
Fast, Deterministic and Sparse Dimensionality Reduction∗.

Daniel Dadush †1, Cristóbal Guzmán ‡2, and Neil Olver 1,3

1Centrum Wiskunde & Informatica, The Netherlands
2Pontificia Universidad Católica de Chile, Chile
3Vrije Universiteit Amsterdam, The Netherlands

Abstract

We provide a deterministic construction of the sparse Johnson-Lindenstrauss transform of Kane & Nelson
(J.ACM 2014) which runs, under a mild restriction, in the time necessary to apply the sparse embedding matrix to
the input vectors. Specifically, given a set of n vectors in Rd and target error ε, we give a deterministic algorithm to
compute a {−1, 0, 1} embedding matrix of rank O((lnn)/ε2) with O((lnn)/ε) entries per column which preserves
the norms of the vectors to within 1± ε. If NNZ, the number of non-zero entries in the input set of vectors, is Ω(d2),
our algorithm runs in time O(NNZ · lnn/ε).

One ingredient in our construction is an extremely simple proof of the Hanson-Wright inequality for subgaussian
random variables, which is more amenable to derandomization. As an interesting byproduct, we are able to derive
the essentially optimal form of the inequality in terms of its functional dependence on the parameters.

1 Introduction

Dimensionality reduction is an important and widely used technique in areas such as computer science, optimization
and machine learning. Arguably, the most important result in dimensionality reduction is the (distributional) Johnson-
Lindenstrauss (J-L) Lemma.

Lemma 1.1 ([20]). Let d be any positive integer, and let ε, δ ∈ (0, 1/2). Then there exists a random m× d matrix Π,
with m = Θ(ε−2 ln(1/δ)), such that for any v ∈ Rd,

P
(
(1− ε)‖v‖22 ≤ ‖Πv‖22 ≤ (1 + ε)‖v‖22

)
≥ 1− δ.

In particular, a union bound implies that for any set V of n vectors in Rd, there exists a linear map into Rm, where
m = Θ(ε−2 lnn), which preserves all lengths to within 1± ε.

This result lies at the heart of many state-of-the-art algorithms for problems including approximate nearest
neighbors [19], mixtures of Gaussians [12], sketching [35] and fast algorithms for numerical linear algebra [13].

It is very desirable to be able to implement the dimensionality reduction as efficiently and as conveniently as
possible, and there have been a number of works in this direction. The original construction involved projecting onto a
random subspace [20]. Indyk and Motwani [19] showed that a projection matrix consisting of i.i.d. Gaussian entries
also works, and Achlioptas [1] showed that even i.i.d. Rademacher random variables suffice, which is particularly
convenient in some applications.

All these constructions produce dense (with at best a constant fraction of zero entries), unstructured projection
matrices. Ailon and Chazelle [3] showed how to construct a projection that can be applied to a vector substantially
faster than an arbitrary projection matrix. The idea is to first apply a random Hadamard transform that can be very
∗A short version of this paper was presented at the ACM-SIAM Symposium of Discrete Algorithms (SODA18)
†Supported by the NWO Veni grant 639.071.510.
‡Partially supported by FONDECYT Iniciación project 11160939. This work was partially done during a visit to Centrum Wiskunde &

Informatica.

1

efficiently applied using the fast Fourier transform, followed by projecting by a random matrix with i.i.d. {−1, 0, 1}
entries which is very sparse. The initial Hadamard transform ensures that with high probability, the weight of the
transformed vector is well spread amongst its coordinates; this guarantees that the sparse projection is effective. A
number of other results in this direction have followed [4, 26, 5, 25, 17].

One disadvantage of these results is that while they speed up the embedding of dense vectors, they cannot exploit
sparsity of the input vectors. This motivated work of Dasgupta et al. [11], refined by Kane and Nelson [22], on choosing
projection matrices that are directly sparse. Kane and Nelson [22] achieve the same guarantees as the usual J-L Lemma,
with a projection matrix containing only O(mε) nonzero entries per column. This can be multiplied by a vector u
in time O(NNZ(u) ·mε), achieving a speedup of a factor of ε compared to multiplying u by an unstructured dense
matrix. For sufficiently low sparsity this can be faster than the construction of Ailon-Chazelle.

A second line of work has been on reducing the amount of randomness required to implement it, or eliminating it
altogether. There are two distinct threads here.

Distributional J-L with few random bits. In one thread, the goal is a distributional J-L Lemma, of the form given in
Lemma 1.1, but where the number of random bits required to describe the distribution of the random matrix Π is
as small as possible. This goal may be alongside ensuring other desirable properties of Π, such as sparsity. This
has implications to streaming applications.

Representative recent results include independent work of Kane and Nelson [22] and Meka [27] that achieve
a construction requiring O(ln d + ln(1/ε) ln(1/δ) + ln(1/δ) ln ln(1/δ)) random bits (the result of Meka is
restricted to δ = Ω(1/ poly d)). Other works include Clarkson and Woodruff [9] and Karnin et al. [24]. It is an
open question to give an explicit construction requiring O(ln d+ ln(1/δ)) bits; probabilistic arguments show
that such distributions do exist.

In independent work, Cohen, Jayram and Nelson [10] provided a simplified analysis of the sparse J-L transform
in [22], that avoids the expansion of the moments of ‖Πv‖22 − 1, as well as the intrincate combinatorics arising
from such analysis. Our work is based on the same idea of directly bounding the mgf, however our proof it is
arguably simpler (and provides a tight bound) since we also avoid decoupling.

Full input-dependent derandomization. In a second thread, the goal is true derandomization: given the input vectors
explicitly, deterministically give an embedding matrix which has low distortion on all of the input vectors. This
will be our goal. One application of these results is to derandomize approximation algorithms based on rounding
of semidefinite programs, for example, MAX-CUT.

Sivakumar [33] gives a polynomial-time derandomization based on a quite general complexity-theoretic tool
due to Nisan [28, 29]. He does not state an explicit bound on the running time. Engebretsen et al. [14] give
a derandomization that achieves a running time of O(mn(lnn + 1/ε)O(1)). This matches the time required
to project with an unstructured dense matrix, up to logarithmic factors. These logarithmic factors result from
the somewhat brute-force nature of their approach. They derandomize the version of J-L with gaussian entries
using the method of conditioned expectations. In order to do this, they fix the bits in the binary representation
of the projection matrix one at a time (with a logarithmic number of bits needed per entry), and numerically
approximate the integrals needed to evaluate various conditioned expectations.

Bhargava and Kosaraju [6] give a derandomization of J-L with {−1, 1} entries, using the method of pessimistic
estimators [31]. We also use pessimistic estimators, but as discussed below, our approach has a number of
advantages; in particular, our algorithm is faster due to the use of sparse projection matrices.

Contributions and techniques. Our main result is a full derandomization that takes time proportional to the “em-
bedding time”, i.e., the time required to apply the projection matrix to the input vectors. Moreover, we achieve this
with a sparse projection matrix: our produced matrix will have roughly mε nonzero entries per column, leading to an
embedding time of O(mεNNZ(V)).

We will generally work with the real model of computation [7], but where in addition we allow the computation
of exponentials and square roots in constant time. In order to actually implement these computations, sufficiently
accurate approximations of especially exp must be used. In Section 5.3 we discuss how known results on efficient

2

approximation of elementary functions can be used to obtain the same running time up to polylogarithmic factors in the
bit model of computation.

Theorem 1.2. Let V be a set of n ≥ d vectors in Rd, with NNZ(V) = Ω(d2), ε ∈ (0, 1) and m ≥ 12 ln(2n)/ε2. Then
in time O(mεNNZ(V)), a matrix Π ∈ Rm×d can be found, with dmεe nonzero entries per column, for which

(1− ε)‖v‖22 ≤ ‖Πv‖22 ≤ (1 + ε)‖v‖22 ∀v ∈ V.

This matches the result of Kane and Nelson [22] for the important case NNZ(V) ≥ d2, both with respect to the
size and sparsity of the resulting projection matrix, and in terms of the time required to project the vectors. (We also
match their result in full generality, except we do not obtain the desired running time.)

Broadly speaking, our approach is based on the use of pessimistic estimators. A pessimistic estimator is nothing
more than a quantity that upper bounds the failure probability of an event under some distribution. In this method, one
begins with a distribution for which the event occurs with nonzero probability, and iteratively specifies the random
variables in such a way that the chosen pessimistic estimator never increases. If this can be done, the event must occur
in the final deterministic result with positive probability, and hence probability one. This is a standard technique, but the
challenge is to find an appropriate pessimistic estimator that can be updated fast enough for our purposes, and behaves
well (is concave in an appropriate sense) under updates. In this respect, our approach is similar to that of Bhargava and
Kosaraju [6]. The main advantage of our result is that we obtain an O(ε) speedup attributable to the sparsity of the
projection matrix. Moreover the pessimistic estimators that we use are rather natural, coming from moment generating
functions associated with Gaussian random variables.

In order to obtain a sparse projection matrix, we adapt the arguments of Kane and Nelson [23] for obtaining a
random sparse projection matrix. Their approach has two parts; the first produces a (random) sparsity pattern, describing
which entries of the projection matrix will be nonzero; the second chooses the signs for these entries (in their case, i.i.d.
Rademachers). We derandomize both of these steps separately, using the method of pessimistic estimators.

• For the sparsity pattern (mask) of the matrix, Kane and Nelson choose, for each column independently, precisely
s nonzero entries uniformly at random, where s = Θ(mε). Thus their sampling procedure involved dependence
amongst the entries in a column, and indeed this is crucial. They argue via negative dependence to obtain the
required concentration bounds.

Although our final algorithm eschews its use in order to run as quickly as possible, our derandomization is inspired
by pipage rounding [2, 34], a general rounding technique for rounding a fractional point in the base polytope of a
matroid to a vertex. The relevant matroid in our case is the partition matroid, where we must choose precisely s
entries per column; in fact, we later use a more refined partition matroid to obtain our claimed running time. We
begin with an initial uniform fractional point, which corresponds to the uniform distribution over sparsity patterns
with s nonzero entries per row; the final, integral, output from the pipage rounding procedure corresponds to a
deterministic choice of a mask. Harvey and Olver [16] suggest how pipage rounding can be combined with the
use of pessimistic estimators, as long as the pessimistic estimator is well-behaved (more precisely, concave in the
directions relevant to the pipage rounding scheme). Our pessimistic estimator, which is essentially the moment
generating function after an application of Hölder’s inequality, satisfies these requirements.

We have to be very efficient in order to obtain the desired running time: for example, if ε� 1/NNZ(V) then the
number of entries md in the projection matrix is larger than the desired running time mεNNZ(V). We adapt
an approach proposed by Kane and Nelson [23] (they named it the code construction). For n ≥ d, there is a
“universal” sparsity pattern that satisfies the required properties and depends only on the size of the projection
matrix and not on the input vectors. The requirements of this universal sparsity pattern turn out to be convenient
when it comes to updating the pessimistic estimator quickly.

• In order to show that randomly signing the chosen nonzero entries works, Kane and Nelson use the Hanson-
Wright inequality [15] on a matrix determined by the mask. This inequality provides concentration of a quadratic
form zTAz, where z is a random vector with independent subgaussian entries, in terms of parameters of the
matrix A.

3

We thus proceed by providing a derandomized version of the Hanson-Wright inequality (to our knowledge, the
first such). Existing proofs of the inequality do not seem to yield pessimistic estimators that can be quickly
evaluated. We give a simpler proof, based on, but simplifying, a proof of Rudelson and Vershynin [32], that is
very convenient for our purposes. The crucial idea is that the moment generating function of the quadratic form
can be bounded in terms of the moment generating function of gTAg, where g is Gaussian, which can be handled
much more easily. Further work is needed once again to get the desired running time of O(mε ·NNZ(V)) and
for this we exploit some of the structure of the specific matrix obtained in the application of the Hanson-Wright
inequality to dimension reduction.

If NNZ(V) = o(d2), we can still obtain the indicated sparse projection matrix, but with running timeO(m(NNZ(V)+
d)). The second term is comparable to the time required to even write down the projection matrix, and so is quite
justified. But we do not obtain an improvement over just using a dense projection matrix. The difficulty comes in the
selection of the sparsity pattern (Section 4.2); if this can be improved to time O(s(NNZ(V) + d)) then the existing
algorithm for choosing the signs is sufficiently fast.

As a further implication of our simplified proof of the Hanson-Wright inequality, we are able to substantially
sharpen it, and give essentially the correct functional dependence on the parameters. We think that this is of independent
interest.

The paper is structured as follows. In Section 2 we introduce our notation and some preliminary results. In
Section 3 we present our new Hanson-Wright inequality, together with its proof, and the proposed pessimistic
estimators for derandomizing this inequality. In Section 4 we exploit the connection between Hanson-Wright and
Johnson-Lindenstrauss dimensionality reduction to obtain pessimistic estimators for the latter: this includes the signing
algorithm (Section 4.1) and the masking algorithm (Section 4.2), which can be analyzed separately. In Section 5
we focus on efficient computation of the various pessimistic estimators we use; in particular, for the Hanson-Wright
inequality in general (Section 5.1), and for the signing (Section 5.2) and masking (Section 5.4) components of our
new fast deterministic algorithm for sparse J-L. Finally, in Section 6, we discuss further technical aspects of our sharp
Hanson-Wright inequality.

2 Notation and Preliminaries

We denote the natural logarithm by ln. Random variables are denoted by bold characters. For any positive integer k, [k]
denotes the set {1, 2, . . . , k}.

Given a matrix A, we use ‖A‖op and ‖A‖F to denote the operator and Frobenius norms, respectively. Given two
vectors u, v in the same vector space, 〈u, v〉 denotes the standard inner product. Given two matrices (or vectors), their
Hadamard product corresponds to the component-wise multiplication, and this operation is denoted by �. The direct
sum,

⊕k
i=1Ai, is used to denote a block diagonal matrix with blocks A1, . . . , Ak. Given a matrix A, Diag(A) is the

diagonal matrix that coincides with A on the diagonal. Given a vector v, Diag(v) is a diagonal matrix with diagonal
coefficients from v. We denote by supp(A) the support of A, where A may be a vector or matrix. Given a vector
u ∈ Rk and S ⊆ [k], uS ∈ R|S| denotes the restriction of u to the coordinates in S. Similarly, given M ∈ Rk×k and
S, T ⊆ [k], MS,T denotes the submatrix of M indexed by rows S and columns T .

The following well-known result allows to obtain fast computation of the determinant for a rank one perturbation
of a matrix.

Lemma 2.1. Let A ∈ Rk×k be an invertibe matrix, and u, v ∈ Rk vectors, then

1. Matrix determinant lemma: det(A+ uvT) = det(A) · (1 + vTA−1u).

2. Sherman-Morrison formula: (A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

We record the following simple inequalities regarding the logarithm.

Lemma 2.2. For x ≥ 0,

4

1. ln(1 + x) ≤ x
2 + x

2(1+x) .

2. ln(1 + x) ≥ x
x+1 .

3. x ln(1 + 1/x) is increasing.

Proof.

Proof of 1. Note that ln(1 + x) and x
2 + x

2(1+x) are equal at x = 0, so it suffices to compare derivatives. In particular,
we must show that 1

1+x ≤
1
2 + 1

2(1+x) −
x

2(1+x)2
. Multiplying through by 2(1 + x)2 and rearranging, this inequality is

equivalent to x2 ≥ 0, which is clearly true.

Proof of 2.

ln(1 + x) = ln

(
1

1− x
x+1

)
≥ ln

(
1

e−
x
x+1

)
=

x

x+ 1
,

where the first inequality follows from the inequality 1 + y ≤ ey applied to y = − x
x+1 .

Proof of 3. Taking the derivative, we must show that ln(1 + 1/x)− 1/x
1+1/x > 0 for x > 0. Replacing x by 1/x, this

is equivalent to ln(1 + x) > x
1+x , which follows from part 2.

We consider an ambient space Rd where our set of n input vectors V lie. Given ε > 0 and a matrix Π ∈ Rm×d we
will say it is a low-distortion projection for V if for all v ∈ V

(1− ε)‖v‖22 ≤ ‖Πv‖22 ≤ (1 + ε)‖v‖22.

Given such a projection matrix Π we say its column sparsity is s if for all columns it has at most s nonzero coordinates.
We recall the definition of the moment generating function (mgf) of a random variable x, ψx(λ) = Ex[eλx]. Given

two real-valued random variables y, z on the same probability space, we write y �m z if ψy(λ) ≤ ψz(λ) for all
λ ∈ R.

A random variable x is defined to be ν-subgaussian, ν > 0, if x �m z where z ∼ N (0, ν2), namely E[eλx] ≤
eλ

2ν2/2 ∀λ ∈ R. It is well known that up to a constant factor in the parameter, the above is equivalent to x being
centered, E[x] = 0, and having subgaussian tails P[|x| ≥ νt] ≤ 2e−t

2/2 ∀t ≥ 0. The former definition will however
be more convenient for our purposes.

We recall that Rademacher random variables (i.e. uniform on {−1, 1}) are 1-subgaussian.

Lemma 2.3. For x Rademacher and λ ∈ R, E[eλx] ≤ eλ2/2.

Proof. By taking the power series expansion of ex, we get

E[eλx] =
1

2
(eλ + e−λ) =

∞∑
k=0

λ2k

(2k)!
≤
∞∑
k=0

λ2k

2kk!
= eλ

2/2 .

The following formula, which comes from direct computation, will be frequently used.

Lemma 2.4. Let z be a standard Gaussian. Then for any α ∈ [0, 1/2) and β ∈ R

Ez[exp
(
αz2 + 2βz

)
] =

1√
1− 2α

exp

(
2β2

1− 2α

)
.

5

Proof.

Ez[exp
(
αz2 + 2βz

)
] =

1√
2π

∫ ∞
−∞

eαx
2+2βxe−x

2/2dx

= e
2β2

1−2α · 1√
2π

∫ ∞
−∞

e−(1−2α)(x− 2β
1−2α

)2/2dx

= e
2β2

1−2α · 1√
2π

∫ ∞
−∞

e−(1−2α)x2/2dx

= e
2β2

1−2α · 1√
1− 2α

· 1√
2π

∫ ∞
−∞

e−x
2/2dx

= e
2β2

1−2α · 1√
1− 2α

.

3 The Hanson-Wright Inequality and Derandomization

We state below the Hanson-Wright inequality in the form described by Rudelson and Vershynin [32], restricting
ourselves to the case of zeros on the diagonal, as this case suffices for dimensionality reduction. It is well known
that the general case can be handled by separately analyzing the contribution of diagonal terms, which can be easily
bounded as a sum of independent random variables.

Theorem 3.1 (Hanson-Wright [15, 32]). Let x1, . . . ,xk be independent ν-subgaussian random variables, and let
A = (aij) ∈ Rk×k be a symmetric matrix with aii = 0 for all i ∈ [k]. Then there exists a universal constant CHW > 0
so that for every t > 0,

P(xTAx > ν2t) ≤ exp
(
−CHW min

{
t2

‖A‖2F
, t
‖A‖op

})
.

As one of our contributions, we give a simple proof that provides an essentially sharp version of this result. The
bound we achieve is stated below.

Theorem 3.2 (Sharp Hanson-Wright). Under the conditions of Theorem 3.1,

P(xTAx > ν2t) ≤ exp
(
−1

2

(
t

‖A‖op
− ‖A‖

2
F

‖A‖2op
· ln(1 + t

‖A‖op

‖A‖2F
)
))

. (3.1)

To prove this result, our main new and simple observation is that the moment generating function of the quadratic
form xTAx only gets larger when the entries of x are replaced by corresponding Gaussians. We then derive (3.1) by
computing an essentially optimal bound on the moment generating function for Gaussian entries as a function of the
operator and Frobenius norm. The theorem is therefore optimal with respect to the Chernoff-Cramér method, and hence
we expect that it cannot in general be improved.

Comparing to the proof of Rudelson and Vershynin [32], they also reduce to the Gaussian case however with the
use of an additional “decoupling step”, which replaces the mgf by an average of mgfs obtained by restricting A to a
randomly chosen set of rows and columns. We note that decoupling weakens the achievable bound, in particular, as far
as we are aware, the best computed Hanson-Wright constant CHW using their method is 1/64 [30] whereas we achieve
1−ln(2)

2 ≈ 0.153 > 3/20 (see Section 6 for a full proof and discussion). Aside from this, decoupling leads to a more
computationally expensive pessimistic estimator from the perspective of derandomization, crucial to the context of this
paper, namely an average of many estimators (naïvely an exponential number; using pairwise independence, this can be
reduced to O(k2)) versus the single estimator provided by the proof of Theorem 3.2.

As an interesting consequence of Theorem 3.2, we give a slight quantitative improvement on the concentration
bounds given in [1] for Rademacher Johnson-Lindenstrauss projections as a function of sparsity.

Lemma 3.3. Let v ∈ Rd be a unit vector with s non-zero entries. For Π ∈ {−1, 1}m×d, an m× d random matrix with
coefficients distributed i.i.d. Rademacher, and ε > 0, we have that

max
{
P(‖Πv‖22/m ≥ 1 + ε),P(‖Πv‖22/m ≤ 1− ε)

}
≤ e−

m
2

s
s−1 (ε−ln(1+ε))

.

6

We note that this is better than the error exponent achieved by Gaussian random projections (at least for the
harder upper tail estimate) by a small but explicit s/(s− 1) factor. The proof of the lemma follows by using sparsity
dependent bounds on the operator and Frobenius norm of the relevant matrix, namely vvT −Diag(vvT), and applying
Theorem 3.2. We defer the proof of the above lemma to Section 6.

We now begin with our proof of Theorem 3.2. The crux of the proof is the following simple lemma which allows
us to compare the moment generating functions of diagonal 0 quadratic forms.

Lemma 3.4. Let y1, . . . ,yk and z1, . . . ,zk all be independent, with yi �m zi for all i. Then for a zero-diagonal
matrix A ∈ Rk×k, yTAy �m z

TAz.

Proof. It suffices to prove the lemma in the case that yi = zi for all i 6= ` for some ` ∈ [k]. The full lemma then
follows by combining the inequalities

Ez(i) [e
λ(z(i))TAz(i)] ≤ Ez(i+1) [eλ(z(i+1))TAz(i+1)

],

where z(i)
j = zj for i ≤ j and z(i)

j = yj for j > i. For λ ∈ R, we have that

E[eλy
TAy] = Ey1,...,yke

λ
∑
i,j aijyiyj

= Eyr:r 6=`
[
Ey`e

λ(y`
∑
i6=`(ai`+a`i)yi+

∑
i6=j 6=` aijyiyj)

]
(since a`` = 0)

≤ Eyr:r 6=`
[
Ez`e

λ(z`
∑
i 6=`(ai`+a`i)yi+

∑
i 6=j 6=` aijyiyj)

]
(by y` �m z`)

= Ezr:r 6=`
[
Ez`e

λ(z`
∑
i 6=`(ai`+a`i)zi+

∑
i 6=j 6=` aijzizj)

]
= Ez1,...,zk [eλz

TAz].

This result allows us to replace all subgaussian variables by Gaussians.

Corollary 3.5. Under the assumptions of Theorem 3.1,

xTAx �m ν2gTAg,

where g is a standard k-dimensional Gaussian random vector.

Given the above, to be able to apply the Chernoff bound it suffices to get strong bounds on the moment function of
gTAg. We recall the form of the mgf below. Let µ1 ≥ · · · ≥ µk denote the eigenvalues of A. For λ ∈ R, |λ| < 1

2‖A‖op
,

E[exp(λgTAg)] = E
[
exp
(k∑
i=1

λµig
2
i

)]
(by rotational symmetry of the Gaussian)

=
k∏
i=1

(1− 2λµi)
−1

2 (by Lemma 2.4)

= det(I − 2λA)−1/2.

(3.2)

From here, computing an optimal mgf bound corresponds to finding the minimum value of the determinant
det(I − 2λA) subject to fixed upper bounds on ‖A‖op and ‖A‖F . In the following lemma, we give a bound on this
problem which is optimal in the asymptotic regime, i.e., for k →∞, under the condition that ‖A‖2op evenly divides
‖A‖2F . We defer the proof to Section 6.

Lemma 3.6 (Determinant Lower Bound). For 0 ≤ α < 1, β ≥ α, we have that

inf{det(I −M) : M ∈ Rk×k symmetric,Mii = 0 ∀i ∈ [k], k ∈ N, ‖M‖op ≤ α, ‖M‖F ≤ β}

≥ (1− α)β
2/α2

exp(β2/α), (3.3)

where equality is attained when β2/α2 is an integer.

7

Applying the above lemma to the matrix M = 2λA, we get the following mgf bound:

E[exp(λgTAg)] = det(I − 2λA)−1/2 ≤ exp(−λ ‖A‖
2
F

‖A‖op −
1
2
‖A‖2F
‖A‖2op

ln(1− 2λ‖A‖op)). (3.4)

Using the above bound with the Chernoff-Cramér method, we obtain Theorem 3.2. We state it in the following form for
future reference.

Lemma 3.7. Under the conditions of Theorem 3.1,

P(xTAx > t) ≤ inf
λ>0

e−λt · E[exp(λgTAg)] ≤ exp
(
−1

2

(
t

‖A‖op
− ‖A‖

2
F

‖A‖2op
· ln(1 + t

‖A‖op

‖A‖2F
)
))

.

Proof. By homogeneity, it suffices to prove the claim when x is 1-subgaussian. We have that

P(xTAx > t) ≤ inf
λ>0

P
(
exp(λxTAx) > exp(λt)

)
≤ inf

λ>0
E[exp(λxTAx)] exp(−λt)

≤ inf
λ>0

e−λt · E[exp(λgTAg)] (by Corollary 3.5)

≤ inf
0<λ<1/(2‖A‖op)

e−λt · det(I − 2λA)−1/2

≤ inf
0<λ<1/(2‖A‖op)

exp
(
− λ(t+

‖A‖2F
‖A‖op)− 1

2
‖A‖2F
‖A‖2op

ln(1− 2λ‖A‖op)
)

(by (3.4))

= exp
(
−1

2

(
t

‖A‖op
− ‖A‖

2
F

‖A‖2op
· ln(1 + t

‖A‖op
‖A‖2F

)
))

.

The last equality follows by setting

λ =
1

2

t

‖A‖op(t+ ‖A‖2F /‖A‖op)
, (3.5)

which is a minimizer since the function in the exponent is convex and this choice sets the derivative to zero.

3.1 Derandomization of Hanson-Wright

As opposed to other approaches for the Hanson-Wright inequality, our proof can be easily derandomized. For this
we will restrict ourselves to the Rademacher case, where x is an n-dimensional vector of i.i.d. Rademacher random
variables, so all components are 1-subgaussian. The derandomization is based on using the Gaussian mgf as a
pessimistic estimator, and then exploiting the concavity of the mgf in order to fix the coordinates of x one by one,
ensuring that the estimator does not increase.

For any r = 0, . . . , k and σ ∈ {−1, 1}r, let D(σ) denote the distribution of a random vector in Rk whose i-th
coordinate is deterministically σi for i ≤ r, and an independent Rademacher for i > r; this describes a partial fixing
of the variables xi. Define G(σ) similarly, except that for all i > r, the i-th coordinate is an independent standard
Gaussian.

Our pessimistic estimator will be

Φ(σ) := e−λt · Eg∼G(σ) exp(λgTAg). (3.6)

By Lemma 3.7,
Px∼D(∅)(x

TAx > t) ≤ Φ(∅),

and moreover if we choose λ optimally, Φ(∅) < 1 whenever the probability bound guaranteed by Theorem 3.2 is itself
below 1.

All that remains is to confirm that Φ has the required concavity properties to be usable as a pessimistic estimator.

Lemma 3.8. Let 0 ≤ r < k and σ ∈ {−1, 1}r. Let σ− = (σ,−1) and σ+ = (σ, 1). Then

Φ(σ) ≥ 1
2(Φ(σ−) + Φ(σ+)).

8

Proof. Let y ∈ Rk be a random vector where yr+1 is an independent Rademacher, yi = σi for i ≤ r, and yi is an
independent standard Gaussian for i > r + 1. Define z ∈ Rk identically, except that zr+1 is an independent standard
Gaussian. Notice that

1
2(Φ(σ−) + Φ(σ+)) = e−λt · Eyr+1

[
Eyi:i 6=r+1[eλy

TAy]
]

≤ e−λt · Ez[eλz
TAz] by Lemma 3.4

= Φ(σ).

The algorithm (modulo computation of the pessimistic estimator) is now straightforward. We sequentially choose
signs σ1, . . . , σk, in such a way that at every step we choose the σi ∈ ±1 so that the pessimistic estimator does not
increase. So we obtain σ ∈ {−1, 1}k with Φ(σ) < 1, which immediately implies that σTAσ ≤ t.

All that remains is to check that we can actually compute Φ; we postpone this to Section 5.1.

4 Derandomizing Sparse J-L via Pessimistic Estimators

Kane and Nelson [21, 23] demonstrated how sparse dimensionality reduction follows from the Hanson-Wright inequality.
Here we will give a different proof of their randomized result, following the framework that they lay out, and show
how this can be easily derandomized using pessimistic estimators derived naturally from the moment-generating
functions that we use in our proof. The only aspect we will not yet discuss is the efficient computation of the pessimistic
estimators, which will follow in Section 5.

We will assume from now on that ‖v‖ = 1 for all v ∈ V ; this is clearly without loss of generality. Recall that
m ≥ 12 ln(2n)/ε2. We will assume for simplicity that mε is an integer, so our goal is a projection matrix with s := mε
nonzero entries per column. More precisely, we will use a J-L matrix with the following form:

Π =
1√
s

(δrjσrj)r∈[m],j∈[d].

Here, ∆ := (δrj)r,j is a masking 0-1 matrix, and its role is to sparsify the projection; and Σ := (σrj)r,j is a ±1 matrix,
which (with proper scaling) can be seen as a standard (Rademacher) projection matrix. Notice that due to the masking
most σrj’s will not be used at all in the final projection (nor in the algorithm), but keeping them makes the analysis
cleaner.

The Kane-Nelson analysis, and ours as well, breaks into two parts. One is the choice of mask matrix ∆, which will
be required to satisfy certain properties. The other is the choice of the sign matrix Σ once ∆ has been determined. We
discuss each of these parts separately.

4.1 The sign matrix

For the moment, let ∆ be a given, deterministic 0-1 matrix; we will elucidate what properties we require from it. Let
δr denote the r’th row of ∆, and for v ∈ V let

Av =
1

s

m⊕
r=1

[Br,v −Diag(Br,v)],

with Br,v = (δr � v)(δr � v)T. So each block of Av is a symmetric rank-1 matrix less its diagonal.

Definition 4.1. We say that ∆ ∈ {0, 1}m×d is a good mask matrix if

(i) each column of ∆ has precisely s nonzero entries; and

(ii) for each v ∈ V , the resulting Av satisfies

‖Av‖op ≤
1

s
and ‖Av‖2F ≤

2

m
.

9

The rationale for this definition will become clear shortly. So suppose ∆ is a good matrix. Let σ ∈ Rmd be a
vectorized version of Σ, obtained by concatenating its rows. Then for any input vector v ∈ V ,

‖Πv‖22 − 1 =
1

s

m∑
r=1

(d∑
j=1

δrjσrjvj

)2
− 1 =

1

s

∑
r

∑
j 6=k

δrjδrkσrjσrkvjvk +
1

s

∑
r

∑
j

δrjv
2
j − 1

= σTAvσ +
∑
j

(1

s

∑
r

δrj

)
v2
j − 1

= σTAvσ.

The final step uses that ∆ has precisely s nonzero entries per column, and that each v ∈ V is a unit vector.
Let the entries of Σ be i.i.d. Rademachers. Then we obtain by Hanson-Wright (Theorem 3.2) and a union bound

that
P
(
∃v ∈ V :

∣∣‖Πv‖22 − 1
∣∣ > ε

)
≤ 2n · exp

(
−1

2

(
ε

‖Av‖op
− ‖Av‖

2
F

‖Av‖2op
· ln
(
1 + ε

‖Av‖op

‖Av‖2F

)))
≤ 2n exp

(
−1

2

(
εs− 2εs ln(1 + 1/2)

))
< 2n exp(−ε2m/12)

≤ 1.

(4.1)

Existence of a good sign matrix, being a positive probability event, is thus guaranteed. The rationale for the definition
of a good mask matrix should now be apparent.

Derandomization

Since the argument for the existence of a good choice of Σ (given a mask matrix with the desired properties) was
nothing more than an application of Hanson-Wright, the derandomization used in Section 3.1 applies. Our pessimistic
estimator is simply

Φ(σ) :=
∑
v∈V

(
Φ+
v (σ) + Φ−v (σ)

)
,

where Φ+
v (σ) = e−λε · Eg∼G(σ) exp{λgTAvg} and Φ−v (σ) = e−λε · Eg∼G(σ) exp{−λgTAvg}, are pessimistic

estimators for the events xTAvx > ε and xTAvx < −ε, respectively. We set λ optimally according to (3.5), with
‖A‖op = 1/s and ‖A‖2F = 2/m, which leads to λ = s/6. We have already seen in (4.1) that under the conditions of
Theorem 1.2, this ensures that Φ(∅) < 1. By Lemma 3.8, for each v ∈ V

Φ+
v (σ) ≥ 1

2(Φ+
v (σ−) + Φ+

v (σ+))

(and similarly for Φ−v). Thus
Φ(σ) ≥ 1

2(Φ(σ−) + Φ(σ+)),

and once again we can sequentially choose signs (of course, we only need to consider entries in the support of ∆) until
we obtain some σ ∈ {−1,+1}supp(∆) for which Φ(σ) < 1. This implies that

‖Πv‖22 − 1 = σTAvσ ∈ [−ε,+ε] ∀v ∈ V.

In order to implement this algorithm, we need to be able to compare Φ(σ+) with Φ(σ−). We postpone the
discussion of how to do this efficiently (in time comparable to applying the sparse projection) to Section 5.2.

4.2 The mask matrix

To show the existence of a good mask matrix, we follow a randomized block construction of Kane and Nelson [23].
They partition the rows into s parts of size m/s = 1/ε (for simplicity, we will assume that 1/ε is an integer): so let
B1 = {1, 2, . . . , 1/ε}, B2 = {1/ε+ 1, . . . , 2/ε}, etc. For any column j and any q, we call the entries in column j and
rows in Bq the entries of block (q, j). The distribution Kane and Nelson choose is that for each block, a single 1 entry

10

is chosen uniformly at random, with each block being chosen independently. Clearly this yields a random matrix ∆
that always has precisely s nonzero entries per column. The main difficulty in showing that ∆ is a good mask matrix
with some positive probability is bounding the Frobenius norm. Kane and Nelson do this by controlling its moments:
the moments of

‖Av‖2F =
1

s2

∑
j 6=k

qjkv
2
j v

2
k, (4.2)

where qjk :=
∑

r∈[m] δrjδrk is the number of entries that column j and k have in common. The difficulty of bounding
the moments of ‖Av‖2F comes precisely from the fact that the qjk’s are not independent. However, it is easy to see
these variables are negatively associated, and they exploit this fact to bound the moments as if these variables were
independent. We do this differently in order to provide a convenient pessimistic estimator.

Let us begin by bounding the operator norm of Av; this requires nothing more than the block structure of Av, and
holds surely.

‖Av‖op =
1

s
· max
r∈[m]

∥∥∥(δr � v)(δr � v)> −Diag((δr � v)(δr � v)>)
∥∥∥

op

≤ 1

s
· max
r∈[m]

max
{
‖(δr � v)(δr � v)>‖op, ‖Diag((δr � v)(δr � v)>)‖op

}
≤ 1

s
· max
r∈[m]

max
{
‖δr � v‖22,max

j∈[d]
v2
j

}
≤ 1

s
,

where the first inequality holds because ‖M − N‖op ≤ max{‖M‖op, ‖N‖op} when M and N are both positive
semidefinite.

Now we consider ‖Av‖2F . For any γ > 0 we have

P
(
‖Av‖2F /2 > t

)
= P

(1

2s2

∑
r∈[m]

∑
j 6=k

δrjδrkv
2
j v

2
k > t

)
= P

(1

s2

∑
r∈[m]

∑
j<k

δrjδrkv
2
j v

2
k > t

)

≤ e−γt · E
[

exp
{ γ
s2

∑
j<k

s∑
q=1

(∑
r∈Bq

δrjδrk
)
v2
j v

2
k

}]
= e−γt · E

[s∏
q=1

∏
j<k

exp
{ γ
s2

(∑
r∈Bq

δrjδrk
)}v2j v2k]

= e−γt ·
s∏
q=1

E
[∏
j<k

exp
{ γ
s2

(∑
r∈Bq

δrjδrk
)}v2j v2k]

, (4.3)

where in the last step we have used that by the choice of the distribution, the random variables are independent among
blocks. Now we will use the generalized Hölder inequality, noting that∑

j<k

v2
j v

2
k =

1

2

∑
j 6=k

v2
j v

2
k ≤

1

2
(
∑
j

v2
j)

2 =
1

2
, (4.4)

and hence

P
(
‖Av‖2F > 2t

)
≤ e−γt ·

s∏
q=1

∏
j<k

E
[

exp
{ γ
s2

(∑
r∈Bq

δrjδrk
)}]v2j v2k

.

Choose γ = s2 ln 2. Notice that for any j < k ∈ [d], q ∈ [s],
∑

r∈Bq δrjδrk is distributed as a Bernoulli with parameter
ε. Thus

E
[
2
∑
r∈Bq δrjδrk

]
= 1 + ε.

11

Taking a union bound over all vectors v ∈ V ,

P
(
∃v ∈ V : ‖Av‖2F > 2 · 1

m

)
≤
∑
v∈V

e−(ln 2)s2/m · (1 + ε)s·
∑
j<k v

2
j v

2
k

≤ n · e−(ln 2)ε2m · (eε)s/2 by (4.4)

< n exp
(
−ε2m/6

)
(4.5)

< 1.

Thus a good mask matrix does exist.

Derandomization

We will now derandomize this argument using pessimistic estimators. We will be interested in distributions over mask
matrices ∆ where some blocks have had the position of their single nonzero entry chosen, and some have not. We will
describe such distribution with a vector p ∈ {0, ε, 1}m×d, satisfying∑

r∈Bq

prj = 1 for each q ∈ [s], j ∈ [d]. (4.6)

For any such p, letM(p) denote the distribution of a random matrix (δrj)r∈[m],j∈[d] where P(δrj = 1) = prj , and
moreover each block is independent of the others and contains precisely a single 1. Let p(0) denote the distribution used
in the existential analysis: p(0)

rj = ε for all r ∈ [m], j ∈ [d].
Our pessimistic estimator will be Ψ(p) :=

∑
v∈V Ψv(p), where

Ψv(p) := 2−s
2t ·

s∏
q=1

∏
j<k

(
Eδ∼M(p)

[
2
∑
r∈Bq δrjδrk

])v2j v2k
.

The derivation of (4.3) did not use anything about the distribution of δ aside from the independence between blocks,
and so the argument there, combined with a union bound implies that Ψ is indeed a pessimistic estimator:

Pδ∼M(p)(∃v ∈ V : ‖Av‖2F > 2t) ≤ Ψ(p).

Moreover we have already seen that Ψ(p(0)) < 1 under the conditions of Theorem 1.2.
Our algorithm will consider the blocks one-by-one in some order, and iteratively fix the position of the single

nonzero entry in each block.

Lemma 4.2. Let p ∈ {0, ε, 1}m×d satisfy (4.6), and let q′ ∈ [s], j′ ∈ [d] be indices so that prj′ = ε for r ∈ Bq′ . Then
there exists a p′ ∈ {0, ε, 1}m×d, agreeing with p outside the block (q′, j′) but integral on the block (q′, j′), for which
Ψ(p′) ≤ Ψ(p).

Proof. We first notice that for δ ∼ M(p), and for any q ∈ [s], j 6= k, the indicator for the event that there is a
“collision” between the blocks (q, j) and (q, k), namely

cjk,q :=
∑
r∈Bq

δrjδrk

is distributed as a Bernoulli random variable with parameter ρjk,q :=
∑

r∈Bq prjprk. This only holds because
p ∈ {0, ε, 1}m×d; either both blocks are fixed, in which case the outcome is deterministic (ρjk,q ∈ {0, 1}); or at least
one is uniform (possibly both), in which case collision occurs with probability ε, which equals ρjk,q. So

E
[
2cjk,q] = (1− ρjk,q) + 2ρjk,q = 1 + ρjk,q .

12

Hence we may simplify the expression for Ψ:

Ψ(p) = 2−s
2t
∑
v∈V

s∏
q=1

∏
j<k

(1 + ρjk,q)
v2j v

2
k . (4.7)

We now consider f : [0, 1]Bq′ → R defined by

f(z) = 2−s
2t
∑
v∈V

∏
(j,k,q)∈Q

(1 + ρjk,q)
v2j v

2
k ·
∏
k 6=j′

(
1 +

∑
r∈Bq′

zr · prk
)v2

j′v
2
k
;

here, Q consists of all triplets (j, k, q) with q ∈ [s], j < k ∈ [d] except for those where q = q′ and j′ ∈ {j, k}. Let
z0 = (ε, ε, . . . , ε) ∈ [0, 1]Bq′ ; then f(z0) = Ψ(p).

Since ∑
k 6=j′

v2
j′v

2
k = v2

j′(1− v2
j′) ≤ 1/4, (4.8)

each term of f is the composition of an affine function with a function of the form y →
∏
i y
αi
i with

∑
i αi ≤ 1. Hence

f is concave. Since the extreme points of the set S = {z ∈ [0, 1]Bq′ :
∑

r∈Bq′
zr = 1} are integral, it follows that there

is a minimizer z′ of f over S which is integral. Choosing p′ to agree with z′ on block (q′, j′), we have

Ψ(p′) = f(z′) ≤ f(z0) = Ψ(p).

A universal masking

So far, our arguments have not required the condition NNZ(V) ≥ d2 (or even the mild n ≥ d). Unfortunately,
we do not know how to compute, in general, the pessimistic estimator just discussed quickly enough to obtain the
linear running-time required for Theorem 1.2: By direct application of Lemma 4.2 we are able to compute it in time
O(m ·NNZ(V)), rather than the O(s ·NNZ(V)) time promised in Theorem 1.2.

We will now show that as long as n ≥ d, we can construct a good mask matrix without even examining V. It will
turn out that we can compute this matrix much faster, in time O(sd2). If NNZ(V) = Ω(d2), this is comparable to the
time required to apply the final sparse projection matrix to V.

The idea, first proposed by Kane and Nelson in [23] as the code construction, is the following: Suppose ∆ ∈
{0, 1}m×d is a matrix, with precisely s nonzero entries per column, satisfying that for all j 6= k,

1

s2

∑
r

δrjδrk ≤
2

m
. (4.9)

Then for an arbitrary input unit vector v ∈ Rd

‖Av‖2F =
1

s2

∑
j 6=k

∑
r∈[m]

δrjδrkv
2
j v

2
k ≤

2

m
(‖v‖42 − ‖v‖44) ≤ 2

m
.

Let (ej)j∈[d] denote the canonical basis for Rd. Then ‖Aej+ek‖2F /2 is exactly given by the left hand side of (4.9),
and so it follows that we can reduce the task of controlling the Frobenius norms of Av for v ∈ V to controlling instead
the Frobenius norms of Av for all v in the particular set

V̄ := {ej + ek : j < k ∈ [d]}.

Since we only need that ‖Av‖2F ≤
4
m for v ∈ V̄ , we set t = 2/m (rather than 1/m as previously); otherwise our

definition of Ψ is unchanged, yielding

Ψ(p) =
∑
v∈V̄

Ψv(p) = 2−2ε2m
∑
j<k

s∏
q=1

(1 + ρjk,q). (4.10)

13

Then
Ψ(p(0)) = 2−2ε2m

∑
j<k

(1 + ε)s < d2e(−2 ln 2+1)ε2m < 1,

using that d ≤ n and that m ≥ 12 ln(2n)/ε2. Furthermore, even though the vectors of V̄ are not unit vectors,
Lemma 4.2 still holds. This follows because for any v ∈ V̄ and j′ ∈ [d],∑

k 6=j′
v2
j′v

2
k ≤ 1;

this suffices instead of (4.8) to obtain the desired concavity.
We may thus apply the derandomization via pessimistic estimators. The main advantage of this approach is that the

extreme sparsity of the vectors in V̄ make the pessimistic estimator computations easier. In Section 5.4, we show how a
good universal mask matrix can be computed in time O(s · d2).

5 Efficient computation of the pessimistic estimators

5.1 Computation for Hanson-Wright in general

Here we show how to compute the signing pessimistic estimator (3.6) in polynomial time. The method we describe
here is not yet fast enough for use in the signing step for sparse J-L to obtain the running times claimed in Theorem 1.2.

Let us recall the setting of Section 3.1. The randomization of the algorithm is given by an i.i.d. vector of Rademacher
random variables σ ∈ {−1,+1}k. The derandomization procedure works with partial assignment vectors: Given
r = 0, . . . , k a partial assignment is σ ∈ {−1,+1}r; in a derandomization step, our goal is to increase the partial
assignment by choosing the next binary parameter σ+ = (σ,+1) or σ− = (σ,−1), in such a way that the pessimistic
estimator (3.6) does not increase. The pessimistic estimator is given by the mgf of the quadratic form g>Ag, over the
distribution G(σ): the independent marginals of this distribution are gi = σi (surely), for all i ≤ r, and gi ∼ N (0, 1),
for all i > r.

The following lemma shows how we can evaluate the pessimistic estimator (3.6).

Lemma 5.1. Let t ∈ {0, 1, . . . , k} and σ ∈ {−1, 1}t. Let M be a symmetric k × k matrix with ‖M‖op < 1/2. Let
S = {1, . . . , t} and T = {t+ 1, . . . , k}. Then

Eg∼G(σ) e
gTMg = det(I − 2MT,T)−1/2 exp

{
2σTMS,T (I − 2MT,T)−1MT,Sσ + σTMS,Sσ

}
.

Proof. Let ` = k − t. Consider the spectral decomposition MT,T =
∑`

i=1 λiuiu
T
i , where u1, . . . , u` form an

orthonormal basis of R`, and the eigenvalues are in decreasing absolute value, 1/2 > |λ1| ≥ |λ2| ≥ · · · ≥ |λ`|. Define

bi := 〈MT,Sσ, ui〉, for i ∈ [`].

Also let zi := 〈gT , ui〉 for i ∈ [`]; note that this is a standard Gaussian, and that zi and zj are independent for i 6= j.
Then

E eg
TMg = E

[
exp{gTTMT,TgT + 2gTTMT,Sσ + σTMS,Sσ}

]
= E

[
exp

{∑`
i=1(λi〈gT , ui〉2 + 2〈gT , ui〉〈MT,Sσ, ui〉) + σTMS,Sσ

}]
by orthogonality

=
∏̀
i=1

E
[
eλiz

2
i+2zibi

]
· eσTMS,Sσ

=
∏̀
i=1

1√
1− 2λi

e2b2i /(1−2λi) · eσTMS,Sσ by Lemma 2.4

= det(I − 2MT,T)−1/2 · exp{2σTMS,T (I − 2MT,T)−1MT,Sσ} · eσ
TMS,Sσ.

14

5.2 Computation for signing

The approach above is too slow to obtain the running time claimed in Theorem 1.2. In particular, the best known
algorithms for computing the determinant run in matrix-vector multiplication time, which is superlinear. We will next
show how to exploit the simple structure of the quadratic forms of interest in the case of dimensionality reduction
to obtain a linear-time algorithm for initializing and updating the pessimistic estimator. We assume throughout that
required computations, in particular the computation of exp, can be considered as fundamental operations that can be
done in unit time. We delay a discussion of how these numerical computations can be done to Section 5.3.

Both the input vectors V and the mask matrix ∆ are assumed to be given in a sparse representation, as a list of the
locations and values of the nonzero entries. We have ample time to sort these lists if needed. So we assume that we can,
for instance, iterate through {j : vj 6= 0} for a given v ∈ V in time proportional to the size of this set; and the same for
{v : vj 6= 0} for a given j ∈ [d].

Recall that our goal is to compute some σ ∈ {−1,+1}supp(∆) for which Φ(σ) =
∑

v∈V (Φ+
v (σ) + Φ−v (σ)) < 1,

by beginning with Φ(∅) < 1 and sequentially appending signs to σ so that Φ does not increase. In order to obtain the
desired running time, we will not recompute Φ(σ) from scratch each time, but rather efficiently update it each time we
extend σ.

Recall thatAv = 1
s

⊕
r∈[m][Br,v−Diag(Br,v)], withBr,v = (δr�v)(δr�v)T. Given a partial fixing σ ∈ {−1, 1}t

for some t ≤ md, let σ[r] denote the components of σ that correspond with the r’th block Br,v of Av; it exactly
corresponds to the entries of σ that end up in the r’th row of the resulting matrix Σ. Thus σ[r] has length 0 if
t ≤ (r − 1)d, length d if t ≥ rd, and length t− (r − 1)d otherwise.

Our goal is to efficiently compute the upper and lower tail deviation mgf’s

Φ+
v (σ) = e−λεEg∼G(σ)e

λgTAvg = e−λε
m∏
r=1

Eg∼G(σ[r])e
λgT[Br,v−Diag(Br,v)]g, (5.1)

and

Φ−v (σ) = e−λεEg∼G(σ)e
−λgTAvg = e−λε

m∏
r=1

Eg∼G(σ[r])e
λgT[Diag(Br,v)−Br,v]g,

respectively. As in the derandomization section, we use the optimal choice λ = s/6 above. An evaluation of each term
in this product can be done with the aid of Lemma 5.1. But we may exploit the rank-1 structure of Br,v, to speed up the
calculations, as captured in the following lemma.

Lemma 5.2. Let u ∈ Rk a vector such that ‖u‖22 < 1/2, and let M = uuT − Diag(uuT); furthermore let S ⊆ [k]
and T = [k] \ S be a partition of the coordinates, and let σ ∈ {−1,+1}S .

Then defining Θ+ := 1−
∑

j∈T 2u2
j/(1 + 2u2

j), Θ− := 1 +
∑

j∈T 2u2
j/(1− 2u2

j), and ν :=
∑

j∈S ujσj , we have

Eg∼G(σ) e
gTMg =

(
Θ+

∏
j∈T

(1 + 2u2
j)
)−1/2

· exp
{
ν2/Θ+ −

∑
j∈S

u2
j

}
, (5.2)

Eg∼G(σ) e
−gTMg =

(
Θ−

∏
j∈T

(1− 2u2
j)
)−1/2

· exp
{
−ν2/Θ− +

∑
j∈S

u2
j

}
. (5.3)

We delay the proof to the end of this section.
In what follows, and to avoid excessive repetition, we will use notation such as Φ±v to refer simultaneously to both

upper and lower deviation mgf’s (and similarly for other auxilliary quantities). In the pseudocode, this will allow us to
describe the upper and lower deviation pessimistic estimator updates simultaneously. So for example, Θ±v ← Θ±v ∓ 1
is shorthand for Θ+

v ← Θ+
v − 1 and Θ−v ← Θ−v + 1. However, in the following discussion we will focus on the upper

deviation mgf.
The algorithm is divided in two phases. In the first phase we compute Φ±v (∅) for each v ∈ V , and furthermore we

maintain various intermediate quantities seen in the above lemma that are needed for this computation. In the second
phase we will sequentially fix coordinates of σ to minimize the pessimistic estimator, updating the values of Φ±v and
the various intermediate quantities as we go. The running time of each phase will be O(s ·NNZ(V)).

15

Define, for any v ∈ V , r ∈ [m] and partial signing σ,

Θ±v,r(σ) := 1 ∓ 1
3 ·

∑
j∈[d]\supp(σ[r])

δrjv
2
j /(1± 1

3δrjv
2
j),

ηv,r :=
∑

j∈supp(σ[r])

δrjvjσj .

Then applying Lemma 5.2 (with S = supp(σ[r]) and uj =
√

λ
s δrjvj = 1√

6
δrjvj , for each r ∈ [m]) we obtain the

explicit formula

Φ+
v (σ) = e−λε

m∏
r=1

(Θ+
v,r(σ) ·

∏
j∈[d]\supp(σ[r])

(1 + 1
3δrjv

2
j)
)−1/2

· exp
{1

6

(
η2
v,r/Θ

+
v,r(σ)−

∑
j∈supp(σ[r])

δrjv
2
j

)} . (5.4)

Computing Φ±v (∅) for v ∈ V . Simplifying (5.4) for the case σ = ∅, we obtain

Φ+
v (∅) = e−λε

m∏
r=1

(
Θ+
v,r(∅)

)−1/2 ·
∏

(r,j):δrj=1

(
1 + 1

3v
2
j

)−1/2
. (5.5)

Some care must be taken; since nm could be much larger than O(s · NNZ(V)), we do not necessarily have time to
even write down all of the values Θ+

v,r(∅). However, at most s ·NNZ(V) of these values differ from one, since for each
v ∈ V and j ∈ [d] with vj 6= 0, there are only s choices of r for which δrj 6= 0, and hence at most s values of Θ+

v,r(∅)
that this entry contributes to.

So we keep track of a list A of “active” pairs (v, r) for which Θ+
v,r(∅) has been explicitly defined; undefined values

are implicitly treated as being equal to 1. We also keep track of a value Lv for each v ∈ V which indicates the last
value of r for which Θ+

v,r(∅) was updated (or is zero if none have been updated). We will iterate through pairs (r, j) in
the support of ∆ in some order such that r is increasing (to be specific, let us say lexicographically increasing order).
This ensures that Lv 6= r precisely if (v, r) /∈ A. Altogether, this allows us to query whether a pair is active and add an
active pair in constant time, and to iterate over all active pairs in time proportional to the number of pairs.

So, we consider in turn each pair (r, j) in the support of ∆, (in lexicographically increasing order). For each such,
we consider each vector v ∈ V for which vj 6= 0. We subtract its contribution 1

3v
2
j /[1 + 1

3v
2
j] from Θ+

v,r(∅) (making

(v, r) active if it is not already), and also multiply its contribution to the product
∏

(r,j):δrj=1

(
1 + 1

3v
2
j

)−1/2. This takes
time O(s · NNZ(V)). Finally we compute the final values of Φ+

v (∅) for each v by multiplying the contribution of
(Θ+

v,r(∅))−1/2 to Φ+
v (∅) for each active (v, r). We update Φ−v and associated quantities Θ−v,r(∅) similarly; pseudocode

is provided in Algorithm 1. (We remark that when activating a pair (v, r), we also initialize ηv,r to zero; this will be
updated in the next part of the algorithm.)

Updating Φ±v for each v ∈ V and computing σ. Starting from Φ±v (∅) for each v ∈ V , we will gradually update
these value as we increase the length of our fixed sign vector σ. In order to do this, we will keep track of not just the
values of Φ±v (σ), but also the values of Θ±v,r(σ), and the values of ηv,r(σ) :=

∑
j∈supp(σ[r]) δrjvjσj . Again, there are

too many values of ηv,r(σ) to write down, but initially they are all zero, and all but at most s ·NNZ(V) will remain
zero.

Given these values for our current choice of σ, suppose we wish to decide on the sign of σrj (where (r, j) is in the
support of ∆). We need to evaluate Φ+

v (σ+) (as well as Φ+
v (σ−), which will be completely analogous). Only the term

in the product (5.1) corresponding to r can be affected, and ηv,s(σ+) = ηv,s(σ) and Θ+
v,s(σ

+) = Θ+
v,s(σ) for all s 6= r.

Moreover,

ηv,r(σ
+) = ηv,r(σ) + δrjvj (5.6)

Θ+
v,r(σ

+) = Θ+
v,r(σ) + 1

3δrjv
2
j /(1 + 1

3δrjv
2
j). (5.7)

16

Algorithm 1 Fast Deterministic Signing Phase 1: Initializing pessimistic estimator

Input
∆ A good matrix (as in Definition 4.1), given in sparse form
V A set of sparse unit vectors in Rd

Output
σ A sparse sign vector
η Projections of the input vectors, in sparse form

1: Φ+
v ← e−λε, Φ−v ← e−λε for all v ∈ V

2: for (r, j) ∈ supp(∆), in lexicographically increasing order do
3: for v : vj 6= 0 do
4: if Θ+

v,r not defined then
5: Θ+

v,r ← 1, Θ−v,r ← 1, ηv,r ← 0
6: end if
7: Θ±v,r ← Θ±v,r ∓ 1

3v
2
j /[1± 1

3v
2
j]

8: Φ±v ← Φ±v · (1± 1
3v

2
j)
−1/2

9: end for
10: end for
11: for (v, r) : Θ+

v,r defined do
12: Φ±v ← Φ±v · (Θ±v,r)−1/2

13: end for

(Continued in Algorithm 2)

We can thus update these values, and hence Φ+
v via (5.4), in constant time. (The computations for updating Φ−v are

similar.)
We proceed as follows. We consider pairs (r, j) in the support of ∆, again in lexicographically increasing order.

For each, we determine what the updated value of Φ±v (σ+) and Φ±v (σ−) are, but only for v such that vj 6= 0, since
these are the only values affected. Choosing the sign that minimizes the sum of these values gives us a good choice for
σrj . We make use of the same data structure described earlier (with a list of active pairs A along with pointers Lv to
the current pair of interest for each v ∈ V) in order to look up and update the values Θ±v,r and ηv,r in constant time.
Pseudocode for the update phase of the algorithm can be found in Algorithm 2.

Let us see that this takes only O(s · NNZ(V)) time. Consider any (r, j) ∈ supp(∆). There are Tj := |{v ∈ V :
vj 6= 0}| choices of v for which vj 6= 0, and hence the algorithm spends O(Tj) time choosing the sign σrj . The total
running time is thus ∑

(r,j)∈supp(∆)

O(Tj) = s ·
∑
j∈[d]

O(Tj) = O(sNNZ(V)).

17

Algorithm 2 Updating the pessimistic estimator and choosing the signs

(Continued from Algorithm 1)

14: for (r, j) ∈ supp(∆), in lexicographically increasing order do
15: for v : vj 6= 0 do
16: Θ̂±v,r ← Θ±v,r ± 1

3v
2
j /[1± 1

3v
2
j]

17: . Determine new values of ηv,r and Φ±v for both possible signing choices
18: η̂

(ξ)
v,r ← ηv,r + ξ · vj for ξ ∈ {−1,+1}

19: For ξ ∈ {−1,+1}, set

Φ̂±(ξ)
v ← Φ±v · (Θ̂±v,r/Θ±v,r)−1/2

(
1± 1

3v
2
j

)1/2
exp
{1

6

(
∓η2

v,r/Θ
±
v,r ± (η̂(ξ)

v,r)
2/Θ̂±v,r ∓ v2

j

)}
(5.8)

20: end for
21: Let σrj ∈ {−1,+1} be a minimizer of

∑
v:vj 6=0

(
Φ̂

+(σrj)
v + Φ̂

−(σrj)
v

)
22: Add σrj to the sparse vector σ
23: for v : vj 6= 0 do
24: Θ±v,r ← Θ̂±v,r, ηv,r ← η̂

(σrj)
v,r , Φ±v ← Φ̂

±(σrj)
v

25: end for
26: end for
27: ηv ← ηv/

√
s for all v ∈ V . Rescale η to represent the projected vectors

28: return σ, η

Proof of Lemma 5.2. Let us first note that ‖M‖op < 1/2, as required by Lemma 5.1. Since both uuT and Diag(uuT)
are PSD matrices, we can upper bound the operator norm by the maximum of the respective operator norms:

‖M‖op ≤ max{‖uuT‖op, ‖Diag(uuT)‖op}
≤ max{‖u‖22,max{u2

j : j ∈ [k]}}
< 1/2,

as required.
Using Lemma 5.1, we have that

Eg∼G(σ) e
gTMg = det(I − 2MT,T)−1/2 exp

{
2σTMS,T (I − 2MT,T)−1MT,Sσ + σTMS,Sσ

}
. (5.9)

Let D := diag(uTu
T
T) ∈ RT×T . By the matrix determinant lemma,

det(I − 2MT,T) = det(I + 2D) · (1− 2uTT (I + 2D)−1uT)

=
∏
j∈T

(1 + 2u2
j) ·
(

1−
∑
j∈T

2u2
j

1 + 2u2
j

)
=
∏
j∈T

(1 + 2u2
j) ·Θ+.

By the Sherman-Morrison formula,

(I − 2MT,T)−1 = (I + 2D)−1 + 2
(I + 2D)−1uTu

T
T (I + 2D)−1

1− 2uTT (I + 2D)−1uT
.

18

On the other hand, since S ∩ T = ∅, MS,T = uSu
T
T . Thus,

2σTMS,T (I − 2MT,T)−1MT,Sσ = 2〈uS , σ〉2 · uTT (I − 2MT,T)−1uT

= 2〈uS , σ〉2 ·
(
uTT (I + 2D)−1uT + 2

(uTT (I + 2D)−1uT)2

1− 2uTT (I + 2D)−1uT

)
= 2〈uS , σ〉2 ·

(uTT (I + 2D)−1uT

1− 2uTT (I + 2D)−1uT

)
= ν2(1−Θ+)/Θ+.

Finally, we have

σTMS,Sσ = 〈uS , σ〉2 − ‖DσS‖22

=
(∑
j∈S

ujσj

)2
−
∑
j∈S

u2
j

= ν2 −
∑
j∈S

u2
j .

Replacing the relevant terms in (5.9) yields (5.2). The computations for (5.3) are similar, and we omit the details.

5.3 Numerical issues in signing

We have been working in a real model of computation where in addition, computation of square roots and exponentials
takes unit time. In this section, we show that the algorithm can be implemented so that its bit complexity matches
the projection time, up to logarithmic factors. It is only the computation of the signing that presents difficulties; the
construction of the universal masking requires only basic arithmetic operations. For convenience, we assume in this
section that m = 12 ln(2n)/ε2 (rather than this value being merely a lowerbound on m).

We will need the following results due to Brent [8]. We use M(N) to denote the time required to multiply two N
digit integers; certainly M(N) = O(N2), with better bounds possible.

Proposition 5.1 ([8]).

• Given a fixed interval [a, b] (with a, b > 0),
√
x can be evaluated for all x ∈ [a, b] to a relative error of 2−N in

time O(M(N)).

• Given a fixed interval [a, b], exp(x) can be evaluted for all x ∈ [a, b] to a relative error of 2−N in time
O(M(N) logN). (For ln(x), this assumes a > 0.)

• Given a fixed interval [a, b] (with a, b > 0), ln(x) can be evaluted for all x ∈ [a, b] to an additive error of 2−N in
time O(M(N) logN).

In all cases, only N +O(1) bits of precision of the argument x are needed.

While these results require a fixed interval, standard tricks can be applied to work around this. In particular, we
have the following.

Corollary 5.3. Given R and N , exp(x) can be computed to a relative error of 2−N for x ∈ [−2R, 2R] in time
O(M(N +R) log(N +R)). The argument x need only be accurate within an additive error of O(2−N).

Proof. We use the identity ex = 2kex−k ln 2, with k ∈ Z such that |x− k ln 2| ≤ 2, to reduce the computation of exp
to the fixed interval [−2, 2]. Given that x ∈ [−R,R], and to obtain relative error 2−N , we need N + O(1) bits of
precision for x− k ln 2, and hence N +R+O(1) bits of precision for ln 2. By Proposition 5.1, this can be done in
time O(M(N +R) log(N +R)).

19

We have been working under the assumption that our input vectors have been normalized: ‖v‖2 = 1 for all v ∈ V .
Exact normalization is clearly too strong to deal with numerically. However, we will see that O(log(nd)) bits of
precision for our input vectors suffice.

First, we observe that the conditions of Theorem 1.2 ensure that the initial value Φ(∅) of the pessimistic estimator
is not just strictly below 1, but really bounded away from 1. More precisely, considering (4.1), we see that

Φ(∅) ≤ (2n)−
1
2 (1−2 ln(

3
2))+1/12 < 0.993.

We are satisfied with any final choice of σ ∈ {−1,+1}supp(∆) for which Φ(σ) < 1. It thus suffices if we ensure that
for the σ we choose, our approximation of Φ(σ) is below 1− 10−3 and has absolute error less than 10−3. Now Φ(σ) is
a sum of 2n terms; to maintain the required accuracy for Φ(σ), it suffices to approximate the individual terms Φ±v to
within 1/(104n).

So consider any single term Φ+
v (·) (Φ−v (·) would be similar). We initially compute Φ+

v (∅) as a product of
O(sNNZ(v)) terms. Then each time we choose a sign σrj which impacts Φ+

v (σ), which happens at most sNNZ(v)
times, we multiply it by a constant number of terms. Since Φ+(v) is certainly bounded by 1, it suffices that each term
we multiply by is accurate to within a relative error of c′/(nsd), for some appropriate c′.

We now show that the values we need to keep track of lie in a reasonable range—neither too large, nor too close to
zero. First, Φ(σ), and hence Φ±v (σ) for each v ∈ V , is below 1. Secondly, we have for any v ∈ V that

Φ+
v (σ) = e−λε · Eg∼G(σ)

(
exp{−λgTAvg}

)−1

≥ e−λε ·
(
Eg∼G(σ) exp{−λgTAvg}

)−1 (By Jensen’s inequality)

= e−2λε
(
Φ−v (σ)

)−1

≥ 1/(12n)2.

Similarly, Φ−v (σ) ≥ 1/(12n)2. This also implies that if σ and σ̂ are the partial signings before and after a particular
sign is chosen, the ratio between Φ±v (σ) and Φ±v (σ̂) is in the interval [1/(12n)4, (12n)4]. Furthermore, since the input
vectors have unit norm, it can be seen from the definition of Θ±v,r that 2

3 ≤ Θ±v,r ≤ 4
3 .

It follows that we only need to keep track of O(log(nsd)) = O(log(nd)) bits of Φ±v and also of all the individual
terms that appear in Algorithm 1 and Algorithm 2. In particular, the absolute value of the argument of the exponential
term in (5.8), for the correct signing choice, is O(log n) (and since η2

v,r = O(d) by the Cauchy-Schwartz inequality,
this argument can be computed efficiently). Proposition 5.1 and Corollary 5.3 suffice to do all calculations to sufficient
precision, using onlyO(log(nd)) bits of precision for the input vectors, and with each square root computation requiring
time O(M(log(nd))) and each exponent computation requiring time O(M(log(nd)) log(nd)).

Remark 5.4. It can easily be seen that the form of the projection matrix implies that it is a contraction from ‖ · ‖1 to
‖ · ‖2. This implies that with a small loss in the projection dimension m, only O(log d) bits of precision of the input
vectors is required.

5.4 Computation for masking

Here we provide the details of the efficient computation of a universal mask matrix associated with the vectors
V̄ = {ej + ek : j < k}, in time O(s · d2). We provide detailed pseudocode of the procedure in Algorithm 3.

We may assume that 1/ε = O(d); otherwise we have a trivial construction: choose a matrix with at most one
nonzero entry per row.

In the case of V̄ , our pessimistic estimator is as given in (4.10):

Ψ(p) = 2−2ε2m ·
∑
j<k

s∏
q=1

(1 + ρjk,q),

where recall ρjk,q :=
∑

r∈Bq prjprk. We consider a partial assignment vector p: namely, there exists a block (q, `)

such that p is integral for all blocks (q̃, j) where either j < `, or j = ` and q̃ < q; and p is uniform on all other blocks.

20

We are interested in derandomizing block (q, `). We assume that p is stored so that for any integral block (q̃, j), we can
determine the choice of r ∈ Bq̃ such that prj = 1 in constant time.

Given r ∈ Bq, let p(r) be a vector identical to p in all blocks, except for (q, `), where it has an integral assignment
choosing pr` = 1. Then

Ψ(p(r))−Ψ(p) = 2−2ε2m
∑
j<`

∏
q̃ 6=q

(1 + ρj`,q̃)
(

1 + prj − (1 + ε)
)
.

Now let Dq
j :=

∏
q̃<q(1 + ρj`,q̃); notice that Dq

j = 2
∑
q̃<q

∑
r∈Bq̃

prjprt , so it keeps a count of the collisions among
fixed variables within columns j and t. Noticing that∏

q̃ 6=q
(1 + ρj`,q̃) = Dq

j · (1 + ε)s−q,

we obtain
Ψ(p(r))−Ψ(p) = 2−2ε2m

(
1 + ε

)s−q[∑
j<`

Dq
j · prj − ε

∑
j<`

Dq
j

]
.

Since the last term in this equation is independent of r, we conclude that in order to minimize the pessimistic estimator
it suffices to choose r ∈ Bq to minimize

α(r) :=
∑
j<`

Dq
j · prj .

With this, the algorithm is straightforward. We proceed column by column; suppose we have fixed p for all columns
j < `, but not yet for column `. We then consider each block (q, `) in turn, in increasing order of q. For each block, we
compute α(r) for all r ∈ Bq; since each Dq

j contributes to precisely one α(r), this requires O(d) computations. Now
choose r̄ ∈ Bq that minimizes α(r) (which requires O(1/ε) = O(d) computations), and set pr̄` = 1.

In order to move onto the next block, we need the values of Dq+1
j for all j < `. We can compute these values

immediately from the values of Dq
j , as follows. If pr̄j = 1, meaning that ρj`,q = 1, then Dq+1

j = 2Dq
j ; otherwise,

ρj`,q = 0, and so Dq+1
j = Dq

j .
In conclusion, to compute all entries of ∆ in column `, we consider s blocks and require O(d) time per block.

The total running time of the algorithm is thus O(s · d2) (which is O(s · NNZ(V)) given the assumption that
NNZ(V) = Ω(d2)).

21

Algorithm 3 Universal Masking Algorithm

Input
d Input dimension

Output
∆ Good matrix for V̄ , given in sparse form

1: Initialize ∆ = (δrj)r∈[m],j∈[d] to be empty (a sparse matrix with all entries zero)
2: for ` = 1, . . . , d do
3: D1

j ← 1 for all j < `
4: for q = 1, 2, . . . , s do
5: α(r) ← 0 for all r ∈ Bq
6: for j < ` do
7: Choose r ∈ Bq s.t. δrj = 1
8: α(r) ← α(r) +Dq

j

9: end for
10: r̄ = arg minr∈Bq α

(r)

11: δr̄,` ← 1

12: . Compute Dq+1
j

13: for j < ` do
14: if δr̄j = 1 then
15: Dq+1

j ← 2Dq
j

16: else
17: Dq+1

j ← Dq
j

18: end if
19: end for
20: end for
21: end for
22: return ∆ = (δrj)r∈[m],j∈[d], in sparse form

6 A Sharp Hanson-Wright Inequality

In the following sections, we prove the technical estimate from Lemma 3.6 and give applications of our functional
form of the Hanson-Wright inequality to get an essentially optimal Hanson-Wright constant and to get improved
concentration bounds for Rademacher projections.

6.1 The Determinant Lower Bound

In this section, we give the proof of determinant lower bound in Lemma 3.6. To begin, we show that this problem is in
fact an eigenvalue optimization problem.

Lemma 6.1. For k ∈ N, 0 ≤ α < 1, β ≥ 1,

min
{

det(I −M) : M ∈ Rk×k symmetric,Mii = 0 ∀i ∈ [k], ‖M‖op ≤ α, ‖M‖F ≤ β
}

= min
{ k∏
i=1

(1− λi) : |λi| ≤ α,∀i ∈ [k],
k∑
i=1

λ2
i ≤ β2,

k∑
i=1

λi = 0
}
.

Proof. Firstly, we note that the minimum is clearly achieved for both problems since the feasible regions are compact
and the objective functions are continuous.

22

We now show that a solution for one problem can be converted to a solution for the other of same value. Starting
with a k × k diagonal 0 matrix M as above, we claim that the eigenvalues λ1, . . . , λk form a solution for the other
side. This follows since

∑k
i=1 λi = trace(M) =

∑k
i=1Mii = 0,

∑k
i=1 λ

2
i = ‖M‖2F ≤ β, maxi∈[k] |λi| = ‖M‖op

and det(I −M) =
∏k
i=1(1− λi).

For the other direction, starting from λ1, . . . , λk and given the above identities, we must only show that there exists
a symmetric diagonal 0 matrix M ∈ Rk×k having λ1, . . . , λk as its eigenvalues. By the Schur-Horn theorem [18,
Theorem 5], the set of achievable diagonals for the set of symmetric matrices with eigenvalues λ1, . . . , λk corresponds
exactly to the permutahedron

convex.hull((λπ[1], . . . , λπ[k]) : π : [k]→ [k] a permutation).

Since
∑k

i=1 λi = 0, by averaging over all permutations, we see that the vector (0, . . . , 0) is an achievable diagonal, as
needed.

Though the most natural approach would be to find the exact minimizer for any fixed dimension k, we are currently
only able to get a sharp bound for the minimum value when we allow k →∞. This allows us to use a natural continuous
relaxation, which is sharp when α2 evenly divides β2, where we can show that the optimal solution is supported on at
most 2 distinct eigenvalues. This reduces the problem to one on two variables, which we can solve directly.

Proof of Lemma 3.6. By Lemma 6.1 and taking logs, the problem reduces to showing that

inf
{ k∑
i=1

ln(1− λi) : k ∈ N, |xi| ≤ α ∀i ∈ [k],
k∑
i=1

λi = 0,
k∑
i=1

λ2
i ≤ β2 ∀i ∈ [k]

}
≥ (β2/α2) ln(1− α) + β2/α.

(6.1)

Since we can clearly drop any zero λis without affecting the constraints or objective, we may assume that all the λis
are non-zero. By modelling multiplicities and allowing fractionality, we see that program (6.1) has value at least

inf
{ k∑
i=1

li ln(1− λi) :k ∈ N, li ≥ 0 ∀i ∈ [k], λ1, . . . , λk distinct non-zero ,

|λi| ≤ α ∀i ∈ [k],
k∑
i=1

liλi = 0,
k∑
i=1

liλ
2
i ≤ β2

}
.

(6.2)

For the above relaxed formulation, we claim that we can assume that k = 2. Since the eigenvalue sum is 0, we need
at least one positive and one negative eigenvalue, so we must clearly have k ≥ 2. To show k ≤ 2, fix any distinct
non-zero (λ1, . . . , λk) which can be extended to a feasible solution. Note that this reduces the problem to a linear
program over l1, . . . , lk. Given that the LP is feasible by assumption and bounded (since all the λi 6= 0), the optimal
value can be obtained at a basic feasible solution. Since there are only 2 non-trivial constraints on l1, . . . , lk apart from
non-negativity, any basic feasible solution can have support on at most two of l1, . . . , lk, as needed.

Given the above, program (6.2) reduces to

inf
{
l1 ln(1− λ1) + l2 ln(1− λ2) :λ1 ∈ (0, α), λ2 ∈ (−α, 0), l1, l2 ≥ 0,

l1λ1 + l2λ2 = 0, l1λ
2
1 + l2λ

2
2 ≤ β2

}
.

(6.3)

Since l1 ln(1− λ1) + l2 ln(1− λ2) ≤ −l1λ1 − l2λ2 = 0, we can always achieve l1λ2
1 + l2λ

2
2 = β2 by scaling without

increasing the objective value. Given this, for feasible λ1, λ2 above, it is easy to check that setting

l1 =
β2

λ1(λ1 − λ2)
and l2 =

β2

λ2(λ2 − λ1)

is both feasible and optimal. Thus, the program (6.3) reduces further to

β2 inf
{ 1

λ1 − λ2

(ln(1− λ1)

λ1
− ln(1− λ2)

λ2

)
: λ1 ∈ (0, α), λ2 ∈ (−α, 0)

}
. (6.4)

The following claim shows that the objective function is monotonically decreasing in λ1 and λ2 over its domain.

23

Claim 6.2. The function

g(x, y) :=
1

x− y

(
ln(1− x)

x
− ln(1− y)

y

)
is decreasing in x and y on the domain (0, 1)× (−1, 0).

Proof. We will show the integral description

g(x, y) = −
∫ 1

0
z · 1

1− zx
· 1

1− zy
dz.

The claim is then immediate, since for any fixed z ∈ [0, 1], the integrand is clearly increasing on the domain.
Expanding ln(1− x) and ln(1− y), we have

g(x, y) =
1

x− y
∑
k≥0

(−xk + yk)

k + 1

= −
∑
k≥0

1

k + 1

k−1∑
i=0

xiyk−i−1

= −
∑
i≥0

∑
k≥i+1

1

k + 1
xiyk−i−1

= −
∑
i≥0

∑
j≥0

1

i+ j + 2
xiyj .

Now we use the identity 1
i+j+2 =

∫ 1
0 z

i+j+1dz. We obtain (using the dominated convergence theorem to justify the
exchange of integral and summation)

g(x, y) = −
∫ 1

0
z ·
∑
i≥0

∑
j≥0

(zx)i(zy)jdz

= −
∫ 1

0
z · 1

1− zx
1

1− zy
dz,

as required.

Given the claim, the infimum of (6.4) is thus obtained by the limit

lim
λ1→α,λ2→0

β2

λ1 − λ2

(ln(1− λ1)

λ1
− ln(1− λ2)

λ2

)
=
β2

α2
ln(1− α) + β2/α, (6.5)

as needed.
We now show that this bound is sharp for the original program (6.1) as long as α2 divides β2. In particular, it

suffices to construct a sequence of solutions λ1,t, λ2,t to (6.4) such that λ1,t → α and λ2,t → 0 as t→∞, for which
the corresponding multiplicities l1,t = β2

λ1,t(λ1,t−λ2,t) and l2,t = β2

λ2,t(λ2,t−λ1,t) are positive integers. For this purpose,

take the sequence λ1,t = α
√

t
t+1 and λ2,t = −α

√
t
t+1

1
t . A direct computation reveals that l1,t = β2

α2 and l2,t = β2

α2 t,

which are integral for t ∈ N by the assumption that α2 divides β2. Since this sequence clearly converges to the desired
limit, this proves the claim.

24

6.2 The Hanson-Wright Constant

The following lemma uses the functional form of Theorem 3.2 to derive optimal tradeoffs between the linear and
quadratic behavior of the Hanson Wright inequality.

Lemma 6.3. Under the conditions of Theorem 3.1, for any γ > 0, we have that

P(xTAx > tν2) ≤ exp

(
−1−ln(1+γ)/γ

2γ min
{ t2

‖A‖2F
,

γt

‖A‖op

})
. (6.6)

Proof. Letting α := ‖A‖op, β := ‖A‖F , by Theorem 3.2 we recall that

P(xTAx > tν2) ≤ e−
1
2
f(t) where f(t) =

t

α
− β2

α2
ln(1 + t

α

β2
).

To prove the lemma, it thus suffices to show that

f(t) ≥ 1− ln(1 + γ)/γ

γ
min

{ t2
β2
,
γt

α

}
. (6.7)

For t = γβ2/α, equality is attained between t2

β2 and γt
α , and it can be verified that they both equal f(t). All that

remains is to show that α
γtf(t) is increasing and β2

t2
f(t) is decreasing. This can be done by direct computation of

derivatives.

Using the above lemma, we derive the optimal Hanson-Wright constant CHW for Theorem 3.1. In particular, this
corresponds to setting γ = 1 above, which gives CHW = 1−ln 2

2 ≈ 0.153 > 3/20.
As for the different tradeoffs, letting γ → ∞ improves the bound for small t (the quadratic regime), where the

constant in front the t2/‖A‖2F terms converges to 1/4. Letting γ → 0 improves the bound for large t (the linear regime),
where the constant in front of t/‖A‖op converges to 1/2.

6.3 Tighter Concentration for Rademacher Projections

In this section, we prove Lemma 3.3, which gives sparsity dependent concentration bound for Rademacher projections.
We begin with the following lemma, which shows that our functional form of Hanson-Wright has good monotonicity

properties.

Lemma 6.4. The probability bound in Theorem 3.2 is monotone increasing in ‖A‖op and ‖A‖F .

Proof. Letting α := ‖A‖op and β := ‖A‖F , we must show that

exp
(
−1

2

(
t
α −

β2

α2 · ln(1 + t α
β2)
))

is monotone increasing in α and β. Equivalently, it suffices to show that the function t
α −

β2

α2 ln(1 + t α
β2) in the

exponent is monotone decreasing in α and β. To prove this for α, replacing t by tβ2, this is equivalent to showing that
t
α −

1
α2 ln(1 + tα) is decreasing. Taking a derivative with respect to α, we require that

− t

α2
+ 2

1

α3
ln(1 + tα)− t

α2(1 + tα)
≤ 0,

or equivalently,

ln(1 + tα) ≤ tα

2
+

tα

2(1 + tα)
,

which follows from Lemma 2.2 part 1 applied to x = tα. To prove it for β, it suffices to show that β
2

α ln(1 + t α
β2)

is increasing in β. After replacing β2 by βtα, this is equivalent to showing that β ln(1 + 1/β) is increasing, which
follows from Lemma 2.2 part 3.

25

The following technical lemma bounds the matrix norms required to analyze Rademacher projections.

Lemma 6.5. Let v ∈ Rd be a unit vector with s non-zero entries. Then for H = vvT − Diag(vvT), we have that
‖H‖op ≤ 1− 1/s and ‖H‖2F = ‖v‖42 − ‖v‖44 ≤ 1− 1/s.

Proof. We may assume that s = d without loss of generality, by restricting to the support of v. The claim is trivial for
d = 1, so assume d ≥ 2.

The bound on ‖H‖2F is immediate from ‖v‖2 = 1 and ‖v‖44 ≥ 1
d‖v‖

4
2.

To prove that ‖H‖op ≤ 1− 1/d, it suffices to show that for all w ∈ Rd,

−1
2 · ‖w‖

2
2 · ‖v‖22 ≤ wT

(
vvT −Diag(vvT)

)
w ≤ (1− 1/d) · ‖w‖22 · ‖v‖22,

where we have introduced a term ‖v‖22 where appropriate to make the inequalities insensitive to the magnitude of v.
We begin with the bound on the maximum eigenvalue. Rewriting our desired inequality, we wish to show that

U := (d− 1)

d∑
i=1

d∑
j=1

v2
iw

2
j − d

(d∑
i=1

viwi

)2
+ d

d∑
i=1

v2
iw

2
i .

is nonnegative. This follows by noting that U may be rewritten as a sum of squares:

U =
1

2

d∑
i=1

d∑
j=1

(
(d− 1)(viwj − vjwi)2 + (viwi − vjwj)2

)
.

For the lower bound on the minimum eigenvalue, we wish to show that

L := 2
(d∑
i=1

viwi

)2
− 2

d∑
i=1

v2
iw

2
i +

d∑
i=1

d∑
j=1

v2
iw

2
j

is nonnegative. Again, we rewrite this as a sum of squares:

L =
(d∑
i=1

viwi

)2
+
∑
i 6=j

vivjwiwj +
∑
i 6=j

v2
iw

2
j

=
(d∑
i=1

viwi

)2
+

1

2

∑
i 6=j

(viwj + vjwi)
2.

We now prove the claimed concentration bound.

Proof of Lemma 3.3. Let H be as in Lemma 6.5 and let M denote the (md)× (md) block diagonal symmetric matrix
with m blocks corresponding to H/m. Index the entries of M by M(ki),(lj), k, l ∈ [m], i, j ∈ [d], where M(ki),(lj) = 0
if k 6= l and equal to Hij/m otherwise. By Lemma 6.5, we have that ‖M‖op = ‖H‖op/m ≤ (1 − 1/s)/m and
‖M‖2F = ‖H‖2F /m ≤ (1− 1/s)/m.

For the Rademacher projection matrix Π ∈ {−1, 1}m×d, a direct computation reveals that

‖Πv‖22/m− 1 =
∑
r∈[m]

∑
i,j∈[d]

M(r,i),(r,j)Πr,iΠr,j .

Thus applying Theorem 3.2 to right hand side quadratic form, we get that

max
{
P(‖Πv‖22/m ≥ 1 + ε),P(‖Πv‖22/m ≤ 1− ε)

}
≤ exp

(
−1

2

(ε

‖M‖op
−
‖M‖2F
‖M‖2op

ln
(
1 +

ε‖M‖op

‖M‖2F

)))
≤ exp

(
−m

2

s

s− 1
(ε− ln(1 + ε))

)
,

where the last inequality follows by setting ‖M‖op and ‖M‖F to their upper bounds together with Lemma 6.4.

26

References

[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst.
Sci., 66(4):671–687, June 2003.

[2] A. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms with proven
performance guarantee. Journal of Combinatorial Optimization, 8(3):307–328, 2004.

[3] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM
Journal on Computing, 39(1):302–322, 2009.

[4] N. Ailon and E. Liberty. Fast dimension reduction using Rademacher series on dual BCH codes. Discrete &
Computational Geometry, 42(4):615, 2009.

[5] N. Ailon and E. Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss transform. ACM Transactions
on Algorithms, 9(3):21, 2013.

[6] A. Bhargava and S. R. Kosaraju. Derandomization of dimensionality reduction and SDP based algorithms. In
F. Dehne, A. López-Ortiz, and J.-R. Sack, editors, Proceedings of the 9th International Workshop on Algorithms
and Data Structures (WADS), pages 396–408, 2005.

[7] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-
completeness, recursive functions and universal machines. Bull. Am. Math. Soc., New Ser., 21(1):1–46, 1989.

[8] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. ACM, 23(2):242–251, Apr. 1976.

[9] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC), pages 205–214, 2009.

[10] M. B. Cohen, T. Jayram, and J. Nelson. Simple Analyses of the Sparse Johnson-Lindenstrauss Transform. In
R. Seidel, editor, 1st Symposium on Simplicity in Algorithms (SOSA 2018), volume 61 of OpenAccess Series
in Informatics (OASIcs), pages 15:1–15:9, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[11] A. Dasgupta, R. Kumar, and T. Sarlós. A sparse Johnson-Lindenstrauss transform. In Proceedings of the 42nd
ACM Symposium on Theory of Computing (STOC), pages 341–350. ACM, 2010.

[12] S. Dasgupta. Learning mixtures of gaussians. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), pages 634–644, 1999.

[13] P. Drineas and M. W. Mahoney. RandNLA: Randomized numerical linear algebra. Commun. ACM, 59(6):80–90,
May 2016.

[14] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality reduction with applications. In
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 705–712, 2002.

[15] D. L. Hanson and F. T. Wright. A bound on tail probabilities for quadratic forms in independent random variables.
Ann. Math. Statist., 42(3):1079–1083, 06 1971.

[16] N. J. A. Harvey and N. Olver. Pipage rounding, pessimistic estimators and matrix concentration. In Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 926–945, 2014.

[17] A. Hinrichs and J. Vybíral. Johnson-Lindenstrauss lemma for circulant matrices. Random Structures & Algorithms,
39(3):391–398, 2011.

[18] A. Horn. Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math., 76:620–630, 1954.

27

[19] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), pages 604–613, 1998.

[20] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemporary
mathematics, 26(189-206):1, 1984.

[21] D. M. Kane and J. Nelson. A derandomized sparse Johnson-Lindenstrauss transform. Electronic Colloquium on
Computational Complexity (ECCC), 17:98, 2010.

[22] D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. In Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1195–1206, 2012.

[23] D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM, 61(1):4:1–4:23, 2014.

[24] Z. S. Karnin, Y. Rabani, and A. Shpilka. Explicit dimension reduction and its applications. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity (CCC), pages 262–272, 2011.

[25] F. Krahmer and R. Ward. New and improved Johnson-Lindenstrauss embeddings via the restricted isometry
property. SIAM Journal on Mathematical Analysis, 43(3):1269–1281, 2011.

[26] E. Liberty, N. Ailon, and A. Singer. Dense fast random projections and lean Walsh transforms. Lecture Notes in
Computer Science, 5171:512–522, 2008.

[27] R. Meka. Almost optimal explicit Johnson-Lindenstrauss transformations. arXiv preprint arXiv:1011.6397, 2010.

[28] N. Nisan. Psuedorandom generators for space-bounded computation. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing (STOC), pages 204–212, 1990.

[29] N. Nisan. RL ⊆ SC. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC), pages
619–623, 1992.

[30] D. Pollard. Lecture notes on empirical processes. Lecture Notes, 2015.

[31] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing integer programs.
Journal of Computer and System Sciences, 37, 1988.

[32] M. Rudelson and R. Vershynin. Hanson-Wright inequality and sub-gaussian concentration. Electron. Commun.
Probab., 18:9 pages., 2013.

[33] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 619–626. ACM, 2002.

[34] A. Srinivasan. Distributions on level-sets with applications to approximation algorithms. In Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 588–597, 2001.

[35] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoretical Computer
Science, 10:1–157, 2014.

28

	Introduction
	Notation and Preliminaries
	The Hanson-Wright Inequality and Derandomization
	Derandomization of Hanson-Wright

	Derandomizing Sparse J-L via Pessimistic Estimators
	The sign matrix
	The mask matrix

	Efficient computation of the pessimistic estimators
	Computation for Hanson-Wright in general
	Computation for signing
	Numerical issues in signing
	Computation for masking

	A Sharp Hanson-Wright Inequality
	The Determinant Lower Bound
	The Hanson-Wright Constant
	Tighter Concentration for Rademacher Projections

