1. Consider a Cox process X on \mathbb{R}^2 with driving random measure defined by

$$\Lambda(A) = \int_A L(x) \, dx$$

for bounded Borel sets $A \subseteq \mathbb{R}^2$.

a. Let L be exponentially distributed with rate parameter $\beta > 0$. Compute the first order moment measure of X.

b. Again under the assumption that L is exponentially distributed with rate parameter $\beta > 0$, compute the pair correlation function of X. Is X second order intensity-reweighted moment stationary? Motivate your answer.

For $N \in \{2, 3, \ldots\}$, let $T = \{1, \ldots, N\}^2 \subset \mathbb{Z}^2$ be a planar cube equipped with the first-order neighbourhood relation $s \sim t$ if and only if s and t are direct horizontal or vertical neighbours. For all $t \in T$, set

$$\beta_t(x_{T \setminus t}) = \alpha + \theta \sum_{s \sim t} x_s$$

and define local characteristics

$$\pi_t(x_t | x_{T \setminus t}) = \beta_t(x_{T \setminus t}) \exp \left[-x_t \beta_t(x_{T \setminus t})\right], \quad x_s \in \mathbb{R}^+, \ s \in T$$

depending on the parameters $\theta \geq 0$ and $\alpha > 0$.

c. Show that the local characteristics define a proper joint probability distribution on $(\mathbb{R}^+)^T$.

d. How would you simulate realisations from the joint probability distribution π_T defined by the local characteristics π_t, $t \in T$? Please give full details.
2. Consider a point process X on the unit square whose distribution is defined by its density

$$
\frac{\beta^{n(x)}|\bigcup_{x \in X} B(x,R)|}{Z(\beta, \gamma, R)}
$$

with respect to a unit rate Poisson process on $[0, 1]^2$. Here, $\beta, \gamma > 0$ are the model parameters, $n(x)$ denotes the cardinality of the point configuration x and $|\bigcup_{x \in X} B(x, R)|$ is the area of the union of closed balls of radius $R > 0$ centred at the points of x.

a Calculate the Papangelou conditional intensity of X and interpret your result.

b Is X a pairwise interaction process? Explain your answer.

c Derive the pseudo-likelihood equations for estimating β and γ.

d Assume that $\beta = 5$, $\gamma = 1$ and $R = 0.02$. For each $\epsilon \in [0, 0.5]$, compute the probability that X places exactly four points in the unit square, none of which closer than ϵ to the boundary of the square. Sketch the graph as a function of ϵ.

3. Consider, for $\alpha \geq 0$ and $\beta > 0$, the semi-variogram

$$
\gamma(t) = \begin{cases}
\alpha + \beta \left(1 - \frac{\sin(t)}{t}\right), & 0 \neq t \in \mathbb{R} \\
0, & t = 0
\end{cases}
$$

a Sketch the graph of $\gamma(t)$ as a function of t. Calculate the nugget, sill and partial sill of this model.

Define, for $\beta > 0$, the function $\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$
\rho(t, s) = \beta \frac{\sin(t - s)}{t - s}.
$$

b Show that ρ is the covariance function of a stationary Gaussian random field.

[Hint:] You may use that

$$
\int_{-\infty}^{\infty} \cos(wt) \frac{\sin(t)}{t} dt = \frac{\pi}{2} (\text{sgn}(w + 1) - \text{sgn}(w - 1))
$$

where $\text{sgn}(x) = |x|/x$ for $x \neq 0$ with $\text{sgn}(0) = 0$.

c Let $(X_t)_{t \in \mathbb{R}}$ be a Gaussian random field with unknown constant mean μ and covariance function ρ. Suppose that observations are available at $t_1 = \pi/2$ and $t_2 = -\pi/2$ with $(X_{t_1}, X_{t_2}) = (2, 3)$. Predict X_0 based on X_{t_1} and X_{t_2}.

d What is the mean squared error of your prediction \hat{X}_0?