Finite point processes

To define a finite point process X on a bounded window
W, one may specify

e a discrete probability distribution (pn)yen, for the
total number of points;

e a family of symmetric joint probability densities

jn(xl, <o 73371)7

n € N, on (IR{Q)” for the locations of the points given
that there are n of them.



Density function

The p, and 5, may be combined in a single function
f({mla e awn}) — €|W|N!Pnjn($1a ey Tn),

the density function of X.

The factor n! in the right hand side occurs because f is
a function of unordered sets, whereas j5, has ordered
vectors as its argument.

The constant e/ is a normalisation.



Example — Poisson process

For a Poisson process with intensity function A\ : W —
[0, 0),

pn = e "WIAW)/n,

and

. A ()
n(.CU g oo ,wn) p—
it 1L A

where A(W) = [yy AMw)dw.
Hence

F({@1, ..., 2n}) = exp [/Wu _ A(w))dw] 'f[l Az)).

Note: If A=1 then also f = 1.



Recovering p, and j,

Density function f is defined uniquely in terms of pp
and jn. The reverse is also true. Indeed,

Po = 6_|W|f((2)).
For n € N,
e—IW]
f({ul,...,un})dul...dun
and
gz, ..., Tn) = f{z1,. .., zn})

Jw e Jw Fur, . un})duy - - dup



Conditional specification

For models with interaction, it is often more convenient
to work with the conditional intensity function

f(xU{u})

fx)
the conditional probability of finding a point at u € x
given configuration x elsewhere (with A(u|x) = 0 when

f(x)=0.)

AMu|x) =

When f > 0,

f{z1, .. zn}) = f(0) I] Mai{z1, .. 2io1}).
i=1



Example — Poisson process

For a Poisson process with intensity function A\ : W —
[0, 0),

f(x U {u})
f(x)
eWI=AWIN(u) TRy Azs)
eWISAWI TR ) Aas)
= A(u).

AMulx) =




Interaction

The presence of a point at location w € W may influ-
ence the likelihood of finding points ‘nearby’, e.g.

e points v for which ||lw —v|| < R for some R > 0;

e points v in a zone Z(w) C W around w.

If the zones Z(-) are not balls, the model is anisotropic.



Pairwise interaction models

A pairwise interaction process X is a point process
whose density function is of the form

fx)oc I BGx) [ ~(u,v)

TEX {u,v}Cx

for some function 8 : W — RT and some symmetric
function v: W x W — RT.

The function B governs the heterogeneity or trend, ~
the interaction.



Example: Strauss process

]y iflu—v|| <R
7(“’”)—{1 if lu—o|| > R

for v € [0, 1].

~v = 0 leads to a hard core process: no point is allowed
to fall within distance R of another point.

v = 1 corresponds to a Poisson process.
For intermediate values of v, points tend to avoid lying

closer than R together, the tendency being stronger for
smaller values of ~.



Strauss process — conditional intensity

When f(x) > 0,

where S(u;x) is the number of points in x that are
closer than R to u ¢ x.

Note that the normalisation constant in f cancels out!
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Strauss process — simulation

straussO <- rStrauss(beta=100, gamma=0.0, R=0.1,
W=square(l), expand=FALSE, nsim=1)

strauss4 <- rStrauss(beta=100, gamma=0.4, R=0.1,
W=square(1l), expand=FALSE, nsim=1)

strauss8 <- rStrauss(beta=100, gamma=0.8, R=0.1,
W=square(l), expand=FALSE, nsim=1)

If expand=TRUE, the simulation is performed on a larger

window and clipped. This is appropriate if X is the
restriction to W of a point process defined on R2.
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Realisations

Left to right: +=0,0.4 and 0.8, R = 0.1 and g = 100.
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Multi-step process

Piecewise constant pairwise interaction function

_ Vj iij_1§||u—fU||<Rj
7w, v) {1 if ||u—v|| > Ry

forO=Rg< Ry <:---<Rp and ~v1,...,7 € R.

For an inhibition strength that decreases in interpoint
distance, take

v < < e < 1

For attraction combined with a hard core, take

Y1 =0;72,...,7% > 1.
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Multi-step process — simulation
T he script

r <- seq(0.02, 0.1, by=0.02)

gamma <- c(0.0, 0.2, 0.4, 0.6, 0.8)

ms <- list(beta=100, r=r, h=gamma)

mStep <- rmhmodel(cif="lookup", par=ms, w=square(l))

X <- rmh(mStep,
start=list(n.start=50), control=list(nrep=1e6))

generates an approximate realisation of the multi-step
process by the Metropolis—Hastings method starting
from a binomial point process with 50 points and run

for 10° iterations.
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Realisations
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Metropolis—Hastings method

Let xp be a realisation of a binomial point process with 50 points.
Repeat 10° times:

e with probability 1/2, propose to add a new point u to the
current pattern x uniformly on W and accept with probability

min{l,A(u|x) W };

(n(x) +1)

e with probability 1/2, select one of the current points z; — if
any — with equal probability, propose to delete it and accept
this proposal with probability

| n(x) }
m'“{l’mmx\{xi}nww |

Theorem

If the point process density f is locally stable, the Metropolis—
Hastings algorithm on the support Dy = {x : f(x) > 0} is f-
irreducible and f defines an invariant measure.
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Influence zone based interaction

Define an influence function < : W x W — RT sup-
ported on Z, i.e.

Z(x) ={w e W : k(w,x) >0} C W,
and write

n(x)
ex(w) = Z k(w, x;).

1=1

Then a shot noise weighted point process on W with
potential function V(-) is defined by

£(x) oc B exp [— 09 ~ /W V(ex(w))dw| |

where 3,7 > 0 and V : Rt — R with V(0) = 0.
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Example: Area-interaction process

Let k(w,z) = 1{w € Z(x)}. Then
n(x)
ex(w) = ) Hwe Z(x)}
1=1

is the coverage function of x. For V(z) = 1{x > 0},

U Z(x)

rex

f(x) o< M) exp [—

log 71 :

For v > 1, realisations tend to be clustered to cover a
Mminimum of space.

For v < 1, regular configurations are favoured.

v = 1 corresponds to a Poisson process.
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Area-interaction process — conditional intensity

When f(x) > 0,

U
AMulx) = TV 5 12\ Usexz (@)
f(x)
depends only on the area of Z(u), u € x, that is not yet
covered by some Z(z), = € x.

Interpretation: For v > 1, the conditional intensity
A(u|x) is high when |Z(u) \ UzexZ (x)| is small, i.e. when
Z(u) is mostly covered by other influence zones (clus-
tering).
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Area-interaction process — simulation

aiPar <- list(beta=100, eta=1.5, r=0.1)

ai <- rmhmodel(cif="areaint", par=aiPar, w=square(1))

X1 <- rmh(ai,
start=list(n.start=50), control=list(nrep=1e6))

generates an approximate realisation of the isotropic
model with Z(w) = B(w, R), R > 0.

Spatstat uses a parametrisation with

2
n=n~""

for numerical stability reasons.
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Realisations

Left: n = 1.5, Right: n = 0.5. In both cases, R = 0.1.
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Generalisations

The [1 function cx may be replaced by the [ function

cx(w) = maxs(w, x).
rEX

For example, the multi-step area-interaction model
based on the potential V(x) = z and influence function

_ ) Ky iij_1§||u—’U||<Rj
r(u, v) {o if ||u—v|| > Ry

with 1 = k1 > ko > -+ > Kk, > 0 is defined by

f(x) x 5”’(){)7_ Jy Maxgex k(w,z)dw
— Bn(x),y— ?zl ﬁj|{w€W:d(w,X)€[Rj_]_,Rj)|.
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Technical remark

When defining a model by its density function f(-), one
needs to make sure that

OOelWl

f{z1,...,zn})dzy - drp < 0.
n! / /

O

A sufficient condition is that f is locally stable: there
exists some B > 0 such that

f({xla' .- 7:Cn7xn—|—1}) S Bf({xla . 73377/})
for all {z1,...,zn} C W, allne N and all z,,1 1 € W.
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Maximum likelihood estimation

Let x be a realisation of a Strauss process with param-
eters (-) =68 >0 and v € [0, 1] in window W C R2.

Write
S(x) = Z 1{||u —v|| < R}.
{u,v}Cx
Then the log likelihood function becomes

L(B,v) =n(x)log s+ S(x)log~y —log Z(8,~)
but
S0 e_|W|

Z(B,'y) nz::o /W /WB y dxq dxn

depends on the parameters and cannot be evaluated
explicitly.

n!
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Pseudo-likelihood idea

Let x be a realisation of a finite point process defined by
a density function f(x;60) that depends on a parameter
0.

Idea: Approximate the log likelihood by that of a Pois-
son process with intensity function

f(xU{u};0)

f(x;0)
the conditional probability of finding a point at u € x
given configuration x elsewhere. Here A\g(u|x) = 0 when

f(x;0) = 0.

Ao (ulx) =
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Maximum pseudo-likelihood estimation

The log pseudo-likelihood function is defined as

PL(O) = 3 109 M(rlx \ {z:d) — [ NoCwl) d

1=1

Optimise numerically over the parameter 6 to obtain
the maximum pseudo-likelihood estimate 6.

Advantage: )\y(u|x) does not depend on the propor-
tionality constant Z(0).

Disadvantage: The approximation may be poor when
the interaction is strong.
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Exponential family models

The models we presented take the form

1
70 exp |JZ 0,C;(x) |,

in other words, form an exponential family with suf-
ficient statistics C; and parameters 0;, j =1,...,p.

f(x;0) =

Hence, for u € x,
p
log Ag(ulx) = 3" 6, [cj(xu {u}) — cj(x)]
j=1
so PL(6#) reads
506166 — G {aa))] | e teealy,,
1=1:=1
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Maximum pseudo-likelihood estimator

Writing
Cj(u; X) = Cj(X U {u}) — Cj(X),
the score equations are
n
| Ciwixng(wl)dw = 3 Cieiix\ (i)
1=
for g =1,...,p.

The Hessian matrix H(6) of second order partial deriva-
tives has entries
82
00,00 ;

PL(O) = — /W G (w; x) C; (w; ) Mg (w]x)dw.

Note that H(0) does depend on x.
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Maximum pseudo-likelihood estimator — remarks

e In general, the score equations cannot be solved
explicitly.

e Any 0 that solves the score equations and for which
H(0) is negative definite is a local maximum of the
log pseudo-likelihood function PL(6).

e PL(A) involves an integral that must be approxi-
mated.

o Little is known about the small sample properties
of 9.
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Increasing window asymptotics

When the window W grows to R?,

e the limit distribution of X N W may not exist;

e if it does, it may depend on boundary conditions so
not be unique (phase transition).

Asymptotic normality of & was proved under strong er-
godicity conditions.
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Approximate covariance matrix

Write V(0) = Vars(0; X) for the variance of the score
equation

s(0; X) = %{ Cj(z;x\ {z}) — /W C;(w; X)Ag(w] X )dw.

Then, 6 unbiased # has approximate (asymptotic) co-
variance matrix

HO) V() H(O) L.

This covariance matrix cannot be evaluated explicitly
and must be approximated numerically.

31



Example: Barro Colorado data

bei contains the locations of 3604 Beilschmiedia trees
in @ 1000 x 500 metre region in the tropical rainforest
of Barro Colorado Island (Hubbell and Foster, 1983).
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Heterogeneous area-interaction model

A model in which log A(z,y) is a fourth order polynomial
was fitted by

fitbeiXY <- ppm(bei ~ polynom(x,y,4))
Interaction can be added by by

fitbeiAIl <- update.ppm(fitbeiXY,
interaction=Arealnter (r=5))

which vields

Disc radius: 5
Fitted interaction parameter eta: 16.7755

33



Barro Colorado data: Results

plot (predict (fitbeiAl, type="trend"))
plot(predict(fitbeilAI, type="cif"))

0.003 0.005

0.001

Left: trend (polynomial); Right: cif A\p(z|x).
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Model validation by residuals

A residual analysis is based on

s@) =2 Y k(Y ) wnap) ™

yex h

_p2 /W p (x E "“) wp (2, )~ Az (w]x) dw,

where k is a probability density function and wjy an edge
correction factor.

In spatstat, use

a <- diagnose.ppm(fitbeiAI, which="smooth", sigma=100)
> sum(a$smooth$Z)
[1] -0.2828619
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Barro Colorado data: Smoothed residuals

a.

D

_D -
NS L‘T
#

TN

N/

2N

With interaction (top) and without.
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Barro Colorado data: Simulations

simulate(fitbeiAI, nsim=3)
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Numerical considerations

Baddeley and Turner (1998) proposed to approximate

n
| Apwldw & 37 Ag(uslx) w;
W =1

where u; are dummy points in W and w; are quadra-
ture weights.

T hen

PL(Q) ~ Z l0og )\9(33|X\ {x}) — Z )\Q(Uj|X) w;.

reEX j=1
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Generalised log-linear Poisson regression model

Add the data points x € x to the set of dummies to
form {u; :5=1,...,n4+n(x) =m}. Then

m
PL(Q) ~ Z (yj log )\j — )\j) Wy,
J=1
where )\j = )\g(le|X\ {uj}), Yj = Zj/w]' and
L= 1, if uj € X IS a data point,
J 0, ifu; ¢ xisadummy point.
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Quadrature weights — adaptive weights

Baddeley et al. (2014) proposed the following adapta-
tion of Waagepetersen’s adaptive scheme,

o S Ag(ujlx\ {uj})
i PoCwbodw 3 S T

J=1
based on approximating the area of the VVoronoi cell of
Uj in x by

1
Ao(ujlx\ {u;}) +n/|W|
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Implementation

When there is strong interaction, the approximations
may be off and the results may vary!

fitbeiPL <- ppm(bei ~ polynom(x,y,4),

interaction=Arealnter (r=5), method="mpl")

Fitted interaction parameter eta: 16.7755

fitbeilogi <- ppm(bei ~ polynom(x,y,4),

interaction=Arealnter(r=5), method="logi")

Fitted interaction parameter eta: 10.2757
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Profile likelihood
So far, we fixed the interaction radius R.

It can be estimated by maximising the profile log
pseudo-likelihood

PPL(R) = max PL(0,R) = PL(O,R).
For the Barro Colorado data,
r <- data.frame(r=seq(1, 10, by=1))
fitbeiProfile <- profilepl(r, Arealnter,

bei ~ polynom(x,y,4), aic=FALSE)

yields an optimal value R = 3.
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Remarks on model selection

e T he likelihood ratio test and AIC rely on the likeli-
hood so do not apply.

e [ he theory of composite likelihood aka estimat-
INg equations provides alternative tools.

(Outside the scope of this course).
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Assessment

T he R-package spatstat contains the dataset swedishpines.

In a previous assessment, the CSR hypothesis was re-
jected. Formulate a suitable model with interaction for
these data, estimate its parameters and validate your
results.
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