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The area-interaction model in space

Density

p(x) = αβn(x)γ−Ar(x)

with respect to unit rate Poisson process on bounded W ⊂ R
2. Here β, is

positive, n(x) denotes the cardinality of x and Ar(x) the area of

(x⊕B(0, r)) ∩W.

• γ = 1: Poisson process;

• γ > 1: attraction, cf. Widom–Rowlinson (1970);

• γ < 1, inhibition, cf. Baddeley and Van Lieshout (1995).
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Multi-scale area-interaction

Consider the influence function defined for u 6= v by

κ(u, v) =







κj if rj−1 < ||u− v|| ≤ rj

0 if ||u− v|| > rm

for r0 = 0 < r1 < r2 < · · · < rm and 1 = κ1 > κ2 > · · · > κm > 0 and set

p(x) = αβn(x) exp

[

− log γ

∫

W

max
x∈x

κ(w, x)dw

]

= αβn(x) exp

[

− log γ
m
∑

j=1

κj |{w ∈ W : d(w,x) ∈ (rj−1, rj ]|

]

in full analogy to pairwise interaction models based on κ.

Gregori, Van Lieshout and Mateu (2003).
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Product interpretation

Note that

p(x) = αβn(x) exp

[

− log γ
m
∑

j=1

κj |((x⊕ B(0, rj)) \ (x⊕B(0, rj−1))) ∩W |

]

= αβn(x) exp

[

− log γ

m
∑

j=1

(κj − κj+1)|(x⊕B(0, rj)) ∩W |

]

= αβn(x)
m
∏

j=1

(γκj−κj+1)
−Arj

(x)

under the convention κm+1 = 0.

Relaxing the constraint that κj > κj+1, inhibition and attraction may be

combined, cf. Picard et al. (2009) and Ambler and Silverman (2010).
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Space-time area-interaction: Definition

Density

p(x) = αβn(x)γ−ℓ(x⊕G)

with respect to unit rate Poisson process on bounded subset

WS ×WT ⊂ R
2 × R. Here α > 0 is a normalizing constant,

• ℓ is Lebesgue measure restricted to WS ×WT ,

• γ > 0 is the interaction parameter, and

• G is a cylinder

Ct
r(0, 0) = {(y, s) ∈ WS ×WT : ||y|| ≤ r, |s| ≤ t}.
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Multi-scale space-time area-interaction

Consider the influence function defined for u 6= v by

κ((uS, uT ), (vS , vT )) =







κj if (uS − vS , uT − vT ) ∈ Gj \Gj−1

0 if (uS − vS , uT − vT ) 6∈ Gm

where, for r0 < r1 < r2 < · · · < rm, t0 < t1 < t2 < · · · < tm, G1 ⊂ · · · ⊂ Gm

are nested cylinders C
tj
rj (0, 0), 1 = κ1 > κ2 > · · · > κm and set

p(x) = αβn(x) exp

[

− log γ

∫

WS×WT

max
(x,t)∈x

κ((wS , wT ), (x, t))dwSdwT

]

= αβn(x) exp

[

− log γ

m
∑

j=1

κjℓ((x⊕Gj) \ (x⊕Gj−1))

]

.
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Product interpretation and Markov property

Since

p(x) = αβn(x)
m
∏

j=1

γ
−ℓ(x⊕Gj)

j

for

log γj = (κj − κj+1) log γ

under the convention κm+1 = 0, the log conditional intensity is

log λ((y, s);x) = log

(

p(x ∪ {(y, s)})

p(x)

)

= log β −

m
∑

j=1

log γjℓ (((y, s)⊕Gj) \ (x⊕Gj))

and hence p is Markov at range 2max{rm, tm}.

Note: generalise to any γj by relaxing the constraint κj > κj+1.
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Varicella

• transmitted by direct contact with the rash or by inhalation of

aerosolised droplets from respiratory tract secretions of patients;

• mostly mild in childhood, severe in adults;

• may be fatal in neonates and immuno-compromised people;

• 10 to 21 days incubation period;

• itchy, vesicular rash, fever and malaise;

• it takes 7 to 10 days for vesicles to dry out.
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Data

921 cases in 16 districts in Valencia, Spain, during 2013.

• Bounding region WS = [0, 9]× [0, 9] km2.

• Bounding time region WT = [0, 52] weeks.
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Exploratory analysis – Spatial component

Left: projection in space. To get rid of duplicate locations, add jitter in

(0, 0.01) to each coordinate.

Right: estimated pair correlation function assuming stationarity and

isotropy, Epanechnikov kernel

κǫ(t) =
3

4ǫ

(

1−
t2

ǫ2

)

, −ǫ ≤ t ≤ ǫ,

with bandwidth according to Stoyan’s rule of thumb 0.15(5λ̂)−1/2.

Conclusion: rm ≈ 2.

A multi-scale area-interaction model for spatio-temporal point patterns – p. 10/16



◭ � ◮

Exploratory analysis – Temporal component

Projection in time and estimated auto-correlation function assuming

stationarity.

Conclusion: tm ≈ 7.5.
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Modelling – Covariate information

Idea: add a first order interaction function based on explanatory

variables.

Visual inspection suggests a separable function

λ(x, t) = βλ(x)Z(t), x ∈ [0, 9]2, t ∈ {0, . . . , 51}

is reasonable, where β > 0, λ(x) is a non-parametric estimate of the

population density, and Z(t) a fitted harmonic regression

Z(t) = c0 +
3

∑

j=1

(cj cos(2πjt/52) + dj sin(2πjt/52)) + c(a+ bt)

rescaled by 100.
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Results and details

λ(x):

Known: number Ni of inhabitants in 559 sections in the 16 districts. Take

Ni uniformly distributed points in each section, apply a Gaussian kernel

smoother with σ = 0.15 and global edge correction, and scale by 1, 000.

Z(t):

Estimate c0, . . . , c3, d1, . . . d3, c, a and b by maximum likelihood in the

Gaussian family.
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Inference

Starting from rm = 2 and tm = 7.5, we zoom in by discarding ranges

where the estimated parameters κ oscillate around zero to arrive at the

following model:

p(x) ∝ βn(x)
∏

(x,t)∈x

λ(x, t) exp

[

−

6
∑

j=1

κjℓ((x⊕Gj) \ (x⊕Gj−1))

]

for r = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) and t = (0.75, 1.0, 1.25, 1.5, 1.75, 2.0).
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Estimating the parameters

Nguyen–Zessin–Georgii equation

E





∑

x∈X∩WS×Wt

h(x,X \ {x})



 = E

[
∫

WS

∫

WT

h(x,X)λθ(x;X)dx

]

.

The Takacs–Fiksel idea is to choose convenient functions h, estimate

both sides, equate and solve for θ.

Pseudo-likelihood: (Besag, 1977; Jensen and Møller, 1991)

h(x,X) =
∂

∂θ
log λθ(x;X)

Logistic regression: (Baddeley et al. 2014)

h(x,X) =
∂

∂θ
log

[

λθ(x;X)

λθ(x;X) + ρ(x)

]

with ρ(x) = λ(x)Z(t)/25.
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Validation

• 99 realisations from the fitted model in MPPLIB using

Metropolis–Hastings.

• Monte Carlo envelopes for estimates of Linhom(r, t = 3r) (Gabriel

and Diggle, 2009) using stpp.
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