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Straight Line Complexity
Lecturer: D. Dadush

In this lecture, we develop the concept of straight-line complexity (SLC) of the central path,
which will give a combinatorial measure of its complexity. We will in particular relate the com-
plexity of the central path to a geometric measure of complexity of certain (shadow vertex) simplex
paths. We will then further connect the complexity to circuits of the constraints of the constraint
matrix.

As in prior lectures, we are interested in solving the following primal-dual pair:

min ⟨c, x⟩
Ax = b

x ≥ 0n ,

max ⟨b, y⟩
A⊤y + s = c

s ≥ 0n ,

(LP)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and A has rank m. P(P++), D(D++), denote the primal and
dual (strictly) feasible regions. Let z∗ = (x∗, s∗, y∗) denote the optimal primal-dual pair and let
v∗ = ⟨c, x∗⟩ = ⟨y∗, b⟩ denote the optimal value.

The central path CP := {zcp(µ) := (xcp(µ), scp(µ), ycp(µ) ∈ P++ × D++ | µ >} is defined
by the strictly feasible pairs satisfying the centrality equations xcp(µ)scp(µ) = µ1n. We use the
notation zcp in this lecture to disambiguate with the max central path, a combinatorial proxy for
central path, that we define later.

The basic concept we will use to measure complexity is as follows:

Definition 1 Let f : R+ → R+ be a function and η ∈ (0, 1]. The straight line complexity of f with
respect to η, denoted SLCη( f ), is the minimum number of pieces of a continuous piecewise linear function
h : R+ → R+ satisfying η f ≤ h ≤ f . We write SLCη( f , µ0) to indicate the same quantity when restrict
the approximation of f to the interval [0, µ0].

With this definition, one can express the performance of the interior point method we have
developed as follows:

Theorem 2 ([ADL+22]) Let z0 ∈ N2(β), β ∈ (0, 1/6) with µ0 := µ(z) > 0. Then, for η ∈ (0, 1],
the Trust-Region IPM on initial iterate z0 outputs an optimal solution z∗ = (x∗, s∗, y∗) ∈ N2(β) in at
number of iterations bounded by

O

(
min

η∈(0,1]

√
n

β
log(

n
βη

)
n

∑
i=1

SLCη(xcp
i (·), µ0)

)
.

At a high level, the proof of the above theorem follows by breaking up the central path into
approximately linear chunks (η is the approximation factor), and showing that each linear chunk
can be traversed using O(1) affine scaling and trust-region steps in an amortized sense. We do
not attempt to prove this here, and instead use it to prove complexity bounds.

Importantly, the straight-line complexity of the components of the central path naturally
correspond to lower bounds on the iteration complexity of a large family of IPMs. Indeed, if
one examines the trajectory of almost any IPM, it produces a piecewise linear trajectory that
stays multiplicatively close to the central path. Each piece of the trajectory generally corre-
sponds to a single iteration, and hence any lower bound on the number of pieces yields a lower
bound on the number of iterations. The following result of Allamigeon, Benchimol, Gaubert and
Joswig [ABGJ18] in fact proves that the straight-line complexity of the central can be exponential.
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Theorem 3 ([ABGJ18]) Examine the following linear program induced by a parameter t:

min x1

x1 ≤ t2

x2 ≤ t

x2j+1 ≤ tx2j−1, x2j+1 ≤ tx2j, 1 ≤ j ≤ n

x2j+2 ≤ t1−1/2j
(x2j−1 + x2j), 1 ≤ j < n,

x2n−1 ≥ 0, x2n ≥ 0.

(LP(t))

Then for η ∈ (0, 1) and t ≥ 2Ω(2n(n log(n/η))), we have that SLCη(xcp
2n(·)) ≥ 2n − 1.

The above result proves that interior point methods that follow the central path may require
an exponential number of iterations, even when the linear program has O(n) inequalities. Note
that this does not contradict the polynomiality of IPMs, as the bit-complexity of the above linear
program is exponential (i.e., t ≥ 22n

).

Organization. In what follows, we examine the consequences of Theorem 2. In Section 1, we
show that SLC of the central path can be captured by the shape of specific shadow vertex simplex
paths. This will in particular, yield an exponential upper bound on SLC, since the number of
edges of a simplex path on a polytope with n inequalities is at most 2n. The material from this
section is derived from [ADL+22]. In Section 2, we relate the SLC to the shape of the circuits
of A, the minimal linear dependencies, and introduce the notion of a circuit cover. In Section 3,
we use this notion to show that the SLC of a linear program can be upper bounded in terms
of the logarithm of the circuit imbalance measure of the matrix A, which measures the ratios of
non-zero elements in minimal linear dependencies. The material in these sections is derived
from [DKN+24].

1 The Maximum Central Path

In this section, we introduce the max central path, our combinatorial proxy for the central path.
This proxy will allow us to give a easy upper bound on straight-line complexity in terms of the
number of vertices of the primal or dual polyhedron.

Let v∗ denote the optimal value of (LP). Given g ≥ 0, we denote the gap truncated primal
and dual feasible regions by

Pg := {x ∈ Rn | Ax = b , x ≥ 0 , ⟨c, x⟩ ≤ v⋆ + g} ,

Dg := {s ∈ Rn | ∃y ∈ Rm A⊤y + s = c , s ≥ 0 , ⟨b, y⟩ ≥ v⋆ − g}
.

These sets correspond to the primal and dual feasible points (x, s, y) ∈ P × D with objective
value within g from the optimum v⋆, respectively. Under the assumption that the primal and
dual are non-empty, recall that both programs have the same value, and hence Pg,Dg are also
non-empty for all g ≥ 0. If we further assume that the primal and dual are strictly feasible, as is
usual in the IPM context, then Pg,Dg will in fact be bounded for all g ≥ 0 (we leave this as an
exercise to the reader). We will thus assume throughout that both Pg,Dg is are bounded.
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Let (x∗, s∗, y∗), v∗ denote the optimal primal-dual pair and value as above. For any (x, y, s) ∈
P ×D, the derive the following identities directly from the gap formula:

⟨x, s∗⟩ = ⟨c, x⟩ − ⟨y∗, b⟩ = ⟨c, x⟩ − v∗

⟨x∗, s⟩ = ⟨c, x∗⟩ − ⟨y, b⟩ = v∗ − ⟨y, b⟩
⟨x, s⟩ = ⟨c, x⟩ − ⟨y, b⟩ = (⟨c, x⟩ − v∗) + (v∗ − ⟨y, b⟩) = ⟨x, s∗⟩+ ⟨x∗, s⟩ .

(1)

Given the identities above, the sets Pg and Dg are equivalently given by

Pg = {x ∈ P | ⟨x, s⋆⟩ ≤ g} , Dg = {(s, y) ∈ D | ⟨x⋆, s⟩ ≤ g} .

These expressions are in fact independent of the choice of optimal solutions (x∗, s∗, y∗).
We now define max central path as the parametric curve

MCP := {zm(g) := (xm(g), sm(g)) ∈ R2n
+ | g ≥ 0},

where

xm
i (g) := max{xi | x ∈ Pg} and smi (g) := max{si | s ∈ Dg} , ∀i ∈ [n] . (2)

By our boundedness assumption on Pg,Dg, the max central path is well-defined for all g ≥ 0.
We note that zm(g) does not necessarily correspond to the slacks (x, s) of a single feasible primal
dual point (x, s, y) ∈ P ×D. This is because each coordinate is defined as the value of a different
optimization problem.

Irrespective of this, the MCP will provide a good approximation of the coordinates of the
central path after an appropriate reparametrization, which we prove presently.

Lemma 4 For every µ > 0 and the central path point zcp(µ) = (xcp(µ), scp(µ), ycp(µ)), then
1

2n
(xm(nµ), sm(nµ)) ≤ (xcp(µ), scp(µ)) ≤ (xm(nµ), sm(nµ)). (3)

Proof: Recall that
⟨xcp(µ), scp(µ)⟩ = ⟨xcp(µ), s⋆⟩︸ ︷︷ ︸

≥0

+ ⟨x⋆, scp(µ)⟩︸ ︷︷ ︸
≥0

= nµ.

using Equation (1). Therefore, xcp(µ) ∈ Pnµ and scp(µ) ∈ Dnµ. By definition of the max central
path, (xcp(µ), scp(µ)) ≤ (xm(nµ), sm(nµ)).

For the second inequality, let us examine a single coordinate of xm
i and smi , i ∈ [n]. Now

let x(i) ∈ Pnµ be the point satisfying x(i)i = xm
i (nµ) and (s(i), y(i)) ∈ Dnµ be the point satisfying

s(i)i = smi (nµ). Then,

xm
i (nµ)

xcp
i (µ)

=
x(i)i scp

i (µ)

µ
≤

〈
x(i), scp(µ)

〉
µ

=

〈
x(i), s∗

〉
+ ⟨x∗, scp(µ)⟩

µ
≤ nµ + nµ

µ
= 2n.

By a symmetric argument on the dual, smi (nµ) = s(i)i ≤ 2nscp
i (µ). The claim thus follows. 2

From the sandwiching relation between the central path and max central path, we derive the
corresponding relations between the straight-line complexities as a simplex corollary.

Corollary 5 For η ∈ (0, 1], T > 0, we have that

SLCη/(2n)(xm
i , nT) ≤ SLCη(xcp

i , T), SLCη/(2n)(xcp
i , T) ≤ SLCη(xm

i , nT),

SLCη/(2n)(s
m
i , nT) ≤ SLCη(s

cp
i , T), SLCη/(2n)(s

cp
i , T) ≤ SLCη(smi , nT).

Proof: By symmetry, we only show the statement for the primal paths.
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SLCη/(2n)(xm
i , nT) ≤ SLCη(xcp

i , T). Let h : [0, T] → R+ be the optimal piecewise-linear approxi-
mation of xcp

i satisfying ηxcp
i ≤ h ≤ xcp

i on [0, T]. Define h̄(g) = h(g/n), for g ∈ [0, nT]. Then by
Lemma 4, we have that

ηxm
i (g)
2n

≤ ηxcp
i (g/n) ≤ h̄(g) := h(g/n) ≤ xcp

i (g/n) ≤ xm
i (g), g ∈ [0, nT].

Therefore, h̄ is an η/(2n) approximation of xm
i on [0, nT]. Since h̄ has the same number of pieces

as h, the claim follows.

SLCη/2n(xcp
i , T) ≤ SLCη(xm

i , nT). Let h : [0, nT] → R+ be the optimal piecewise-linear approxi-
mation of xm

i satisfying ηxm
i ≤ h ≤ xm

i on [0, nT]. Define h̄(µ) = h(nµ)/(2n), for µ ∈ [0, T]. Then
by Lemma 4, we have that

ηxcp
i (µ)

2n
≤

ηxm
i (nµ)

2n
≤ h̄(µ) :=

h(nµ)

2n
≤

xm
i (nµ)

2n
≤ xcp

i (µ), g ∈ [0, µ].

Therefore, h̄ is an η/(2n) approximation of xcp
i on [0, µ]. Since h̄ has the same number of pieces

as h, the claim follows. 2

Note that reducing the approximation quality from η to η/(2n) in Theorem 2 only changes
the number of iterations by a constant factor. Therefore, from the perspective of Theorem 2, one
can replace xcp

i with xm
i in the SLC bound at essentially no loss.

1.1 The Max Central Path and The Simplex Method

We now give a geometric intepration of each coordinate of the max central path coordinates in
terms of shadow vertex simplex paths. Using this interpretation, we give a simple exponential
upper bound on the number of iterations of the Trust-Region IPM.

By symmetry, we restrict ourselves to analyzing the primal central path. Let us analyze
xm

i (g) := {max xi : x ∈ Pg} as g ≥ 0 increases. Examine the following 2 dimensional projection
of the feasible region:

P i := {(⟨c, x⟩ − v∗, xi) : x ∈ P}.

Then, by definition, we have that

xm
i (g) := max{y : (t, y) ∈ P i, t ≤ g}.

Since P is a convex polyhedron, its shadow P i is a two dimensional convex polygon. Clearly
P i ⊆ R2

+ since the optimality gap is non-negative and xi ≥ 0 for x ∈ P . Any optimal solution
x∗ maps to (⟨c, x∗⟩ − v∗, x∗i ) = (0, x∗i ), and similarly any point in (g, y) ∈ P i with g = 0 is the
image of some optimal solution in P i. Therefore, xm

i (0) = x∗i where x∗ is the optimal solution
with largest ith coordinate.

If u := sup{xi : x ∈ P} < ∞, we define ḡ < ∞ to be the first time ḡ ∈ [0, ∞) where
xm

i (ḡ) = u. In this case, xm
i (·) will increase on [0, ḡ], then will be the constant function u on

[ḡ, ∞). If u = ∞, then xm
i (·) will be increasing over all R+. In this case, we set ḡ = ∞. From

a geometric perspective, as g increases, xm
i (g) will first trace the increasing part of the upper

convex hull of P i and will stay constant afterwards (if ḡ < ∞).
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Using this viewpoint, we conclude that xm
i is a piecewise linear function with a number of

pieces equal to the number of edges on the increasing part of the upper convex hull plus one if
ḡ < ∞. Furthermore, on the interval [0, ḡ], xm

i precisely traces a simplex path on the upper convex
hull of P i. Furthermore, it can be shown that there is a simplex path in P whose projection under
the map x → (⟨c, x⟩ − v∗, xi) is precisely the graph {(g, xm

i (g)) : g ∈ [0, ḡ]} of xm
i restricted to the

interval [0, ḡ]. By simplex path in this context, we mean the geometric object corresponding to the
union of all the edges on the path. One can in fact always choose this path so that the projection
is bijective when restricted to the path (furthermore, the path will generically be unique). A path
derived in this way is known as a shadow vertex simplex path, as it projects to a simplex path in
the two dimensional shadow.

From the above discussion, we conclude that up to an additive factor of 1, each of the func-
tions xm

1 , . . . , xm
n has a number of pieces that is equal to the length of of some shadow vertex

simplex path. Since the number of vertices of P is trivially bounded by (n
m) (an upper bound on

the number of bases of A), we see that ∑n
i=1 SLC1(xm

i ) ≤ n(n
m) ≤ n2n. Combining Corollary 5 and

Theorem 2, with β = 1/6 and η = 1, we conclude that the Trust-Region IPM requires at most
O(n1.5 log(n)2n) many iterations to solve Equation (LP).

1.2 Duality of the Max Central Path

We recall that for the regular central path we have the identity xcp(µ)scp(µ) = µ1n. That is, the
primal central path determines the dual path and vice versa. One may wonder to which extent a
similar phenomenon holds for the MCP (note that Lemma 4 establishes this approximately up to
a polynomial factor in n). The following theorem shows that this relation holds approximately
with an approximation factor of 2. With this relation, it can in fact be shown (the proof is not
entirely trivial) that SLCη(xm

i ) = Θ(SLCη(smi )) for any η ∈ [0, 1/2] (the 1/2 relates to the factor 2
below). That is, that the SLC of the primal and dual are essentially the same.

Theorem 6 (Centrality of the max central path) For all g ≥ 0, we have that

g ≤ xm
i (g)smi (g) ≤ 2g ∀i ∈ [n] .

Proof: We first prove the upper bound. For i ∈ [n], let x(i) ∈ argmax{xi : x ∈ Pg} and
s(i) ∈ argmax{si : s ∈ Dg}. Then,

xm
i (g)smi (g) = x(i)i s(i)i ≤

〈
x(i), s(i)

〉
=
〈

x(i), s⋆
〉
+
〈

x⋆, s(i)
〉
≤ 2g ,

where the last equality follows from Equation (1). We now prove the lower bound.
We assume g > 0, since the statement is trivial otherwise. Let e1, . . . , en denote the standard

basis vectors in Rn, i.e., ei
j = 1 if i = j and 0 otherwise. Note that the dual program of max{xi :

Ax = b, x ≥ 0, ⟨x, s⋆⟩ ≤ g} can be expressed as

min
{

αg + ⟨u, x⋆⟩ : αs⋆ + u ≥ ei, A⊤y = u, α ≥ 0
}

,

using that ⟨u, x⋆⟩ = ⟨y, b⟩ since Ax⋆ = b. Similarly, the dual program of max{si : A⊤y + s =

c, s ≥ 0, ⟨s, x⋆⟩ ≤ g} can be expressed as

min
{

βg + ⟨v, s⋆⟩ : βx⋆ + v ≥ ei, Av = 0n, β ≥ 0
}

.
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Let us pick optimal (α, u) and (β, v) to these two programs. The product of the objective values
(αg + ⟨s∗, u⟩)(βg + ⟨x∗, v⟩) is thus equal to xm

i (g)smi (g). We complete the proof by showing that
this product is lower bounded by g.

We first claim that
⟨u, x⋆⟩ ≥ 0 and ⟨v, s⋆⟩ ≥ 0 . (4)

Recalling that x⋆ ≥ 0, to show ⟨u, x⋆⟩ ≥ 0 it suffices to show that uj ≥ 0 whenever x⋆j > 0, for all
j ∈ [n]. If x⋆j > 0, then by complementary slackness s∗j = 0, and thus uj = αs⋆j + uj ≥ ei

j ≥ 0. The
proof for ⟨v, s∗⟩ ≥ 0 follows by symmetric reasoning.

Next, note that the constraints in the two programs imply

1 =
〈

ei, ei
〉
≤ ⟨αs⋆ + u, βx⋆ + v⟩ = α ⟨v, s⋆⟩+ β ⟨u, x⋆⟩ . (5)

Now, the product of the objective values can be written as

xm
i (g)smi (g) = (αg + ⟨u, x⋆⟩)(βg + ⟨v, s⋆⟩)

= αβg2 + g (α ⟨v, s⋆⟩+ β ⟨u, x⋆⟩) + ⟨u, x⋆⟩ · ⟨v, s⋆⟩ ≥ g ,

using (4) and (5). This concludes the proof. 2

2 Straight line Complexity and Circuits

We now establish an intimate connection between the SLC of an LP and its circuits.

Definition 7 (Elementary vectors and circuits) Let A ∈ Rm×n. A vector z ∈ ker(A) is an
elementary vector in ker(A) if z is a support-minimal nonzero vector in ker(A). We let E(A) denote
the set of all elementary vectors. A set C ⊆ [n] is a circuit of A if it is the support of some elementary
vector; we let C(A) ⊆ 2[n] denote the set of circuits.

We say that a vector y ∈ Rn conforms to x ∈ Rn if xiyi > 0 whenever yi ̸= 0. A conformal circuit
decomposition of a vector z ∈ ker(A) is a decomposition of the form

z =
ℓ

∑
i=1

h(i) ,

where h(1), . . . , h(ℓ) ∈ E(A), ℓ ≤ n, and each g(i) conforms to z. For this definition to apply for
z = 0n, we use the convention that the empty decomposition equals 0n (i.e., ℓ = 0). The notion of
conformal decomposition can be seen as a generalization of cycle decompositions of circulations
of networks flows. The existence of such a decompositions was discovered by [Ful68, Roc69].

Proposition 8 For every A ∈ Rm×n, every vector z ∈ ker(A) admits a conformal circuit decomposition.

Proof: By possibly multiplying the columns of A and entry of z by −1, we may us assume
without loss of generality that z ≥ 0n. Examine the cone C := {x ∈ Rn | Ax = 0, x ≥ 0n}.

By definition z ∈ C. By the Minkowski-Weyl theorem, there exists h(1), . . . , h(k) ∈ C such that
z = ∑k

i=1 hi and R+hi, i ∈ [k], are extreme rays of C (i.e., one dimensional faces of C). Note that
k = 0 if z = 0n by our convention.
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Each extreme ray R+h(i), i ∈ [k], can be represented as CSi := {x | Ax = 0n, xSi = 0, x ≥ 0n},
where Si ⊆ [n] (i.e., we force some of the inequalities to be tight). In particular, we may choose
Si := [n] \ support(hi) (this is the inclusion-wise maximum set which is consistent with h(i)).
From here, by our assumption that CSi is one-dimensional, we must have that Rh(i) := {x ∈ Rn |
Az = 0n, zSi = 0} (otherwise, there would be a perturbation of h(i) that is still feasible for CSi and
not collinear with h(i), contradicting 1-dimensionality). Given our choice Si := [n] \ support(h(i))
for any S′ ⊃ Si, we must then have that {x ∈ Rn | Ax = 0n, xS′ = 0S′} = {0n}. Therefore,
h(i) ∈ E(A) is an elementary vector. Since h(1), . . . , h(k) ≥ 0n, z ≥ 0n and z = ∑k

i=1 h(i), we must
have that each h(i), i ∈ [k], conforms to z.

To ensure k ≤ n, we apply Caratheodory’s theorem. Specifically, Caratheodory allows us to
ensure that the h(i)s in the decomposition are linearly independent, and hence there must be at
most n of them. 2

Definition 9 (h-curve) Let x∗, s∗, y∗ be optimal primal-dual solutions to (LP). Given a vector h ∈
ker(A), the h-curve from x∗ is the function x̄h : R+ → Rn

+ that maps x̄h(g) to x̄ + αh, for α ∈ R+

chosen maximally such that x∗ + αh ≥ 0 and ⟨s∗, αh⟩ ≤ g.

Note that x̄h = x̄γh for all γ > 0. Furthermore, by optimality of x∗, if x∗ + αh ≥ 0n for α > 0 then
⟨s∗, h⟩ ≥ 0. From here, by our assumption that Pg is bounded, it is easy to see that

x̄h(g) = x∗ + min

(
g

⟨s∗, h⟩ , min
j∈supp(h−)

x∗j
|hj|

)
, (6)

with the convention that we ignore the first term in the minimum if ⟨s∗, h⟩ ≤ 0 and we ignore the
second term if supp(h−) = ∅ (the support of the negative coordinates). Note that the definition
of the curve is invariant to the choice s∗, since ⟨s∗, h⟩ =

〈
c − A⊤y∗, h

〉
= ⟨c, h⟩+ ⟨y∗, Ah⟩ = ⟨c, h⟩

as Ah = 0n. See Figure 1 for some examples.

g

xi

x̄i

x̄h
i

x̄h′
i

Figure 1: Examples of h-curves projected on coordinate i. Here, h 1-dominates h′ on i with respect
to x̄.

The next lemma shows that for every i ∈ [n] and g ≥ 0, the ith coordinate of the max-central
path at g is upper bounded by a circuit augmentation from an optimal solution, up to a factor n.

Lemma 10 Let x∗ be a primal optimal solution to (LP) and i ∈ [n]. For every g ≥ 0 where xm
i (g) > x∗i ,

there exists an elementary vector h ∈ E(A) such that ⟨c, h⟩ ≥ 0, hi > 0, hj ≥ 0 whenever x∗j = 0, and
x̄h

i (g) ≥ xm
i (g)/n.
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Proof: Let x̂ be a primal feasible solution to (LP) such that x̂i = xm
i (g). Consider a conformal

circuit decomposition of x̂ − x∗ = ∑ℓ
j=1 h(j) as in Proposition 8. By the conformal decomposition

property, x̂ ≥ 0 implies that x∗ + h(j) ≥ 0n, for all j ∈ [n], and hence these are all primal feasible.
In particular, we must have ⟨c, h(j)⟩ =

〈
c, (x∗ + h(j))− x∗

〉
≥ 0 for all j ∈ [ℓ] because x∗ is a

primal optimal solution to (LP). Let k ∈ argmaxj∈[ℓ] h(j)
i . Then, h(k)i > 0 due to x̂i > x∗i . Since〈

c, x∗ + h(k)
〉
≤
〈

c, x∗ + ∑ℓ
i=1 h(i)

〉
= ⟨c, x̂⟩ ≤ g, we obtain

x̄h(k)
i (g) ≥ x∗i + h(k)i ≥ x∗i +

∑ℓ
j=1 h(j)

i

ℓ
≥ x̂i

ℓ
≥ x̂i

n
=

xm
i (g)
n

.

Note also that h(k)j ≥ 0 whenever x∗j = 0 since x∗ + h(k) ≥ 0. 2

Definition 11 (Dominance) Let x∗ be a primal optimal solution to (LP). Let i ∈ [n] and α ≥ 0. Given
vectors h, h′ ∈ ker(A) where ⟨c, h⟩ , ⟨c, h′⟩ ≥ 0, we say that h α-dominates h′ on i with respect to x∗

if x̄h
i ≥ αx̄h′

i . More generally, given sets S, S′ ⊆ W, we say that S α-dominates S′ on i with respect
to x∗ if ⟨c, h⟩ ≥ 0 for all h ∈ S, and for every h′ ∈ S′ with ⟨c, h′⟩ ≥ 0, there exists h ∈ S such that h
α-dominates h′ on i with respect to x∗.

Definition 12 (Circuit cover) Let x∗ be a primal optimal solution to (LP). Let i ∈ [n] and α ≥ 0.
An α-primal circuit cover of i with respect to x∗ is a set S ⊆ ker(A) which α-dominates E(A) on i
with respect to x∗.

The utility of a circuit cover is illustrated by the following lemma. Note that xm
i (0) is the

maximum of the i-th coordinate of an optimal solution.

Lemma 13 Fix i ∈ [n], and let x∗ be a primal optimal solution to (LP) such that x∗i = xm
i (0). If S is a

α-primal circuit cover of i with respect to x∗, then SLCα/n(xm
i ) ≤ |S|+ 1.

Proof: We may assume that xm
i is not constant, as otherwise SLCα/n(xm

i ) = 1. Consider the
function x̄S

i : R+ → R+ defined by x̄S
i (g) := maxh∈S x̄h

i (g). It is piecewise-linear with at most 2|S|
pieces, and its upper convex envelope has at most |S|+ 1 pieces (see Figure 2 for an example).
So, it is left to show that αxm

i /n ≤ x̄S
i ≤ xm

i . The upper bound is immediate by Definition 9. For
the lower bound, let g > 0. By Lemma 10, there exists an elementary vector h′ ∈ E(A) such that
⟨c, h′⟩ ≥ 0 and x̄h′

i (g) ≥ xm
i (g)/n. Since S is an α-primal circuit cover of i with respect to x∗, there

exists a vector h ∈ S such that ⟨c, h⟩ ≥ 0 and

x̄S
i (g) ≥ x̄h

i (g) ≥ αx̄h′
i (g) ≥ α

n
xm

i (g).

2

3 Straight line complexity in terms of the circuit imbalance measure

In this section, we show how the straight-line complexities can be bounded for (LP) in terms of
the circuit imbalance κA. Let us start with the definition of κA.
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x∗i

xmi
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i

Figure 2: An example of the curve x̄S
i , where S is a 1-primal circuit cover of i with respect to x∗.

Definition 14 (Circuit imbalances) Let A ∈ Rm×n. If ker(A) = {0n} we define the circuit imbal-
ance of A as κA = 1. Otherwise, we let

κA := max
{∣∣∣∣ hi

hj

∣∣∣∣ : h ∈ E(A) , i, j ∈ supp(h)
}

.

The circuit imbalance measure was first introduced by Vavasis [Vav94], and was first used in
the context of interior point methods by [DHNV20]. See the excellent recent survey [ENV22] for
more details.

Importantly in the context of combinatorial optimization, matrices with bounded circuit im-
balance measure provide a real analogue of integer matrices with bounded subdeterminants. In
particular, κA = 1 for any totally unimodular matrix A. We generalize this statement below:

Lemma 15 Let A ∈ Zm×n with rank(A) ≥ 1. Let ∆ ≥ 1 be an upper bound on the absolute value of the
determinant of any square submatrix of A. Then κA ≤ ∆.

Proof: Let x ∈ E(A). We wish to bound |xi/xj| for i, j ∈ support(x). If i = j, the statement
is trivial so assume i ̸= j. Without loss of generality, we may assume by reordering the indices
support(x) = {1, . . . , k + 1} and that i = 1 and j = k + 1. Furthermore, by replacing x by
−(x/xk), we may assume that xk = −1. From here, our goal is to upper bound |x1|. Notice now
that x satisfies:

A•,[k]x[k] = A•,{k+1},

where we use the notation A•,C to denote the submatrix induced by the columns in C ⊆ [n], and
AR,C to denote the submatrix induced by the rows R ⊆ [m] and columns in C. By assumption
that x is an elementary vector, we must have A•,[k] is non-singular. In particular, there exists a
subset R ⊆ [m], |R| = k, such that rank(AR,[k]) = k. In particular, x[k] is the unique solution to

AR,[k]x[k] = AR,{k+1},

By Cramer’s rule, we can now write

|x1| =
∣∣∣∣∣det(AR,{2,...,k+1})

det(AR,[k])

∣∣∣∣∣ ≤ ∆
1
= ∆,

where used that |det(AR,[k])| ≥ 1 for any integer non-singular matrix (recall that the determinant
of an integer matrix is integral). 2
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Theorem 16 Assume P ,D ̸= ∅ for an instance of (LP) given by (A, b, c). For each i ∈ [n], we have
SLCη(xm

i ) ≤ min{m, n − m}+ 1 for η = 1/(n2κ2
A). Moreover, with β = 1/6, the Trust-Region IPM

requires at most O(n1.5 min{m, n − m} log(nκA)) iterations to solve (LP).

We recall that the Trust-Region IPM in Theorem 2 requires a feasible initial point. Un-
fortunately, in the present context, the homogeneous self-dual initialization does not preserve
condition measure κ. More care is thus required to correctly initialize the system. The interested
reader may consult [DKN+24] for the details on how to handle initialization in this setting.

Notwithstanding initialization, Theorem 16 provides an algorithm for solving linear pro-
grams in a number of arithmetic operations that only depends on the complexity of the constraint
matrix (and not on the complexity of b or c). Such a result was first achieved by Tardos [Tar86] for
integer matrices, and later by Vavasis and Ye [VY96] for real matrices using a condition measure
that is roughly equivalent to κA (see [DHNV20] for a discussion).

Using the tool of straight line complexity, we now give a simple proof of Theorem 16 by con-
structing a small circuit cover for each coordinate of the max central path. Combining Lemma 13
and Theorem 2, Theorem 16 will follow directly from the circuit cover construction given below.

Lemma 17 (SLC Circuit Cover) Fix k ∈ [n] and let x∗ be a primal optimal solution to (LP) with
x∗k = xm

k (0). Then, there exists an 1/(nκ2
A)-primal circuit cover S of k with respect to x∗ with |S| ≤

min{m, n − m}+ 1.

Proof: Let us denote κ = κA. We can clearly pick the primal optimal solution x∗ as in the
statement to be a basic solution. let s∗ be any dual basic optimal solution. Thus, supp(x∗) ≤ m
and supp(s∗) ≤ n − m. By the complementarity of x∗ and s∗, we can reorder the index set
such that x∗1 ≥ x∗2 ≥ · · · ≥ x∗n and s∗1 ≤ s∗2 ≤ · · · ≤ s∗n. Let p := max{i ∈ [n] | x∗i > 0} and
d := min{i ∈ [n] | s∗i > 0}. Clearly, p < d. By the basic choice of x∗ and s∗, p ≤ m and
d ≥ n − m + 1.

We now construct the circuit cover S of k. Note that for any circuit C ∈ C(A) and any
elementary vector h ∈ E(A) such that ⟨c, h⟩ ≥ 0 and supp(h) = C, the h-curve x̄h is the same.
Given a circuit C ∈ C ′, we define hC ∈ E(A) as a fixed elementary vector with supp(hC) = C
normalized such that hk ∈ {0, 1}. Further, let

C ′ := {C ∈ C(A) | hC
k = 1 , hC

j ≥ 0 ∀p < j ≤ n} .

Note that if C ′ = ∅ then Lemma 10 implies xm
k (g) = xm

k (0) for every g ≥ 0 and hence SLC1(xm
k ) =

1. For the rest, we assume C ′ ̸= ∅.
We will define the cover S in terms of the support circuits. As the first step, let us define a

‘combinatorial signature’ of circuits. Given a circuit C ∈ C ′, let

Ip(C) := max{1 ≤ i ≤ p | hC
i < 0} and Id(C) := max{d ≤ j ≤ n | hC

j > 0}.

We define Ip(C) = 0 if the first set is empty and Id(C) = 0 if the second set is empty. We say that
a circuit C ∈ C ′ is dominated if there exists a circuit C′ ∈ C ′ such that

Ip(C) ≥ Ip(C′) and Id(C) ≥ Id(C′) ,

and at least one of the two inequalities above is strict. Let D ⊆ C ′ be a maximal collection of
undominated circuits with distinct (Ip(C), Id(C)), and define

S := {hC | C ∈ D} .
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Clearly, |S| = |D| ≤ min(p + 1, n − d + 2) ≤ min{m, n − m}+ 1. We show that S is an 1/(nκ2)-
circuit cover of i with respect to x∗.

To see this, consider any h ∈ E(A). If hk ≤ 0 or if hj < 0, p < j ≤ n, then x̄h
k (g) ≤ x∗k , for

g ≥ 0. Hence, x̄h is 1-dominated by every h′ ∈ S. Therefore, we may assume that hk > 0 and
h[p+1,n] ≥ 0[p+1,n]. In particular, by renormalizing so that hk = 1, we may assume that h ∈ C ′.

By definition, there is a C′ ∈ D such that Ip(C) ≥ Ip(C′) and Id(C) ≥ Id(C′). For h = hC and
h′ = hC′

, our goal is to show that

x̄h
k (g) ≤ nκ2 x̄h′

k (g) ∀g ≥ 0 . (7)

Let i′ = Ip(C′) ≤ Ip(C) = i and j′ = Id(C′) ≤ Id(C) = j. By the definition of κ = κA, we have

1
κ
≤ |hℓ|, |h′ℓ| ≤ κ , ∀ℓ ∈ [n] . (8)

Using hk = h′k = 1, we can write

x̄h
k (g) = x∗k + min

(
g

⟨s∗, h⟩ , min
ℓ∈supp−(h)

x∗ℓ
|hℓ|

)
and x̄h′

k (g) = x∗k + min
(

g
⟨s∗, h′⟩ , min

ℓ∈supp−(h′)

x∗ℓ
|h′ℓ|

)
.

We show that 〈
s∗, h′

〉
≤ nκ2 ⟨s∗, h⟩ and min

ℓ∈supp−(h)

x∗ℓ
|hℓ|

≤ nκ2 min
ℓ′∈supp−(h′)

x∗ℓ′
|h′ℓ′ |

. (9)

Let us start by showing the first inequality. If j′ = 0, then ⟨s∗, h′⟩ = 0 and this trivially holds.
Otherwise, by the definition of j = Id(C) ≥ j′ = Id(C′) ≥ d and using (8), we get

〈
s∗, h′

〉
≤

j′

∑
ℓ=d

s∗ℓh′ℓ ≤ nκs∗j′ ≤ nκ2s∗j hj ≤ nκ2 ⟨s∗, h⟩

whenever j′ ≥ d; the last inequality follows since hℓ ≥ 0 for all ℓ > p since C ∈ C ′.
Let us now verify the second inequality in (9). Let ℓ and ℓ′ denote the minimizers, respectively.

Since C ∈ C ′, it follows that either i = 0, that is, supp−(h) = ∅ or 1 ≤ ℓ ≤ i = Ip(C); similarly
for h′. If i′ = 0 then the expression for h′ is ∞. Hence, we can assume 1 ≤ ℓ′ ≤ i′ ≤ i. We get

xℓ′
|hℓ′ |

≥ xℓ′
κ

≥ xi

κ
≥ 1

κ2 · xi

|hi|
≥ 1

κ2 ·
x∗ℓ
|hℓ|

,

where the first inequality uses (8); the second inequality uses ℓ′ ≤ i and the ordering of the
indices; the third inequality uses again (8); and the last inequality uses the choice of ℓ as the
minimizer, noting that hi < 0. 2

References

[ABGJ18] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Log-
barrier interior point methods are not strongly polynomial. SIAM Journal on Applied
Algebra and Geometry, 2(1):140–178, 2018.

11



[ADL+22] Xavier Allamigeon, Daniel Dadush, Georg Loho, Bento Natura, and László A Végh.
Interior point methods are not worse than simplex. In 2022 IEEE 63rd Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 267–277. IEEE, 2022.

[DHNV20] Daniel Dadush, Sophie Huiberts, Bento Natura, and László A Végh. A scaling-
invariant algorithm for linear programming whose running time depends only on
the constraint matrix. In Proceedings of the 52nd Annual ACM Symposium on Theory of
Computing (STOC), pages 761–774, 2020.

[DKN+24] Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, and László A Végh. A
strongly polynomial algorithm for linear programs with at most two nonzero entries
per row or column. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 1561–1572, 2024.

[ENV22] Farbod Ekbatani, Bento Natura, and László A Végh. Circuit Imbalance Measures and
Linear Programming, page 64–114. London Mathematical Society Lecture Note Series.
Cambridge University Press, 2022.

[Ful68] DR Fulkerson. Networks, frames, blocking systems. Mathematics of the Decision Sci-
ences, Part I, Lectures in Applied Mathematics, 2:303–334, 1968.

[Roc69] R. Tyrrell Rockafellar. The elementary vectors of a subspace of RN . In Combinato-
rial Mathematics and Its Applications: Proceedings North Carolina Conference, Chapel Hill,
1967, pages 104–127. The University of North Carolina Press, 1969.

[Tar86] Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research, pages 250–256, 1986.

[Vav94] Stephen A Vavasis. Stable numerical algorithms for equilibrium systems. SIAM Jour-
nal on Matrix Analysis and Applications, 15(4):1108–1131, 1994.

[VY96] Stephen A. Vavasis and Yinyu Ye. A primal-dual interior point method whose run-
ning time depends only on the constraint matrix. Mathematical Programming, 74(1):79–
120, 1996.

12


	The Maximum Central Path
	The Max Central Path and The Simplex Method
	Duality of the Max Central Path

	Straight line Complexity and Circuits
	Straight line complexity in terms of the circuit imbalance measure

