Tree-based estimation of point processintensity functions

Changqing Lu, Yongtao GuanMarie-Colette van Lieshout and Ganggang Xu

colette@cwi.nl

CWI & University of TwenteThe Netherlands

Intensity function

Let X be a **point process** on the plane and write $N(A)$ for the number of points X places in (Borel) set $A.$ Its **intensity function** is the Radon–Nikodym derivative of the moment measure

$$
M(A) = \mathbb{E}N(A) = \int_A \lambda(x)dx
$$

so that

$$
\lambda(x)dx = \mathbb{P}(X \text{ has a point in } dx).
$$

Often, λ is a function of **covariates** $z = (z_1, \ldots, z_p)$ where $z_i : \mathbb{R}^2 \to \mathbb{R}$.

Example: the prevalence of trees depends on terrain characteristics and availability of nutrients.

Point pattern of trees and two (of 8) covariates

 150

 -9

. ම

 $\overline{20}$

◭ ◮ Tree-based estimation of point process intensity functions – p. 3/14

0.05 0.15 0.25

Non-parametric estimators

Kernel estimators can be defined in the spatial or the covariate domain. For the latter

$$
\hat{\lambda}(x_0) = \frac{c(x_0, \sigma)}{\sqrt{2\pi}\sigma} \sum_{x \in X \cap W} \exp(-||z(x) - z(x_0)||^2 / (2\sigma^2)),
$$

where $c(x_0, \sigma)$ is an edge correction factor and W the observation
winds: window.

The method is **computationally fast** but **depends crucially** on σ^2

Goals:

• develop ^a tree-based approach that can deal with manycovariates,

◀ ◇ ▶

- using an appropriate loss function,
- that outperforms kernel estimators in terms of MAE.

Chen and Guestrin, 2016.

Each tree k is uniquely defined by its structure q_k and leaf score vector $\theta_{k,v}$ over leaves $v.$

Loss function

We strive to minimise the **weighted Poisson likelihood loss**

$$
L((f_k)_{k=1}^K) = \gamma \sum_{k=1}^K \sum_v |\theta_{k,v}| - \sum_{x \in X} w(x; (f_k)_k) \log \lambda(x; (f_k)_k)
$$

$$
+ \int_W w(x; (f_k)_k) \lambda(x; (f_k)_k) dx
$$

for regularisation parameter $\gamma>0$ to avoid over-fitting.

Weights $w\equiv 1$ for Poisson and regular point processes. For clustered point processes, set

$$
w(x;(f_k)_k) = \frac{1}{1 + \lambda(x;(f_k)_k) \int_W (g(x - w) - 1) dw}
$$

to account for the spatial dependence, where g is the **pair correlation** function of X .

Additive greedy optimisation

The space of tree structures and associated leaf values is **too large** to allow exhaustive searching.

Practical solution:

- iteratively add ^a single tree as follows:
	- for each tree structure, calculate the optimal leaf scores based on second order Taylor approximation, also updating the weightsif necessary;
	- find the best tree structure by iteratively adding branches.

Given $(\hat{f}_1,\ldots,\hat{f}_{k-1})$, add f_k having tree structure q_k with leaves $v.$ Write

 $I_{k,v}(z) = \{x \in W : q_k(z(x)) = v\}.$

Also update $\hat{w}_k(x) = w(x; \hat{f}_1, \dots, \hat{f}_k)$ in the clustered case.

Leaf v contributes approximately (up to second order)

$$
L(k, I_{k,v}(z), \theta_{k,v}) =
$$

$$
\gamma|\theta_{k,v}| - \theta_{k,v} \sum_{x \in X \cap I_{k,v}} \hat{w}_k(x) + \left(\theta_{k,v} + \frac{1}{2}\theta_{k,v}^2\right) \int_{I_{k,v}} \hat{w}_k(x)\lambda(x;\hat{f}_1,\ldots,\hat{f}_{k-1}) dx
$$

to the loss, which can be minimised to give leaf score $\hat{\theta}_{k,v}.$

Leaf scores (ctd)

$$
\hat{\theta}_{k,v} = \frac{\text{sgn}(R_{k,v} - T_{k,v}) \max(|R_{k,v} - T_{k,v}| - \gamma, 0)}{T_{k,v}},
$$

where

$$
R_{k,v} = \sum_{x \in X \cap I_{k,v}} \hat{w}_k(x)
$$

$$
T_{k,v} = \int_{I_{k,v}} \hat{w}_k(x) \hat{\lambda}(x; \hat{f}_1, \dots, \hat{f}_{k-1}) dx.
$$

Node splits

Idea: Start from a single leaf and iteratively add branches.

Given current tree q_k , consider $\mathsf{splitting}$ leaf v based on $\mathsf{threshold}$ value M of **covariate** component z_i . Set

$$
I_{L_{k,v}} = \{x \in W : q_k(z) = v; z_i(x) \le M\}
$$

$$
I_{R_{k,v}} = \{x \in W : q_k(z) = v; z_i(x) > M\}
$$

and minimise

$$
L(k, I_{L_{k,v}}, \hat{\theta}_{k,v}) + L(k, I_{R_{k,v}}, \hat{\theta}_{k,v}).
$$

UNIVERSITY OF TWENTE.

Hyperparameter selection

The model contains **hyperparameters** (K , γ , tree depth , ...).

We select them by **cross-validation**. For each combination of parameters:

- randomly assign the data points to (say) four subsets $\mathbf{x_i}$, $i = 1, \ldots, 4;$
- for $i=1,\ldots,4$, calculate $\hat{\lambda}$ i based on the $\mathbf{x_j}$, $j\neq i$, (so $\hat{\lambda}$ $_i$ estimates 3 times the intensity function of $\mathbf{x_i})$ and
- maximise the cross-validation Poisson log-likelihood

$$
\sum_{i=1}^{4} \left\{ \sum_{x \in \mathbf{x_i}} \log \left[\frac{1}{3} \hat{\lambda}_i(x) \right] - \frac{1}{3} \int_W \hat{\lambda}_i(x) dx \right\}
$$

over K, γ etc.

Simulated examples

Left: data pattern (Poisson sample).

Middle: true intensity function.

Right: estimated intensity function using the two coordinates as covariates.

Kitchen fires in Twente

Left: pattern of 699 kitchen fire incidents in Twente (2004–2020). **Right:** estimated log intensity function using 29 covariates including building density, type and use, composition of the population andenergy consumption.

Conclusions

Extensive simulations show that XGBoostPP

- outperforms kernel estimators in integrated absolute error;
- outperforms neural network based competitors when there aremore than ^a few covariates, but
- \bullet is more computationally demanding than kernel estimation.

Bei (XGBoostPP)

Thank you for your attention!

