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Polygonal configurations

Let D ⊂ R
2 be bounded, open and convex with piece-wise smooth

boundary ∂D and area |D| > 0.

Let the family ΓD of admissible polygonal configurations in D consist of

all planar graphs γ in D ∪ ∂D with line segments as edges such that:

• all interior vertices of γ (in D) have degree 2;

• γ ∩ ∂D is empty or consists of vertices of degree 1;

• the edges of γ do not intersect;

• no two edges of γ are co-linear.
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Arak model

(Arak, 1982)

Use the Poisson line process Λ as a skeleton:

• use each line exactly once;

• weigh by exp [−2ℓ(γ)].

Note there may be multiple or no admissible polygonal configurations γ

for a given skeleton.
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Notes

The Arak model AD (with free boundary conditions) is

• stationary and isotropic;

• consistent: AD is equal in distribution to the restriction of AD′ to D for

D′ ⊇ D;

• Poisson line transects of rate 2 identical to those of Λ;

• Markov: the conditional distribution of the field inside a piece-wise

smooth closed curve depends only on the intersection points and

angles;

• partition function is known in closed form (eπ|D|).

Perfect simulation for length-interacting polygonal Markov fields in the plane – p. 4/16



◭ � ◮

Length-interacting Arak process A
[β]
D

is defined by density

f(γ) ∝ exp(−βℓ(γ)), β > 0,

with respect to L(AD), the law of the Arak process.

Interpretation:

• configurations with small ℓ(γ) are favoured;

• can be used as priors in image analysis (segmentation, network

extraction).
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Metropolis–Hastings sampling

Idea: generate a Markov chain that converges to L(A[β]
D ) by proposing

a new state and accepting it in compliance with the detailed balance

equations.

Clifford and Nicholls (1994) propose 6 transition types. For example, new

vertices are created by the addition of a new triangle, but also by

splitting an existing edge.
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Disadvantages

• very complicated book keeping;

• rate of convergence unknown;

• slow in practice;

• prone to bugs.

Goal: reformulate as a hard object process and apply exact simulation

methods developed in the latter context.
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Hard object processes

have realisations

y = {y1 = (x1,m1), . . . , yn = (xn,mn)}, n ∈ N0,

with xi ∈ D and mi in some mark space M that parametrises objects

Z(mi) such that

[xi + Z(mi)] ∩ [xj + Z(mj)] = ∅

for all y having positive probability.

(Ripley & Kelly, 1977; Van Lieshout, 2000)

Polygonal contours: identify contour θ with its left-most point ι[θ] and set

M = {θ ∈ C | ι[θ] = 0}

for suitable C and ∅ included by convention.
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Empty boundary condition

Let C(−n,n)2 be the set of all closed polygonal contours in (−n, n)2 which

do not touch ∂(−n, n)2. Then

C = ∪∞
n=1C(−n,n)2 .

The mark distribution Θ
[β]
∗ on M can, for β ≥ 2, be defined by a random

walk representation Zt.

D

DD

D
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Random walk representation

(Schreiber, 2006)

1. From Z0 = 0,

• set initial direction uniformly in (0, 2π);

• between updates, move in constant direction with speed 1;

• with intensity 4, update direction by choosing angle φ ∈ (0, 2π)

between old and new direction according to | sin(φ)|/4.

2. Zt is killed with rate β − 2 and whenever it hits its past trajectory to

obtain Z̃
[β−2]
t .

3. Draw half-line l∗ from 0 that forms angle φ∗ ∈ (0, 2π) with the initial

segment of Zt distributed according to | sinφ∗|/4.

4. If Z̃
[β−2]
t hits l∗, the combined contour θ∗ has ι[θ∗] = 0, then

• with probability exp(−[β + 2]ℓ(e∗)) where e∗ is 0 → l∗ ∩ Z̃
[β−2]
t , set

θ := θ∗;

• otherwise θ := ∅.

Otherwise, θ := ∅.
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Theorem

For β ≥ 2, A[β]
D coincides in law with the union of contours carried as

shifted marks by the M -marked point process Y [β] in D defined by

Papangelou conditional intensity

λ((x, θ); {(xi, θi)
k
i=1}) =







4π if [x+ θ] ∩ ∪k
i=1[xi + θi] = ∅, [x+ θ] ⊂ D

0 otherwise

with respect to Lebesgue×Θ
[β]
∗ .

Interpretation: A[β]
D coincides in law with the Poisson process on D with

intensity 4π independently marked according to Θ
[β]
∗ on M conditioned

on the event that the shifted marks do not intersect and lie fully in D.
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Coupling from the past

(Propp and Wilson, 1995)

Let S = {s1, . . . , sM} and π(·) be probability mass function on S that is

the limit distribution of a Markov chain Xk with update rule

Xk+1 = φ(Xk, Zk+1)

for some random variables Z0, Z−1, Z−2, . . ..

Run Markov chains (X
(i)
k )k≤0 starting in each si ∈ S and using the same

Z0, Z−1, Z−2, . . ..
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Tricks

For implementation, one needs an efficient way of checking for

coalescence. If

• there exists a partial order on the state space with a

minimum/maximum;

• the update rule respects the order;

only two paths need checking.

In our context, the state space is not finite. Use the inclusion order with

minimum ∅ and a stochastically evolving maximum:

• Y(0) a realisation of a Poisson process of rate 4π in D, marked i.i.d.

according to Θ
[β]
∗ ;

• extend Y(·) backwards by means of a spatial birth-and-death

process with birth rate 4πdxΘ
[β]
∗ (dθ) and unit death rate.
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Update rule

• Set L−T (−T ) = ∅ and U−T (−T ) = Y(−T ).

• If Y(·) experiences a backward birth, Y(t−) = Y(t) ∪ {(x, θ)} delete

(x, θ) from L−T (t−) and U−T (t−).

• If Y(·) experiences a backward death Y(t−) = Y(t) \ {(x, θ)}, add

(x, θ) to L−T (t−) iff

[x+ θ] ∩
⋃

(xi,θi)∈U−T (t−)

[xi + θi] = ∅, [x+ θ] ⊆ D

and to U−T (t−) iff

[x+ θ] ∩
⋃

(xi,θi)∈L−T (t−)

[xi + θi] = ∅, [x+ θ] ⊆ D.

(Kendall & Møller, 2000)
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Theorem

A[β]
D coincides in distribution with the output of the coupling from the

past algorithm.
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D = [0, 30]2, β = 2
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Conclusion

• Formulated the length-interacting Arak process as a hard object

process.

• Derived the mark distribution in terms of a random walk

representation.

• Adapted an exact simulation method for fast sampling.

Thank you for your attention!
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