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~ Infensity function

Let X be a point process on the plane and write N(A) for the number of
points X places in (Borel) set A. Its intensity function is the
Radon-Nikodym derivative of the moment measure

M(A)=EN(A) = / ANx)dx

so that
Az)dx = P(X has a pointin dz).

Often, X is a function of covariates z = (z1, ..., z,) where z; : R* — R,

Example: the prevalence of frees depends on terrain characteristics
and availability of nutrients.
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‘ Point pafttern of tfrees and fwo (of 8) covariates

140 150

130

120

W UNIVERSITY
OF TWENTE.
I« O >

Tree-based estimation of point process intensity functions - p. 3/14



~ Non-parametric estimators

Kernel estimators can be defined in the spatial or the covariate
domain. For the latter

Mao) = 2D 57 expl—la(a) - =(ao)[*/(20))

where c(xo, o) Is an edge correction factor and W the observation
window.

The method is computationally fast but depends crucially on ¢*

Goals:

develop a tree-based approach that can deal with many
covariates,

using an appropriate loss function,
that outperforms kernel estimators in terms of MAE.

W UNIVERSITY
OF TWENTE.
i< O >

Tree-based estimation of point process intensity functions - p. 4/14



‘ The XGBoostPP model

Write

Chen and Guestrin, 2016.

Each free k is uniquely defined by itfs sfructure ¢. and leaf score vector
Or ., Over leaves v.
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‘ Loss function

We strive to minimise the weighted Poisson likelihood loss

L((fr)k=1 —WZZWM\—Z’W ) log A(z; (fx)x)

k=1 v xeX

T /W w(; (fo)))A@; (fi)r)da

for regularisation parameter v > 0 fo avoid over-fitting.

Weights w = 1 for Poisson and regular point processes. For clustered
point processes, set

1

to account for the spatial dependence, where g is the pair correlation
function of X.
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h Additive greedy optfimisation

The space of free structures and associated leaf values is too large to
allow exhaustive searching.

Practical solution:

iteratively add a single tfree as follows:

for each tree structure, calculate the optimal leaf scores based

on second order Taylor approximation, also updating the weights
if necessary:;

find the best free structure by iteratively adding branches.
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‘ Leaf scores

Given (fi,..., fu—1). add f, having tree structure ¢, with leaves v. Write
Tiw(2) = {z € W : qu((z)) = v}

Also update Wy (z) = w(z; f1,. .., fr) In the clustered case.

Leaf v contributes approximately (up to second order)

L(/{, Ik,v(z), Gk,v) —

) 1 ) ) )
7’61{3,’0‘ T (9]'{3,’0 Z ’lUk;(.CU) - (67{3,’0 + 592,1)) / ’lUk(CC))\(.CU, f17 I fk:—l)d’x
I

ZIZEXOI]{;,U k,v

to the loss, which can be minimised to give leaf score 6y ..
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‘ Leaf scores (cfd)

where
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‘ Node splits

Idea: Start from a single leaf and iteratively add branches.

Given current tree ¢, consider splitting leaf v based on threshold value
M of covariate component z;. Set

Ip, ., = {x e W : qr(z) = v;zi(x) < M}

Ir, ., ={z € W :qx(2) = v;2:(x) > M}

and minimise
L(k,Ip, ,,060) + L(k, Ir, ,,0r.0).
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h Hyperpoarameter selection

The model contains hyperparameters (K, v, free depith, ...).

We select them by cross-validation. For each combination of
parameters:

randomly assign the data points fo (say) four subsets x;, i =1,...,4;

fori =1,...,4, calculate \; based on the x;, j # i, (so \; estimates 3
fimes the intensity function of x;) and

maximise the cross-validation Poisson log-likelinood

i} {?; log [%S\Z(m) — %/W S\z(CU)dCC}

over K, ~ efc.
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N Simulafed examples
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Left: data pattern (Poisson sample).

Middle: frue intensity function.

Right: estimated intensity function using the two coordinates as
covariates.
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‘N Kitchen fires in Twenfe
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Left: pattern of 699 kitchen fire incidents in Twente (2004-2020).
Right: estimated log intensity function using 29 covariates including
building density, type and use, composition of the population and
energy consumption.
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‘ Conclusions

Extensive simulations show that XGBoostPP
* outperforms kernel estimators in integrated absolute error;

* outperforms neural network based competitors when there are
more than a few covariates, but

* is more computationally demanding than kernel estimation.

Bei (XGBoostPP)

Thank you for your attention!
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