x1, . . . , xn})

∫

W · · ·
∫

W f({u1, . . . , un})du1 · · · dun
.
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Conditional specification

For models with interaction, it is often more convenient

to work with the conditional intensity function

λ(u|x) =
f(x ∪ {u})

f(x)
,

the conditional probability of finding a point at u 6∈ x

given configuration x elsewhere (with λ(u|x) = 0 when

f(x) = 0.)

When f > 0,

f({x1, . . . , xn}) = f(∅)
n
∏

i=1

λ(xi|{x1, . . . , xi−1}).
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Example – Poisson process

For a Poisson process with intensity function λ : W →

[0,∞),

λ(u|x) =
f(x ∪ {u})

f(x)

=
e|W |−Λ(W)λ(u)

∏n
i=1 λ(xi)

e|W |−Λ(W)∏n
i=1 λ(xi)

= λ(u).
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Interaction

The presence of a point at location w ∈ W may influ-

ence the likelihood of finding points ‘nearby’, e.g.

• points v for which ||w − v|| ≤ R for some R > 0;

• points v in a zone Z(w) ⊂ W around w.

If the zones Z(·) are not balls, the model is anisotropic.
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Pairwise interaction models

A pairwise interaction process X is a point process

whose density function is of the form

f(x) ∝
∏

x∈x
β(x)

∏

{u,v}⊂x

γ(u, v)

for some function β : W → R+ and some symmetric

function γ : W ×W → R
+.

The function β governs the heterogeneity or trend, γ

the interaction.
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Example: Strauss process

γ(u, v) =

{

γ if ||u− v|| < R
1 if ||u− v|| ≥ R

for γ ∈ [0,1].

γ = 0 leads to a hard core process: no point is allowed

to fall within distance R of another point.

γ = 1 corresponds to a Poisson process.

For intermediate values of γ, points tend to avoid lying

closer than R together, the tendency being stronger for

smaller values of γ.
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Strauss process – conditional intensity

When f(x) > 0,

λ(u|x) =
f(x ∪ {u})

f(x)
= β(u) γS(u;x)

where S(u;x) is the number of points in x that are

closer than R to u 6∈ x.

Note that the normalisation constant in f cancels out!
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Strauss process – simulation

strauss0 <- rStrauss(beta=100, gamma=0.0, R=0.1,

W=square(1), expand=FALSE, nsim=1)

strauss4 <- rStrauss(beta=100, gamma=0.4, R=0.1,

W=square(1), expand=FALSE, nsim=1)

strauss8 <- rStrauss(beta=100, gamma=0.8, R=0.1,

W=square(1), expand=FALSE, nsim=1)

If expand=TRUE, the simulation is performed on a larger

window and clipped. This is appropriate if X is the

restriction to W of a point process defined on R2.
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Realisations

Left to right: γ = 0,0.4 and 0.8; R = 0.1 and β = 100.
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Multi-step process

Piecewise constant pairwise interaction function

γ(u, v) =

{

γj if Rj−1 ≤ ||u− v|| < Rj
1 if ||u− v|| ≥ Rk

for 0 = R0 < R1 < · · · < Rk and γ1, . . . , γk ∈ R.

For an inhibition strength that decreases in interpoint

distance, take

γ1 < · · · < γk < 1.

For attraction combined with a hard core, take

γ1 = 0; γ2, . . . , γk > 1.
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Multi-step process – simulation

The script

r <- seq(0.02, 0.1, by=0.02)

gamma <- c(0.0, 0.2, 0.4, 0.6, 0.8)

ms <- list(beta=100, r=r, h=gamma)

mStep <- rmhmodel(cif="lookup", par=ms, w=square(1))

X <- rmh(mStep,

start=list(n.start=50), control=list(nrep=1e6))

generates an approximate realisation of the multi-step

process by the Metropolis–Hastings method starting

from a binomial point process with 50 points and run

for 106 iterations.
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Realisations
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Metropolis–Hastings method

Let x0 be a realisation of a binomial point process with 50 points.
Repeat 106 times:

• with probability 1/2, propose to add a new point u to the
current pattern x uniformly on W and accept with probability

min

{

1, λ(u|x)
|W |

(n(x) + 1)

}

;

• with probability 1/2, select one of the current points xi – if
any – with equal probability, propose to delete it and accept
this proposal with probability

min

{

1,
n(x)

λ(xi|x \ {xi}) |W |

}

.

Theorem

If the point process density f is locally stable, the Metropolis–
Hastings algorithm on the support Df = {x : f(x) > 0} is f-
irreducible and f defines an invariant measure.
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Influence zone based interaction

Define an influence function κ : W × W → R
+ sup-

ported on Z, i.e.

Z(x) = {w ∈ W : κ(w, x) > 0} ⊂ W,

and write

cx(w) =
n(x)
∑

i=1

κ(w, xi).

Then a shot noise weighted point process on W with

potential function V (·) is defined by

f(x) ∝ βn(x) exp

[

− log γ
∫

W
V (cx(w))dw

]

,

where β, γ > 0 and V : R+ → R with V (0) = 0.
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Example: Area-interaction process

Let κ(w, x) = 1{w ∈ Z(x)}. Then

cx(w) =

n(x)
∑

i=1

1{w ∈ Z(xi)}

is the coverage function of x. For V (x) = 1{x > 0},

f(x) ∝ βn(x) exp



−

∣

∣

∣

∣

∣

∣

⋃

x∈x
Z(x)

∣

∣

∣

∣

∣

∣

log γ



 .

For γ > 1, realisations tend to be clustered to cover a

minimum of space.

For γ < 1, regular configurations are favoured.

γ = 1 corresponds to a Poisson process.
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Area-interaction process – conditional intensity

When f(x) > 0,

λ(u|x) =
f(x ∪ {u})

f(x)
= β γ−|Z(u)\∪x∈xZ(x)|

depends only on the area of Z(u), u 6∈ x, that is not yet

covered by some Z(x), x ∈ x.

Interpretation: For γ > 1, the conditional intensity

λ(u|x) is high when |Z(u)\∪x∈xZ(x)| is small, i.e. when

Z(u) is mostly covered by other influence zones (clus-

tering).
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Area-interaction process – simulation

aiPar <- list(beta=100, eta=1.5, r=0.1)

ai <- rmhmodel(cif="areaint", par=aiPar, w=square(1))

X1 <- rmh(ai,

start=list(n.start=50), control=list(nrep=1e6))

generates an approximate realisation of the isotropic

model with Z(w) = B(w,R), R > 0.

Spatstat uses a parametrisation with

η = γπR
2

for numerical stability reasons.
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Realisations

Left: η = 1.5; Right: η = 0.5. In both cases, R = 0.1.
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Generalisations

The l1 function cx may be replaced by the l∞ function

c̃x(w) = max
x∈x

κ(w, x).

For example, the multi-step area-interaction model

based on the potential V (x) = x and influence function

κ(u, v) =

{

κj if Rj−1 ≤ ||u− v|| < Rj
0 if ||u− v|| ≥ Rk

with 1 = κ1 > κ2 > · · · > κk > 0 is defined by

f(x) ∝ βn(x)γ−
∫

W maxx∈x κ(w,x)dw

= βn(x)γ
−
∑k

j=1 κj|{w∈W :d(w,x)∈[Rj−1,Rj)|.
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Technical remark

When defining a model by its density function f(·), one

needs to make sure that

∞
∑

n=0

e−|W |

n!

∫

W
· · ·

∫

W
f({x1, . . . , xn})dx1 · · · dxn < ∞.

A sufficient condition is that f is locally stable: there

exists some β > 0 such that

f({x1, . . . , xn, xn+1}) ≤ βf({x1, . . . , xn})

for all {x1, . . . , xn} ⊂ W , all n ∈ N and all xn+1 ∈ W .
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Maximum likelihood estimation

Let x be a realisation of a Strauss process with param-

eters β(·) ≡ β > 0 and γ ∈ [0,1] in window W ⊂ R2.

Write

S(x) =
∑

{u,v}⊂x

1{||u− v|| < R}.

Then the log likelihood function becomes

L(β, γ) = n(x) log β + S(x) log γ − logZ(β, γ)

but

Z(β, γ) =
∞
∑

n=0

e−|W |

n!

∫

W
· · ·

∫

W
βnγS({x1,...,xn})dx1 · · · dxn

depends on the parameters and cannot be evaluated

explicitly.
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Pseudo-likelihood idea

Let x be a realisation of a finite point process defined by

a density function f(x; θ) that depends on a parameter

θ.

Idea: Approximate the log likelihood by that of a Pois-

son process with intensity function

λθ(u|x) =
f(x ∪ {u}; θ)

f(x; θ)
,

the conditional probability of finding a point at u 6∈ x

given configuration x elsewhere. Here λθ(u|x) = 0 when

f(x; θ) = 0.
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Maximum pseudo-likelihood estimation

The log pseudo-likelihood function is defined as

PL(θ) =
n
∑

i=1

logλθ(xi|x \ {xi})−
∫

W
λθ(w|x) dw.

Optimise numerically over the parameter θ to obtain

the maximum pseudo-likelihood estimate θ̂.

Advantage: λθ(u|x) does not depend on the propor-

tionality constant Z(θ).

Disadvantage: The approximation may be poor when

the interaction is strong.
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Exponential family models

The models we presented take the form

f(x; θ) =
1

Z(θ)
exp





p
∑

j=1

θjCj(x)



 ,

in other words, form an exponential family with suf-

ficient statistics Cj and parameters θj, j = 1, . . . , p.

Hence, for u 6∈ x,

logλθ(u|x) =
p
∑

j=1

θj
[

Cj(x ∪ {u})− Cj(x)
]

so PL(θ) reads
p

∑

j=1

n
∑

i=1

θj [Cj(x)− Cj(x \ {xi})]−

∫

W

e

∑

j
θj{Cj(x∪{w})−Cj(x)}dw.
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Maximum pseudo-likelihood estimator

Writing

Cj(u;x) = Cj(x ∪ {u})− Cj(x),

the score equations are
∫

W
Cj(w;x)λθ(w|x)dw =

n
∑

i=1

Cj(xi;x \ {xi})

for j = 1, . . . , p.

The Hessian matrix H(θ) of second order partial deriva-

tives has entries

∂2

∂θi∂θj
PL(θ) = −

∫

W
Ci(w;x)Cj(w; x)λθ(w|x)dw.

Note that H(θ) does depend on x.
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Maximum pseudo-likelihood estimator – remarks

• In general, the score equations cannot be solved

explicitly.

• Any θ̂ that solves the score equations and for which

H(θ̂) is negative definite is a local maximum of the

log pseudo-likelihood function PL(θ).

• PL(θ) involves an integral that must be approxi-

mated.

• Little is known about the small sample properties

of θ̂.
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Increasing window asymptotics

When the window W grows to R2,

• the limit distribution of X ∩W may not exist;

• if it does, it may depend on boundary conditions so

not be unique (phase transition).

Asymptotic normality of θ̂ was proved under strong er-

godicity conditions.

30



Approximate covariance matrix

Write V (θ) = Vars(θ;X) for the variance of the score

equation

s(θ;X) =
∑

x∈X

Cj(x;x \ {x})−
∫

W
Cj(w;X)λθ(w|X)dw.

Then, θ̂ unbiased θ̂ has approximate (asymptotic) co-

variance matrix

H(θ)−1V (θ)H(θ)−1.

This covariance matrix cannot be evaluated explicitly

and must be approximated numerically.

31



Example: Barro Colorado data

bei contains the locations of 3604 Beilschmiedia trees

in a 1000 × 500 metre region in the tropical rainforest

of Barro Colorado Island (Hubbell and Foster, 1983).
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Heterogeneous area-interaction model

A model in which logλ(x, y) is a fourth order polynomial

was fitted by

fitbeiXY <- ppm(bei ~ polynom(x,y,4))

Interaction can be added by by

fitbeiAI <- update.ppm(fitbeiXY,

interaction=AreaInter(r=5))

which yields

Disc radius: 5

Fitted interaction parameter eta: 16.7755
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Barro Colorado data: Results

plot(predict(fitbeiAI, type="trend"))

plot(predict(fitbeiAI, type="cif"))

Left: trend (polynomial); Right: cif λθ̂(x|x).
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Model validation by residuals

A residual analysis is based on

s(x) = h−2
∑

y∈x
κ

(

x− y

h

)

wh(x, y)
−1

−h−2
∫

W
κ

(

x− w

h

)

wh(x, w)−1λθ̂(w|x)dw,

where κ is a probability density function and wh an edge

correction factor.

In spatstat, use

a <- diagnose.ppm(fitbeiAI, which="smooth", sigma=100)

> sum(a$smooth$Z)

[1] -0.2828619

35



Barro Colorado data: Smoothed residuals

With interaction (top) and without.
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Barro Colorado data: Simulations

simulate(fitbeiAI, nsim=3)
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Numerical considerations

Baddeley and Turner (1998) proposed to approximate

∫

W
λθ(w|x)dw ≈

n
∑

j=1

λθ(uj|x)wj,

where uj are dummy points in W and wj are quadra-

ture weights.

Then

PL(θ) ≈
∑

x∈x
logλθ(x|x \ {x})−

n
∑

j=1

λθ(uj|x)wj.
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Generalised log-linear Poisson regression model

Add the data points x ∈ x to the set of dummies to

form {uj : j = 1, . . . , n+ n(x) = m}. Then

PL(θ) ≈
m
∑

j=1

(yj logλj − λj)wj,

where λj = λθ(uj|x \ {uj}), yj = zj/wj and

zj =







1, if uj ∈ x is a data point,

0, if uj /∈ x is a dummy point.
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Quadrature weights – adaptive weights

Baddeley et al. (2014) proposed the following adapta-

tion of Waagepetersen’s adaptive scheme,

∫

W
λθ(w|x)dw ≈

n
∑

j=1

λθ(uj|x \ {uj})

λθ(uj|x \ {uj}) + n/|W |
,

based on approximating the area of the Voronoi cell of

uj in x by

1

λθ(uj|x \ {uj}) + n/|W |
.
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Implementation

When there is strong interaction, the approximations

may be off and the results may vary!

fitbeiPL <- ppm(bei ~ polynom(x,y,4),

interaction=AreaInter(r=5), method="mpl")

Fitted interaction parameter eta: 16.7755

fitbeiLogi <- ppm(bei ~ polynom(x,y,4),

interaction=AreaInter(r=5), method="logi")

Fitted interaction parameter eta: 10.2757
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Profile likelihood

So far, we fixed the interaction radius R.

It can be estimated by maximising the profile log

pseudo-likelihood

PPL(R) = max
θ

PL(θ, R) = PL(θ̂, R).

For the Barro Colorado data,

r <- data.frame(r=seq(1, 10, by=1))

fitbeiProfile <- profilepl(r, AreaInter,

bei ~ polynom(x,y,4), aic=FALSE)

yields an optimal value R̂ = 3.
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Remarks on model selection

• The likelihood ratio test and AIC rely on the likeli-

hood so do not apply.

• The theory of composite likelihood aka estimat-

ing equations provides alternative tools.

(Outside the scope of this course).
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Assessment

The R-package spatstat contains the dataset swedishpines.

In a previous assessment, the CSR hypothesis was re-

jected. Formulate a suitable model with interaction for

these data, estimate its parameters and validate your

results.
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