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‘ Polygonal configurations

Let D C R? be bounded, open and convex with piece-wise smooth
boundary 0D and area |D| > 0.

Let the family I'p of admissible polygonal configurations in D consist of
all planar graphs ~ in D U 0D with line segments as edges such that:

all interior vertices of v (in D) have degree 2;
~ N oD is empty or consists of vertices of degree 1;
the edges of v do not infersect;

no two edges of v are co-linear.
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\ Arak model

(Arak, 1982)
Use the Poisson line process A as a skeleton:

use each line exactly once;
weigh by exp [—20(7v)].

Note there may be multiple or no admissible polygonal configurations ~
for a given skeleton.
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‘ Noftes

The Arak model Ap (with free boundary conditions) is
stationary and isotropic;

consistent: Ap is equal in distribution to the restriction of Ap, to D for
D' D D;

Poisson line tfransects of rate 2 identical to those of A;

Markov: the conditional distribution of the field inside a piece-wise
smooth closed curve depends only on the intersection points and
angles;

partition function is known in closed form (e™'P1).
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‘ Length-inferacting Arak process A[g]

is defined by density

f(y) ocexp(=BL()), B>0,

with respect to L(Ap), the law of the Arak process.

Interpretation:
* configurations with small £(+) are favoured;

* can be used as priors in image analysis (segmentation, network
extraction).
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‘ Meftropolis—Hastings sampling

Idea: generate a Markov chain that converges to E(A[g]) by proposing
a new state and accepting it in compliance with the detailed balance

equations.

Clifford and Nicholls (1994) propose 6 transition types. For example, new
vertices are created by the addifion of a new triangle, but also by
splitfing an existing edge.
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‘ Disadvantages

very complicated book keeping;
rate of convergence unknown;
slow in practice;

prone to bugs.

Goal: reformulate as a hard object process and apply exact simulation
methods developed in the latter context.
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‘ Hard object processes

have realisations

y:{yl =(:E1,m1),...,yn=(:Cn,mn)}, neNOa

with x; € D and m; in some mark space M that parametrises objects
Z(m;) such that

[zi + Z(ma)] N [z + Z(my)] =0

for all y having positive probability.
(Ripley & Kelly, 1977, Van Lieshout, 2000)

Polygonal contours: identify confour 6 with its leff-most point .[#] and set
M={0€C|.0] =0}

for suitable C and 0 included by convention.
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‘ Empty boundary condition

Let C(_,, »)2 e the set of all closed polygonal confours in (—n, n)? which
do not fouch 8(—n, n)?. Then

C — Uzozlc(_n,n)Q .

The mark distribution ©*! on M can, for 8 > 2, be defined by a random
walk representation ~Z;.
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‘ Random walk representation

(Schreiber, 2006)

1. From Zy =0,
set initial direction uniformly in (0, 27);
between updates, move in constant direction with speed 1;
with intensity 4, update direction by choosing angle ¢ € (0, 2)
between old and new direction according o |sin(¢)|/4.
2. Z is killed with rate 8 — 2 and whenever it hits its past trajectory to
obtain z/° 2.,
3. Draw half-line I* from 0 that forms angle ¢* € (0, 27) with the initial
segment of Z; distributed according fo |sin ¢*|/4.
4. If Z°~? hits 1*, the combined contour 6, has ¢[6,] = 0, then
with probability exp(—[8 + 2]¢(e*)) where e* is 0 — 1* N Z° 2], set
0 := 0.
otherwise 0 := 0.
Otherwise, 6 := (.
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\ Theorem

For 8 > 2, A¥ coincides in law with the union of contours carried as
shifted marks by the M-marked point process Y!?! in D defined by
Papangelou conditional intensity

Ar fle4+0)NUr [zi+0;]=0, [x+6]CD
0 otherwise

A((2,0); {(:,0:)=1}) = {
with respect o Lebesgue x el
Interpretation: A" coincides in law with the Poisson process on D with

intensity 47 independently marked according to ©! on M conditioned
on the event that the shifted marks do not intersect and lie fully in D.
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a‘ Coupling from the past

(Propp and Wilson, 1995)
Let S = {s1,...,sm} and = () be probability mass function on S that is
the limit distribution of a Markov chain X with update rule

Xit1 = ¢(Xk, Zr+1)

for some random variables Zy, Z_1,Z_o, . . ..
Run Markov chains (X"),<, starting in each s; € S and using the same
Zo. 7 1.7 n. ..
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\ [ricks

For implementation, one needs an efficient way of checking for
codalescence. If

there exists a partial order on the stafte space with a
MinimumM/maximum;

the update rule respects the order;

only two paths need checking.

INn our context, the state space is not finite. Use the inclusion order with
minimum () and a stochastically evolving maximum:

Y(0) a realisation of a Poisson process of rate 47 in D, marked i.i.d.
according to e';

extend )Y (-) backwards by means of a spatial birth-and-death
process with birth rate 4rdz©'! (d6) and unit death rate,
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‘ Updafte rule

Set LT (-T) =0 and U1 (=T) = Y(-T).

If V(-) experiences a backward birth, Y(t—) = Y (t) U {(z, 0)} delete
(z,0) from L~ (t=) and U1 (¢t-).

If Y(-) experiences a backward death Y (t—) = Y(¢t) \ {(z,0)}, add
(z,0) to L™1 (t—) iff
[z + 0] N U [x; +0;] =0, [x+60] CD
(z;,0;,) €U (t-)
and to U1 (t—) iff
[z +6]N U [xi +60:] =0, [x+6] C D.

(z4,0;)eL=T(t—)

(Kendall & Mgller, 2000)
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“ Theorem

A} coincides in distribution with the output of the coupling from the
past algorithm.
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N Conclusion

* Formulated the length-inferacting Arak process as a hard object
process.

* Derived the mark distribution in ferms of a random walk
representation.

* Adapted an exact simulation method for fast sampling.

Thank you for your atftention!
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