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Moment measure of a point process

A realisation of a point process Φ on R
d is a pattern: an unordered set of

points such that any bounded set A ⊂ R
d contains only finitely many of

them.
  Earthquakes before 2020

Let N(A) be the number of points of Φ in A ⊂ R
d and write

M(A) = EN(A),

the expected number of points in A.
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Intensity function

Often

M(A) =

∫

A

λ(x) dx

for some function λ(x) ≥ 0, the intensity function of Φ.

Goal: estimate λ based on a realisation Φ∩W in a bounded Borel set W

(assumed to be open and non-empty).

For x0 ∈ W , set (Berman and Diggle, 1985, 1989)

̂λBD(x0;h,Φ,W ) :=
N(b(x0, h) ∩W )

|b(x0, h) ∩W |

where b(x0, h) is the closed ball around x0 with radius h and | · | denotes

area. The bandwidth parameter h > 0 determines the smoothness.
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Kernels

The box kernel may be replaced by any kernel (symmetric pdf), e.g. the

Gaussian kernel

κ∞(x) =
1

(2π)d/2
exp

(
−xTx/2

)
, x ∈ R

d,

or the Beta kernel

κγ(x) =
1

c(d, γ)
(1− xTx)γ 1{x ∈ b(0, 1)}, x ∈ R

d,

for γ ≥ 0, where

c(d, γ) =

∫

b(0,1)

(1− xTx)γdx =
πd/2Γ(γ + 1)

Γ(d/2 + γ + 1)
, d ∈ N, γ ≥ 0.

Beta kernels are compactly supported, the box kernel has γ = 0. For

γ > k, κγ is Ck.
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Selecting the bandwidth

• Let Φ a stationary, isotropic Cox process driven by Λ. For the box

kernel in R
2 and wh ≡ 1, minimise

E

[
{ ̂λ(0;h,Φ,W )− Λ(0)}2

]
=

ρ(2)(0)+
λ2

π2h4

∫ 2h

0

{
2h2 arccos

(
t

2h

)
−

t

2
(4h2 − t2)1/2

}
dK(t)+λ

1− 2λK(h)

πh2

where λK(h) = E [N(b(0, h)|0 ∈ Φ] .

(Diggle, 1985)

• Let Φ be an inhomogeneous Poisson process. Maximise the

leave-one-out cross-validation log likelihood

∑

x∈Φ∩W

log ̂λ(x;h,Φ \ {x},W )−

∫

W

̂λ(u;h,Φ,W ) du.
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Non-parametric bandwidth selection

By the Campbell–Mecke formula

E

{
∑

x∈Φ∩W

1

λ(x)

}
=

∫

W

1

λ(x)
λ(x) dx = |W |

so minimise the discrepancy between |W | and

Tκ(h; Φ,W ) =






∑

x∈Φ∩W

1

λ̂(x;h,Φ,W )
, Φ ∩W 6= ∅,

|W |, otherwise.

(Cronie and Van Lieshout, 2018)

No model assumptions required!

Computationally straightforward, no numerical approximation of

integrals.

Bandwidth selection for kernel estimators of spatial intensity functions – p. 6/24



◭ � ◮

Conclusions

Based on a simulation study, we reach the following conclusions.

• For clustered patterns with a moderate number of points, the new

method performs the best.

• For Poisson processes with a moderate number of points, likelihood

based cross-validation performs the best.

• For regular patterns with a moderate number of points, the new and

the likelihood-based methods give good results.

• For large patterns, the Diggle method seems best.

For details:

O. Cronie and M.N.M. van Lieshout. A non-model based approach to

bandwidth selection for kernel estimators of spatial intensity functions. Biometrika

105:455–462, 2018.
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Back to Groningen

Left:CvL. Right: cross−validation
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Asymptotic theory: which way to infinity?

Ripley (1988) discusses two asymptotic regimes.

• Increasing domain: Wn → R
d. Not applicable

• when the point process is defined on a fixed domain;

• unless strong ergodicity conditions are imposed such as

stationarity.

• Infill asymptotics: replicated patterns in the same window.
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Example: tornadoes in Kansas

  2008   2009   2010

  2011   2012   2013

  2014   2015   2016

  2017   2018

Tornadoes in Kansas during the Spring seasons of 2008–2018.
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Complications

If each replicate contains a single point,

• the union is a Poisson process;

• classic probability density estimation results apply;

• asymptotics are in terms of the number of points.

(Lo, 2017).

In general, however,

• λ is not normalised;

• the number of points is random;

• and their locations are not necessarily independent.
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Infill asymptotics regime

Let Φ1,Φ2, . . . be i.i.d. simple point processes observed in a bounded

open subset ∅ 6= W ⊂ R
d with intensity function λ and pair correlation

function g.

Write

Yn =
n⋃

i=1

Φi

and set

λ̂n(x0) :=
̂λ(x0;hn, Yn,W )

n
=

1

n

n∑

i=1

̂λ(x0;hn,Φi,W ).

Side remark: the bandwidths may differ per component. If so, replace

hn by a diagonal matrix Hn.
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Mean squared error

Assume that

• product densities exist up to second order;

• λ > 0 on W , so g is well-defined.

Then, for a Beta kernel κγ , γ ≥ 0,

mse λ̂n(x0) =

(
1

hd

∫

b(x0,h)∩W

κγ
(x0 − u

h

)
λ(u) du− λ(x0)

)2

+
1

nh2d

∫

b(x0,h)∩W

κγ
(x0 − u

h

)2
λ(u) du

+
1

nh2d

∫

(b(x0,h)∩W )2
κγ
(x0 − u

h

)
κγ
(x0 − v

h

)
(g(u, v)− 1)λ(u)λ(v) du dv.
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Asymptotic expansion

Impose the technical conditions

• hn > 0, hn → 0 and nhd
n → ∞ as n → ∞;

• g : W ×W → R is bounded;

• λ : W → (0,∞) is C2 with λij = Dijλ, i, j = 1, . . . , d, Hőlder continuous

with exponent α ∈ (0, 1] on W , that is, ∃C > 0 such that

∀i, j = 1, . . . , d:

|λij(x)− λij(y)| ≤ C||x− y||α, x, y ∈ W.

Then, using a Beta kernel κγ , γ ≥ 0,

1. bias λ̂n(x0) =
h2

n

∑
d

i=1
λii(x0)

2(d+2 γ+2)
+O(h2+α

n )

2. Var λ̂n(x0) =
λ(x0) c(d,2γ)

nhd
n

c(d,γ)2
+O

(
1

nhd−1
n

)

as n → ∞.
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Asymptotically optimal bandwidth

The mean squared error of λ̂n(x0) can be expanded as

h4
n

(∑d
i=1 λii(x0)

)2

4 (d+ 2γ + 2)2
+

1

nhd
n

λ(x0) c(d, 2γ)

c(d, γ)2
+O

(
h4+α
n

)
+O

(
1

nhd−1
n

)
.

Hence, provided
∑

i λii(x0) 6= 0, the asymptotic mse is minimal for

h∗

n(x0) =
1

n1/(d+4)




d λ(x0) c(d, 2γ) (d+ 2γ + 2)2

c(d, γ)2
(∑d

i=1 λii(x0)
)2





1/(d+4)

.

For details:

M.N.M. van Lieshout. Infill asymptotics and bandwidth selection for kernel

estimators of spatial intensity functions. Methodology and Computing in Applied

Probability 22:995–1008, 2020.
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Abramson principle

Idea: in sparse regions more smoothing is necessary then in regions that

are rich in points. (Abramson, 1982)

Assume that λ(x0) > 0.

Definition

̂λ(x0;h,Φ,W ) =
∑

y∈Φ

c(y)d

hd
κ
(x0 − y

h
c(y)

)

based on a weight function c : W → (0,∞) on W . In our context,

c(x) =
√

λ(x)/λ(x0).

Bandwidth h/c(y) is larger in sparser regions.
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Asymptotic expansion

Impose the technical conditions

• hn > 0, hn → 0 and nhd
n → ∞ as n → ∞;

• g : W ×W → R is bounded;

• λ : W → [λ, λ̄] is bounded and bounded away from zero, λ > 0, and

C2.

Then, using a Beta kernel κγ with γ > 2,

1. bias λ̂n(x0) = o(h2
n).

2. Var λ̂n(x0) =
λ(x0) c(d,2γ)

nhd
n

c(d,γ)2
+O

(
1

nhd−1
n

)

as n → ∞.

Note: variance unchanged, bias of smaller order o(h2
n) compared to

h2
n

d∑

i=1

λii(x0)

2 (d+ 2γ + 2)

for a fixed bandwidth.
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Infill asymptotics for Abramson estimator

To obtain a leading bias term, impose the stronger conditions:

• hn > 0, hn → 0 and nhd
n → ∞ as n → ∞;

• g : W ×W → R is bounded;

• λ : W → [λ, λ̄] is bounded, bounded away from zero and C4 such

that cijkl = Dijklc, i, j, k, l = 1, . . . , d, is Hőlder continuous with

exponent α ∈ (0, 1] on W , that is, there exists some C > 0 such that

for all i, j, k, l = 1, . . . , d:

|cijkl(x)− cijkl(y)| ≤ C||x− y||α, x, y,∈ W.

Then, for a Beta kernel κγ with γ > 5

bias λ̂n(x0) = λ(x0)h
4
n

∫

Rd

A(u;x0) du+O(h4+α
n ),

for an integrable function A(·;x0) (defined in terms of partial derivatives

of λ up to fourth order).
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Asymptotically optimal bandwidth

The mse of λ̂n(x0) can be expanded as

h8
nλ(x0)

2

(∫

Rd

A(u;x0) du

)2

+
1

nhd
n

λ(x0) c(d, 2γ)

c(d, γ)2
+O(h8+α

n )+O

(
1

nhd−1
n

)
.

Hence, provided
∫
Rd A(u;x0) du 6= 0, the asymptotic mse is minimal for

h∗

n(x0) =
1

n1/(d+8)

(
d c(d, 2γ)

8λ(x0) c(d, γ)2
(∫

Rd A(u;x0) du
)2

)1/(d+8)

.

Remarks:

• the squared bias is reduced from O(h4
n) to O(h8

n);

• h∗

n(x0) → 0 at rate n−1/(d+8) compared to n−1/(d+4);

• λ is assumed C4 rather than C2.
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Tornadoes

  2008   2009   2010

  2011   2012   2013

  2014   2015   2016

  2017   2018
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Tornado intensity at Wichita

Take x0 = (−97.33, 37.68) and γ = 6.

To evaluate h∗

n(x0), we use a classic pilot kernel estimator with fixed

bandwidth chosen non-parametrically.

h∗

n(x0) ≈ 0.8 and λ̂n(x0) ≈ 2.6. compared to 2.9 for fixed bandwidth 0.8.
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Conclusions

• For local bandwidth estimation the asymptotically optimal

bandwidth in an infill regime is given by

h∗

n(x0) =
1

n1/(d+4)




d λ(x0) c(d, 2γ) (d+ 2γ + 2)2

c(d, γ)2
(∑d

i=1 λii(x0)
)2





1/(d+4)

.

• For adaptive local bandwidth estimation,

h∗

n(x0) =
1

n1/(d+8)

(
d c(d, 2γ)

8λ(x0) c(d, γ)2
(∫

Rd A(u;x0)du
)2

)1/(d+8)

.

• If a single pattern only is observed, non-parametric bandwidth

selectors may be used.

For details:

M.N.M. van Lieshout. Infill asymptotics and bandwidth selection for kernel

estimators of spatial intensity functions. ArXiv 1904.05095, April 2019.
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Non-parametric adaptive bandwidth selection

1. Choose a non-adaptive pilot bandwidth hg by minimising

|Tκ(h; Φ,W )− |W || over h.

2. Optimise ∣∣∣∣∣
∑

x∈Φ∩W

1

λ̂(x;h,Φ,W )
− |W |

∣∣∣∣∣

over h > 0 where λ̂ is the adaptive kernel estimator with

c(y)2 =
1

hd
g

∑

z∈Φ∩W

κ

(
y − z

hg

)
.
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Back to Groningen once more

Thank you for your attention!
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