Model

\[Y = X\beta + B(Y - X\beta) + E \]

with

\[Y = (Y_1, \ldots, Y_{49})' \]: the crime statistics per district

\(\beta \) has three components: an offset value, ‘house value’ and ‘income’

\(X \) is a \(49 \times 3 \) matrix whose first column contains 1s, the second column the house values, and the third the income values.

\(E \) is spatially correlated noise with mean zero and covariance matrix \(\sigma^2(I - B) \) for \(B = \rho N \).

The \(N \) were obtained in the homework for Week 5.
There are five parameters to estimate: the three components of β, ρ and σ^2. The fitted values are $X\hat{\beta} + \hat{\rho}N(Y - X\hat{\beta})$. Subtracting from the observations gives the residuals.

The model can be fitted as follows. (The style indicates we use the binary neighbourhood coding).

```r
library("spdep")
columbus.listw <- nb2listw( columbus.nb, style="B")
car.out <- spautolm( formula= CRIME ~ HOVAL + INC, 
  data=columbus.poly, listw=columbus.listw, family="CAR" )
columbus.poly$fitted.car <- fitted( car.out )
```
> print(car.out)

Call:
spautolm(formula = CRIME ~ HOVAL + INC, data = columbus.poly,
 listw = columbus.listw, family = "CAR")

Coefficients:
(Intercept) HOVAL INC lambda
 54.3139189 -0.2821969 -0.9882862 0.1589004

Log likelihood: -182.2198

Less crime in districts with high HOVAL and INC. Note that \(\rho \) is called \(\lambda \) here. As for \(\hat{\sigma}^2 \),

> car.outfits2
[1] 87.65356
library("classInt")
library("RColorBrewer")
fitted.colours <- classIntervals(var=columbus.poly$fitted.car,
 n=9, style="fixed", fixedBreaks=breaks)
plot(columbus.poly,
 col= findColours(fitted.colours, colour.palette))

Note the smoothing effect.
Ohio crime data: Residuals.

> plot(car.outfitresiduals)
Image segmentation

Let $x \in L^T$ denote the target labelled image and $y \in R^T$ the observed one.

Forward model

$$f(y|x) = \prod_{i \in T} g(y_i|x_i)$$

where $g(\cdot|x_i)$ is the p.d.f. of the observations in label class x_i, e.g.

$$g(y_i|x_i) \propto \exp\left(-\frac{1}{2\sigma^2}(y_i - x_i)^2\right).$$

Maximum likelihood estimator

$$\hat{x}_i = \arg\max \\{g(y_i|x_i) : x_i \in L\}, \quad i \in T.$$
Bayesian approach

with prior distribution $\pi_X(x)$ to penalise rough labellings.

Posterior

$$f(x|y) \propto f(y|x)\pi_X(x) = \pi_X(x) \prod_{i \in T} g(y_i|x_i).$$

MAP estimator

$$\tilde{x} = \arg\max \{ f(y|x)\pi_X(x) : x \in L^T \}$$
$$= \arg\max \{ \log f(y|x) + \log \pi_X(x) : x \in L^T \}. $$
Potts model

\[\pi_X(x) \propto \exp \left[-\theta \sum_{i \sim j; i<j} 1\{x_i \neq x_j\} \right] \]

for \(\theta > 0 \).

Greedy iterative pointwise optimisation:

\[\tilde{x}_i = \arg\max \ g(y_i|x_i) \pi_i(x_i|x_{T\setminus i}) \]

starting in e.g. the maximum likelihood estimator \(\hat{x} \).
Segmentation of a noisy image of a cat. From left to right: Truth, distortion by white noise, MLE and MAP classifiers.
Disease mapping

\[\pi_i(y_i|y_{T\setminus i}) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!}, \quad y_i \in \{0, 1, \ldots\}, \]

with

\[\log \mu_i = \alpha_i + \theta \sum_{j \sim i} y_j. \]

Since \(L = \{0, 1, \ldots\} \), we must verify that any joint distribution is well-defined.

Homework: \(\theta \leq 0 \). Also the logarithmic transform does not scale w.r.t. the size of the areal units.
Mixture model

Set, for $\alpha = X\beta$,

$$\mu_i = c_i e^{\alpha_i} \Lambda Z_i$$

where c_i is a base rate of expected counts, ΛZ_i is the area-specific relative risk.

The Z_i assign i to one of k mixture components $\lambda_1, \ldots, \lambda_k \geq 0$. To achieve spatial coherence, assume that $(Z_i)_{i \in T}$ follow a Potts model.

Provided the covariates do not fluctuate too wildly within the areal unit, μ_i scales appropriately with size.
Inference for λ_Z as well as the model parameters β, θ and $\lambda_1, \ldots, \lambda_k$.

Forward model

$$f(y|z; \alpha, \lambda_1, \ldots, \lambda_k) = \prod_{i \in T} g(y_i|z_i; \alpha_i, \lambda_{z_i})$$

with $g(\cdot|z_i; \alpha_i, \lambda_{z_i})$ the p.d.f. of a Poisson with mean $\mu_i = c_i e^{\alpha_i \lambda_{z_i}}$.

Posterior

$$f(z|y; \alpha, \theta, \lambda_1, \ldots, \lambda_k) \propto f(y|z; \alpha, \lambda_1, \ldots, \lambda_k) \pi_Z(z; \theta)$$

or

$$f(y|z; \alpha, \lambda_1, \ldots, \lambda_k) \pi_Z(z; \theta, k)p(\lambda_1, \ldots, \lambda_k|k)p(\theta)p(k).$$
Posterior mean (left) and posterior distribution (right) of risk for Larynx cancer in France (1986–1993).
Synthesis

A spatial process of interest cannot be observed directly but only through other random variables and the model contains unknown parameters. I.e. the joint distribution takes the form

\[
\text{forward model}[\text{data} \mid \text{process}, \text{parameters}] \times \text{prior}[\text{process} \mid \text{parameters}],
\]

and inference is based on the posterior distribution of the process and/or the parameters conditional on the observations.