Perfect simulation for length-interacting polygonal Markov fields in the plane

Marie-Colette van Lieshout and Tomasz Schreiber

colette@cwi.nl

CWI / University of Twente Nicolaus Copernicus University

Polygonal configurations

Let $D \subset \mathbb{R}^2$ be bounded, open and convex with piece-wise smooth boundary ∂D and area |D| > 0.

Let the family Γ_D of admissible polygonal configurations in D consist of all planar graphs γ in $D \cup \partial D$ with line segments as edges such that:

- all interior vertices of γ (in D) have degree 2;
- $\gamma \cap \partial D$ is empty or consists of vertices of degree 1;
- the edges of γ do not intersect;
- no two edges of γ are co-linear.

Arak model

(Arak, 1982)

Use the **Poisson line process** Λ as a **skeleton**:

- use each line exactly once;
- weigh by $\exp[-2\ell(\gamma)]$.

Note there may be multiple or no admissible polygonal configurations γ for a given skeleton.

Notes

The Arak model A_D (with free boundary conditions) is

- stationary and isotropic;
- consistent: A_D is equal in distribution to the restriction of $A_{D'}$ to D for $D'\supseteq D$;
- Poisson line transects of rate 2 identical to those of Λ;
- Markov: the conditional distribution of the field inside a piece-wise smooth closed curve depends only on the intersection points and angles;
- partition function is known in closed form $(e^{\pi|D|})$.

Length-interacting Arak process $\mathcal{A}_D^{[eta]}$

is defined by density

$$f(\gamma) \propto \exp(-\beta \ell(\gamma)), \quad \beta > 0,$$

with respect to $\mathcal{L}(\mathcal{A}_D)$, the law of the Arak process.

Interpretation:

- configurations with small $\ell(\gamma)$ are favoured;
- can be used as priors in image analysis (segmentation, network extraction).

Metropolis-Hastings sampling

Idea: generate a Markov chain that converges to $\mathcal{L}(\mathcal{A}_D^{[\beta]})$ by proposing a new state and accepting it in compliance with the detailed balance equations.

Clifford and Nicholls (1994) propose 6 transition types. For example, new vertices are created by the addition of a new triangle, but also by splitting an existing edge.

Disadvantages

- very complicated book keeping;
- rate of convergence unknown;
- slow in practice;
- prone to bugs.

Goal: reformulate as a hard object process and apply exact simulation methods developed in the latter context.

Hard object processes

have realisations

$$\mathbf{y} = \{y_1 = (x_1, m_1), \dots, y_n = (x_n, m_n)\}, \quad n \in \mathbb{N}_0,$$

with $x_i \in D$ and m_i in some mark space M that parametrises objects $Z(m_i)$ such that

$$[x_i + Z(m_i)] \cap [x_j + Z(m_j)] = \emptyset$$

for all y having positive probability.

(Ripley & Kelly, 1977; Van Lieshout, 2000)

Polygonal contours: identify contour θ with its left-most point $\iota[\theta]$ and set

$$M = \{ \theta \in \mathcal{C} \mid \iota[\theta] = 0 \}$$

for suitable $\mathcal C$ and \emptyset included by convention.

Empty boundary condition

Let $\mathcal{C}_{(-n,n)^2}$ be the set of all closed polygonal contours in $(-n,n)^2$ which do not touch $\partial (-n,n)^2$. Then

$$\mathcal{C} = \cup_{n=1}^{\infty} \mathcal{C}_{(-n,n)^2}.$$

The mark distribution $\Theta_*^{[\beta]}$ on M can, for $\beta \geq 2$, be defined by a **random** walk representation Z_t .

Random walk representation

(Schreiber, 2006)

- 1. From $Z_0 = 0$,
 - set initial direction uniformly in $(0,2\pi)$;
 - between updates, move in constant direction with speed 1;
 - with intensity 4, update direction by choosing angle $\phi \in (0, 2\pi)$ between old and new direction according to $|\sin(\phi)|/4$.
- 2. Z_t is killed with rate $\beta-2$ and whenever it hits its past trajectory to obtain $\tilde{Z}_t^{[\beta-2]}$.
- 3. Draw half-line l^* from 0 that forms angle $\phi^* \in (0, 2\pi)$ with the initial segment of Z_t distributed according to $|\sin \phi^*|/4$.
- 4. If $\tilde{Z}_t^{[\beta-2]}$ hits l^* , the combined contour θ_* has $\iota[\theta_*]=0$, then
 - with probability $\exp(-[\beta+2]\ell(e^*))$ where e^* is $0\to l^*\cap \tilde{Z}_t^{[\beta-2]}$, set $\theta:=\theta_*$;
 - otherwise $\theta := \emptyset$.

Otherwise, $\theta := \emptyset$.

Theorem

For $\beta \geq 2$, $\mathcal{A}_D^{[\beta]}$ coincides in law with the union of contours carried as shifted marks by the M-marked point process $\mathcal{Y}^{[\beta]}$ in D defined by Papangelou conditional intensity

$$\lambda((x,\theta);\{(x_i,\theta_i)_{i=1}^k\}) = \begin{cases} 4\pi & \text{if } [x+\theta] \cap \bigcup_{i=1}^k [x_i+\theta_i] = \emptyset, \quad [x+\theta] \subset D \\ 0 & \text{otherwise} \end{cases}$$

with respect to Lebesgue $\times \Theta_*^{[\beta]}$.

Interpretation: $\mathcal{A}_D^{[\beta]}$ coincides in law with the Poisson process on D with intensity 4π independently marked according to $\Theta_*^{[\beta]}$ on M conditioned on the event that the shifted marks do not intersect and lie fully in D.

Coupling from the past

(Propp and Wilson, 1995)

Let $S = \{s_1, \dots, s_M\}$ and $\pi(\cdot)$ be probability mass function on S that is the limit distribution of a Markov chain X_k with update rule

$$X_{k+1} = \phi(X_k, Z_{k+1})$$

for some random variables $Z_0, Z_{-1}, Z_{-2}, \ldots$ Run Markov chains $(X_k^{(i)})_{k \leq 0}$ starting in each $s_i \in S$ and using **the same** $Z_0, Z_{-1}, Z_{-2}, \ldots$

Tricks

For implementation, one needs an efficient way of checking for coalescence. If

- there exists a partial order on the state space with a minimum/maximum;
- the update rule respects the order;

only two paths need checking.

In our context, the state space is not finite. Use the **inclusion order** with minimum \emptyset and a **stochastically evolving maximum**:

- $\mathcal{Y}(0)$ a realisation of a Poisson process of rate 4π in D, marked i.i.d. according to $\Theta_*^{[\beta]}$;
- extend $\mathcal{Y}(\cdot)$ backwards by means of a spatial birth-and-death process with birth rate $4\pi dx \Theta_*^{[\beta]}(d\theta)$ and unit death rate.

Update rule

- Set $L^{-T}(-T) = \emptyset$ and $U^{-T}(-T) = \mathcal{Y}(-T)$.
- If $\mathcal{Y}(\cdot)$ experiences a backward **birth**, $\mathcal{Y}(t-) = \mathcal{Y}(t) \cup \{(x,\theta)\}$ delete (x,θ) from $L^{-T}(t-)$ and $U^{-T}(t-)$.
- If $\mathcal{Y}(\cdot)$ experiences a backward **death** $\mathcal{Y}(t-)=\mathcal{Y}(t)\setminus\{(x,\theta)\}$, add (x,θ) to $L^{-T}(t-)$ iff

$$[x+\theta] \cap \bigcup_{(x_i,\theta_i)\in U^{-T}(t-)} [x_i+\theta_i] = \emptyset, \ [x+\theta] \subseteq D$$

and to $U^{-T}(t-)$ iff

$$[x+\theta] \cap \bigcup_{(x_i,\theta_i)\in L^{-T}(t-)} [x_i+\theta_i] = \emptyset, \ [x+\theta] \subseteq D.$$

(Kendall & Møller, 2000)

Theorem

 $\mathcal{A}_D^{[\beta]}$ coincides in distribution with the output of the coupling from the past algorithm.

$$D = [0, 30]^2$$
, $\beta = 2$

Conclusion

- Formulated the length-interacting Arak process as a hard object process.
- Derived the mark distribution in terms of a random walk representation.
- Adapted an exact simulation method for fast sampling.

Thank you for your attention!

