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Point processes

A realisation of a point process Φ on R
d is a (spatial) pattern, i.e. an

unordered set of points such that any bounded set A ⊂ R
d contains only

finitely many of them.

Consequently, Φ

• contains at most countably many points;

• has no accumulation points;

• may place two points at the same position.
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Intensity function

Let N(A) be the number of points of Φ in set A ⊂ R
d and define the set

function

M(A) = EN(A),

the expected number of points in A.

Often

M(A) =

∫

A

λ(x) dx

for some function λ(x) ≥ 0, the intensity function of Φ.

Goal: estimate λ based on a realisation Φ∩W in a bounded Borel set W

(assumed to be open and non-empty).
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Kernel estimation

For x0 ∈ W , set (Berman and Diggle, 1985, 1989)

̂λBD(x0;h,Φ,W ) :=
N(b(x0, h) ∩W )

|b(x0, h) ∩W |

where b(x0, h) is the closed ball around x0 with radius h and | · | denotes

area.

Remarks:

• bandwidth parameter h > 0 determines smoothness;

• box kernel may be replaced by, e.g., a Gaussian kernel κ:

̂λ(x0;h,Φ,W ) := h−d
∑

x∈Φ∩W

κ
(x0 − x

h

)
wh(x0, x)

−1

with

wh(x0, x) = wh(x0) = h−d

∫

W

κ
(x0 − w

h

)
dw.
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Mass preserving local border correction

Van Lieshout (2012)

For the local border correction

wh(x0, x) = wh(x) = h−d

∫

W

κ
(w − x

h

)
dw,

∫

W

̂λ(x;h,Φ,W )dx = N(W ).

The bandwidth h > 0 controls the amount of smoothing.

Left: h = 0.02. Right: h = 0.07.
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Selecting the bandwidth I: Diggle (1985)

Let Φ be a stationary, isotropic Cox process with random intensity

function Λ. In other words, the distribution of Λ is translation and rotation

invariant and given Λ = λ, Φ is an inhomogeneous Poisson process:

• the number of points in set A follows a Poisson distribution with mean

∫

A

λ(x)dx;

• the points are scattered independently with probability density

λ(x)/

∫

A

λ(x)dx.

To select the bandwidth, minimise (over h) the mean squared error

E

[
{λ̂(0;h,Φ,W )− Λ(0)}2

]
.
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Selecting the bandwidth I (ctd)

For the box kernel in R
2 and wh ≡ 1, minimise

λ2

π2h4

∫
2h

0

{
2h2 arccos

(
t

2h

)
−

t

2
(4h2 − t2)1/2

}
dK(t) + λ

1− 2λK(h)

πh2

over h where

λK(h) = E [N(b(0, h)|0 ∈ Φ] .

The implementation requires

• an estimator of the constant intensity λ > 0 of Φ,

• an estimator K̂ of Ripley’s K-function (quadratic in the number of

points),

• and a Riemann integral over the bandwidth range.

The data must contain at least two points.
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Selecting the bandwidth II: Loader (1999)

Let Φ be an inhomogeneous Poisson process and maximise the

leave-one-out cross-validation log likelihood

∑

x∈Φ∩W

log λ̂(x;h,Φ \ {x},W )−

∫

W

λ̂(u;h,Φ,W ) du.

The implementation requires

• discretisation of the observation window into a lattice,

• and at each lattice point, a kernel estimator for every h.

The data pattern must consist of at least two points.

Non-model based bandwidth selection for kernel estimators of spatial intensity functions – p. 8/14



◭ � ◮

Non-parametric bandwidth selection

The following equation holds:

E

{
∑

x∈Φ∩W

1

λ(x)

}

=

∫

W

1

λ(x)
λ(x) dx = |W |.

Idea: minimise the discrepancy between |W | and

Tκ(h; Φ,W ) =






∑

x∈Φ∩W

1

λ̂(x;h,Φ,W )
, Φ ∩W 6= ∅,

ℓ(W ), otherwise,

to select an appropriate bandwidth h.

No model assumptions required!
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Formal justification

Theorem: Let φ be a locally finite point pattern of distinct points in R
d,

observed in some non-empty open and bounded window W , and

exclude the trivial case that φ ∩W = ∅.

Let κ(·) be a Gaussian kernel. Then Tκ(h;φ,W ) is a continuous function

of h on (0,∞). For the box kernel, Tκ(h;φ,W ) is piecewise continuous in

h.

In either case, with wh ≡ 1,

lim
h→0

Tκ(h;φ,W ) = 0

and

lim
h→∞

Tκ(h;φ,W ) = ∞.
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Example: Log-Gaussian Cox process

Coles and Jones (1991)

Let Z be a Gaussian random field on W with mean zero and

covariance function

σ2 exp (−β‖x− y‖) , σ2, β > 0,

and set

Λ(x) = η(x) exp{Z(x)}.

Then the intensity function of the Cox process Φ driven by Λ is

λ(x) = η(x) exp(σ2/2).
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Log-Gaussian Cox process – Simulation

Linear trend

η(x, y) = 10 + 80x, (x, y) ∈ [0, 1]2,

β = 50 and σ2 = 2 log 5, so on average 250 points.

From left to right: State estimation h = 0.02, cross-validation h = 0.03 and

new method h = 0.08.
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Log-Gaussian Cox process – Results

The quality of a kernel estimator is measured by

MISE(λ̂(·;h)) = E

[∫

W

(
λ̂(x;h)− λ(x)

)2

dx

]

=

∫

W

[
Var(λ̂(x;h)) + bias2(λ̂(x;h))

]
dx.

Based on 100 simulations, the average MISE is given below.

New State estimation Cross-validation

(σ2, β) = (2 log(5), 50) 89.6 1,477.2 536.0

(σ2, β) = (2 log(2), 10) 57.5 136.9 112.6

(σ2, β) = (2 log(5), 10) 335.3 2,960.6 2,251.2
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Conclusions

Based on a simulation study, we reach the following conclusions.

• For clustered patterns with a moderate number of points, the new

method performs the best.

• For Poisson processes with a moderate number of points, likelihood

based cross-validation performs the best.

• For regular patterns with a moderate number of points, the new and

the likelihood-based methods give good results.

• For large patterns, the Diggle method seems best.

For details:

O. Cronie and M.N.M. van Lieshout. A non-model based approach to

bandwidth selection for kernel estimators of spatial intensity functions. Biometrika

105:455–462, 2018.
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