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Point processes
\ P

A realisation of a point process ® on R% is a (spatial) pattern, i.e. an
unordered set of points such that any bounded set A ¢ R? contains only
finitely many of them.

Consequently, ®
contains at most countably many points;

has no accumulation points.
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‘ Infensity function

Let N(A) be the number of points of ® in set A ¢ R* and define the set
function
M(A) = EN(A),

the expected number of points in A.

Often

for some function A(x) > 0, the intensity function of o.

Goal: estimate )\ based on a realisation ® N W in a bounded Borel set W
(assumed to be open and non-empty).
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‘ Kernel estimation

For zo € W, set (Berman and Diggle, 1985, 1989)

— N(b(xo, h) "W
)\BD(:EO;]%(I))W) = “E(Q(Z‘Qoh))ﬁ W’)

where b(xo, h) is tThe closed ball around zo with radius h and | - | denofes
areq.

Remarks:
bandwidth parameter h > 0 determines smoothness;

the box kernel may be replaced by any kernel (symmetric pdf) «:

Awo; h, @, W) Ty /-c( 0_%)wh(aco,fﬁ)_1

redNW

with

wh (%o, T) = wh(xo) = h? /W K (:EO }; w) dw.
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a‘ Mass preserving local border correction

Van Lieshout (2012)
For the local border correction

whr (o, x) = wp(x) = h_d/

w
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Left: h = 0.07. Right: h = 0.02.
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I Selecting the bandwidth I: Diggle (1985)

Let & be a stationary, isotropic Cox process with random intensity
function A. In other words, the distribution of A is franslation and rotation
invariant and given A = A, ® is an inhomogeneous Poisson process:

the number of points in set A follows a Poisson distribufion with mean

/A)\(:B)dx;

the points are scaftered independently with probability density
Az)/ / x)da.
A
To select the bandwidth, minimise (over h) The mean squared error

E [{X(o; h,®, W) — A(O)}ﬂ .
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‘ Selecting the bandwidrth | (ctd)

For the box kernel in R? and wj, = 1, minimise

2 r2h B
A / {2h2 arccos <i> — %(élh2 — t2)1/2} dK(t) + A L = 20K(h)
0

m2h4 2h mh?

over h where
AK(h) =E[N(b(0,h)|0 € P].

The implementation requires
an estimator of the constant intensity A > 0 of @,

an estimator K of Ripley’s K-function (quadratic in the number of
points),

and a Riemann integral over the bandwidth range.

The data must contain af least two points.
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‘ Selecting the bandwidth Il: Loader (199%9)

Let & be an inhomogeneous Poisson process and maximise the
leave-one-out cross-validation log likelihood

S logAa;h, @\ {z}, W) - / s b, ®, W) du.

rEPNW w

The implementation requires
discretisation of the observation window intfo a lattice,

and at each lattice point, a kernel estimator for every h.

The data pattern must consist of af least two points.
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‘ Non-parametric bandwidfh selection

The following equation holds:

1 1
E{ > W}—/ka(x)dx—|W|.

rxedNW

Idea: minimise the discrepancy between |W| and

(Y — L enw £,
TK(]’L,(I),W) — < redPNW A(x7 ha(D;W)
LW, otherwise,

to select an appropriate bandwidth k.

No model assumptions required!
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‘ Formal justification

Theorem Let ¢ be a locally finite point pattern of distinct points in R?,
observed in some non-empty open and bounded window W, and
exclude the trivial case that o N W = 0.

Let k be a Gaussian kernel. Then T, (h; ¢, W) is a continuous function of
h on (0,00). For the box kernel, T, (h; ¢, W) is piecewise continuous in h.

In either case, with wy, = 1,

lim T, (h;p, W) =0

h—0

and
lim T (h; ¢, W) = oc.

h— oo
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‘ Example: Log-Gaussian Cox process

Coles and Jones (1991)

Let Z be a Gaussian random field on W with mean zero and
covariance function

O-QGXp (_BHm_y”)? 0-276 > 0,
and set
A(z) = n(z) exp{Z(z)}.
Then the intensity function of the Cox process ® driven by A is

Az) = 1(z) exp(o”/2).
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\‘ Log-Gaussian Cox process — Simulation

Linear trend
n(z,y) =10 + 80z, (z,y) € 0,1,

5 =50 and ¢* = 2log 5, SO on average 250 points.

From left to right: State estimation h = 0.02, cross-validation h = 0.03 and
new method h = 0.08.
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‘ Log-Gaussian Cox process — Results

The quality of a kernel estimator is measured by

MISEQ(h)) = E[/W (X(x;h,cI>,W)—A(x))2dx]

AN

_ /W [Var(i(x; h,®,W)) + bias>(\(x: h, ®, W))] de.

Based on 100 simulations, the average MISE is given below.
New State estimation Cross-validation

(02, 8) = (2log(5),50)  89.6 1,477.2 536.0
(0%, 8) = (2log(2),10)  57.5 136.9 112.6
(02, 8) = (2log(5),10) 335.3 2,960.6 2,251.2
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\ Conclusions

Based on a simulation study, we reach the following conclusions.

For clustered patterns with a moderate number of points, the new
method performs the best.

For Poisson processes with a moderate number of poinfts, likelihood
based cross-validation performs the best.

For regular pafterns with a moderafte number of points, the new and
the likelihood-based methods give good results.

For large patterns, the Diggle method seems best.

For details:

O. Cronie and M.N.M. van Lieshout. A non-model based approach to
bandwidth selection for kernel estimators of spatial infensity functions. Biomefrika
105:455-462, 2018.
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a‘ Back fo Groningen

2017

10D 2000 K Iri) ol S

Leff: h = 0.07 (new method). Right: h = 0.02 (cross validafion).
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‘ Asymprtoftic theory: Which way to infinity?

Increasing domain: W,, — R%. Not applicable
when the point process is defined on a fixed domain;
unless strong ergodicity conditions are imposed such as
stationarity.

Infill asympftotics: replicated patterns in the same window.

Natural earthquakes in Pakistan, 2001-2004.
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‘ Complications

Classic probability density estimation results apply for i.i.d. point
processes containing exactly one point each (Lo, 2017).

In general, however,
A is not normalised,
the number of points is random,

and their locations are not necessarily independent.
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‘ Pair correlation function

For A, B C R? define the set function

M>(A,B) =E {Xj Y 1a(z) lB(y):| .

ze® ycd\{z}

Often
Mz(AxB)=//p(2)(zv,y)dedy
AJB

for some function p*(z,y) > 0, that — provided X > 0 — is often scaled to
get the pair correlation function

_ P (z,y)
o) = )

x,y € W.

Interpretation: ¢(z,y) compares the joint probability that x, y belong to
¢ to the product of the marginal probabilities.
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‘ Beta class of kernels

k() = (1—z"2)"1{z € b(0,1)}, =z eR%

for~ > 0, where

w20 (y + 1)
I'd/2+~v+1)

c(d,y) = /b(o 1)(1 — ' x)dx = deN,vy>0.

Beta kernels are compactly supported. For~ > k, k7 is k fimes
continuously differentiable on R¢. Furthermore, the

Q(d,7) := /Rd kY (x)dr = (d.2y) i Q(2,7) = (v +1)°

c(d,v)? (2y+ D7
are finite and so are, forall: =1,....,d,
V(d,~) ::/OO---/OO ik (z)dzy - deg = ! :
’ roo oo d+2vy+2
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‘ Infill asymyptoftics regime

Let &1, $o, ... be i.i.d. simple point processes observed in a bounded
open subset § # W c R* with intensity function A : W — (0, c0) and
well-defined pair correlation function g.

Write
m:U@
1=1

Let the bandwidths h,, > 0 be such that, as n — oo, h,, — 0 and
nhl — oo, and set

mn
—_—

Z )\(330; hn, (I)Z', W)

=1

1
n n
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‘ Infill asymyptoftics — Mean squared error

Under the technical conditions
g: W x W — Ris bounded,;
AW — (0,00) is C* with \j; = D;j\, 4,5 =1,...,d, HSlder continuous
with index o« > 0 on W, thatis, 3C' > 0 such that Vi, j = 1,....d:

Aij () = A ()| < Cllz —ylI”, z,y e W;

—_—

the mean squared error of \,,(zo) can be expanded as

AV(d)? [ A@0)Q(d, ) e |
h, 1 <; >\iz’(330)> + + O (hn+ )-I—O( )

nhd nhd=1
so — provided ) . A\ii(x0) # 0 — The asymptoftically optimal bandwidth is

1/(d+4)

hn(T0) = —
n /(d+4) 2
" V(d,7)? (S, Mis(wo))
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‘ Abramson principle

Idea: in sparse regions more smoothing is necessary then in regions that
are rich in points (Abramson, 1982, probability density estimation).

Definition

Moo &, W) = 37 W (T =Ygy

hd h
yed

based on a weight function ¢ : W — (0, 00) on W. In our context,

= /() /\(xo)

Extra technical conditions:
\is C°:

v > 5 so the Beta kernel is also C°.
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‘ Infill asymyptoftics for Abramson estimator

—

The mean squared error of \,,(zo) can be expanded as

hE \(zo)? (/Rd Au; xo)du>2 4+ Az)QUd,y) o(hy) + O (

d
nhg

1
nhd=1
so the asymptoftically optimal bandwidth is

1/(d+8)
nl/(d+8) 8A(z0) ([fra Alu;zo du)

An explicit expression for A(u; zo) depends on parfial derivatives of A up
to fourth order.

Remark: taking an adapftive bandwidth reduces the squared bias from
O(hy) 1o O(hd).
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\ Conclusions

Based on asymptotic expansions, we reach the following conclusions.

For local bandwidth estimation the asymptoftically optimal
bandwidth in an infill regime is given by

1/(d+4)
B (o) 1 dA(z0)Q(d, )

ITSVICESY 2
" V(d,)? (350 Xii(ao))

For adaptive local bandwidth estimation,

1/(d+8)
B (o) = 1 ( dQ(dm) )) |

nl/(d+8) 8A(z0) ([pa A(u; zo)du

For details:
M.N.M. van Lieshout. Infill asymptotics and bandwidth selection for kernel
estimators of spatial intensity functions. ArXiv 1904.05095, April 2019.
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