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Motivating example: tree harvesting

Many forests are harvested each year for timber. Common strategies
include

- felling trees whose diameter at breast height (dbh) exceeds
some threshold (French thinning) - supposed to stimulate
rejuvenation;

- fell trees whose dbh is smaller than some threshold (German
thinning) - supposed to enhance natural selection.

Goal: optimise discounted total expected timber value over a given
time horizon.



Markov decision theory

When the system is in state x € X, the decision maker selects action
a € A(x) earning reward r(x, a). The next state is governed by p(:|x, a).

A policy & = ()2, is a procedure for selecting actions at each
decision time i =0,1,2,---. If ¢; = ¢, then & is stationary.

Write (X;, Y;)2<, for states and actions. An optimal policy maximises
the a-discounted total expected reward

ve(x) =E®

> alr(X;, V)Xo = x] , ael0,1).

=0

Note: when ris bounded and X and all A(x) are finite, it suffices to
consider only Markov policies (in which actions chosen depend only
on current state) that are stationary and deterministic.



Policy iteration and dynamic programming

For current policy ¢ = (¢ o,...), find value function v by solving
() — a > vy)p(yIx, ¢(x)) = r(x, ¢(x)), x € X.

yex

Any solution ® = (¢, ¢,...) to

B(x) = argmax,e { (x,a) +a Y v(y)p(yIx, a) } X € X,
yex

then yields an improved policy. Repeat until no further improvement.

Dynamic programming improves the current value function v by

V(X):a@f(x{ X, d +O‘Z y|xa} xeX.

yex

until a precision threshold is met. This procedure is amenable to
non-finite state and action spaces.



Poisson model with logistic growth - state and action spaces

State space: finite simple marked point patterns x = {(x;, m;);} on
compact set W ¢ R? with marks in [0, K], K > 0 (e.g. wood content for
harvesting).

Action spaces: thinnings/subsets of x. Denote retained points by
o(x) C x.

Reward:

R Z mi;, R> 0.

(xi,m;)ex\p(x)



Poisson model with logistic growth — dynamics

Dynamics: in current state x under action a,

- delete (x;,m;) € x\ a;
- independently of other points, let (x;, m;) € a die with
probability pg € (0,1) and otherwise grow to

K
Xi, s A>0;
14e (K 1)

- add a Poisson process on W with intensity 8 > 0 and marked
i.i.d. according to probability measure v on [0, K].




Poisson model with logistic growth - discounted rewards

Theorem: For 0 < a < 1, French thinning with threshold

K
d:’; = sup {w (Oén(1 — pd)n — e_kn)}

neNy

(with 0/0=0) is optimal and has a-discounted total expected reward

) =R Z vy ORBWE 1 dum)

(.M EX 11—« 0
Ka"(1—p.)"
Where S(m) = SuPneNo {m}

Note: modifications to finite horizons and location dependent /3 exist.



A comparison with German thinning
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Left: sample x from a Poisson(3 = 5, W = [0, 5]?) process marked by
v =Beta(\ = 2, \, = 20) on [0, 0.1].

Right: graphs of the finite horizon 0.9-discounted total expected
reward v,(x) against n for optimal French (solid line) and best
German (dotted line) thinning. Here R =1, A = 2 and pg = 0.05.



Hard core models with interaction

Modification: allow only trees that can grow to their full size.
Dynamics: in current state x under action a,
- delete (x;,m;) € x\ a;

- independently of other points, let (x;, m;) € a die with
probability pg € (0,1) and otherwise grow to

K .
(X[71+e—/\(n§’—1))’ Ao

- add a hard core(K) process on W with intensity 8 > 0 and
marked i.i.d. according to probability measure v on [0, K] and
remove all points that fall within distance K to a point in a.




Hard core model with logistic growth - discounted rewards

Theorem: For 0 < o < 1 and x respecting hard core K, the optimal
a~discounted total expected reward v, (x) satisfies

Vo (X) < va(Xx) < Va(x),
where V,, and 7, take the form
n—1
R Z (X, m)+RY a / ,D)Bdwdu(l)
(x,m)ex k=1 wx{o, K]

with integrand s given by, respectively,

n—1

S(x,m) = sup { Ka"(1=po)” aKB|Wn b(x, K)| Za[ﬁ - Pd)

neNo | 14+e72 (5 = 1) —

and

() = 8(m) = sup { e }

neNy 1+e An (m

]



Sketch of proof

Use dynamic programming and bound integrals of the form
[ 0010 Uyl )} Sdwdo)
Wx[0,K]
from below by

/ s(w, )Bdwdv(l) =K >~ BWn (b(x,K)]
(0. (x,m)€d(x)

and from above by fo[O,K] s(w, [)Bdwdv(l).

Note: modifications to finite horizons and location dependent /3 exist.



Tightness of bounds

Samples x from a hard core (3 = 1resp. 8 = 4.3, W = [0, 5]?) process marked by
v =Beta(\ =2, A, = 20) on [0, 0.1] and upper and lower bounds of the finite horizon
0.9-discounted total expected reward (R =1, A = 2 and py = 0.05).
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Thank you for your attention!
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