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Point processes

A realisation of a point process Φ on R
d is a (spatial) pattern, i.e. an

unordered set of points such that any bounded set A ⊂ R
d contains only

finitely many of them.

Consequently, Φ

• contains at most countably many points;

• has no accumulation points.

Bandwidth selection for kernel estimators of spatial intensity functions – p. 2/24



◭ � ◮

Intensity function

Let N(A) be the number of points of Φ in set A ⊂ R
d and define the set

function

M(A) = EN(A),

the expected number of points in A.

Often

M(A) =

∫

A

λ(x) dx

for some function λ(x) ≥ 0, the intensity function of Φ.

Goal: estimate λ based on a realisation Φ∩W in a bounded Borel set W

(assumed to be open and non-empty).
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Kernel estimation

For x0 ∈ W , set (Berman and Diggle, 1985, 1989)

̂λBD(x0;h,Φ,W ) :=
N(b(x0, h) ∩W )

|b(x0, h) ∩W |

where b(x0, h) is the closed ball around x0 with radius h and | · | denotes

area.

Remarks:

• bandwidth parameter h > 0 determines smoothness;

• the box kernel may be replaced by any kernel (symmetric pdf) κ:

̂λ(x0;h,Φ,W ) := h−d
∑

x∈Φ∩W

κ
(x0 − x

h

)
wh(x0, x)

−1

with

wh(x0, x) = wh(x0) = h−d

∫

W

κ
(x0 − w

h

)
dw.
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Mass preserving local border correction

Van Lieshout (2012)

For the local border correction

wh(x0, x) = wh(x) = h−d

∫

W

κ
(w − x

h

)
dw,

∫

W

̂λ(x;h,Φ,W )dx = N(W ).

Left: h = 0.07. Right: h = 0.02.
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Selecting the bandwidth I: Diggle (1985)

Let Φ be a stationary, isotropic Cox process with random intensity

function Λ. In other words, the distribution of Λ is translation and rotation

invariant and given Λ = λ, Φ is an inhomogeneous Poisson process:

• the number of points in set A follows a Poisson distribution with mean

∫

A

λ(x)dx;

• the points are scattered independently with probability density

λ(x)/

∫

A

λ(x)dx.

To select the bandwidth, minimise (over h) the mean squared error

E

[
{λ̂(0;h,Φ,W )− Λ(0)}2

]
.
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Selecting the bandwidth I (ctd)

For the box kernel in R
2 and wh ≡ 1, minimise

λ2

π2h4

∫ 2h

0

{
2h2 arccos

(
t

2h

)
−

t

2
(4h2 − t2)1/2

}
dK(t) + λ

1− 2λK(h)

πh2

over h where

λK(h) = E [N(b(0, h)|0 ∈ Φ] .

The implementation requires

• an estimator of the constant intensity λ > 0 of Φ,

• an estimator K̂ of Ripley’s K-function (quadratic in the number of

points),

• and a Riemann integral over the bandwidth range.

The data must contain at least two points.
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Selecting the bandwidth II: Loader (1999)

Let Φ be an inhomogeneous Poisson process and maximise the

leave-one-out cross-validation log likelihood

∑

x∈Φ∩W

log λ̂(x;h,Φ \ {x},W )−

∫

W

λ̂(u;h,Φ,W ) du.

The implementation requires

• discretisation of the observation window into a lattice,

• and at each lattice point, a kernel estimator for every h.

The data pattern must consist of at least two points.
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Non-parametric bandwidth selection

The following equation holds:

E

{
∑

x∈Φ∩W

1

λ(x)

}

=

∫

W

1

λ(x)
λ(x) dx = |W |.

Idea: minimise the discrepancy between |W | and

Tκ(h; Φ,W ) =






∑

x∈Φ∩W

1

λ̂(x;h,Φ,W )
, Φ ∩W 6= ∅,

|W |, otherwise,

to select an appropriate bandwidth h.

No model assumptions required!
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Formal justification

Theorem Let φ be a locally finite point pattern of distinct points in R
d,

observed in some non-empty open and bounded window W , and

exclude the trivial case that φ ∩W = ∅.

Let κ be a Gaussian kernel. Then Tκ(h;φ,W ) is a continuous function of

h on (0,∞). For the box kernel, Tκ(h;φ,W ) is piecewise continuous in h.

In either case, with wh ≡ 1,

lim
h→0

Tκ(h;φ,W ) = 0

and

lim
h→∞

Tκ(h;φ,W ) = ∞.
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Example: Log-Gaussian Cox process

Coles and Jones (1991)

Let Z be a Gaussian random field on W with mean zero and

covariance function

σ2 exp (−β‖x− y‖) , σ2, β > 0,

and set

Λ(x) = η(x) exp{Z(x)}.

Then the intensity function of the Cox process Φ driven by Λ is

λ(x) = η(x) exp(σ2/2).
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Log-Gaussian Cox process – Simulation

Linear trend

η(x, y) = 10 + 80x, (x, y) ∈ [0, 1]2,

β = 50 and σ2 = 2 log 5, so on average 250 points.

From left to right: State estimation h = 0.02, cross-validation h = 0.03 and

new method h = 0.08.
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Log-Gaussian Cox process – Results

The quality of a kernel estimator is measured by

MISE(λ̂(·;h)) = E

[∫

W

(
λ̂(x;h,Φ,W )− λ(x)

)2
dx

]

=

∫

W

[
Var(λ̂(x;h,Φ,W )) + bias2(λ̂(x;h,Φ,W ))

]
dx.

Based on 100 simulations, the average MISE is given below.

New State estimation Cross-validation

(σ2, β) = (2 log(5), 50) 89.6 1,477.2 536.0

(σ2, β) = (2 log(2), 10) 57.5 136.9 112.6

(σ2, β) = (2 log(5), 10) 335.3 2,960.6 2,251.2
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Conclusions

Based on a simulation study, we reach the following conclusions.

• For clustered patterns with a moderate number of points, the new

method performs the best.

• For Poisson processes with a moderate number of points, likelihood

based cross-validation performs the best.

• For regular patterns with a moderate number of points, the new and

the likelihood-based methods give good results.

• For large patterns, the Diggle method seems best.

For details:

O. Cronie and M.N.M. van Lieshout. A non-model based approach to

bandwidth selection for kernel estimators of spatial intensity functions. Biometrika

105:455–462, 2018.
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Back to Groningen

Left: h = 0.07 (new method). Right: h = 0.02 (cross validation).
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Asymptotic theory: Which way to infinity?

• Increasing domain: Wn → R
d. Not applicable

• when the point process is defined on a fixed domain;

• unless strong ergodicity conditions are imposed such as

stationarity.

• Infill asymptotics: replicated patterns in the same window.

2001 2002 2003 2004

Natural earthquakes in Pakistan, 2001–2004.
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Complications

Classic probability density estimation results apply for i.i.d. point

processes containing exactly one point each (Lo, 2017).

In general, however,

• λ is not normalised,

• the number of points is random,

• and their locations are not necessarily independent.
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Pair correlation function

For A,B ⊂ R
d define the set function

M2(A,B) = E




∑

x∈Φ

∑

y∈Φ\{x}

1A(x) 1B(y)



 .

Often

M2(A×B) =

∫

A

∫

B

ρ(2)(x, y) dxdy

for some function ρ2(x, y) ≥ 0, that – provided λ > 0 – is often scaled to

get the pair correlation function

g(x, y) :=
ρ(2)(x, y)

λ(x)λ(y)
, x, y ∈ W.

Interpretation: g(x, y) compares the joint probability that x, y belong to

Φ to the product of the marginal probabilities.
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Beta class of kernels

κγ(x) :=
1

c(d, γ)
(1− xTx)γ 1{x ∈ b(0, 1)}, x ∈ R

d,

for γ ≥ 0, where

c(d, γ) =

∫

b(0,1)

(1− xTx)γdx =
πd/2Γ(γ + 1)

Γ(d/2 + γ + 1)
, d ∈ N, γ ≥ 0.

Beta kernels are compactly supported. For γ > k, κγ is k times

continuously differentiable on R
d. Furthermore, the

Q(d, γ) :=

∫

Rd

κγ(x)2dx =
c(d, 2γ)

c(d, γ)2
with Q(2, γ) =

(γ + 1)2

(2γ + 1)π

are finite and so are, for all i = 1, . . . , d,

V (d, γ) :=

∫ ∞

−∞

· · ·

∫ ∞

−∞

x2
iκ

γ(x)dx1 · · · dxd =
1

d+ 2γ + 2
.
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Infill asymptotics regime

Let Φ1,Φ2, . . . be i.i.d. simple point processes observed in a bounded

open subset ∅ 6= W ⊂ R
d with intensity function λ : W → (0,∞) and

well-defined pair correlation function g.

Write

Yn =
n⋃

i=1

Φi.

Let the bandwidths hn > 0 be such that, as n → ∞, hn → 0 and

nhd
n → ∞, and set

λ̂n(x0) :=
̂λ(x0;hn, Yn,W )

n
=

1

n

n∑

i=1

̂λ(x0;hn,Φi,W )
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Infill asymptotics – Mean squared error

Under the technical conditions

• g : W ×W → R is bounded;

• λ : W → (0,∞) is C2 with λij = Dijλ, i, j = 1, . . . , d, Hőlder continuous

with index α > 0 on W , that is, ∃C > 0 such that ∀i, j = 1, . . . , d:

|λij(x)− λij(y)| ≤ C||x− y||α, x, y ∈ W ;

the mean squared error of λ̂n(x0) can be expanded as

h4
n
V (d, γ)2

4

(
d∑

i=1

λii(x0)

)2

+
λ(x0)Q(d, γ)

nhd
n

+O
(
h4+α
n

)
+O

(
1

nhd−1
n

)

so – provided
∑

i λii(x0) 6= 0 – the asymptotically optimal bandwidth is

h∗
n(x0) =

1

n1/(d+4)




dλ(x0)Q(d, γ)

V (d, γ)2
(∑d

i=1 λii(x0)
)2





1/(d+4)

.
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Abramson principle

Idea: in sparse regions more smoothing is necessary then in regions that

are rich in points (Abramson, 1982, probability density estimation).

Definition

̂λ(x0;h,Φ,W ) =
∑

y∈Φ

c(y)d

hd
κ
(x0 − y

h
c(y)

)

based on a weight function c : W → (0,∞) on W . In our context,

c(x) =
√

λ(x)/λ(x0).

Extra technical conditions:

• λ is C5;

• γ > 5 so the Beta kernel is also C5.
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Infill asymptotics for Abramson estimator

The mean squared error of λ̂n(x0) can be expanded as

h8
nλ(x0)

2

(∫

Rd

A(u;x0)du

)2

+
λ(x0)Q(d, γ)

nhd
n

+ o(h8
n) +O

(
1

nhd−1
n

)

so the asymptotically optimal bandwidth is

h∗
n(x0) =

1

n1/(d+8)

(
dQ(d, γ)

8λ(x0)
(∫

Rd A(u;x0)du
)2

)1/(d+8)

.

An explicit expression for A(u;x0) depends on partial derivatives of λ up

to fourth order.

Remark: taking an adaptive bandwidth reduces the squared bias from

O(h4
n) to O(h8

n).
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Conclusions

Based on asymptotic expansions, we reach the following conclusions.

• For local bandwidth estimation the asymptotically optimal

bandwidth in an infill regime is given by

h∗
n(x0) =

1

n1/(d+4)




dλ(x0)Q(d, γ)

V (d, γ)2
(∑d

i=1 λii(x0)
)2





1/(d+4)

.

• For adaptive local bandwidth estimation,

h∗
n(x0) =

1

n1/(d+8)

(
dQ(d, γ)

8λ(x0)
(∫

Rd A(u;x0)du
)2

)1/(d+8)

.

For details:

M.N.M. van Lieshout. Infill asymptotics and bandwidth selection for kernel

estimators of spatial intensity functions. ArXiv 1904.05095, April 2019.
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