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Intensity function

Let X be a point process on the plane and write N(A) for the number of

points X places in (Borel) set A. Its intensity function is the

Radon–Nikodym derivative of the moment measure

M(A) = EN(A) =

∫

A

λ(x)dx

so that

λ(x)dx = P(X has a point in dx).

Often, λ is a function of covariates z = (z1, . . . , zp) where zi : R
2 → R.

Example: the prevalence of trees depends on terrain characteristics

and availability of nutrients.
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Point pattern of trees and two (of 8) covariates
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Non-parametric estimators

Kernel estimators can be defined in the spatial or the covariate

domain. For the latter

λ̂(x0) =
c(x0, σ)√

2πσ

∑

x∈X∩W

exp(−||z(x)− z(x0)||2/(2σ2)),

where c(x0, σ) is an edge correction factor and W the observation

window.

The method is computationally fast but depends crucially on σ2

Goals:

• develop a tree-based approach that can deal with many

covariates,

• using an appropriate loss function,

• that outperforms kernel estimators in terms of MAE.
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The XGBoostPP model

Write

log λ(x) =
K
∑

k=1

fk(z(x)).

Chen and Guestrin, 2016.

Each tree k is uniquely defined by its structure qk and leaf score vector

θk,v over leaves v.
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Loss function

We strive to minimise the weighted Poisson likelihood loss

L((fk)
K
k=1) = γ

K
∑

k=1

∑

v

|θk,v | −
∑

x∈X

w(x; (fk)k)) log λ(x; (fk)k)

+

∫

W

w(x; (fk)k))λ(x; (fk)k)dx

for regularisation parameter γ > 0 to avoid over-fitting.

Weights w ≡ 1 for Poisson and regular point processes. For clustered

point processes, set

w(x; (fk)k)) =
1

1 + λ(x; (fk)k)
∫

W
(g(x− w)− 1)dw

to account for the spatial dependence, where g is the pair correlation

function of X.
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Additive greedy optimisation

The space of tree structures and associated leaf values is too large to

allow exhaustive searching.

Practical solution:

• iteratively add a single tree as follows:

• for each tree structure, calculate the optimal leaf scores based

on second order Taylor approximation, also updating the weights

if necessary;

• find the best tree structure by iteratively adding branches.
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Leaf scores

Given (f̂1, . . . , f̂k−1), add fk having tree structure qk with leaves v. Write

Ik,v(z) = {x ∈ W : qk(z(x)) = v}.

Also update ŵk(x) = w(x; f̂1, . . . , f̂k) in the clustered case.

Leaf v contributes approximately (up to second order)

L(k, Ik,v(z), θk,v) =

γ|θk,v| − θk,v
∑

x∈X∩Ik,v

ŵk(x) +

(

θk,v +
1

2
θ2k,v

)
∫

Ik,v

ŵk(x)λ(x; f̂1, . . . , f̂k−1)dx

to the loss, which can be minimised to give leaf score θ̂k,v.
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Leaf scores (ctd)

θ̂k,v =
sgn(Rk,v − Tk,v)max(|Rk,v − Tk,v | − γ, 0)

Tk,v

,

where

Rk,v =
∑

x∈X∩Ik,v

ŵk(x)

Tk,v =

∫

Ik,v

ŵk(x)λ̂(x; f̂1, . . . , f̂k−1)dx.
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Node splits

Idea: Start from a single leaf and iteratively add branches.

Given current tree qk, consider splitting leaf v based on threshold value

M of covariate component zi. Set

ILk,v
= {x ∈ W : qk(z) = v; zi(x) ≤ M}

IRk,v
= {x ∈ W : qk(z) = v; zi(x) > M}

and minimise

L(k, ILk,v
, θ̂k,v) + L(k, IRk,v

, θ̂k,v).
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Hyperparameter selection

The model contains hyperparameters (K, γ, tree depth, ...).

We select them by cross-validation. For each combination of

parameters:

• randomly assign the data points to (say) four subsets xi, i = 1, . . . , 4;

• for i = 1, . . . , 4, calculate λ̂i based on the xj, j 6= i, (so λ̂i estimates 3

times the intensity function of xi) and

• maximise the cross-validation Poisson log-likelihood

4
∑

i=1







∑

x∈xi

log

[

1

3
λ̂i(x)

]

− 1

3

∫

W

λ̂i(x)dx







over K, γ etc.
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Simulated examples

Left: data pattern (Poisson sample).

Middle: true intensity function.

Right: estimated intensity function using the two coordinates as

covariates.
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Kitchen fires in Twente

Left: pattern of 699 kitchen fire incidents in Twente (2004–2020).

Right: estimated log intensity function using 29 covariates including

building density, type and use, composition of the population and

energy consumption.
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Conclusions

Extensive simulations show that XGBoostPP

• outperforms kernel estimators in integrated absolute error;

• outperforms neural network based competitors when there are

more than a few covariates, but

• is more computationally demanding than kernel estimation.

Thank you for your attention!
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