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Abstract

In the vector balancing problem, we are given symmetric convex bodies C and K in Rn, and
our goal is to determine the minimum number β ≥ 0, known as the vector balancing constant
from C to K, such that for any sequence of vectors in C there always exists a signed combination
of them lying inside βK. Many fundamental results in discrepancy theory, such as the Beck-
Fiala theorem (Discrete Appl. Math ‘81), Spencer’s “six standard deviations suffice” theorem
(Trans. Amer. Math. Soc ‘85) and Banaszczyk’s vector balancing theorem (Random Structures
& Algorithms ‘98) correspond to bounds on vector balancing constants.

The above theorems have inspired much research in recent years within theoretical computer
science, from the development of efficient polynomial time algorithms for matching existential
vector balancing guarantees, to their applications in the context of approximation algorithms. In
this work, we show that all vector balancing constants admit “good” approximate characteriza-
tions, with approximation factors depending only polylogarithmically on the dimension n. First,
we show that a volumetric lower bound due to Banaszczyk is tight within a O(log n) factor. Our
proof is algorithmic, and we show that Rothvoss’s (FOCS ‘14) partial coloring algorithm can be
analyzed to obtain these guarantees. Second, we present a novel convex program which encodes
the “best possible way” to apply Banaszczyk’s vector balancing theorem for bounding vector
balancing constants from above, and show that it is tight within an O(log2.5 n) factor. This
also directly yields a corresponding polynomial time approximation algorithm both for vector
balancing constants, and for the hereditary discrepancy of any sequence of vectors with respect
to an arbitrary norm.

Our results yield the first guarantees which depend only polylogarithmically on the dimen-
sion of the norm ball K. All prior works required the norm to be polyhedral and incurred a
dependence of O(

√
logm), where m is the number of facets. Our techniques rely on a novel

combination of techniques from convex geometry and discrepancy theory. In particular, we
give a new way to show lower bounds on Gaussian measures using only volumetric information,
which may be of independent interest.
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1 Introduction

The discrepancy of a set system is defined as the minimum, over the set of ±1 colorings of the
elements, of the imbalance between the number of +1 and −1 elements in the most imbalanced
set. Classical combinatorial discrepancy theory studies bounds on the discrepancy of set systems,
in terms of their structure. The tools developed for deriving bounds on the discrepancy of set
systems have found many applications in mathematics and computer science [Mat99, Cha91], from
the study of pseudorandomness, to communication complexity, and most recently, to approximation
algorithms and privacy. Here we study a geometric generalization of combinatorial discrepancy,
known as vector balancing, which captures some of the most powerful techniques in the area, and
is of intrinsic interest.

Vector Balancing In many instances, the best known techniques for finding good bounds in
combinatorial discrepancy were derived by working with more general vector balancing problems,
where convex geometric techniques can be applied. Given symmetric convex bodies C,K ⊆ Rn,
the vector balancing constant of C into K is defined as

vb(C,K) , sup

{
min

x∈{−1,1}N

∥∥∥ N∑
i=1

xiui

∥∥∥
K

: N ∈ N, u1, . . . , uN ∈ C

}
,

where ‖x‖K := min {s ≥ 0 : x ∈ sK} is the norm induced by K.
As an example, one may consider Spencer’s “six standard deviations” theorem [Spe85], inde-

pendently obtained by Gluskin [Glu89], which states that every set system on n points and n sets
can be colored with discrepancy at most O(

√
n). In the vector balancing context, the more gen-

eral statement is that vb(Bn
∞, B

n
∞) = O(

√
n) (also proved in [Spe85, Glu89]), where we use the

notation Bn
p = {x ∈ Rn : ‖x‖p ≤ 1}, p ∈ [1,∞], to denote the unit ball of the `p norm. To encode

Spencer’s theorem, we simply represent the set system using its incidence matrix U ∈ {0, 1}n×n,
where Uji = 1 if element i is in set j and 0 otherwise. Here the columns of U have `∞ norm 1, and
thus the sign vector x ∈ {−1, 1}n satisfying ‖Ux‖∞ = O(

√
n) indeed yields the desired coloring.

In fact, vector balancing was studied earlier, and independently from combinatorial discrepancy.
In 1963 Dvoretzky posed the general problem of determining vb(K,K) for a given symmetric
convex body K. The more general version with two different bodies was introduced by Barany
and Grinberg [BG81] who proved that for any symmetric convex body K in Rn, vb(K,K) ≤ n. In
addition to Spencer’s theorem, as described above, many other fundamental discrepancy bounds,
as well as conjectured bounds, can be stated in terms of vector balancing constants. The Beck-
Fiala theorem, which bounds the discrepancy of any t-sparse set system by 2t− 1, i.e. where each
element appears in at most t-sets, can be recovered from the bound vb(Bn

1 , B
n
∞) < 2 [BF81]. The

Beck-Fiala conjecture, which asks whether the bound for t-sparse set systems can be improved to
O(
√
t), is generalized by the Kómlos conjecture [Spe94], which asks whether vb(Bn

2 , B
n
∞) = O(1).

One of the most important vector balancing bounds is due to Banaszczyk [Ban98], who proved
that for any convex body K ⊆ Rn of Gaussian measure 1/2, one has the bound vb(Bn

2 ,K) ≤ 5. In
particular, this implies the bound of vb(Bn

2 , B
n
∞) = O(

√
log n) for the Kómlos conjecture.

Hereditary Discrepancy. While vector balancing gives useful worst-case bounds, one is often
interested in understanding the discrepancy guarantees one can get for instances derived from a
fixed set of vectors, known as hereditary discrepancy. Given vectors (ui)

N
i=1 in Rn, the discrepancy
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and hereditary discrepancy with respect to a symmetric convex body K ⊆ Rn are defined as:

disc((ui)
N
i=1,K) , min

ε1,...,εN∈{−1,1}

∥∥∥ N∑
i=1

εiui

∥∥∥
K

;

hd((ui)
N
i=1,K) , max

S⊆[N ]
disc((ui)i∈S ,K).

When convenient, we will also use the notation hd(U,K) := hd((ui)
N
i=1,K), where U :=

(u1, . . . , uN ) ∈ Rn×N , and disc(US ,K) := disc((ui)i∈S ,K) for any subset S ⊆ [N ]. In the con-
text of set systems, `∞ hereditary discrepancy corresponds to the worst-case discrepancy of any
element induced subsystem, which gives a robust notion of discrepancy, and can be seen as a mea-
sure of the complexity of the set system. As an interesting example, a set system has `∞ hereditary
discrepancy 1 if and only if its incidence matrix is totally unimodular [GH62].

Beyond set systems, hereditary discrepancy can also usefully bound the worst-case “error”
required for rounding a fractional LP solution to an integral one. More precisely, given any solution
y ∈ Rn to a linear programming relaxation Ax ≤ b, x ∈ [0, 1]n, with A ∈ Rm×n, b ∈ Rm, of a binary
IP, and given any norm ‖·‖ on Rm measuring “constraint violation”, one can ask what guarantees
can be given on minx∈{0,1}n‖A(y − x)‖? Using a well-known reduction of Lovász, Spencer and
Vesztergombi [LSV86], this error can be bounded by hd(A,K) where K is the unit ball of ‖·‖.
Furthermore, this reduction guarantees that x agrees with y on its integer coordinates. Note
that we have the freedom to choose the norm ‖·‖ so that the error bounds meaningfully relate
to the structure of the problem. Indeed, much work has been done on the achievable “error
profiles” one can obtain algorithmically, e.g. for which ∆ ∈ Rm>0 we can always find x ∈ {0, 1}m
satisfying |A(y − x)| ≤ ∆, ∀y ∈ [0, 1]m? Note that the feasibility of an error profile can be
recovered from a bound of 1 on the hereditary discrepancy with respect to the weighted `∞ norm
‖y− x‖∆ = maxi∈[m] |yi − xi|/∆i. Indeed, in many instances, this is (at least implicitly) how these
bounds are proved. These error profile bounds have been fruitfully leveraged for problems where
small “additive violations” to the constraints are either allowed or can be repaired. In particular,
they were used in for the recent O(log n)-additive approximation for bin packing [HR17], an additive
approximation scheme for the train delivery problem [Rot12], and additive approximations of the
degree bounded matroid basis problem [BN16].

Discrepancy Minimization. The original proofs of many of the aforementioned discrepancy
upper bounds were existential, and did not come with efficient algorithms capable of constructing
the requisite low discrepancy colorings. Starting with the breakthrough work of Bansal [Ban10], who
gave a constructive version of Spencer’s theorem using random walk and semidefinite programming
techniques, nearly all known bounds have been made algorithmic in the last eight years.

One of the most important discrepancy minimization techniques is Beck’s partial coloring
method, which covers most of the above discrepancy results apart from Banaszczyk’s vector bal-
ancing theorem. This method was first primarily applied to `∞ discrepancy minimization problems
of the form

min
x∈{−1,1}n

∥∥∥ n∑
i=1

xivi

∥∥∥
∞
, where (vi)

n
i=1 ∈ Rm.

As before, the goal is not to solve such problems near-optimally but instead to find solutions
satisfying a guaranteed error bound. The partial coloring method solves this problem in phases,
where at each phase it “colors” (i.e. sets to ±1) at least a constant fraction of the remaining
uncolored variables. This yields O(log n) partial coloring phases, where the discrepancy of the full
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coloring is generally bounded by the sum of discrepancies incurred in each phase. The existence
of low discrepancy partial colorings, i.e. which color half the variables, was initially established via
the pigeon hole principle and arguments based on the probabilistic and the entropy method. In
particular, the entropy method gave a general sufficient condition for the feasibility of any error
profile (as above) with respect to partial colorings. This method was made constructive by Lovett
and Meka [LM12] using random walk techniques. These techniques were further generalized by
Giannopoulos [Gia97b] to the general vector balancing setting using Gaussian measure. Precisely,
he showed that if a symmetric convex body K ⊆ Rn has Gaussian measure at least 2−cn, for c
small enough, then for any sequence of vectors v1, . . . , vn ∈ Bn

2 , there exists a partial coloring
x ∈ {−1, 0, 1}n, having support at least n/2, such that

∑n
i=1 xivi ∈ O(1)K. This method was

made constructive by Rothvoss [Rot14], using a random projection algorithm, and later by Eldan
and Singh [ES14] who used the solution of a random linear maximization problem. An important
difference between the constructive and existential partial coloring methods, is that the constructive
methods only guarantee that the “uncolored” coordinates of a partial coloring x are in (−1, 1)
instead of equal to 0. This relaxation seems to make the constructive methods more robust, i.e. the
conditions needed for such “fractional” partial colorings are somewhat milder, without having
noticeable drawbacks in most applications.

The main alternative to the partial coloring method comes from Banaszczyk’s vector balanc-
ing theorem [Ban98]. Banaszczyk’s method proves the existence of a full coloring when K has
gaussian measure 1/2, in contrast to Giannopoulos’s result which gives a partial coloring but re-
quires measure only 2−cn. Banaszczyk’s method was only very recently made constructive in the
sequence of works [BDG16, DGLN16, BDGL18]. In particular, [DGLN16] showed an equivalence of
Banaszczyk’s theorem to the existence of certain subgaussian signing distributions, and [BDGL18]
gave a random walk-based algorithm to build such distributions.

1.1 Approximating Vector Balancing and Hereditary Discrepancy

Given the powerful tools that have been developed above, a natural question is whether they can be
extended to get nearly optimal bounds for any vector balancing or hereditary discrepancy problem.
More precisely, we will be interested in the following computational and mathematical questions:

1. Given vectors (ui)
N
i=1 and a symmetric convex body K in Rn, can we (a) efficently compute

a coloring whose K-discrepancy is approximately bounded by hd((ui)
N
i=1,K)? (b) efficiently

approximate hd((ui)
N
i=1,K)?

2. Given two symmetric convex bodies C,K ⊆ Rn, does vb(C,K) admit a “good” characteriza-
tion? Namely, are there simple certificates which certify nearly tight upper and lower bounds
on vb(C,K)?

To begin, a few remarks are in order. Firstly, question 2 can be inefficiently encoded as question
1b, by letting (ui)

N
i=1 denote a sufficiently fine net of C. Thus “good” characterizations for hered-

itary discrepancy transfer over to vector balancing, and thus we restrict for now the discussion to
the former. For question 1a, one may be tempted to ask whether we can directly compute a coloring
whose K-discrepancy is approximately disc((ui)

N
i=1,K) instead of hd((ui)

N
i=1,K). Unfortunately,

even for K = Bn
∞ and (ui)

n
i=1 ∈ [−1, 1]n, it was shown in [CNN11] that it is NP-hard to distinguish

whether disc((ui)
n
i=1, B

n
∞) is 0 or Ω(

√
n) (note that O(

√
n) is guaranteed by Spencer’s theorem),

thus one cannot hope for any non-trivial approximation guarantee in this context.
We now discuss prior work on these questions and then continue with our main results.
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Prior work. For both questions, prior work has mostly dealt with the case of `∞ or `2 discrepancy.
Bounds on vector balancing constants for some combinations of `p to `q have also been studied,
as described earlier, however without a unified approach. The question of obtaining near-optimal
results for general vector balancing and hereditary discrepancy problems has on the other hand not
been studied before.

In terms of coloring algorithms, Bansal [Ban10] gave a partial coloring based random walk algo-
rithm which on U ∈ Rm×n, produces a full coloring of `∞ discrepancyO(

√
logm log rk(U) hd(U,Bm

∞)),
where rk(U) is the rank of U . Recently, Larsen [Lar17] gave an algorithm for the `2 norm achieving
discrepancy O(

√
log(rk(U)) hd(U,Bm

2 )).
In terms of certifying lower bounds on hd(U,Bm

∞)), the main tool has been the so-called deter-
minant lower bound of [LSV86], where it was shown that

hd(U,Bm
∞) ≥ detLB(U) := max

k
max
B

1

2
| det(B)|1/k

where the maximum is over k × k submatrices B of U . Matousek [Mat11], built upon the results
of [Ban10] to show that

hd(U,Bm
∞) ≤ O(

√
logm log3/2(rk(U)) detLB(U)).

For certifying tight upper bounds, [NT15, MNT18] showed that γ2 norm of U , defined by

γ2(U) := min
{
‖A‖2→∞‖B‖1→2 : U = AB,A ∈ Rm×k, B ∈ Rk×n, k ∈ N

}
where ‖A‖2→∞ is the maximum `2 norm of any row of A, and ‖B‖1→2 is the maximum `2 norm of
any column of B, satisfies

Ω(γ2(U)/ log(rk(U))) ≤ detLB(U) ≤ hd(U,Bm
∞) ≤ O(

√
logmγ2(U)) (1)

which implies a O(
√

logm log rk(U)) approximation to `∞ hereditary discrepancy. For the context
of `2, it was shown in [NT15] that a relaxation of γ2 yields an O(log rk(U))-approximation to
hd(U,Bm

2 ). We note that part of the strategy of [NT15, MNT18] is to replace the `∞ norm via
an averaged version of `2, where one optimizes over the averaging coefficients, which makes the `2
norm by itself an easier special case.

Moving to general norms. While at first glance it may seem that the above techniques for `∞
do not apply to more general norms, this is in some sense deceptive. Notwithstanding complexity
considerations, every norm can be isometrically embedded into `∞, where in particular any poly-
hedral norm with m facets can be embedded into Bm

∞. Vice versa, starting from U ∈ Rm×N , with
rk(U) = n and rank factorization U = AB, is it direct to verify hd(U,Bm

∞) = hd(B,K), where
K = {x ∈ Rn : |Ax| ≤ 1} is an n-dimensional symmetric polytope with m facets. Thus, for any
U ∈ Rn×N , one can equivalently restate the guarantees of [Ban10] as yielding colorings of discrep-
ancy O(

√
logm log n hd(U,K)) and of [MNT18] as a O(

√
logm log n) approximation to hd(U,K) for

any n-dimensional symmetric polytope K with m facets. A natural question is therefore whether
there exist corresponding coloring and approximation algorithms whose guarantees depend only
polylogarithmically on the dimension of the norm and not on the complexity of its representation.

We note that polynomial bounds in n for general K can be achieved by simply approximating
K by a sandwiching ellipsoid E ⊆ K ⊆

√
nE and applying the corresponding results for `2, which

yield O(
√
n log n) coloring and O(

√
n log n) approximations guarantees respectively. Interestingly,

these guarantees are identical to what can be achieved by replacing K by a symmetric polytope
with 3n facets, which can achieve a sandwiching factor of 2, and applying the `∞ results.
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1.2 Results

Our main results are that such polylogarithmic approximations are indeed possible. In particular,
given U ∈ Rn×N and a symmetric convex body K ⊆ Rn (by an appropriate oracle), we give
randomized polynomial time algorithms for computing colorings of discrepancy O(log n hd(U,K))
and approximating hd(U,K) up to O(log2.5 n) factor. Furthermore, if K is a polyhedral norm with
at mostm facets, our approximation algorithm for hd(U,K) always achieves a tighter approximation
factor than the γ2 bound, and hence gives an O(min

{
log n

√
logm, log2.5 n

}
) approximation. To

achieve these results, we first show that Rothvoss’ partial coloring algorithm [Rot14] is nearly
optimal for general hereditary discrepancy by showing near-tightness with respect to a volumetric
lower bound of Banaszczyk [Ban93]. Second, we show that the “best possible way” to apply
Banaszczyk’s vector balancing theorem [Ban98] for the purpose of upper bounding hd(U,K) can
be encoded as a convex program, and prove that this bound is tight to within an O(log2.5 n) factor.
As a consequence, we show that Banaszczyk’s theorem is essentially “universal” for vector balancing.
To analyze these approaches we rely on a novel combination of tools from convex geometry and
discrepancy. In particular, we give a new way to prove lower bounds on Gaussian measure using
only volumetric information, which could be of independent interest. Furthermore, we make a
natural geometric conjecture which would imply that Rothvoss’ algorithm is (in a hereditary sense)
optimal for finding partial colorings in any norm, and prove the conjecture for the special case of
`2.

Comparing to prior work, our coloring and hereditary discrepancy approximation algorithms
give uniformly better (or at at least no worse) guarantees in almost every setting which has been
studied. Furthermore our methods provide a unified approach for studying discrepancy in arbitrary
norms, which we expect to have further applications.

Interestingly, our results imply a tighter relationship between vector balancing and hereditary
discrepancy than one might initially expect. That is, neither the volumetric lower bound we use
nor our factorization based upper bound “see” the difference between them. More precisely, both
bounds remain invariant when replacing hd(U,K) by vb(conv {±ui : i ∈ [N ]} ,K). This has the
relatively non-obvious implication that

hd(U,K) ≤ vb(conv {±ui : i ∈ [N ]} ,K) ≤ O(log n) hd(U,K). (2)

We believe it is an interesting question to understand whether a polylogarithmic separation indeed
exists between the above quantities (we are currently unaware of any examples), as it would give a
tangible geometric obstruction for tighter approximations.

1.3 Techniques

Starting with hereditary discrepancy, to push beyond the limitations of prior approaches the first
two tasks at hand are: (1) find a stronger lower bound and (2) develop techniques to avoid the “union
bound”. Fortunately, a solution to the first problem was already given by Banaszczyk[Ban93], which
we present in slightly adapted form below.

Lemma 1 (Volume Lower Bound). Let U = (u1, . . . , uN ) ∈ Rn×N and K ⊆ Rn be a symmetric
convex body. For S ⊆ [N ], let US denote the columns of U in S. For k ∈ [n], define

volLBh
k((ui)

N
i=1,K) , volLBh

k(U,K) , max
S⊆[N ],|S|=k

volk({x ∈ Rk : USx ∈ K})−1/k. (3)

Then, we have that

volLBh((ui)
N
i=1,K) , volLBh(U,K) , max

k∈[n]
volLBh

k(U,K) ≤ hd(U,K). (4)
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A formal proof of the above is given in the preliminaries (see section 2.1). At a high level,
the proof is a simple covering argument, where it is argued that for any subset S, |S| = k, every
point in [0, 1]k is at distance at most hd(U,K) from {0, 1}k under the norm induced by C :={
x ∈ Rk : USx ∈ K

}
. Equivalently an hd(U,K) scaling of C placed around the points of {0, 1}k

cover [0, 1]k, and hence by a standard lattice argument must have volume at least that of [0, 1]k,
namely 1. This yields the desired lower bound after rearranging.

We note that the volume lower bound extends in the obvious way to vector balancing. In
particular, for two symmetric convex bodies C,K ⊆ Rn,

volLBh(C,K) , sup
{

volLB((ui)
k
i=1,K) : k ∈ [n], u1, . . . , uk ∈ C

}
≥ vb(C,K). (5)

The above lower bound can be substantially stronger than the determinant lower bound for `∞
discrepancy. As a simple example, let U ∈ R2n×n be the matrix having a row for each vector in
{−1, 1}n. Since U has rank n, the determinant lower bound is restricted to k×k matrices for k ∈ [n].
Hadamard’s inequality implies for any k×k matrix B with ±1 entries that | det(B)|1/k ≤

√
k ≤
√
n.

A moment’s thought however, reveals that for x ∈ Rn, ‖Ux‖∞ = ‖x‖1 and hence any coloring
x ∈ {−1, 1} must have discrepancy ‖x‖1 = n. Using the previous logic, the volume lower bound to
the full system yields by standard estimates

volLB(U,Bm
∞) ≥ voln({x ∈ Rn : ‖x‖1 ≤ 1})−1/n = voln(Bn

1 )−1/n = (n!/2n)1/n ≥ n/(2e),

which is essentially tight.

From Volume to Coloring. The above example gives hope that the volume lower bound can
circumvent a dependency on the facet complexity of the norm. Our first main result, shows that
indeed this is the case:

Theorem 2 (Tightness of the Volume Lower Bound). For any U ∈ Rn×N and symmetric convex
body K in Rn, we have that

volLBh(U,K) ≤ hd(U,K) ≤ O(log n) volLBh(U,K) , (6)

Furthermore, there exists a randomized polynomial time algorithm that computes a coloring of U
with K-discrepancy O(log n volLBh(U,K)), given a membership oracle for K.

We note that the above immediately implies the corresponding approximate tightness of the
volume lower bound for vector balancing. The above bound can also be shown to be tight. In
particular, the counterexample to the 3-permutations conjecture from [NNN12], which has `∞
discrepancy Ω(log n), can be shown to have volume lower boundO(1). The computations for this are
somewhat technical, so we defer a detailed discussion to the full version. As mentioned previously,
an interesting property of the volume lower bound is its invariance under taking convex hulls,
namely volLBh(conv {±U} ,K) = volLBh(U,K). In combination with Theorem 2, this establishes
the claimed inequality 2. This invariance is proved in section 6.1, where we use a theorem of
Ball [Bal88] to show that the volume lower bound is essentially convex, and hence maximized at
extreme points.

Our proof of Theorem 2 is algorithmic, and relies on iterated applications of Rothvoss’s partial
coloring algorithm. We now explain our high level strategy as well as the differences with respect
to prior approaches.

For simplicity of the presentation, we shall assume that U = (e1, . . . , en) ∈ Rn×n and that the
volume lower bound volLBh((ei)

n
i=1,K) = 1. This can be (approximately) achieved by applying
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a standard reduction to the case where U is non-singular, so N ≤ n, “folding” U into K, and
appropriately guessing the volume lower bound (see section 3 for full details).

For any subset S ⊆ [n], let KS := {x ∈ K : xi = 0, i ∈ [n] \ S} denote the coordinate section
of K induced by S. Since the vectors of U now correspond to the coordinate basis, it is direct to
verify that

volLBh((ei)
n
i=1,K) = max

S⊆[n],k:=|S|
volk(KS)−1/k.

In particular, the assumption volLBh((ei)
n
i=1,K) = 1 implies that

vol|S|(KS) ≥ 1, ∀S ⊆ [n]. (7)

Under this condition, our goal can now be stated as finding a coloring x ∈ {−1, 1}n ∈ O(log n)K.
When K is a symmetric polytope |Ax| ≤ 1, with m facets, Bansal [Ban10] uses a “sticky”

random walk on the coordinates, where the increments are computed via an SDP to guarantee
that their variance along any facet is at most hd((ei)

n
i=1,K)2, while the variance along all (active)

coordinate directions is at least 1 (i.e. we want to hit cube constraints faster). As this only gives
probabilistic error guarantees for each constraint in isolation, a union bound is used to get a global
guarantee, incurring the O(

√
logm) dependence.

To avoid the “union bound”, we instead use Rothvoss’s partial coloring algorithm, which simply
samples a random Gaussian vector X ∈ Rn and computes the closest point in Euclidean distance x
to X in K ∩ [−1, 1]n as the candidate partial coloring. As long as K has “large enough” Gaussian
measure, Rothvoss shows that x has at least a constant fraction of its components at ±1. While
this method can in essence better leverage the geometry of K than Bansal’s method (in particular,
it does not need an explicit description of K), it is apriori unclear why Gaussian measure should
be large enough in the present context.

Our main technical result is that if all the coordinate sections of K have volume at least 1
(i.e. condition 7), then there indeed exists a section of K of dimension close to n, whose Gaussian
measure is “large” after appropriately scaling. Specifically, we show that for any δ ∈ (0, 1), there
exists a subspace H of dimension (1− δ)n such that the Gaussian measure of 2O(1/δ)(K ∩H) is at
least 2−δn (see Theorem 10 for the exact statement). We sketch the ideas in the next subsection.

The existence of a large section of K with not too small Gaussian measure in fact suffices to
run Rothvoss’s partial coloring algorithm (see Theorem 9). Conveniently, one does not need to
know the section explicitly, as its existence is only used in the analysis of the algorithm. Since
condition 7 is hereditary, we can now find partial colorings of K-discrepancy O(1) on any subset of
coordinates. Thus, applying O(log n) partial coloring phases in the standard way yields the desired
full coloring.

A useful restatement of the above is that Rothvoss’s algorithm can always find partial colorings
with discrepancy O(1) times the volume lower bound. We note that this guarantee is a natural
by-product of algorithm (once one has guessed the appropriate scaling), which does not need to be
explicitly enforced as in Bansal’s algorithm.

Finding a section with large Gaussian measure. We now sketch how to find a section of
K of large Gaussian measure the assumption that vol|S|(KS) ≥ 1, ∀S ⊆ [n]. The main tool we
require is the M-ellipsoid from convex geometry [Mil86]. The M-ellipsoid E of K is an ellipsoid
which approximates K well from the perspective of covering, that is 2O(n) translates of E suffice
to cover K and vice versa.

The main idea is to use the volumetric assumption to show that the largest (1− δ)n axes of E,
for δ ∈ (0, 1) of our choice, have length at least

√
n2−O(1/δ), and then use the subspace generated
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by these axes for the section of K we use. On this subspace H, we have that a 2O(1/δ) scaling of
E ∩H contains the

√
n ball, and thus by the covering estimate 2O(n) translates of 2O(1/δ)(K ∩H)

covers the
√
n ball. Since the

√
n ball on H has Gaussian measure at least 1/2, the prior covering

estimate indeed implies that 2O(1/δ)(K ∩ H) has Gaussian measure 2−O(n), noting that shifting
2O(1/δ)(K ∩ H) away from the origin only reduces Gaussian measure. Using an M-ellipsoid with
appropriate regularity properties (see Theorem 11), one can scale K ∩H by another 2O(1/δ) factor,
so that the preceding argument yields Gaussian measure at least 2−δn.

We now explain why the axes of E are indeed long. By the covering estimates, for any S ⊆ [n],
|S| = δn, the sections ES and KS satisfy

volδn(ES)1/δn ≥ 2−O(1/δ) volδn(KS)1/δn ≥ 2−O(1/δ),

where the last inequality is by assumption. Using a form of the restricted invertibility principle
for determinants (see Lemma 7), one can show that if all coordinate sections of E of dimension δn
have large volume, then so does every section of E of the same dimension. Precisely, one gets that

min
dim(W )=δn

volδn(E ∩W )1/δn ≥
(
n

δn

)−1/δn

min
|S|=δn

volδn(ES)1/δn ≥ 2O(−1/δ).

In particular, the above implies that the geometric average of the shortest δn axes of E (corre-
sponding to the minimum volume section above), must have length

√
n2−O(1/δ) since the ball of

volume 1 in dimension δn has radius Ω(
√
δn). But then, the longest (1 − δ)n axes all have have

length
√
n2−O(1/δ). This completes the proof sketch.

The Discrepancy of Partial Colorings. Our analysis of Rothvoss’s algorithm opens up the
tantalizing possibility that it may indeed be optimal for finding partial colorings in a hereditary
sense. More precisely, we conjecture that if when run on an instance U with norm ball K, the
algorithm almost always produces partial colorings with K-discrepancy at least D, then there
exists a subset of S of the columns of U such that every partial coloring of US has discrepancy
Ω(D). The starting point for this conjecture is our upper bound of O(1) volLBh(U,K), on the
discrepancy of the partial colorings the algorithm computes. We now provide a purely geometric
conjecture, which would imply the above “hereditary optimality” for Rothvoss’s algorithm.

As in the last subsection, we may assume that U = (e1, . . . , en) is the standard basis of Rn and
that volLB((ei)

n
i=1,K) = 1. To prove the conjecture, it suffices to show that exists some subset

S ⊆ [n] of coordinates, such that all partial colorings have K-discrepancy Ω(1). For concreteness,
let us ask for partial colorings which color at least |S|/2 coordinates (the precise constant will not
matter). For x ∈ [−1, 1]n, define bounds(x) = {i ∈ [n] : xi ∈ {−1, 1}}. With this notation, our goal
is to find S ⊆ [n], such that ∀x ∈ [−1, 1]S , |bounds(x)| ≥ |S|/2, ‖

∑
i∈S xiei‖K ≥ Ω(1).

We explain the candidate geometric obstruction to low discrepancy partial colorings, which is
a natural generalization of the so-called spectral lower bound for `2 discrepancy. Assume now that
for some subset S ⊆ [n], we have that

KS ⊆ c
√
|S|BS

2 , (8)

where BS
2 := (Bn

2 )S , for some constant c > 0. Since any partial coloring x ∈ [−1, 1]S , | bounds(x)| ≥
|S|/2, clearly has ‖x‖2 ≥

√
|S|/2, we must have that

1

c
√

2
≤
∥∥∥∑
i∈S

xiei

∥∥∥
c
√
|S|BS2

≤
∥∥∥∑
i∈S

xiei

∥∥∥
KS
. (9)
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In particular, every partial coloring on S has discrepancy at least 1
c
√

2
= Ω(1), as desired.

Given the above, we may now reduce the conjecture to the following natural geometric question:

Conjecture 3 (Restricted Invertibility for Convex Bodies). There exists an absolute constant
c ≥ 1, such that for any n ∈ N and symmetric convex body K ⊆ Rn of volume at most 1, there
exists S ⊆ [n], S 6= ∅, such that KS ⊆ c

√
|S|BS

2 .

To see that this indeed implies the required statement, note that if volLB((ei)
n
i=1,K) = 1, then

by definition there exists A ⊆ [n], |A| ≥ 1, such that vol|A|(KA) ≤ 1. Now applying the above
conjecture to KA yields the desired result.

Two natural relaxations of the conjectures are to ask (1) does it hold for ellipsoids and (2) does
it hold for general sections instead of coordinate sections? Our main evidence for this conjecture
is that indeed both these statements are true. We note that (1) indeed implies the optimality of
Rothvoss’s partial coloring algorithm for `2 discrepancy. Our results here are slightly stronger than
(1)+(2), as we in some sense manage to get “halfway there” with coordinates sections, by working
with the M-ellipsoid, and only for the last step do we need to resort general sections. We note that
the above conjecture is closely related to the Bourgain-Tzafriri restricted invertibility principle, and
indeed our proof for ellipsoids reduces to it. We refer the reader to section 3.1 for further details
and proofs.

A Factorization Approach for Vector Balancing. While Theorem 2 gives an efficient and
approximately optimal method of balancing a given set of vectors, it does not give an efficiently
computable tight upper bound on the vector balancing constant or on hereditary discrepancy.
Even though we proved that, after an appropriate scaling, the volume lower bound also gives
an upper bound on the vector balancing constant, we are not aware of an efficient algorithm for
computing the volume lower bound, which is itself a maximum over an exponential number of
terms. To address this shortcoming, we study a different approach to vector balancing which relies
on applying Banaszczyk’s theorem in an optimal way in order to get an efficiently computable, and
nearly tight, upper bound on both vector balancing constants and hereditary discrepancy.

Recall that Banaszczyk’s vector balancing theorem states that if a bodyK has Gaussian measure
at least 1/2, then vb(Bn

2 ,K) ≤ 5. In order to apply the theorem to bodies K of small Gaussian
measure, we can use rescaling. In particular, if r is the smallest number such that the Gaussian
measure of rK is 1

2 , then the theorem tells us that vb(Bn
2 ,K) ≤ 5r. A natural way to use this upper

bound for bodies C different from Bn
2 is to find a mapping of C into Bn

2 , and then use the theorem as
above. As an illustration of this idea, let us see how we can get nearly tight bounds on vb(Bn

p , B
n
q )

(the `p and `q balls) by applying Banaszczyk’s theorem. Let us take an arbitrary sequence of points
u1, . . . , uN ∈ Bn

p , and rescale them to define new points vi , ui/max{1, n1/2−1/p}. The rescaled
points v1, . . . , vN lie in Bn

2 and we can apply Banaszczyk’s theorem to them and the convex body
K , L

√
qn1/qBn

q , which has Gaussian measure at least 1
2 as long as we choose L to be a large

enough constant. We get that there exist signs ε1, . . . , εN ∈ {−1, 1} such that∥∥∥∥∥
N∑
i=1

εivi

∥∥∥∥∥
K

≤ 5 ⇐⇒

∥∥∥∥∥
N∑
i=1

εiui

∥∥∥∥∥
q

≤ 5L
√
qmax{n1/q, n1/q+1/2−1/p}.

In other words, we have that

vb(Bn
p , B

n
q ) ≤ 5L

√
qmax{n1/q, n1/q+1/2−1/p}.

The volume lower bound (Lemmas 1) can be used to show that this bound is tight up to the
O(
√
q) factor. Indeed one can show that Bn

p contains n vectors u1, . . . un such that the matrix
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U , (u1, . . . , un) has determinant det(U) ≥ e−1 max{1, n1/2−1/p} (see [Bal89] or [Nik15]). By
standard estimates, vol(Bn

q )1/n ≥ cn1/q for an absolute constant c > 0. Plugging these estimates

into Lemma 1 shows vb(Bp, Bq) ≥ c′max{n1/q, n1/q+1/2−1/p} for a constant c′ > 0.
It is easy to see that, unlike the example above, in general simply rescaling C and K and

applying Banaszczyk’s theorem to the rescaled bodies may not give a tight bound on vb(C,K).
However, we will show that we can get such tight bounds if we expand the class of transformations
we allow on C and K from simple rescaling to arbitrary linear transformations. It turns out that
the most convenient language for this approach is that of linear operators between normed spaces.
We can generalize the notion of a vector balancing constant between a pair of convex bodies to
arbitrary linear operators U : X → Y between two n-dimensional normed spaces X, with norm
‖ · ‖X), and Y , with norm ‖ · ‖Y ), as follows

vb(U) = sup

{
min

ε1,...,εN∈{−1,1}

∥∥∥∥ N∑
i=1

εiU(xi)

∥∥∥∥
Y

: N ∈ N, x1, . . . , xN ∈ BX

}
(10)

where BX = {x : ‖x‖X ≤ 1} is the unit ball of X. This definition is indeed a generalization of the
geometric one. If C and K are two centrally symmetric convex bodies in Rn, and we define the
corresponding normed spaces XC = (Rn, ‖ · ‖C) and XK = (Rn, ‖ · ‖K), then the vector balancing
constant vb(I) of the formal identity operator I : XC → XK recovers vb(C,K). However, the
more abstract setting makes it plain that a simple rescaling is not the right approach to applying
Banaszczyk’s theorem to arbitrary norms: if X is an arbitrary norm, then X and Bn

2 may not be
defined on the same vector space, and rescaling BX so that it is a subset of Bn

2 does not even make
sense. Instead, when dealing with general norms, it becomes very natural to embed BX into Bn

2

via a linear map T : X → `n2 so that T (BX) ⊆ Bn
2 . Our approach is based on this idea, and, in

particular, on choosing such a map T optimally.
To formalize the above, we use the `-norm, which has been extensively studied in the theory

of operator ideals, and in asymptotic convex geometry (see e.g. [TJ89, Pis89, AAGM15]). For a
linear operator S : `n2 → Y into a normed space Y with norm ‖ · ‖Y , the `-norm of S is defined as

`(S) ,

(∫
‖S(x)‖2Y dγn(x)

)1/2

,

where γn is the standard Gaussian measure on Rn. I.e., if Z is a standard Gaussian random variable
in Rn, then `(S) = (E‖S(Z)‖2Y )1/2. It is easy to verify that `(·) is a norm on the space of linear
operators from `n2 to Y , for any normed space Y as above. The reason the `-norm is useful to us is
the fact that the smallest r for which the set K = {x ∈ Rn : ‖Sx‖Y ≤ r} has Gaussian measure at
least 1/2 is approximately `(S), due to the concentration of measure phenomenon.

We now define our main tool: a factorization constant λ, which, for any two n-dimensional
normed spaces X and Y and an operator U : X → Y is defined by

λ(U) , inf{`(S)‖T‖ : T : X → `n2 , S : `n2 → Y,U = ST}.

In other words, λ(U) is the minimum of `(S)‖T‖ over all ways to factor U through `n2 as U = ST .
Here ‖T‖ is the operator norm, equal to max{‖Tx‖2/‖x‖X}. This definition captures an optimal
application of Banaszczyk’s theorem. Using the theorem, it is not hard to show that vb(U) ≤ Cλ(U)
for an absolute constant C. Our main result is showing vb(U) and λ(U) are in fact equal up to
a factor which is polynomial in log n. To prove this, we formulate λ(U) as a convex minimization
problem. Such a formulation is important both for our structural results, which rely on Lagrange
duality, and also for giving an algorithm to compute λ(U) efficiently, and, therefore, approximate
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vb(U) efficiently, which turns out to be sufficient to approximate hereditary discrepancy in arbitrary
norms.

The most immediate way to formulate λ(U) as an optimization problem is to minimize `(UT−1)
over operators T : X → `n2 and subject to the constraint ‖T‖ ≤ 1. Unfortunately, this optimization
problem is not convex in T : the value of the objective function is finite for any nonzero T , but
infinite for 0 = 1

2(T + (−T )), for example. The key observation that allows us to circumvent this

issue is that the objective function is completely determined by the operator A , T ∗T , and is in
fact convex in A. Here T ∗ is the dual operator of T (see Section 4.1 for more details). We use
f(A) to denote this objective function, i.e. to denote `(UT−1) where T is an operator such that
T ∗T = A. We give more justification why this function is well-defined and convex in Section 4.3.
Then, our convex formulation of λ(U) is

inf f(A)

s.t.

A : X → X∗, ‖A‖ ≤ 1

A � 0.

Above, X∗ is the dual space of X, and ‖A‖ is the operator norm. The first constraint is equivalent
to the constraint ‖T‖ ≤ 1 where U = ST is the factorization in the definition of λ(U). The last
constraint says that A should be positive definite, which is important so that A can be written as
T ∗T and f(A) is well-defined.

We utilize this convex formulation and Lagrange duality to derive a dual formulation of λ(U) as
a supremum over “dual certificates”. Such a formulation is useful in approximately characterizing
vb(U) in terms of λ(U) because it reduces our task to relating the dual certificates to the terms
in the volume lower bound (3). If we can show that every dual certificate bounds from below one
of the terms of the volume lower bound (up to factors polynomial in log n), then we can conclude
that λ(U) also bounds the volume lower bound from below, and therefore vb(U) as well.

Before we can give the dual formulation, we need to introduce the dual norm `∗ of the `-norm,
defined via trace duality: for any linear opartor R : Y → `n2 , let

`∗(R) , sup{tr(RS) : S : `n2 → Y, `(S) ≤ 1}.

The norms ` and `∗ form a dual pair, and in particular we have

`(S) = sup{tr(RS) : R : Y → `n2 , `
∗(R) ≤ 1}.

For a finite dimensional space Y , both suprema above are achieved.
The derivation of our dual formulation uses standard tools, but is quite technical due to the

complicated nature of the function f(A). We give the formulation for norms X such that BX =
conv{±x1, . . . ,±xm}. This is without loss of generality since every symmetric convex body can be
approximated by a symmetric polytope. The dual formulation is as follows:

sup tr((RU(
m∑
i=1

pixi ⊗ xi)U∗R∗)1/3)3/2

s.t. R : Y → `n2 , `
∗(R) ≤ 1

m∑
i=1

pi = 1, p1, . . . , pm ≥ 0.
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Above xi⊗xi is the rank-1 operator from the dual space X∗ to X, given by (xi⊗xi)(x∗) = 〈x∗, xi〉xi.
We relate the volume lower bound to this dual via deep inequalities between the `∗ and the

` norms (K-convexity), and between the ` norm and packing and covering numbers (Sudakov’s
minoration). Our main result is the theorem below.

Theorem 4. There exists a constant C such that for any two n-dimensional normed spaces X and
Y , and any linear operator U : X → Y between them, we have

1

C
≤ λ(U)

vb(U)
≤ C(1 + log n)5/2.

Moreover, for any vectors u1, . . . , uN and convex body K in Rn we can define a norm X on Rn so
that for the space Y with unit ball K and the identity map I : X → Y ,

λ(I)

C(1 + log n)5/2
≤ hd((ui)

N
i=1,K) ≤ vb(I) ≤ Cλ(I).

Finally, λ(U) is computable in polynomial time given appropriate access to X and Y . 1

1.4 Organization

In section 2 we present basic definitions and preliminary material. In section 3, we present our
proof of Theorem 2. In subsection 3.1, we present our partial progress on the restricted invertibility
conjecture for convex bodies. In section 4, we present the proof of tightness for our factorization
approach to vector balancing. In section 5, we give a polynomial time algorithm to compute the
factorization constant up to a constant factor. In section 6.1, we show that the volume lower bound
is invariant under taking convex hulls.

2 Preliminaries

We use the notation [n] = {1, . . . , n}. For vectors x, y ∈ Rn, we define 〈x, y〉 =
∑n

i=1 xiyi to be the
standard inner product in Rn. For a square matrix T ∈ Rn×n, we define tr(T ) =

∑n
i=1 Tii, and a

matrix M ∈ Rn×m, we define its transpose MT
ij := Mji. For two sets A,B ∈ Rn, we define their

Minkowski sum A+B = {a+ b : a ∈ A, b ∈ B}.
For a linear subspace W ⊆ Rn, we denote the orthogonal projection onto W by πW . For S ⊆ [n],

we write πS to denote the projection onto the coordinate subspace span{ei : i ∈ S)}.

Convexity. A convex body K ⊆ Rn is a compact convex set with non-empty interior. K is
symmetric if K = −K. A symmetric convex body induces a norm ‖x‖K = min {s ≥ 0 : x ∈ sK}. If
K contains the origin is its interior, the polar of K is defined by K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1,∀y ∈ K}.
Furthermore, by convex duality, we have that relation (K◦)◦ = K.

For a subset S ⊆ [n], we denote the coordinate section ofK on S byKS , {x ∈ K : xi = 0, ∀i /∈ S}.
For a vector x ∈ Rn, for p ∈ [1,∞), we let ‖x‖p = (

∑n
i=1 |xi|p)1/p denote the `p norm, and

‖x‖∞ = maxni=1 |xi| denote the `∞ norm. We use Bn
p , p ∈ [1,∞], to denote the unit `p ball

in dimension n, BS
p := (Bn

p )S and BW
p := (Bn

p ) ∩ W for corresponding coordinate and general
sections, where S ⊆ [n] is a subset and W ⊆ Rn is a linear subspace.

1See Theorem 33 for the necessary assumptions.
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Probability and Measure. We denote the n-dimensional Lebesgue measure by voln(·). Let

κn := voln(Bn
2 ) denote the volume of the Euclidean ball, which can be estimated by κ

1/n
n ≈

√
2πe
n .

For a matrix A ∈ Rn×k, for any measurable set S ⊆ Rk, we have volk(AS) = det(ATA)1/2 volk(S).
We define γn to be the standard Gaussian measure on Rn, that is γn(A) = 1√

2π
n

∫
A e
−‖x‖2/2.

We will often use the k-dimensional Gaussian measure restricted to k-dimensional linear subspace
H of Rn, for which we use the notation γH .

Positive Definite Matrices and Ellipsoids. A matrix A ∈ Rn×n is symmetric if A = AT. A
symmetric matrix A ∈ Rn×n is positive semidefinite (PSD), written A � 0, if xTAx ≥ 0 for all
x ∈ Rn. Equivalently, it is PSD if A if it is symmetric and all its eigenvalues are non-negative.
A is positive definite, A � 0, it is eigenvalues are all strictly positive. We write A � B to mean
A − B � 0 and similarly for A � B. Every positive semidefinite matrix A has a unique positive
semidefinite square root, which we denote A1/2.

For an n×n positive definite matrix Q, we define the ellipsoid E(Q) =
{
x ∈ Rn : xTQx ≤ 1

}
=

A−1/2Bn
2 . The polar ellipsoid is E(Q)◦ = E(Q−1) that voln(E(Q)) = κn det(Q)−1/2. The length of

the principal axes of Q, which are aligned with the eigen vectors of Q, have length 1/
√
λn ≥ · · · ≥

1/
√
λ1, where λ1 ≥ · · ·λn > 0 are the eigenvalues of Q.

Membership Oracles. To interact with a convex body K ⊆ Rn, we will assume that it is given
by a well-guaranteed membership oracle OK , where OK(x) = 1 if x ∈ K and 0 otherwise. It comes
with guarantees (a0, r, R), a0 ∈ Rn a center, 0 < r < R, for which a0 + rBn

2 ⊆ K ⊆ a0 + RBn
2 .

With access to such oracle, one can perform many standard tasks in convex optimization, such as
approximately maximize a linear function over K, or compute the closest point in K to an input
point y, compute the norm ‖x‖K (when K is symmetric), using a polynomial number of queries to
the oracle and arithmetic operations. See for example [GLS88] for a reference. All our algorithms
will rely upon the real model of computation.

Inequalities for Convex Bodies. We will need the following inequalities to relate the volume
of a symmetric convex body to that of its polar.

Theorem 5 (Blaschke-Santaló). Let K ⊆ Rn be a symmetric convex body. Then voln(K) ·
voln(K◦) ≤ κ2

n, where equality holds if and only if K is an origin centered ellipsoid. Here
κn = voln(Bn

2 ).

Restricted Invertibility. We will need a refinement of the restricted invertibility theorem of
Bourgain and Tzafriri [BT87] due to Spielman and Srivastava.

Theorem 6 ([SS10]). Let Q ∈ Rn×n be positive definite quadratic form and ε ∈ (0, 1). Let λ1 :=
λ1(Q) > 0 denote the maximum eigenvalue of Q. For k = bε2 tr(Q)/λ1c, there exists S ⊆ [n],

|S| = k, such that λmin(QS,S) > (1−ε)2 tr(Q)
n , where λmin(QS,S) is the minimum eigenvalue of QS,S.

We will also need a couple of simple determinantal analogues of the restricted invertibility
principle.

Lemma 7. Let Q be an n × n real positive semi-definite matrix with eigenvalues λ1 ≥ . . . ≥ λn.
For any integer k, 1 ≤ k ≤ n, there exists a set S ⊆ [n] of size k such that

k∏
i=1

λi ≤
(
n

k

)
det(QS,S).
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Proof. To prove the lemma, we will rely on the classical identity for applying the elementary
symmetric polynomials to the eigenvalues of Q:∑

S∈[n],|S|=k

∏
i∈S

λi , pk(λ) =
∑

S⊂[n]:|S|=k

det(QS,S).

To verify this equation, consider the coefficient of tn−k in the polynomial det(Q+ tI). Calculating
the coefficient using the Leibniz formula for the determinant gives the right hand side; calculating
it using det(Q + tI) = (λ1 + t) . . . (λn + t) gives the left hand side. Since the eigenvalues are all
non-negative, we get that

k∏
i=1

λi ≤ pk(λ) =
∑

S⊆[n]:|S|=k

det(QS,S) ≤
(
n

k

)
max

S⊆[n]:|S|=k
det(QS,S),

as needed.

2.1 Proof of Volume Lower Bound

Lemma 1 (Volume Lower Bound). Let U = (u1, . . . , uN ) ∈ Rn×N and K ⊆ Rn be a symmetric
convex body. For S ⊆ [N ], let US denote the columns of U in S. For k ∈ [n], define

volLBh
k((ui)

N
i=1,K) , volLBh

k(U,K) , max
S⊆[N ],|S|=k

volk({x ∈ Rk : USx ∈ K})−1/k. (3)

Then, we have that

volLBh((ui)
N
i=1,K) , volLBh(U,K) , max

k∈[n]
volLBh

k(U,K) ≤ hd(U,K). (4)

Proof. For S ⊆ [N ], |S| = k ∈ [n], let C =
{
x ∈ Rk : USx ∈ K

}
. It is direct to verify hd((ei)

k
i=1, C) =

hd(US ,K) ≤ hd(U,K), where (ei)
k
i=1 is the standard basis of Rk. Thus, it suffices to show that

hd((ei)
k
i=1, C) ≥ volk(C)−1/k. For x ∈ Rk, A ⊆ Rk finite, let d(x,A) := mina∈A‖a−x‖C denote the

minimum distance between x and A under the
(semi-)norm induced by C. From here, we apply the standard reduction from linear discrepancy
to hereditary discrepancy [LSV86], to get

max
x∈[0,1]k

d(x, {0, 1}k) ≤ max
x∈[0,1]n

d(x, {0, 1
2 , 1}

k) + max
x′∈{0,12 ,1}

k

d(x′, {0, 1}n)

≤ 1

2
max
x∈[0,1]k

d(x, {0, 1}k) +
1

2
hd((ei)

k
i=1, C)

⇒
max
x∈[0,1]k

d(x, {0, 1}k) ≤ hd((ei)
k
i=1, C).

Let r = hd((ei)
k
i=1, C), we in particular have that [0, 1]k ⊆ {0, 1}k + rC. Thus

volk(rC) ≥ volk(∪x∈{0,1}krC ∩ (−x+ [0, 1)k)) = volk(∪x∈{0,1}k(rC + x) ∩ [0, 1)k)

= volk(({0, 1}k + rC) ∩ [0, 1)k) ≥ volk([0, 1)k) = 1.

In particular, r ≥ volk(C)−1/k as needed.
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3 Tightness of the Volume Lower Bound

In this section, we will show that the volume lower bound (3) is tight within a logarithmic factor.

Theorem 2 (Tightness of the Volume Lower Bound). For any U ∈ Rn×N and symmetric convex
body K in Rn, we have that

volLBh(U,K) ≤ hd(U,K) ≤ O(log n) volLBh(U,K) , (6)

Furthermore, there exists a randomized polynomial time algorithm that computes a coloring of U
with K-discrepancy O(log n volLBh(U,K)), given a membership oracle for K.

The main technical result of this section is that the volume lower bound, restricted to subsets
of size at least Ω(n), is in fact an upper bound on the discrepancy of so-called partial colorings.
This allows us to easily recover Theorem 2 using O(log n) partial coloring phases in the standard
way. We state our technical result below, restricted to the case where the vectors are aligned with
the standard basis. We note that since the output norm is general, this is essentially without loss
of generality. For a vector x ∈ [−1, 1]n, we use the notation bounds(x) = {i ∈ [n] : xi ∈ {−1, 1}},
to denote the coordinates in x set to ±1.

Lemma 8 (Partial Colorings via Volume). There exists a universal constants C ≥ 1, ε0 ∈ (0, 1), δ ∈
(0, 1), such that for any y ∈ (−1, 1)n and symmetric convex body K ⊆ Rn satisfying ∀S ⊆ [n],
|S| = dδne, vol|S|(KS) ≥ 1, there exists a polynomial time algorithm which with high probability
finds x ∈ [−1, 1]n with | bounds(x)| ≥ dε0ne and x− y ∈ CK.

We now give the straightforward reduction from Theorem 2 to Lemma 8.

Proof of Theorem 2. By Lemma 1, we may restrict attention to the upper bound. In particular,
given u1, . . . , uN ∈ Rn and a convex body K in Rn, it suffices to show that disc((ui)

N
i=1) ≤ C(1 +

log n) volLBh((ui)
N
i=1,K).

To begin, we compute a basic solution to the linear program
∑N

i=1 xiui = 0, x ∈ [−1, 1]N . After
relabeling, we may assume the variables not hitting their {−1, 1} bounds are x1, . . . , xl, noting that
if there are no such variables we already have a 0 discrepancy coloring. Since x is basic, we know
that the vectors u1, . . . , ul must be linearly independent. Therefore, we may apply a invertible
linear transformation T : Rn → Rn sending u1, . . . , ul to e1, . . . , el. In particular, letting K ′ := TK,
we have that

disc((ui)
N
i=1,K) ≤ min

z∈{−1,1}l
‖

l∑
i=1

ziei +

N∑
i=l+1

xiTui‖K′

= min
z∈{−1,1}l

‖
l∑

i=1

(zi − xi)ei‖K′ ,

Furthermore, a direct computation shows that

volLBh((ui)
l
i=1,K) = volLBh((ei)

l
i=1,K

′) = max
S⊆[l]

vol|S|(K
′
S)−1/|S| .

Let us assume that we have computed M > 0 satisfying

M/2 ≤ volLBh((ei)
l
i=1,K

′) ≤M.
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From here, it suffices to compute z ∈ {−1, 1}l such that
∑l

i=1(zi − xi)ei ∈ O(M log n)K ′. Note
that by assumption on M , vol(MK ′S) ≥ 1,∀S ⊆ [l]. Therefore, repeatedly applying Lemma 8 on
MK ′, letting x0 := x we compute a sequence x1, . . . , xT ∈ [−1, 1]l, T = dlog l/ε0e = O(log n), such
that ∀t ∈ [T ], we have that

1.
∑l

i=1(xti − x
t−1
i )ei ∈ O(M)K ′.

2. |
{
i ∈ [l] : xti ∈ (−1, 1)

}
| ≤ (1− ε0)|

{
i ∈ [l] : xt−1

i ∈ (−1, 1)
}
|.

By our choice of T , it is direct to check that xT ∈ {−1, 1}l and by the triangle inequality that∑l
i=1(xTi − x0

i )ei ∈ TMK ′ = O(M log n)K ′. Thus, setting z = xT satisfies the requirements.
We now discuss the computation of M . We first note that

M1 := max
i∈[l]

vol1(K ′i)
−1 = max

i∈[l]
‖ei‖K′ = max

i∈[l]
‖ui‖K ,

and thus the restricted maximum can be efficiently computed. Note that by construction

conv{±e1, . . . ,±el}/M1 ⊆ K ′[l].

Thus, for any S ⊆ [l],|S| = k, we see that

volk(lM1K
′
S) ≥ volk(l · conv(±ei : i ∈ S)) =

(2l)k

k!
≥ 1 .

In particular, we get that M1 ≤ volLBh((ei)
l
i=1,K

′) ≤ lM1. Hence, as input to the stage above we
may successively try the values M12k, k ∈ {0, . . . , log2 l}, stopping the first time we find a valid
coloring.

Lemma 8 should be viewed as a volumetric analogue of a theorem of Rothvoss [Rot14], who
both extended and made algorithmic vector balancing results of Giannopoulos [Gia97a]. We state
a slight variant of [Rot14, Lemma 9] below.

Theorem 9 (Partial Colorings via Gaussian Measure). Let 0 < ε ≤ 1/60000 and δ = 3
2ε log2

1
ε .

Let K ⊆ Rn be a symmetric convex body given by a membership oracle, and assume that for some
subspace H ⊆ Rn of dimension at least (1 − δ)n, we have that γH(K) ≥ e−δn. Then for any
y ∈ (−1, 1)n, there exists a polynomial time algorithm which with high probability finds x ∈ [−1, 1]n

satisfying |bounds(y)| ≥ εn/2 and x− y ∈ K.

We recall that Rothvoss’ algorithm, for the special case y = 0 (the general case is similar),
works by computing the Euclidean projection of a Gaussian random vector onto K ∩ [−1, 1]n. The
above statement deviates from the corresponding Lemma in [Rot14] in that it does not assume that
K ⊆ H or that H is known to the algorithm. It is not hard to verify however that this condition
is not needed in analysis, so we defer discussion of the proof of this statement to the full version.
The flexibility gained by not needing to know the subspace in advance will be very useful in the
sequel. We note that one can also adapt the analysis of the algorithm of Singh and Eldan [ES14],
which maximizes over K ∩ [−1, 1]n using the Gaussian as the objective vector instead of projecting
it, to work in the above setting.

Our proof of Lemma 8 will in fact be a direct reduction to Rothvoss’ theorem. The core of
our reduction is the following geometric theorem, which shows that if all the coordinate sections
of K of proportional dimension have large volume, then there exists a subspace H of proportional
dimension on which K has large Gaussian measure.
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Theorem 10 (Gaussian Measure via Volume). There exists a decreasing function η : (0, 1)→ R+,
η(δ) = eO(1/δ), such that the following holds. For any n ∈ N, K ⊆ Rn symmetric convex body,
2 ≤ k ≤ n−1, α = k/n, such that ∀S ⊆ [n], |S| = αn, volδn(KS) ≥ 1, there exists a linear subspace
H of dimension (1− δ)n for which γH(η(δ)K) ≥ e−δn.

We note that the above theorem is primarily interesting in the case where δ is a fixed constant,
as η(δ) = eO(1/δ) blows up quite quickly as δ → 0. Lemma 8 now follows directly combining the
above with Theorem 9, as shown below.

Proof of Lemma 8. Let ε = 1/60000 and δ = (3/2)ε log2(1/ε). By Theorem 10, η(δ)K satisfies the
conditions for applying Theorem 9 on any x ∈ (−1, 1)n with ‘parameters ε and δ as in the last
sentence. This yields Lemma 8 with ε0 = ε/2, δ = δ and C = O(η(δ)) = O(1), as needed.

While there are examples where the volume lower bound is a O(log n) factor off from hereditary
discrepancy (e.g. 3 permutations), we conjecture that the volume lower bound actually characterizes
a hereditary version of partial coloring discrepancy. Namely, if the volume lower bound is D, we
conjecture that there exists a subset of vectors for which every (fractional) partial coloring has
discrepancy Ω(D). Recall that Lemma 8 gives the other direction, i.e. that there always exist
partial colorings of discrepancy O(D). If this conjecture were true, then Rothvoss’ algorithm,
which we use as a blackbox, would in a weak sense be optimal for finding partial colorings. We
discuss this conjecture in more detail in the next subsection.

Comparing to prior works, Theorem 10 provides a useful and different route for proving that a
body (or at least a large section of it) has exponentially small Gaussian measure. In the context
of discrepancy, to the authors’ knowledge, only two main techniques were used to prove such
bounds, neither of which is directly applicable in the above setting. The first technique consists
of combining chaining techniques and moment bounds, which can generally only measure when
the body has Gaussian measure close to 1/2. This approach loses the leverage we have in only
needing exponentially small bounds and thus often incurs additional logarithmic factors. The
second strategy is based on the positive correlation properties of Gaussian measure, first proved
for the intersection of symmetric slabs (i.e. Sidak’s lemma), and with the recent resolution of the
Gaussian correlation conjecture [Roy14], for the intersection of arbitrary symmetric convex bodies.
More precisely, one tries to show that K contains (or equals) the intersection of “simpler” symmetric
convex bodies K1, . . . ,KT (most often slabs) to deduce that γn(K) ≥

∏T
i=1 γn(Ki), from which one

can usefully get exponentially small bounds.
In contrast, our proof of the e−δn lower bounds on Gaussian measure in the above theorem

proceeds via a direct covering argument. Namely, if one can show that eδn−1 translates of K cover
the Euclidean ball of radius

√
n, which has Gaussian measure ≥ 1/2, then one can directly deduce

that
1 ≤ 2γn(

√
nBn

2 ) ≤ 2N(
√
nBn

2 ,K) max
t∈Rn

γn(K + t) ≤ eδnγn(K),

where we have used that maxt∈Rn γn(K+ t) = γn(K) for a centrally symmetric convex body, which
follows by the symmetry and logconcavity of Gaussian measure. We will adopt this strategy on a
section of K, which is chosen to align with the longest axes of a so-called regular M-ellipsoid for K.
The volumetric condition in Lemma 8 will in fact be used to guarantee that these axes have length
Ω(
√
n), which makes the above strategy plausible. We recall that an M-ellipsoid E of K is an

ellipsoid which approximates K well from the perspective of covering, i.e. 2O(n) shifts of K suffice
to cover E and vice versa. The existence of such ellipsoids was first proven by Milman [Mil86]. We
give precise definitions below.
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For any two sets A,B ⊆ Rn, let

N(A,B) = min {|Λ| : Λ ⊂ Rn, A ⊆ Λ +B} ,

denote the minimum number of shifts ofB needed to coverA. The following theorem of Pisier [Pis89],
gives the existence of M-ellipsoids whose covering estimates have polynomial decay. The decay es-
timate will be used to make the Gaussian measure of the large section of K we find as close to 1
as we like after a sufficient scaling.

Theorem 11 (Regular M-ellipsoid). There exists an absolute constant c0 > 0, such that any
0 < α < 2, letting σ(α) = c0(2 − α)−1/2, n ∈ N, and symmetric convex body K ⊆ Rn, there exists
an ellipsoid E ⊆ Rn, voln(E) = voln(K), such that for all t ≥ 1

max {N(K, tE), N(E, tK), N(K◦, tE◦), N(E◦, tK◦)} ≤ eσ(α)n/tα .

Such an ellipsoid will be referred to as an α-regular M-ellipsoid.

To show that the axes of the M-ellipsoid of K are long, we will need to relate the axis lengths
to the volumes of coordinate projections of the polar ellipsoid. For this, purpose we will require
the following formula for coordinate projection volumes.

Lemma 12. Let E := E(Q) ⊆ Rn be an origin center ellipsoid. Then, for any S ⊆ [n], |S| = k,
we have that

volk(πS(E◦)) = κk det(QS,S)1/2 .

Proof. Recall that E◦ = E(Q−1) = Q1/2Bn
2 , where Q1/2 is the positive definite square root of Q.

To begin, we recall that the support function of E◦ can be computed by

hE◦(w) , max
y∈E◦
〈w, y〉 = max

z∈Bn2
〈w,Q1/2z〉 = ‖Q1/2w‖ =

√
wTQw.

Let WS = span{ei : i ∈ S}. Note that by construction, πS(E◦) ⊆ WS and hπS(E◦)(w) = hE(w),
∀w ∈WS . Furthermore, by duality, among convex bodies these conditions uniquely define πS(E◦).

Let s1 < s2 < · · · < sk be the elements of S and let PS = (es1 , . . . , esk), noting that PSP
T
S = πS .

Let T = PS(QS,S)1/2 ∈ Rn×k. We now show that TBk
2 = πS(E◦) using the aforementioned

conditions. Clearly TBk
2 ⊆ WS since span(PS) = WS . For w ∈ WS , letting wS = (ws1 , . . . , wsk)T

denote the restriction to the coordinates in S, we have that

hTBk2
(w) = max

z∈Bk2
〈TTw, z〉 = max

z∈Bk2
〈(QS,S)1/2wS , z〉

=
√
wT
SQS,SwS =

√
wTQw,

where the last equality follows since wi = 0 for i /∈ S. Thus πS(E◦) = TBk
2 as claimed. The volume

can now be computed as follows:

volk(TB
k
2 ) = κk det(TTT )1/2 = κk det((QS,S)1/2(PT

S PS)(QS,S)1/2)1/2

= κk det(QS,S)1/2 ,

as needed.

We now have all the ingredients needed to prove our main geometric estimate.
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Proof of Theorem 10. Let E := E(Q) denote a 1-regular M-ellipsoid for K and let σ := σ(1). Let
l1 ≥ · · · ≥ ln > 0 denote the length of the principal axes of E, where we recall that l−2

n ≥ · · · ≥
l−2
1 > 0 are then the eigenvalues of Q.

By the Blaschke-Santaló inequality, for all S ⊆ [n], |S| = δn, we have that

volδn(KS) volδn((KS)◦) = volδn(KS) volδn(πS(K◦)) ≤ κ2
δn .

Since we assume volδn(KS) ≥ 1, the above implies that volδn(πS(K◦)) ≤ κ2
δn. The coordinate

projections of E◦ thus have volume at most

volδn(πS(E◦)) ≤ N(E◦,K◦) volδn(πS(K◦)) ≤ eσnκ2
δn .

Combining Lemma 7 and 12, we have that

n∏
i=(1−δ)n+1

l−1
i ≤

(
n

δn

)1/2

max
S⊆[n],|S|=δn

det(QS,S)1/2

=

(
n

δn

)1/2

max
S⊆[n],|S|=δn

volδn(πS(E◦))κ−1
δn

≤
(
n

δn

)1/2

eσnκδn .

From here, we conclude that

l(1−δ)n ≥
n∏

i=(1−δ)n+1

l
1
δn
i ≥

(
n

δn

)− 1
2δn

e−
σ
δ κ
− 1
δn

δn ≥ 1

e2σ
δ

·
√

δn

2πe
:= c(δ)−1√n . (11)

Letting H be the span of the first (1− δ)n principal axes of E, we thus conclude that

√
n(Bn

2 ∩H) ⊆ c(δ)(E ∩H).

Using the 1-regularity of E, letting t = 2σ/δ, we derive the following covering estimate

N(
√
n(Bn

2 ∩H), 2tc(δ)(K ∩H)) ≤ N(c(δ)(E ∩H), 2tc(δ)(K ∩H))

≤ N(E, tK) ≤ eσn/t = eδn/2 .

Since γH(
√
nBn

2 ∩ H) ≥ 1/2, setting η := η(δ) = 2c(δ)σ
δ = eO(1/δ), we get that γH(ηK ∩ H) ≥

1
2e
−δn/2 ≥ e−δn, as needed. Lastly, η as defined above is easily checked to be decreasing in δ.

3.1 The Discrepancy of Partial Colorings

In this section we discuss a geometric conjecture which would imply that a tight relationship
between the discrepancy of partial colorings and the volume lower bound, and thus a weak form of
optimality for Rothvoss’ partial coloring algorithm. For this purpose, we formally define the partial
coloring discrepancy as well as its hereditary version. Given (ui)

N
i=1 ∈ Rn, symmetric convex body

K ⊆ Rn and α ∈ (0, 1], we define

discα((ui)
N
i=1,K) , min

x∈[−1,1]N

|bounds(x)|≥αN

∥∥∥ N∑
i=1

xiui

∥∥∥
K
. (12)
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and
hdα((ui)

N
i=1,K) , max

S⊆[N ]
discα((ui)i∈S ,K). (13)

We recall that (repeated applications) of Lemma 8 implies the upper bound

hd1/2((ui)
N
i=1,K) ≤ O(1) volLBh((ui)

N
i=1,K).

Here we conjecture that the reverse inequality should also hold.

Conjecture 13. There exists a universal constant c ≥ 1, such that for any n ∈ N, u1, . . . , un ∈ Rn
linearly independent and symmetric convex body K ⊆ Rn:

volLBh((ui)
n
i=1,K) ≤ chd1/2((ui)

n
i=1,K) (14)

Note that we restrict above to linear independent subsets of vectors, but as is well-known (e.g. see
proof of Theorem 2), this is without loss of generality. As a pathway to prove the conjecture, we
suggest the following natural geometric analog of the so-called spectral lower bound for discrepancy
into `2.

Lemma 14. Let U = (u1, . . . , un) ∈ Rn×n be linearly independent, K ⊆ Rn be a symmetric convex
body, and α ∈ [0, 1]. For any subset S ⊆ [n], |S| = k, letting WS := span{ui : i ∈ S}, define

specLB((ui)i∈S ,K) := max
{
r ≥ 0 : rK ∩WS ⊆

√
|S|USBk

2

}
.

Then, we have that
discα((ui)i∈S ,K) ≥

√
α specLB((ui)i∈S ,K). (15)

In particular, defining

specLBh((ui)
n
i=1,K) := max

S⊆[n]
specLB((ui)i∈S ,K)

we have that
hdα((ui)

n
i=1,K) ≥

√
α specLBh((ui)

n
i=1,K). (16)

Proof. We prove only (15) since then (16) follows trivially. For (15), by replacing K by K ∩WS ,
we may wlog assume that |S| = n and WS = Rn.

Let x ∈ [−1, 1]n, |bounds(x)| ≥ αn, and ux =
∑n

i=1 xiui. Our goal is to show that β :=
‖ux‖K ≥

√
αr, where r := specLB((ui)

n
i=1,K).

Let (u∗i )
n
i=1 denote the corresponding dual basis of (ui)

n
i=1, i.e. satisfying 〈u∗i , uj〉 = 1 if i = j

and 0 otherwise, which exists by linear independence. Now letting vx =
∑n

i=1
xi
‖x‖2u

∗
i , it is easy to

check that
〈vx, ux〉 = ‖x‖2 ≥

√
|bounds(x)| ≥

√
αn.

Since ux ∈ βK and rK ⊆
√
nUBn

2 , we have that

√
αn ≤ βmax

z∈K
〈vx, z〉 ≤

β

r

√
n max
z∈UBn2

〈vx, z〉 =
β

r

√
n max
z∈Bn2
〈 x

‖x‖2
, z〉 =

β

r

√
n.

The desired inequality now follows by rearranging.
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We note that as with volLBh, one may extend the specLBh to an arbitrary sequence of vectors
(ui)

N
i=1, however one must take care to optimize only over subsets of linearly independent vectors,

since otherwise the conclusion of Lemma 14 is false.
Given the above, it suffices to prove Conjecture 13 with hd1/2 replaced by specLBh. The

resulting stronger conjecture has a very natural geometric interpretation which we expand on below.
For (ui)

n
i=1 ∈ Rn linearly independent and K ⊆ Rn a symmetric convex body, letting T denote the

linear map sending (ui)
n
i=1 to (ei)

n
i=1, it is direct to check that τ((ui)

n
i=1,K) = τ((ei)

n
i=1, TK) for

τ ∈
{

specLBh, volLBh
}

. Thus, for the purpose of the conjecture, it suffices to consider the setting
where the vectors are the standard basis. In this setting, we see that

specLBh((ei)
n
i=1,K) = max

S⊆[n]
max

{
r ≥ 0 : rKS ⊆

√
|S|BS

2

}
and that

volLBh((ei)
n
i=1,K) = max

S⊆[n]
vol|S|(KS)−1/|S| .

The goal is now to show that for every S0 ⊆ [n], there exists S1 ⊆ [n], such that

vol|S0|(KS0)−1/|S0| ≤ cmax
{
r ≥ 0 : rKS1 ⊆

√
|S1|B|S1|

2

}
. (17)

Since this must hold for every symmetric convex body K, we may assume that S0 = [n] (and thus
S1 ⊆ S0). Furthermore, by homogeneity, we may also assume that voln(K) = 1. In this case (17),
and hence Conjecture 13, directly reduces to the following geometric conjecture.

Conjecture 3 (Restricted Invertibility for Convex Bodies). There exists an absolute constant
c ≥ 1, such that for any n ∈ N and symmetric convex body K ⊆ Rn of volume at most 1, there
exists S ⊆ [n], S 6= ∅, such that KS ⊆ c

√
|S|BS

2 .

Two natural weakenings of Conjecture 3 are to ask whether (a) it holds for ellipsoids and (b)
whether it holds for general bodies but with coordinate sections replaced by arbitrary sections. As
our main evidence for the conjecture, we show that both statements are true. We note that (a)
indeed implies Conjecture 13 when K is an ellipsoid. We state our results formally below.

Theorem 15. There exists a universal constant c ≥ 1, such that any n ∈ N, the following holds:

1. For any origin centered ellipsoid E ⊆ Rn of volume at most 1, there exists S ⊆ [n], S 6= ∅,
such that ES ⊆ c

√
|S|BS

2 .

2. For any symmetric convex body K ⊆ Rn of volume at most 1, there exists a linear subspace
W ⊆ Rn, such that K ∩W ⊆ c

√
WBW

2 .

To prove the above theorem, we will need the following two lemmas.

Lemma 16. Let K ⊆ Rn be a symmetric convex body of volume 1 satisfying for all S ⊆ [n],
vol|S|(KS) ≥ 1. Let E ⊆ Rn be a 1-regular M-ellipsoid of K. Then there exists S ⊆ [n], |S| ≥ a1n,

such that ES ⊆ a2

√
|S|BS

2 , where a1, a2 > 0 are universal constants.

Proof. Let E = E(Q) be a 1-regular M-ellipsoid of K. Recall that N(K,E) ≤ N(E,K) ≤ eσn

where σ := σ(1) and that voln(K) = voln(E) = 1. Let λ1 ≥ · · · ≥ λn > 0 denote the axes of the
M-ellipsoid, where 1/λ2

n ≥ · · · ≥ 1/λ2
1 > 0 are the eigenvalue of Q.

Recall by the proof of Theorem 10 (equation (11)), we have for that

λd(3/4)ne ≥ e−O(4/3)√n ≥ c1

√
n, (18)

21



where c1 > 0 is an absolute constant.
We now show that assuming voln(E) = 1, that the central axes also have length O(

√
n). Let

k = b1
4nc. By Lemma 7 applied to Q−1, there exists S ⊆ [n], such that

k∏
i=1

λ2
i ≤

(
n

k

)
det((Q−1)S,S). (19)

Let R = [n] \ S. Using the fact that (Q−1
S,S)−1 is the Schur complement of Q with respect to

QR,R block, we have the identity

det(Q) = det(QR,R) det((Q−1
S,S)−1)⇔ det(Q)−1

det((QR,R))−1
= det((Q−1)S,S). (20)

From here, since voln(E) = 1, we have that

det(Q)−1

det((QR,R))−1
=

κ2
n−k voln(E)2

κ2
n voln−k(ER)2

=
κ2
n−k
κ2
n

1

voln−k(ER)2

≤
κ2
n−k
κ2
n

e2σn

voln−k(2KR)2
≤
κ2
n−k
κ2
n

e4σn.

(21)

Combining (19) and (21), using that k = bn/4c, we get that

λk ≤ (
k∏
i=1

λi)
1/k ≤

(
n

k

)1/(2k)

(
κn−k
κn

)1/ke2σn/k ≤ c2

√
n, (22)

where c2 ≥ 1 is an absolute constant. Given the above, we have that

c1

√
n ≤ λd(3/4)ne ≤ λb(1/4)nc ≤ c2

√
n . (23)

Let W denote the span of axes of E associated with λb(1/4)nc, . . . , λd(3/4)ne and let πW denote the

corresponding orthogonal projection. Let Q′ = Q1/2πWQ
1/2 � Q, noting that Q′ preserves all the

eigenvalues associated with W while setting the others to zero. Applying Theorem 6 to Q′ with
ε = 1/2, we get a subset S ⊆ [n], which by (23) and our choice of W has size at least

|S| = 1

4

tr(Q′)

λmax(Q′)
≥ c3n

where c3 > 0 is an absolute constant. Furthermore,

λmin(QS,S) ≥ λmin(Q′S,S) ≥ tr(Q′)

n
≥ 1

2
λ−2
b(1/4)nc ≥ c4/n ,

where c4 > 0 is an absolute constant. Noting that the above implies that ES ⊆
√
n/c4B

S
2 completes

the proof, setting a1 = c3 and a2 = 1/
√
c4.

The next lemma is essentially a consequence of Milman’s quotient of subspace theorem, whose
proof we defer to the full version.

Lemma 17. Let K ⊆ Rn be a symmetric convex body such that N(K,
√
nBn

2 ) ≤ 2O(n). Then there
exists a linear subspace W ⊆ Rn, dim(W ) = Θ(n), such that K ∩W ⊆ O(

√
|W |)BW

2 .

Given the above two lemmas, we can now prove our main theorem.

Proof of Theorem 15. Firstly, for both statements, we note that we may in fact that additionally
assume that vol|S|(KS) ≥ 1 for all S ⊂ [n]. This follows by noting that if there exists S ⊂ [n] with
vol|S|(KS) < 1, we may simply apply induction on KS , after scaling it up to have volume 1 (which
only makes the task more difficult).
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Proof of 1. When K is an ellipsoid, the statement follows immediately by applying Lemma 16
with E = K.

Proof of 2. First apply Lemma 16 to K, noting that the produced section KS now satisfies the
conditions of Lemma 17, from which we derive the result.

4 The Factorization Approach

In this section we develop the approach to vector balancing via linear operators and prove that,
roughly speaking, applying Banaszczyk’s vector balancing theorem optimally gives nearly tight
bounds on vector balancing constants. This is the basis of our polynomial time approximation
algorithm for hereditary discrepancy in any norm.

Let us recall the definition of the vector balancing constant of an operator U : X → Y between
two n-dimensional normed space X and Y , given in (10):

vb(U) = sup

{
min

ε1,...,εN∈{−1,1}

∥∥∥∥ N∑
i=1

εiU(xi)

∥∥∥∥
Y

: N ∈ N, x1, . . . , xN ∈ BX

}

Once again our main tool for giving lower bounds on vb(U) is the volume lower bound, which
we reformulate in the operator setting.

Lemma 18. Let (X, ‖ ·‖X) and (Y, ‖ ·‖Y ) be two n-dimensional normed spaces, and let U : X → Y
be an invertible linear operator. Define

volLBh
k(U) , sup

{
volk

({
a ∈ Rk : ‖UV a‖Y ≤ 1

})−1/k}
,

where the supremum is over all operators V : `k1 → X of operator norm 1 and rank k. Then, letting

volLBh(U) , max
k∈[n]

volLBh
k(U),

we have that
vb(U) ≥ volLBh(U).

Lemma 18 is just a reformulation of Lemma 1 in the language of linear operators. Because

k
max
i=1
‖V ei‖X = ‖V ‖ = 1,

the points u1, . . . , uk defined by ui = V ei lie in BX , where ei is the i-th standard basis vector of
X. Then the lemma follows directly from Lemma 1 with C = BX and K = {x ∈ X : Ux ∈ BY }.

Before we present the details of our approach, we give some relevant preliminaries on normed
spaces and operators.

4.1 Basic Concepts in Normed Spaces

To every finite dimensional normed space (X, ‖ · ‖) over R we associate its dual space (X∗, ‖ ·
‖∗) defined over linear maps from X to R (i.e. linear functionals) with the dual norm ‖x∗‖∗ =
sup{〈x, x∗〉 : ‖x‖X ≤ 1}. Here the notation 〈x, x∗〉 means “the functional x∗ applied to x”,
i.e. x∗(x). For any finite dimensional space X we have X∗∗ = X. Any vector y ∈ Rn gives
a linear functional over `n2 via the standard inner product, i.e. 〈x, y〉 =

∑n
i=1 xiyi, and by the
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Cauchy-Schwarz inequality this linear functional has norm equal to ‖y‖2. For this reason, we can
identify (`n2 )∗ with `n2 , and for x, y ∈ Rn identify 〈x, y〉 with the standard inner product.

As usual, given an operator A : X → Y , we define its dual operator A∗ : Y ∗ → X∗ on every
y∗ ∈ Y ∗ by 〈x,A∗y∗〉 = 〈Ax, y∗〉 ∀x ∈ X. We use the shorthand A−∗ for (A∗)−1 = (A−1)∗.

We will use the tensor product notation x∗ ⊗ y for the rank-1 linear operator from a normed
space X to a normed space Y , defined by (x∗ ⊗ y)(x) = 〈x, x∗〉y, where x∗ ∈ X∗ and y ∈ Y . Note
that if X and Y are normed spaces over Rn, the matrix of x∗⊗y with respect to the standard basis
is yxT. Any linear operator A : X → X on an n-dimensional normed space X can be written as as
sum of rank-1 operators A =

∑n
i=1 x

∗
i ⊗ y for x∗1, . . . , x

∗
n ∈ X∗ and y1, . . . , yn ∈ X. The trace of A

is then defined by

tr(A) ,
n∑
j=1

〈yj , x∗j 〉.

This abstract definition agrees with the usual one, i.e. if the matrix of A with respect to a basis of
X and the corresponding dual basis of X∗ is M , then tr(A) = tr(M). This also shows that tr(A)
is uniquely defined, independent of how we write A as a sum of rank-1 operators. We will identify
linear functionals on operators A : X → Y , where X and Y are n-dimensional, with operators
B : Y → X via fB(A) = tr(BA).

A linear operator A : X → X∗ on normed space X defines a bilinear form B on X ×X, given
by B(x, y) = 〈x,Ay〉. We will say that A is positive definite if the corresponding bilinear form is
symmetric and positive definite, i.e. if 〈x,Ay〉 = 〈Ax, y〉 for all x, y ∈ X, and 〈x,Ax〉 > 0 for all
nonzero x ∈ X; A is positive semidefinite if instead we have 〈x,Ax〉 ≥ 0. In the case of X = `n2
this is equivalent to stating that the matrix M of A with respect to the standard basis is positive
definite, i.e. is symmetric and all its eigenvalues are positive. We write A � 0 to denote that A is
positive definite, and A � 0 to denote that it is positive semidefinite.

For a positive definite operator A : `n2 → `n2 , and a positive integer k, there exists a unique
positive definite operator B : `n2 → `n2 such that Bk = A. We use the notation A1/k for B. We also
use the shorthand notation A`/k , (A`)1/k for (positive or negative) integers `. Equivalently, we
can derive A`/k by raising every eigenvalue of A to the power `/k in the spectral decomposition of
A.

We also recall that the operator norm ‖A‖ of a linear operator A : X → Y is defined by

‖A‖ = sup{‖Ax‖Y : ‖x‖X ≤ 1},

where X = (Rn, ‖ · ‖X) and Y = (Rn, ‖ · ‖Y ) are normed spaces.
A related norm on operators is the nuclear norm. Here we only use the nuclear norm ν(A) of

an operator A : `n2 → `n2 , which equals the sum of its singular values. It is easy to see that

ν(A) = tr((AA∗)1/2).

The nuclear norm is dual to the operator norm, and in particular we have the identity

ν(A) = sup{tr(AO) : O orthogonal transformation},

where the supremum is over orthogonal transformations on `n2 .

4.2 The Factorization Constant λ

In what follows we fix two n-dimensional normed spaces (X, ‖ ·‖X) and (Y, ‖ ·‖Y ), and an invertible
linear operator U : X → Y . Since we work with general finite-dimensional normed space, restricting
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to spaces of equal dimension and to invertible operators is without loss of generality: given an
operator U : X → Y which has a nontrivial kernel W , we can replace X by the quotient space X/W ,
and Y by its subspace given by the range of U , and U by the induced operator Ũ : X/W → U(X)
which sends x + W to Ux. It is straightforward to check that this does not change any of the
quantities we study.

In this section we reduce all upper bounds on vector balancing constants to the following deep
theorem of Banaszczyk.

Theorem 19 ([Ban98]). Let K be a convex body in Rn such that γn(K) ≥ 1
2 . Then, vb(Bn

2 ,K) ≤ 5.

Recall the definition of the vector balancing constant λ(U) of U : X → Y :

λ(U) , inf{`(S)‖T‖ : T : X → `n2 , S : `n2 → Y, U = ST}.

Note that a standard compactness argument shows that the infimum is in fact achieved.
We have the following theorem, which shows that λ(U) is, up to constants, an upper bound on

vb(U) for any operator U .

Theorem 20. There exists a constant C such that for any linear operator U : X → Y between two
n-dimensional normed spaces X,Y , we have

vb(U) ≤ Cλ(U).

Proof. As mentioned above, we can assume U to be invertible. Let x1, . . . , xN ∈ BX be arbitrary,
and let T : X → `n2 , S : `n2 → Y be such that ST = U , `(S) ≤ λ(U) and ‖T‖ ≤ 1. For
i ∈ {1, . . . , N}, define ui , Txi; since ‖T‖ ≤ 1 by assumption, we have ui ∈ Bn

2 for all i. Let
K =

√
2`(S)S−1(BY ), and let, as usual, ‖ · ‖K be the norm with unit ball K. Observe that for any

x ∈ Rn, ‖x‖K = 1√
2`(S)
‖Sx‖Y . By Chebyshev’s inequality, for a standard Gaussian Z,

1− γn(K) ≤ E‖Z‖2K =
1

2`(S)2
E‖Z‖2Y =

1

2
.

We can, therefore, apply Theorem 19, and have that there exist signs ε1, . . . , εN such that

N∑
i=1

εiui ∈ 5K ⇐⇒

∥∥∥∥∥
N∑
i=1

εiui

∥∥∥∥∥
K

≤ 5 ⇐⇒

∥∥∥∥∥
N∑
i=1

εiSui

∥∥∥∥∥
Y

≤ 5
√

2λ(U)

⇐⇒

∥∥∥∥∥
N∑
i=1

εiUxi

∥∥∥∥∥
Y

≤ 5
√

2λ(U)b,

where we used that Sui = STxi = Uxi. This completes the proof.

Theorem 20 refines and generalizes the connection between the γ2 norm and hereditary discrep-
ancy from [MNT18]. The γ2 norm of an operator U : X → Y is defined by

γ2(U) = inf{‖S‖‖T‖ : T : X → `n2 , S : `n2 → Y,U = ST}.

In [MNT18], the authors studied the special case in which X = `n1 and Y = `m∞. In that case, ‖S‖ is
the largest Euclidean norm of a column in the matrix of S, and ‖T‖ is the largest Euclidean norm
of a row of the matrix of T . It then follows from standard concentration of measure arguments
that, for an absolute constant C,

‖S‖ ≤ `(S) ≤ C
√

1 + logm · ‖S‖, (24)
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for any operator S : `n2 → `m∞. Therefore, for any U : `n1 → `m∞, we have

γ2(U) ≤ λ(U) ≤ C
√

1 + logm · γ2(U).

This inequality and Theorem 20 recover the upper bound on hereditary discrepancy in terms of
the γ2 norm from [MNT18]. It also shows that λ provides at least as good an approximation to
hereditary discrepancy as γ2. However, (24) is often not tight, and Theorem 20 provides a tighter
upper bound.

Another interesting special case is X = `n1 and Y = `m2 . Since for any S : `n2 → `n2 , `(S) =
‖S‖HS , where ‖A‖HS = tr(SS∗)1/2 is the Hilbert-Schmidt norm of A, we have

λ(U) = inf{‖S‖HS‖T‖ : T : `n1 → `n2 , S : `n2 → `n2 , U = ST}.

This function was studied by two of the authors in [NT15], where they showed that it approximates
hereditary discrepancy with respect to `n2 up to a factor of O(log n).

Our goal in the remainder of the section is to prove that the inequality in Theorem 20 holds in
the reverse direction as well, as captured in the following theorem.

Theorem 21. There exists a constant C such that the following holds. Let X and Y be two
n-dimensional normed spaces and let U : X → Y be a linear operator between them. Then

λ(U) ≤ CK(Y )(1 + log n)3/2 volLBh(U),

where K(Y ) = O(log n) is the K-convexity constant of Y . 2

Moreover, there exists an integer k ≤ n, and a rank k operator V : `k1 → X of operator norm 1
so that for any standard basis vector ei, V ei is an extreme point of BX , and

λ(U) ≤ CK(Y )(1 + log n)3/2 volk
({
a ∈ Rk : ‖UV a‖Y ≤ 1

})−1/k
.

Theorems 20 and 21 together with Lemma 18 give a characterization of vb(U) in terms of λ(U).

Corollary 22. There exists a constant C such that for any two n-dimensional normed spaces X
and Y , and any linear operator U : X → Y between them, we have

1

C
≤ λ(U)

vb(U)
≤ CK(Y )(1 + log n)3/2,

where K(Y ) = O(log n) is the K-convexity constant of Y .

The statement after “moreover” in Theorem 21 allows us to also show that λ(U) approximately
characterizes hereditary discrepancy as well.

Corollary 23. Given a sequence of vectors (ui)
N
i=1 in Rn and a convex body K in Rn, define X to

be the normed space with unit ball BX = conv{±u1, . . .± uN}, Y to be the normed space with unit
ball K, and I : X → Y to be the identity map. Then, for an absolute constant C,

λ(I)

CK(Y )(1 + log n)3/2
≤ hd((ui)

N
i=1,K) ≤ vb(I) ≤ Cλ(I)

2See Section 4.4 for a definition of K(Y ).
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Proof. The inequality hd((ui)
N
i=1,K) ≤ vb(I) is trivial from the definitions, and then the final

inequality follows from Theorem 20. For the first inequality, observe that the points V e1, . . . , V ek
belong to (ui)

n
i=1, so there is some subset S ⊆ [N ] of size k for which (V ei)

k
i=1 equals (ui)i∈S

(possibly after rearrangement), so that

volk
({
a ∈ Rk : ‖UV a‖Y ≤ 1

})−1/k
= volLB((ui)i∈S ,K).

Then, the first inequality follows from Lemma 1 and the statement after “moreover” in Theorem 21.

Finally, in Section 5 we show that, under reasonable assumptions on how we are given access
to the normed spaces X and Y , λ(U) can be computed in polynomial time. Given Corollar-
ies 22 and 23, this also implies a polynomial time approximation algorithm for vector balancing
and hereditary discrepancy with arbitrary norms, and proves Theorem 4.

4.3 Convex And Dual Formulations

Here we give an equivalent formulation of λ(U) as a convex minimization problem, i.e. as the
infimum of a convex function over a convex domain. Then we use this convex formulation to derive
another equivalent dual reformulation as a maximization problem.

The objective function f(A) of our convex optimization formulation of λ(U) is defined as follows:
for any positive definite operator A : X → X∗, we set

f(A) , `(UT−1), (25)

where T : X → `n2 is an invertible linear operator such that T ∗T = A.
A couple of clarifications are in order. First, we claim that such an operator T exists, by the

positive definiteness of A. Indeed, we can choose a basis e1, . . . , en of X, and a corresponding dual
basis e∗1, . . . , e

∗
n of X∗, and define M to be the matrix of A with respect to these bases. Then M is

a positive definite matrix, so it admits a Cholesky decomposition M = LTL. We can then define
T to be the operator whose matrix with respect to e1, . . . , en and the standard basis of `n2 is L; the
matrix of the dual operator T ∗ is LT, so we have T ∗T = A as required.

A second concern is whether f(A) is well-defined. To see that this is the case, observe that
A = T ∗T = S∗S implies that there is an orthogonal transformation O : `n2 → `n2 for which S = OT .
Then, S−1 = T−1O−1, and, for a standard Gaussian random variable Z,

`(US−1) = (E‖UT−1O−1Z‖2Y )1/2 = (E‖UT−1Z‖2Y )1/2 = `(UT−1),

where we used the fact that O−1Z and Z are identically distributed because O−1 is an orthogonal
transformation.

Having defined the objective function, we are now ready to specify our convex optimization
problem for λ(U).

Lemma 24. For any two n-dimensional normed spaces X and Y , and any invertible linear operator
U : X → Y , λ(U) equals

inf f(A) (26)

s.t.

A : X → X∗, ‖A‖ ≤ 1 (27)

A � 0. (28)
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The function f is the one defined in (25).
Moreover, the objective (26) and the constraints (27)–(28) are convex in A.

The dual formulation of λ(U) is given in the following lemma.

Lemma 25. Let X and Y be two n-dimensional normed spaces, such that the unit ball of X is
BX = conv{±x1, . . . ,±xm}. Then, for any linear operator U : X → Y , λ(U) equals

sup tr((RU(
m∑
i=1

pixi ⊗ xi)U∗R∗)1/3)3/2 (29)

s.t.

R : Y → `n2 , `
∗(R) ≤ 1 (30)

m∑
i=1

pi = 1 (31)

p1, . . . , pm ≥ 0. (32)

We prove Lemmas 24 and 25 in Section 4.5. Before doing so, we use them to prove Theorem 21
in the following section.

4.4 Proof of Theorem 21

We will use Lemma 25 to prove Theorem 21. In the proof, we need to relate the objective function
(29) of the dual formulation to volumetric information about X and Y . We do so in two steps.
In the first step, we consider a solution R, p of (29)–(32), and, using purely linearly algebraic
techniques, we find a subset S of {1, . . . ,m} so that the Gram matrix of the vectors (RUxi)i∈S has
large determinant in relation to the value of (29). This allows us to define an operator V from `k1
(for k = |S|) to X so that the set V ∗U∗R∗(Bn

2 )) has large volume. In the second step of the proof
we give a lower bound on the volume of the set V ∗U∗(BY ) in terms of the volume of V ∗U∗R∗(Bn

2 )).
Here we use classical connections between the `∗ norm and the ` norm (via K-convexity) and
between the ` norm and covering numbers (via the dual Sudakov inequality). Since V ∗U∗(BY ) is
polar to the set {a : ‖UV a‖Y ≤ 1} appearing in the volume lower bound, we can finish the proof
by appealing to the Blaschke-Santaló inequality.

In the context of linear operators it is often convenient to use the notion of entropy numbers
instead of covering numbers. The entropy number ek(A) of a linear operator A : X → Y is defined
by

ek(u) = inf{ε : N(u(BX), εBY ) ≤ 2k−1}.

It is well known that covering numbers give both upper and lower estimates for the supremum of
a Gaussian process. Here we use the dual Sudakov inequality, which in the language of entropy
numbers has the following simple form: there exists a constant C such that for any linear operator
A : `n2 → X, we have

n
max
k=1

√
kek(u) ≤ C`(u). (33)

This inequality is due to [PTJ85]. See [LT11, Section 3.3] for an easy proof.
Another important tool in the proof of Theorem21 is K-convexity, introduced by Maurey and

Pisier [MP76]. The K-convexity constant K(Y ) of an n-dimensional normed space Y is the infimum
over all constants K for which the inequality

`(A∗) ≤ K`∗(A) (34)
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holds for every operator A : Y → `n2 . (See [Pis89] or [TJ89] for an equivalent definition.) An
important estimate of Pisier [Pis80] shows that that there exists an absolute constant C such that
for any n-dimensional normed space Y ,

K(Y ) ≤ C(1 + log d(Y, `n2 )) ≤ C(1 + log n). (35)

Above d(Y, `n2 ) is he Banach-Mazur distance between Y and `n2 , equal to the minimum of ‖T‖‖T−1‖
over linear operators T : Y → `n2 . Equivalently, it is equal to the smallest d for which there exists a
linear operator T such that Bn

2 ⊆ T (BY ) ⊆ dBn
2 . For any n-dimensional normed space Y , d(Y, `n2 )

is bounded by
√
n by John’s theorem, which implies the second inequality.

We also make use of a weighted version of Lemma 7.

Lemma 26. Let u1, . . . , um ∈ Rn, and let p1, . . . , pm ≥ 0,
∑m

i=1 pi = 1. Let λ1 ≥ . . . ≥ λn be
the eigenvalues of the matrix

∑m
i=1 piu

T
i ui, and let G be the Gram matrix of u1, . . . , um, i.e. gij =

〈ui, uj〉. For any integer k such that 1 ≤ k ≤ n, there exists a set S ⊆ [m] of size k such that

det(GS,S)

k!
≥ λ1 . . . λk.

Proof. Consider the matrix H = (
√
pipj〈ui, uj〉)mi,j=1. This matrix has the same nonzero eigenvalues

as
∑m

i=1 piu
T
i ui, and, therefore,

∑
S⊆[m]:|S|=k

(∏
i∈S

pi

)
det(GS,S) =

∑
S⊆[m]:|S|=k

det(HS,S) = sk,n(λ),

where sk,n is the degree k elementary symmetric polynomial in n variables. (See the proof of
Lemma 7 for a justification of the final equality.) Therefore,

max
S⊆[m]:|S|=k

det(GS,S) ≥
sk,n(λ)

sk,m(p)
.

We have the trivial inequality
sk,n(λ) ≥ λ1 . . . λk,

since λ1 . . . λk is one of the terms of sk,n(λ).
To bound sk,m(p) from above, observe that

sk,m(p) ≤ (p1 + . . .+ pk)
k

k!
=

1

k!
,

since each term of sk,m(p) appears exactly k! times in (p1 + . . .+ pk)
k. Combining the inequalities

finishes the proof.

Proof of Theorem 21. We can approximate the unit ball BX of X arbitrarily well by a symmetric
polytope, so we may assume that BX = conv{±x1, . . . ,±xm}. Then, by Lemma 25, there exists
an operator R : `n2 → Y , `∗(R) ≤ 1 and non-negative reals p1, . . . , pm ≥ 0,

∑m
i=1 pi = 1, such that

λ(U)2/3 = tr((RU(

m∑
i=1

pixi ⊗ xi)U∗R∗)1/3) = tr((

m∑
i=1

piRU(xi)⊗RU(xi))
1/3).
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Let ui , RU(xi) ∈ Rn, and let λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of
∑m

i=1 piui ⊗ ui, so that

λ(U)2/3 =
∑n

i=1 λ
1/3
i . We have the following elementary but very useful inequality, which is an

approximate reverse of the AM-GM inequality:

n∑
i=1

λ
1/3
i ≤

n∑
i=1

 i∏
j=1

λj

1/3i

=

n∑
i=1

1

i
· i

 i∏
j=1

λj

1/3i

≤

(
n∑
i=1

1

i

)
n

max
i=1

i

 i∏
j=1

λj

1/3i

.

Let us fix a value k so that the maximum on the right hand side is achieved. Then, the above
inequality implies

λ(U)2/3 ≤ C0(1 + log n)k(λ1 . . . λk)
1/(3k),

for an absolute constant C0. Observe that the matrix of
∑m

i=1 piui ⊗ ui with respect to the standard
basis is

∑m
i=1 piu

T
i ui, so, by Lemma 26, there exists a set S ⊆ [m] of size k such that

(λ1 . . . λk)
1/k ≤

det(GS,S)1/k

(k!)1/k
,

where G is the Gram matrix of u1, . . . , um. By Stirling’s estimate, this implies that

λ(U)2/3 ≤ C1(1 + log n)k2/3 det(GS,S)1/(3k),

or, equivalently,

λ(U) ≤ C3/2
1 (1 + log n)3/2k det(GS,S)1/(2k), (36)

for an absolute constant C1.
To finish the proof, we need to relate the right hand side of (36) to the volume lower bound.

Let V : `S1 → X be the operator defined by V (a) ,
∑

i∈S aixi, where `S1 is the coordinate subspace
of `n2 spanned by the standard basis vectors {ei : i ∈ S}. We have that

det(GS,S)1/2 =
volk(RUV (Bn

2 ∩ RS))

volk(B
n
2 ∩ RS)

=
volk(V

∗U∗R∗(Bn
2 ∩W ))

volk(B
k
2 )

,

where W is the range of RUV in Rn. By the definition of entropy numbers,

volk(V
∗U∗R∗(Bn

2 ∩W )) ≤ volk(V
∗U∗R∗(Bn

2 )) ≤ 2k−1ek(R
∗)k volk(V

∗U∗(BY ∗)),

since R∗(Bn
2 ) can be covered by 2k−1 translates of ek(R

∗)BY ∗ . By (33) and (34), we have

ek(R
∗) ≤ C2

`(R∗)√
k
≤ C2K(Y )

`∗(R)√
k
≤ C2K(Y )

1√
k
,

for an absolute constant C2. Combining the inequalities so far, we have

det(GS,S)1/2k ≤ 2C2K(Y )
volk(V

∗U∗(BY ∗))
1/k

√
k volk(B

k
2 )1/k

≤ 2C2K(Y )
volk(B

k
2 )1/k

√
k volk({a : ‖UV a‖Y ≤ 1})1/k

,
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where in the final step we used the Blaschke-Santaló inequality and the fact that

(V ∗U∗(BY ∗))
◦ = {a : ‖UV a‖Y ≤ 1}.

By a standard estimate,
volk(Bk2 )1/k√

k
≤ C3

k for a constant C3, and, combining with (36), we get

λ(U) ≤ CK(Y )(1 + log n)3/2

volk({a : ‖UV a‖Y ≤ 1})1/k
≤ CK(Y )(1 + log n)3/2 volLBh(U),

for an absolute constant C, as desired. The statement after “moreover” follows by observing that
we can assume x1, . . . , xm to be extreme points of BX , and since the points V ei are a subset of
them, they are extreme as well.

4.5 Proofs of Convexity and Duality

In this section we supply the missing proofs of Lemmas 24 and 25, i.e. the fact that the convex
optimization problem (26)–(28) is indeed convex and equal to λ(U), and also the derivation of the
dual maximization problem.

We first prove some key technical properties of the function f .

Lemma 27. The following statements hold for the function f defined on positive definite operators
A : X → X∗ as in (25):

• f is a differentiable convex function on positive definite operators A : X → X∗;

• f is given by the formula

f(A) = sup{tr((RUA−1U∗R∗)1/2) : R : Y → `n2 , `
∗(R) ≤ 1}; (37)

• the derivative of f at A is

∇f(A) = −1

2
(RU)−1((RU)−∗A(RU)−1)−3/2(RU)−∗, (38)

where R : Y → `n2 , `∗(R) ≤ 1 is such that f(A) = tr((RUA−1U∗R∗)1/2).

Note that the derivative ∇f(A) is a linear functional on operators from X to X∗, and, via the
trace, we identify such functionals with operators from X∗ to X. In what follows we will, therefore,
treat ∇f(A) as a linear operator from X∗ to X.

Before we prove Lemma 27, we need an auxiliary lemma.

Lemma 28. Let Y be an n-dimensional normed space, and let S : `n2 → Y be an invertible linear
operator. Then any operator R : Y → `n2 such that tr(RS) = `(S) is invertible.

Proof. Assume for contradiction that R is not invertible, i.e. it has a non-trivial kernel. Let k < n
be the dimension of the kernel of R, and let W be the k-dimensional subspace of Rn such that
S(W ) is the kernel of R. Then, if π is the orthogonal projection onto the orthogonal complement
W⊥ of W , we have

`(S) = tr(RS) = tr(RSπ) ≤ `(Sπ).
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Define the convex body K = S−1(BY ). Using integration by parts, we have

`(Sπ)2 =

∫ ∞
t=0

(1− γn−k(
√
tK ∩W⊥))dt

`(S)2 =

∫ ∞
t=0

(1− γn(
√
tK))dt

=

∫ ∞
t=0

∫
W

(1− γn−k(
√
tK ∩ (y +W⊥))dγk(y))dt

By the log-concavity of Gaussian measure and the symmetry of K, γn−k(
√
tK ∩ (y + W⊥)) ≤

γn−k(
√
tK∩W⊥) for all y ∈W , and, for all y outside a compact set we have γn−k(

√
tK∩(y+W⊥)) =

0 < γn−k(
√
tK ∩W⊥). Therefore, `(Sπ) < `(S), a contradiction.

Proof of Lemma 27. We begin with the proof of differentiability. Because A is positive definite, it
defines an inner product 〈y, x〉A = 〈y,Ax〉 on X, and a corresponding Gaussian measure γA. Let
us fix some positive definite operator A0 : X → X∗. Then, for any positive definite A : X → X∗

we can write

f(A) =

∫
X
‖Ux‖Y dγA(x) =

∫
X
‖Ux‖Y

dγA
dγA0

(x) dγA0(x).

For any x ∈ X,

dγA
dγA0

(x) =

√
det(A)

det(A0)
e−〈x,(A−A0)x〉/2.

Since dγA
dγA0

(x) is easily seen to be continuously differentiable in A, by the dominated convergence

theorem the derivative of f also exists and is given by differentiating under the integral sign.
Next we prove the identity (37). Observe that for any orthogonal transformation O : `n2 → `n2

and any operator V : `n2 → Y , `(V O) = `(V ) by the rotational invariance of the Gaussian measure.
Therefore,

f(A) = `(UT−1) = sup{`(UT−1O) : O orthogonal}
= sup{tr(RUT−1O) : R : Y → `n2 , `

∗(R) ≤ 1, O orthogonal}
= sup{ν(RUT−1) : R : Y → `n2 , `

∗(R) ≤ 1}
= sup{tr((RUA−1U∗R∗)1/2) : R : Y → `n2 , `

∗(R) ≤ 1}.

Moreover, since we assumed that U is invertible, by Lemma 28, we can assume that R is invertible.
Given this formula, in order to prove convexity, it is enough to prove that for any invertible
operator V : X → `n2 (which, in our case, equals RU), the function tr((V A−1V ∗)1/2) is convex in
A for A : X → X∗ positive definite. Then, we would have that f(A) is a supremum of convex
functions, and, therefore, convex.

The convexity of tr((V A−1V ∗)1/2) follows from a standard argument based on majorization
and Schur convexity, which we give next. Since V is invertible, we have V A−1V ∗ = (V −∗AV −1)−1,
and tr((V A−1V ∗)1/2) = tr(((V −∗AV −1)−1/2). Let α ∈ (0, 1) be arbitrary, and let A1, A2 be two
positive definite operators from X to X∗. Let µ be the function that maps a self-adjoint operator
on `n2 to the vector of its eigenvalues. By the Ky-Fan inequalities, µ(V −∗(αA1 + (1 − α)A2)V −1)
is majorized by αµ(V −∗A1V

−1) + (1− α)µ(V −∗A2V
−1). Let g be the function defined on vectors

x ∈ Rn with positve coordinates by g(x) =
∑n

i=1 x
−1/2
i . It is easy to verify that g is convex and
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Schur-convex, so

g(µ(V −∗(αA1 + (1− α)A2)V −1)) ≤ g(αµ(V −∗A1V
−1) + (1− α)µ(V −∗A2V

−1))

≤ αg(µ(V −∗A1V
−1)) + (1− α)g(µ(V −∗A2V

−1)).

Since the left hand side above equals

tr((V −∗(αA1 + (1− α)A2)V −1)−1/2) = tr((V (αA1 + (1− α)A2)−1V ∗)1/2),

and the right hand side equals

α tr((V −∗A1V
−1)−1/2) + (1− α) tr((V −∗A2V

−1)−1/2)

= α tr((V A−1
1 V ∗)1/2) + (1− α) tr((V A−1

2 V ∗)1/2),

we have established convexity.
From (37), we can see that the subgradient of f at A is

∂f(A) = conv{∇ tr((RUA−1U∗R∗)1/2) :

R : Y → `n2 , `
∗(R) ≤ 1, f(A) = tr((RUA−1U∗R∗)1/2)}

= conv{∇ tr(((RU)−1A(RU)−∗)−1/2) :

R : Y → `n2 , `
∗(R) ≤ 1, f(A) = tr((RUA−1U∗R∗)1/2)}

= conv{−1

2
(RU)−1((RU)−∗A(RU)−1)−3/2(RU)−∗ :

R : Y → `n2 , `
∗(R) ≤ 1, f(A) = tr((RUA−1U∗R∗)1/2)}.

Above we used Lemma 28, and the fact that

∇ tr(X−1/2) = −1

2
X−3/2

for any positive definite X : `n2 → `n2 (see [Lew95]). Since f is differentiable, we have that ∂f(A) is
a singleton set, i.e.

∇f(A) = −1

2
(RU)−1((RU)−∗A(RU)−1)−3/2(RU)−∗

for the an invertible operator R : Y → `n2 , such that `∗(R) ≤ 1 and f(A) = tr((RUA−1U∗R∗)1/2).
This finishes the proof of the lemma.

We are now ready to prove Lemma 24, restated for convenience below.

Lemma 24. For any two n-dimensional normed spaces X and Y , and any invertible linear operator
U : X → Y , λ(U) equals

inf f(A) (26)

s.t.

A : X → X∗, ‖A‖ ≤ 1 (27)

A � 0. (28)

The function f is the one defined in (25).
Moreover, the objective (26) and the constraints (27)–(28) are convex in A.
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Proof. The convexity of the constraints (27)–(28) is apparent from the definition, and the convexity
of the objective was proved in Lemma 27. We proceed to show that the value of (26)–(28) equals
λ(U).

Let T : X → `n2 and S : `n2 → Y , ST = U be a factorization achieving λ(U) such that ‖T‖ = 1
and `(S) = λ(U). Then we claim that A , T ∗T satisfies (27)–(28) and f(A) = `(S), so the value of
(26)–(28) is at most `(S) = λ(U). Indeed, A is clearly positive semidefinite, and must be positive
definite, as T is invertible, because U is invertible. Furthermore, since ‖T‖ ≤ 1, we have that for
any x ∈ BX ,

〈x,Ax〉 = 〈Tx, Tx〉 = ‖Tx‖22 ≤ 1.

On the other hand, since A is self-adjoint, ‖A‖ = sup{〈x,Ax〉 : x ∈ BX}, and we have shown that
‖A‖ ≤ 1. Moreover, since A = T ∗T , by the definition of f(A)

f(A) = `(UT−1) = `(S) = λ(U).

This finishes the proof of the claim that the value of (26)–(28) is at most λ(U).
Next we prove the reverse inequality. Given a feasible solution A to (26)–(28), we take an

operator T : X → `n2 such that A = T ∗T . Then we construct a factorization U = ST by setting
S = UT−1. By (27)–(28), for any x ∈ BX we have

‖Tx‖22 = 〈Tx, Tx〉 = 〈x,Ax〉 ≤ 1,

so ‖T‖ ≤ 1. Moreover, `(S) = f(A) by definition. This proves that the value of (26)–(28) is at
least λ(U), and, since we already showed that it is also at most λ(U), the two are equal.

The derivation of the dual formulation from the convex program (26)–(28) is mostly routine
using Lagrange duality (see, e.g. [BV04]). Nevertheless, because of the complicated nature of our
objective, the derivation is quite technical. Once again, we restated Lemma 25, which gives our
dual formulation, for convenience before the proof.

Lemma 25. Let X and Y be two n-dimensional normed spaces, such that the unit ball of X is
BX = conv{±x1, . . . ,±xm}. Then, for any linear operator U : X → Y , λ(U) equals

sup tr((RU(
m∑
i=1

pixi ⊗ xi)U∗R∗)1/3)3/2 (29)

s.t.

R : Y → `n2 , `
∗(R) ≤ 1 (30)

m∑
i=1

pi = 1 (31)

p1, . . . , pm ≥ 0. (32)

Proof. Since BX = conv{±x1, . . . ,±xm}, we can can rewrite (26)–(28) as

inf f(A) s.t. (39)

〈xi, Axi〉 ≤ 1 ∀i ∈ [m] (40)

A � 0, (41)

By Lemma 24 this is a convex minimization problem and its value equals λ(U).
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The conjugate function f∗ of f is defined on self-adjoint linear operators Q : X∗ → X by:

f∗(Q) , sup{tr(QA)− f(A) : A � 0}.

Since f∗(Q) is the supremum of affine functions, it is convex and lower semicontinuous. The set on
which f∗ takes a finite value is called its domain. The significance of f∗ is the fact

λ(U) = sup

{
−

m∑
i=1

qi − f∗
(
−

m∑
i=1

qixi ⊗ xi

)
: q1, . . . , qm ≥ 0

}
. (42)

This follows from the duality theory of convex optimization, since (39)–(41) satisfies Slater’s con-
dition, which in this case reduces to just checking the existence of a feasible A (see [BV04, Chapter
5]). We proceed to compute f∗(Q).

It is easy to see that unless −Q � 0, f∗(Q) =∞, and, conversely, if −Q � 0, f∗(Q) ≤ 0 <∞.
Therefore, the domain of f∗ is {Q : −Q � 0}. We will first handle the case −Q � 0, and then we
will extend our formula for f∗(Q) to −Q � 0 by continuity. Assume then that −Q � 0. As f is a
differentiable convex function, the range of the derivative ∇f includes the relative interior of the
domain of f∗, i.e. the set of linear operators {X : −X � 0} (see Corollary 26.4.1. in [Roc70]); from
(38) it is also apparent that ∇f(A) is negative definite for any positive definite A, so the range of
∇f(A) is exactly {X : −X � 0}. This means that the equation

0 = ∇(tr(QA)− f(A)) = Q−∇f(A)

has a solution over A � 0, and f∗(Q) is achieved at this solution. Fix A : X → X∗ to be a solution
to this equation, and let R : Y → `n2 be an invertible map such that `∗(R) ≤ 1 and

f(A) = tr((RUA−1U∗R∗)1/2) = tr(((RU)−∗A(RU)−1)−1/2).

The equations ∇f(A) = Q and (38) imply

((RU)−∗A(RU)−1)−3/2 = −2RUQU∗R∗,

and, therefore,

f∗(Q) = tr(QA)− tr((RUA−1U∗R∗)1/2)

= tr((RUQU∗R∗)((RU)−∗A(RU)−1))− tr(((RU)−∗A(RU)−1)−1/2)

= − 3

22/3
tr((−RUQU∗R∗)1/3).

We have proved that

f∗(Q) ≥ inf

{
− 3

22/3
tr((−RUQU∗R∗)1/3) : R : Y → `n2 , `

∗(R) ≤ 1

}
, (43)

for any Q : X∗ → X such that −Q � 0. Let D be the set of invertible maps R : Y → `n2 such that
`∗(R) ≤ 1. By (37) and the definition of the conjugate function f∗ we also have

f∗(Q) = sup
A:A�0

inf
R∈D

tr(QA)− tr((RUA−1U∗R∗)1/2)

≤ inf
R∈D

sup
A:A�0

tr(QA)− tr((RUA−1U∗R∗)1/2).

35



For any R ∈ D, the supremum on the right hand side equals the value at Q of the conjugate h∗R
of the function hR(A) = tr((RUA−1U∗R∗)1/2). A calculation analogous to the one above for f∗

shows that h∗R(Q) = − 3
22/3

tr((−RUQU∗R∗)1/3).
Therefore,

f∗(Q) ≤ inf

{
− 3

22/3
tr((−RUQU∗R∗)1/3) : R : Y → `n2 , `

∗(R) ≤ 1

}
,

and, together with (43), we have established

f∗(Q) = inf

{
− 3

22/3
tr((−RUQU∗R∗)1/3) : R : Y → `n2 , `

∗(R) ≤ 1

}
, (44)

for any Q : X∗ → X such that −Q � 0. Since f∗ is a a proper lower-semicontinuous function, it is
continuous on any line segment contained in its domain by Corollary 7.5.1. in [Roc70]. Therefore,
(44) holds for any Q � 0 as well.

By (42) and (44),

λ(U) = sup

{
−

m∑
i=1

qi +
3

22/3
tr
((
−RU

( m∑
i=1

qixi ⊗ xi
)
U∗R∗

)1/3)
:

R : Y → `n2 , `
∗(R) ≤ 1, q1, . . . , qm ≥ 0

}
. (45)

Let us write q = tp where t ≥ 0 is a real number, and p1, . . . , pm ≥ 0 satisfy
∑

i pi = 1. Then we
can rewrite the equation above as

λ(U) = sup

{
−t+

3t1/3

22/3
tr
((
−RU

( m∑
i=1

pixi ⊗ xi
)
U∗R∗

)1/3)
: t, p1, . . . , pm ≥ 0,

m∑
i=1

pi = 1

}
.

Maximizing over t finishes the proof.

5 Algorithm for the Factorization Constant

In this section we use our convex formulation (26)–(28) of the λ(U) factorization constant in
order to compute an approximately optimal factorization. In order to use known results in convex
optimization, we need to make sure that we are optimizing a Lipschitz function over a sufficiently
bounded feasible region, and, moreover, that we have a strictly feasible point. These conditions
are not automatically satisfied for (26)–(28), but we can modify the optimization problem so that
they are, at the cost of a small constant factor approximation to the optimum.

In this section we assume that both normed spaces X and Y are defined over Rn. We assume
that the unit ball of X is BX = conv{±x1, . . . ,±xm}, and that X is specified by giving the points
x1, . . . , xm as input to the algorithm. We assume that Y is specified by an evaluation oracle, which
takes a point y ∈ Rn and returns ‖y‖Y . Moreover, we will assume that U is the identity map;
otherwise we can define a new norm Z by ‖z‖Z = ‖Uz‖Y and we have λ(U) = λ(I) for the identity
map I : X → Z. An evaluation oracle for Y easily gives an evaluation oracle for Z.

As a first step, we transform the problem so that BX is well-rounded. Roughly speaking, this
makes the problem well-conditioned. For example, it will allow us to determine λ(I) up to a factor
of O(

√
n). To round BX , we use a classical algorithm of Khachiyan.
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Theorem 29 ([Kha96]). There exists an algorithm running in time O(mn2(log n+ log logm) that,
given a set of points x1, . . . , xm ∈ Rn, computes a linear map T such that

1

2
√
n
Bn

2 ⊆ T (conv{±x1, . . . ,±xm}) ⊆ Bn
2 .

We compute the linear map T for the extreme points ±x1, . . . ,±xm, using the algorithm guar-
anteed by Theorem 29, and apply T to both BX and BY . I.e. we replace X with the space whose
unit ball is TBX , and Y with the space whose unit ball is TBY . This does not change λ(I), vb(I),
or the volume lower bound. With this transformation, we can assume that

1

2
√
n
Bn

2 ⊆ BX ⊆ Bn
2 . (46)

In the rest of this section, we use the notation A � B for two symmetric matrices A and B to
denote the fact that A − B is positive semidefinite. The notation A � B is equivalent to B � A.
We also repeatedly use the fact that if AAT � BBT for two matrices A and B, then, for a standard
Gaussian Z in Rn and any norm Y defined on Rn, E‖AZ‖2Y ≤ E‖BZ‖2Y . This is well-known,
and is due to the fact that BZ is distributed identically to AZ + CZ ′ for a standard Gaussian Z ′

independent from Z. Then, by Jensen’s inequality,

E‖AZ‖2Y = E‖AZ + E[CZ ′]‖2Y ≤ E‖AZ + CZ ′‖2Y = E‖BZ‖2Y .

Our first lemma shows that we can strengthen the constraints (27)–(28) without affecting the
value of the optimization problem significantly. The stronger constraints will be helpful in showing
that the objective is Lipschitz and bounded over the feasible region.

Lemma 30. Assume that X and Y are normed spaces over Rn such that BX = conv{±x1, . . . ,±xm},
and equation (46) holds, and let I : X → Y be the identity map. Then the value of the following
convex optimization problem over positive definite matrices A is at least λ(I) and at most

√
2λ(I):

inf(E‖A−1/2Z‖2Y )1/2 (47)

s.t.

xTi Axi ≤ 1 ∀i ∈ [m], (48)

A � 1

2
I. (49)

Above A−1/2 is the unique positive definite matrix such that (A−1/2)2 = A−1, and Z is a standard
Gaussian random variable in Rn.

Moreover, any positive definite matrix A satisfying (48) also satisfies A � 4nI.

Proof. The objective function (47) equals (26), the constraints (48) are equivalent to (27), and
(49) implies (28), so, trivially, the value of (47)–(49) is at least the value of (26)–(28), which, by
Lemma 24, equals λ(I). Moreover, again by Lemma 24, (47)–(49) is a convex optimization problem.

To show that the value of (47)–(49) is at most
√

2λ(I), let us take an operator A : X → X∗

achieving the optimal value λ(I) in (26)–(28), and let us identify A with its matrix in the standard
basis. Let Ã , 1

2(A+ I). Since BX ⊆ Bn
2 by assumption, and A satisfies (27), we have

1

2
xTi (A+ I)xi =

xTi Axi + ‖xi‖22
2

≤ 1,
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and, therefore, Ã satisfies (48). Because A is positive definite, we have Ã � 1
2I, and (49) is also

satisfied, and Ã is feasible. Because Ã � 1
2A, we have Ã−1 � 2A−1, so

E‖Ã−1/2Z‖2Y ≤ 2E‖A−1/2Z‖2Y = 2λ(I)2.

This shows that the value of (47)–(49) is at most
√

2λ(I).
The statement after “moreover” follows because if there exists some x ∈ Rn for which xTAx >

4n‖x‖22 then for y = x
2
√
n‖x‖2

we have y ∈ 1
2
√
n
Bn

2 ⊆ BX = conv{±x1, . . . ,±xm} but xTAx > 1.

This would imply that for at least one extreme point xi of BX we have xTi Axi > 1, in contradiction
with (48).

Our second lemma shows that the objective function (47) is Lipschitz over the feasible region
(48)–(49).

Lemma 31. Under the assumptions of Lemma 30, for any A,B satisfying (48)–(49) we have

(E‖A−1/2Z‖2Y )1/2 − (E‖B−1/2Z‖2Y )1/2 ≤ 16
√
nλ(I)‖A−B‖op,

where ‖A−B‖op is the largest singular value of A−B.

Proof. Observe that, because any A which is feasible for (48)–(49) satisfies 1
2I � A � 4nI, we have

1

2
√
n

(E‖Z‖2Y )1/2 ≤ (E‖A−1/2Z‖2Y )1/2 ≤
√

2(E‖Z‖2Y )1/2.

Therefore, for any feasible A, (E‖A−1/2Z‖2Y )1/2 is within a factor of 2
√

2n from the minimum of
(47)–(49). By Lemma 30, we then have

λ(I) ≤ (E‖A−1/2Z‖2Y )1/2 ≤ 4
√
nλ(I).

Let δ , ‖A−B‖op, and consider first the case δ > 1
4 . Then,

(E‖A−1/2Z‖2Y )1/2 − (E‖B−1/2Z‖2Y )1/2 ≤ (E‖A−1/2Z‖2Y )1/2 ≤ 4
√
nλ(I) ≤ 16

√
nλ(I)δ.

Consider now the case δ < 1
4 . Then, A−B � −δI, and we have

A = B + (A−B) � B − δI � (1− 2δ)B.

Therefore,

(E‖A−1/2Z‖2Y )1/2 ≤ (1− 2δ)−1/2(E‖B−1/2Z‖2Y )1/2 ≤ (1 + 4δ)(E‖B−1/2Z‖2Y )1/2.

Finally,

(E‖A−1/2Z‖2Y )1/2 − (E‖B−1/2Z‖2Y )1/2 ≤ 4δ(E‖B−1/2Z‖2Y )1/2 ≤ 16
√
nλ(I)δ.

This completes the proof

Our final lemma verifies that, given a positive definite matrix A and an evaluation oracle for Y ,
we can approximate evaluate the objective (47). We do so in the natural way: we sample a random
Gaussian Z and use the oracle to compute ‖A−1/2Z‖Y . The next lemma (which is standard) shows
that the resulting estimate is concentrated around its mean.
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Lemma 32. For any norm Y on Rn, n× n matrix M , and a standard Gaussian Z in Rn,

Pr(|‖MZ‖Y − E‖MZ‖Y | > tE‖MZ‖Y ) ≤ 2e−4t2/π3
.

Proof. As usual, we can assume that M is invertible (otherwise we project to a subspace of Y ) and
that in fact M = I, by replacing Y with the norm Y ′ given by ‖x‖Y ′ = ‖Mx‖Y . Then, we have
that for any x ∈ Rn, of Euclidean norm ‖x‖2 = 1,

‖x‖Y =

√
π

2
E‖Z1x‖Y ≤

√
π

2
E‖Z‖Y .

I.e. for all x in Rn, ‖x‖Y ≤
(√

π
2E‖Z‖Y

)
· ‖x‖2. Then the lemma follows by the Maurey-Pisier

inequality (see Theorem 4.7 in [Pis89]).

We are now ready to prove our main algorithmic result.

Theorem 33. There exists an algorithm that, given x1, . . . , xm ∈ Rn, an evaluation oracle for a
norm Y on Rn, and a linear operator U : X → Y specified by its matrix, where X is the space
with unit ball BX = conv{±x1, . . . ,±xm}, computes in time polynomial in m and n a factorisation
U = ST , S : `n2 → Y , T : X → `n2 , such that

`(S)‖T‖ ≤ Cλ(U),

for an absolute constant C.

Proof. As discussed above, we can reduce to the case when U is the identity and BX satisfies (46).
We are going to solve the optimization problem

inf E‖A−1/2Z‖Y
s.t.

xTi Axi ≤ 1 ∀i ∈ [m],

A � 1

2
I.

This is the same problem as (47)–(49), but with a slightly modified objective. However, this new
objective is the same as (47) up to a constant factor (see Corollary 4.9 in [Pis89]). By Lemma 30,
any feasible A satisfies ‖A‖op ≤ 4n. Moreover, the solution 3

4I is strictly feasible in the sense that
any A satisfying ‖A− 3

4I‖op ≤
1
4 satisfies the constraints. Indeed, A � 1

2I is immediate, and we also
have A � I, which implies xTi Axi ≤ ‖xi‖22 ≤ 1, by (46). Then our problem reduces to optimizing
a convex function over a convex set with a stochastic zero-order oracle with subgaussian error. A
polynomial time algorithm for this problem is given, for example, in Section 6 of [BLNR15].

Theorem 33 and Corollaries 22 and 23 imply that we can efficiently approximate both the vector
balancing constant and hereditary discrepancy in any norm.

Corollary 34. Let x1, . . . , xm, X, Y , and U be as in Theorem 33. Then the vector balancing
constant vb(U) can be approximated in time polynomial in n and the number of vertices of C up to
a factor of O(K(Y )(1 + log n)3/2), where K(Y ) = O(log n) is the K-convexity constant of Y .

Moreover, for any points u1, . . . , uN , the hereditary discrepancy hd((ui)
N
i=1, BY ) can be approx-

imated in time polynomial in n and N up to the same factor of O(K(Y )(1 + log n)3/2).
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6 Properties of the Bounds

6.1 The Volume Lower Bound and Convex Hulls

Here we show that the volume lower bound is maximized at the extreme points of a convex set.
This shows that the fact that Theorem 21 relates λ to volume lower bounds given by extreme points
is not an accident. In general, it shows that the volume lower bound does not distinguish between
vector balancing and hereditary discrepancy.

Theorem 35. Let v1, . . . , vm be points in Rn, and let C , conv{±v1, . . . ,±vm}. Then, for any
k ∈ N, 1 ≤ k ≤ n, and any symmetric convex body K in Rn,

sup
u1,...,uk∈C

volLB((ui)
k
i=1,K) ≤ volLBh

k((vi)
m
i=1,K).

We will use a theorem of K. Ball [Bal88], which allows us to define a norm associated with an
arbitrary logarithmically concave function f .

Theorem 36. Let f : Rk → [0,∞) be an even logarithmically concave function such that 0 <∫
Rk f <∞. Then, for any p ≥ 1,

‖x‖f,p ,

{(∫∞
0 f(rx)rp−1dr

)−1/p
, x 6= 0,

0, x = 0.

defines a norm on Rn.

Proof of Theorem 35. Let us fix a sequence of linearly independent vectors u1, . . . , uk−1 ∈ C for
the remainder of the proof, and, for any x ∈ Rn, define the matrix Ux = (u1, . . . uk−1, x). To prove
the theorem, it is enough to show that the function g : Rn → [0,∞) defined by

g(x) = volLB((u1, . . . , uk−1, x),K)k =
1

volk({a ∈ Rk : Uxa ∈ K})

achieves its maximum on C at one of the extreme points ±v1, . . . ,±vm. This follows immediately
if g is convex. Below, we use Theorem 36 to prove the convexity of g.

Let W = span{u1, . . . , uk−1} and let π be the orthogonal projection onto the orthogonal com-
plement W⊥ of W . Notice that

volk({a ∈ Rk : Uxa ∈ K}) = volk({a ∈ Rk : Uπxa ∈ K}).

To show that that g is convex, it is, therefore, enough to show that it is convex on W⊥. For any
x ∈W⊥, define

Lx = {b ∈ Rk−1 : Ub+ x ∈ K},

where U is the matrix (u1, . . . , uk−1). It is easy to check that for any two x, x′ ∈ W⊥, and any
α ∈ [0, 1], αLx + (1 − α)Lx′ ⊆ Lαx+(1−α)x′ . Therefore, by the Brunn-Minkowski inequality, the
function h(x) = vol(Lx) is logarithmically concave. Moreover, by the symmetry of K, L−x = −Lx,
so h(x) = h(−x). By Theorem 36 it follows that

g(x) =
1∫∞

−∞ h(tx)dt
=

1

2
∫∞

0 h(tx)dt
=

1

2
‖x‖h,1.

is a norm on W⊥, and, therefore, convex. The theorem follows.
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7 Approximate Caratheodory Estimates

In this section we introduce connections between vector balancing, and approximate versions of
Caratheodory’s theorem. Recall that, by Caratheodory’s theorem, for any N vectors u1, . . . , uN ∈
Rn and a point z in their convex hull, there exist k ≤ n + 1 vectors v1, . . . , vk ∈ {u1, . . . , uN}
such that z ∈ conv{v1, . . . , vk}. While this is easily seen to be optimal in general, improvements
are possible if we only need to approximately represent z. For example, it is well-known that if
u1, . . . , uN ∈ Bn

2 , then for any z ∈ conv{u1, . . . , uN} and any ε ∈ (0, 1), there exist k = O(ε−2)

vectors v1, . . . , vk ∈ {u1, . . . , uN} such that
∥∥∥z − 1

k

∑k
i=1 vi

∥∥∥
2
≤ ε. Note that the bound on k in

this approximate version of Caratheodory’s theorem is independent of the dimension n, and that
z is close to the avarage of v1, . . . , vk, rather than merely in their convex hull. This dimension-
independent bound has been used to speed up algorithms in computational geometry...

We call bounds of the type given above for vectors in Bn
2 approximate Caratheodory estimates.

Such estimates are also known for Bn
p , where the distance from z is measured in the `np norm,

and follow from type and cotype theory. (Other proofs are also known.) Here we systematically
explore approximate Caratheodory estimates and connect them to vector balancing. Let us define
the k-vector approximate Caratheodory constant ack(C,K) from a convex body C ⊂ Rn to a
symmetric convex body K ⊂ Rn as the smallest constant a such that for any u1, . . . , uN ∈ C, and
any z ∈ conv{u1, . . . , uN}, there exist (not necessarily distinct) vectors v1, . . . , vk ∈ {u1, . . . , uN}
such that ∥∥∥∥∥z − 1

k

k∑
i=1

vi

∥∥∥∥∥
K

≤ a

k
. (50)

We define ac(C,K) = sup{ack(C,K) : k ∈ N}.
Our first result shows that the approximate Caratheodory constant is bounded in terms of

hereditary discrepancy, and, therefore, in terms of the vector balancing constant. Since our proof
is algorithmic, together with Theorem 2 it also gives us a polynomial time algorithm to compute
the vectors v1, . . . , vk whose average is close to z.

Theorem 37. For any convex body C ⊂ Rn, and any symmetric convex body K ⊂ Rn, we have

ac(C,K) ≤ vb(C − C,K).

Moreover, there exists a randomized polynomial time algorithm that, given u1, . . . , uN ∈ C, and
z in their convex hull, computes vectors v1, . . . , vk ∈ {u1, . . . , uN} such that (50) holds with a =
O(log n vb(C − C,K).

Our proof of Theorem 37 is based on the following lemma, which is a slight extension of a result
by Lovász, Spencer, and Vesztergombi [LSV86].

Lemma 38. For any symmetric convex body K ⊂ Rn, any u1, . . . , uN ∈ Rn, and any w ∈ [0, 1]N ,
there exists an x ∈ {0, 1}N such that

∑N
i=1 xi ≤

∑N
i=1wi, and∥∥∥∥∥

n∑
i=1

(wi − xi)ui

∥∥∥∥∥
K

≤ hd((ui)
N
i=1,K).

Proof. We first show that the lemma holds for every w ∈ {0, 1
2 , 1}

N with a better constant. Specif-
ically, we show that for any w ∈ {0, 1

2 , 1}
N , there exists an x ∈ {0, 1}N such that∥∥∥∥∥

n∑
i=1

(wi − xi)ui

∥∥∥∥∥
K

≤ 1

2
hd((ui)

N
i=1,K),
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and
∑N

i=1 xi ≤
∑N

i=1wi. Towards this goal, let us define S = {i ∈ [n] : wi = 1
2}. By the definition

of hereditary discrepancy, there exists a vector of signs (εi)i∈S ∈ {−1,+1}S such that∥∥∥∥∥∑
i∈S

εiui

∥∥∥∥∥
K

≤ hd((ui)
N
i=1,K).

Let us define x′ ∈ {−1, 0, 1}N by

x′i =

{
εi i ∈ S
0 i 6∈ S

.

Observe, first, that w + 1
2x
′ and w − 1

2x
′ both belong to {0, 1}N , and, second, that

min

{
N∑
i=1

wi +
1

2
x′i,

N∑
i=1

wi −
1

2
x′i

}
≤

N∑
i=1

wi.

We can then take the vector x ∈ {w + 1
2x
′, w − 1

2x
′} that achieves the minimum on the right hand

side above, and we have∥∥∥∥∥
n∑
i=1

(wi − xi)ui

∥∥∥∥∥
K

=
1

2

∥∥∥∥∥∑
i∈S

εiui

∥∥∥∥∥
K

≤ 1

2
hd((ui)

N
i=1,K),

as desired.
To finish the proof of the lemma, it suffices to prove it for w such that wi has a finite binary

expansion for each i, i.e. wi = b12−1 + . . . + bk2
−k for some finite k and b1, . . . , bk ∈ {0, 1}. We

do so by induction. Let us assume that the lemma is proved for all w ∈ 2−kZN ∩ [0, 1)N for some
k ≥ 1. (Note that the case k = 1 was already proved above.) We will show that it then also holds
for every w ∈ 2−k−1ZN ∩ [0, 1)N . Fix such a w, and write it as w = w′ + 1

2w
′′, where w′ ∈ {0, 1

2}
N

and w′′ ∈ 2−kZN ∩ [0, 1)N . By the induction hypothesis, there exists an x′′ ∈ {0, 1}N such that∥∥∥∥∥
n∑
i=1

(w′′i − x′′i )ui

∥∥∥∥∥
K

≤ hd((ui)
N
i=1,K),

and
∑N

i=1 x
′′
i ≤

∑N
i=1w

′′
i . We have w′+ 1

2x
′′ ∈ {0, 1

2 , 1}, and, as we have already shown above, there
exists an x ∈ {0, 1}N such that∥∥∥∥∥

n∑
i=1

(w′i +
1

2
x′′i − xi)ui

∥∥∥∥∥
K

≤ 1

2
hd((ui)

N
i=1,K), (51)

and
N∑
i=1

xi ≤
N∑
i=1

w′i +
1

2

N∑
i=1

x′′i ≤
N∑
i=1

w′i +
1

2

N∑
i=1

w′′i =
N∑
i=1

wi.

The inequality (51) and the triangle inequality then imply∥∥∥∥∥
n∑
i=1

(wi − xi)ui

∥∥∥∥∥
K

=

∥∥∥∥∥
n∑
i=1

(w′i +
1

2
w′′i − xi)ui

∥∥∥∥∥
K

≤

∥∥∥∥∥
n∑
i=1

(w′i +
1

2
x′′i − xi)ui

∥∥∥∥∥
K

+
1

2

∥∥∥∥∥
n∑
i=1

(w′′i − x′′i )ui

∥∥∥∥∥
K

≤ hd((ui)
N
i=1,K).

This completes the proof of the lemma.
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Proof of Theorem 37. Let us fix some k ∈ N, vectors u0, u1, . . . , uN and z ∈ conv{u0, . . . , uN}.
(We index the vectors from 0 for notational convenience.) Define the new vectors u′1, . . . u

′
N by

u′i = ui − u0. We have that z − u0 ∈ conv{u′1, . . . , u′N}, and we can write z − u0 =
∑N

i=1 λiu
′
i

for some λ1, . . . , λN ≥ 0 such that
∑N

i=1 λi = 1. Let w be the fractional part of the vector kλ,

i.e. wi = kλi−bkλic. By Lemma 38, there exists a vector x ∈ {0, 1}N such that
∑N

i=1 xi ≤
∑N

i=1wi,
and ∥∥∥∥∥

n∑
i=1

(wi − xi)u′i

∥∥∥∥∥
K

≤ hd((u′i)
N
i=1,K).

Let us define vectors v′1, . . . , v
′
` ∈ {u′1, . . . , u′N} by taking bkλic+ xi copies of u′i. Clearly,

` =

N∑
i=1

bkλic+ xi ≤
N∑
i=1

bkλic+ wi = k

N∑
i=1

λi = k.

We then define v1, . . . , vk ∈ {u0, . . . , uN} by taking k − ` copies of u0, and also taking the vectors
v′i + u0 for every i ∈ [`]. Observe that∥∥∥∥∥z − 1

k

k∑
i=1

vi

∥∥∥∥∥
K

=

∥∥∥∥∥z − u0 −
1

k

∑̀
i=1

v′i

∥∥∥∥∥
K

=
1

k

∥∥∥∥∥
n∑
i=1

(wi − xi)u′i

∥∥∥∥∥
K

≤ hd((u′i)
N
i=1,K) ≤ vb(C − C,K).

This completes the proof.
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