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Motivating example: tree harvesting

Many forests are harvested each year for timber. Common strategies
include

• felling trees whose diameter at breast height (dbh) exceeds
some threshold (French thinning) – supposed to stimulate
rejuvenation;

• fell trees whose dbh is smaller than some threshold (German
thinning) – supposed to enhance natural selection.

Goal: optimise discounted total expected timber value over a given
time horizon.
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Markov decision theory

When the system is in state x ∈ X , the decision maker selects action
a ∈ A(x) earning reward r(x,a). The next state is governed by p(·|x,a).

A policy Φ = (ϕi)
∞
i=0 is a procedure for selecting actions at each

decision time i = 0, 1, 2, · · · . If ϕi ≡ ϕ, then Φ is stationary.

Write (Xi, Yi)∞i=0 for states and actions. An optimal policy maximises
the α-discounted total expected reward

vΦα(x) = EΦ

[ ∞∑
i=0

αir(Xi, Yi)|X0 = x
]
, α ∈ [0, 1).

Note: when r is bounded and X and all A(x) are finite, it suffices to
consider only Markov policies (in which actions chosen depend only
on current state) that are stationary and deterministic.
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Policy iteration and dynamic programming

For current policy Φ = (ϕ, ϕ, . . . ), find value function v by solving

v(x)− α
∑
y∈X

v(y)p(y|x, ϕ(x)) = r(x, ϕ(x)), x ∈ X .

Any solution Φ̃ = (ϕ̃, ϕ̃, . . . ) to

ϕ̃(x) = argmaxa∈A(x)

r(x,a) + α
∑
y∈X

v(y)p(y|x,a)

 , x ∈ X ,

then yields an improved policy. Repeat until no further improvement.

Dynamic programming improves the current value function v by

ṽ(x) = max
a∈A(x)

r(x,a) + α
∑
y∈X

v(y)p(y|x,a)

 , x ∈ X .

until a precision threshold is met. This procedure is amenable to
non-finite state and action spaces.
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Poisson model with logistic growth – state and action spaces

State space: finite simple marked point patterns x = {(xi,mi)i} on
compact set W ⊂ R2 with marks in [0, K], K > 0 (e.g. wood content for
harvesting).

Action spaces: thinnings/subsets of x. Denote retained points by
ϕ(x) ⊆ x.

Reward:
R

∑
(xi,mi)∈x\ϕ(x)

mi, R > 0.
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Poisson model with logistic growth – dynamics

Dynamics: in current state x under action a,

• delete (xi,mi) ∈ x \ a;
• independently of other points, let (xi,mi) ∈ a die with
probability pd ∈ (0, 1) and otherwise grow toxi, K

1+ e−λ
(
K
mi

− 1
)
 , λ > 0;

• add a Poisson process on W with intensity β > 0 and marked
i.i.d. according to probability measure ν on [0, K].
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Poisson model with logistic growth – discounted rewards

Theorem: For 0 ≤ α < 1, French thinning with threshold

d∗α = sup
n∈N0

{
K

1− e−λn
(
αn(1− pd)n − e−λn)}

(with 0/0=0) is optimal and has α-discounted total expected reward

v∗α(x) = R
∑

(xi,mi)∈x
s(mi) +

αRβ|W|
1− α

∫ K

0
s(m)dν(m)

where s(m) = supn∈N0

{
Kαn(1−pd)n

1+e−λn( K
m−1)

}
.

Note: modifications to finite horizons and location dependent β exist.
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A comparison with German thinning

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50

0
2
0

4
0

6
0

Left: sample x from a Poisson(β = 5, W = [0, 5]2) process marked by
ν =Beta(λ1 = 2, λ2 = 20) on [0, 0.1].

Right: graphs of the finite horizon 0.9-discounted total expected
reward vn(x) against n for optimal French (solid line) and best
German (dotted line) thinning. Here R = 1, λ = 2 and pd = 0.05.
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Hard core models with interaction

Modification: allow only trees that can grow to their full size.

Dynamics: in current state x under action a,

• delete (xi,mi) ∈ x \ a;
• independently of other points, let (xi,mi) ∈ a die with
probability pd ∈ (0, 1) and otherwise grow toxi, K

1+ e−λ
(
K
mi

− 1
)
 , λ > 0;

• add a hard core(K) process on W with intensity β > 0 and
marked i.i.d. according to probability measure ν on [0, K] and
remove all points that fall within distance K to a point in a.
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Hard core model with logistic growth – discounted rewards

Theorem: For 0 ≤ α < 1 and x respecting hard core K, the optimal
α-discounted total expected reward vα(x) satisfies

ṽα(x) ≤ vα(x) ≤ v̂α(x),

where ṽα and v̂α take the form

R
∑

(x,m)∈x
s(x,m) + R

n−1∑
k=1

αk
∫
W×[0,K]

s(w, l)βdwdν(l)

with integrand s given by, respectively,

s̃(x,m) = sup
n∈N0

{
Kαn(1− pd)n

1+ e−λn
( K
m − 1

) − αKβ|W ∩ b(x, K)|
n−1∑
i=0

αi(1− pd)i
}

and

ŝ(x,m) = ŝ(m) = sup
n∈N0

{
Kαn(1− pd)n

1+ e−λn
( K
m − 1

)} .
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Sketch of proof

Use dynamic programming and bound integrals of the form∫
W×[0,K]

s(w, l)1{w ̸∈ ∪(x,m)∈ϕ(x)b(x, K)}βdwdν(l)

from below by∫
W×[0,K]

s(w, l)βdwdν(l)− K
∑

(x,m)∈ϕ(x)
β|W ∩ (b(x, K)|

and from above by
∫
W×[0,K] s(w, l)βdwdν(l).

Note: modifications to finite horizons and location dependent β exist.
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Tightness of bounds
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Samples x from a hard core (β = 1 resp. β = 4.3, W = [0, 5]2) process marked by
ν =Beta(λ1 = 2, λ2 = 20) on [0, 0.1] and upper and lower bounds of the finite horizon
0.9-discounted total expected reward (R = 1, λ = 2 and pd = 0.05).
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Thank you for your attention!
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