On the Shadow Simplex Method for Curved Polyhedra

Daniel Dadush¹ Nicolai Hähnle²

¹Centrum Wiskunde & Informatica (CWI)

²Bonn Universität

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Introduction

- Linear Programming and its Applications
- The Simplex Method
- Results
- The Shadow Simplex Method
 - The Normal Fan
 - Primal and Dual Perspectives
- Well-conditioned Polytopes
 - τ-wide Polyhedra
 - δ-distance Property

Diameter and Optimization

- 3-step Shadow Simplex Path
- Bounding Surface Area Measures of the Normal Fan
- Finding an Optimal Facet

Outline

Introduction

- Linear Programming and its Applications
- The Simplex Method
- Results
- 2 The Shadow Simplex Method
 - The Normal Fan
 - Primal and Dual Perspectives
- 3 Well-conditioned Polytopes
 - τ-wide Polyhedra
 - δ-distance Property
- Diameter and Optimization
 - 3-step Shadow Simplex Path
 - Bounding Surface Area Measures of the Normal Fan
 - Finding an Optimal Facet

A (10) A (10) A (10)

ľ

 Linear Programming (LP): linear constraints & linear objective with continuous variables.

max
$$c^{\mathsf{T}}x$$
 subject to $Ax \leq b$, $x \in \mathbb{R}^n$

A (10) A (10)

 Linear Programming (LP): linear constraints & linear objective with continuous variables.

$$\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \end{array}$$

- Amazingly versatile modeling language.
- Generally provides a "relaxed" view of a desired optimization problem, but can be solved in polynomial time via interior point (and many other) methods!

 Linear Programming (LP): linear constraints & linear objective with continuous variables.

 $\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \end{array}$

- Amazingly versatile modeling language.
- Generally provides a "relaxed" view of a desired optimization problem, but can be solved in polynomial time via interior point (and many other) methods!
- Will focus on one of the most used classes of algorithms for LP: the Simplex Method (not a polytime algorithm!).

・ロト ・ 四ト ・ ヨト ・ ヨト …

 Mixed Integer Programming (MIP): models both continuous and discrete choices.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x+d^{\mathsf{T}}y\\ \text{subject to } Ax+Cy\leq b, \quad x\in \mathbb{R}^{n_1}, y\in \mathbb{Z}^{n_2}\end{array}$$

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

 Mixed Integer Programming (MIP): models both continuous and discrete choices.

$$egin{aligned} \mathsf{max} & c^{\mathsf{T}}x+d^{\mathsf{T}}y\ & ext{subject to } Ax+Cy\leq b, \quad x\in \mathbb{R}^{n_1}, y\in \mathbb{Z}^{n_2} \end{aligned}$$

 One of the most successful modeling language for many real world applications. While instances can be extremely hard to solve (MIP is NP-hard), many practical instances are not.

r

 Mixed Integer Programming (MIP): models both continuous and discrete choices.

$$egin{aligned} \mathsf{max} & c^{\mathsf{T}}x+d^{\mathsf{T}}y\ & ext{subject to } Ax+Cy\leq b, \quad x\in \mathbb{R}^{n_1}, y\in \mathbb{Z}^{n_2} \end{aligned}$$

- One of the most successful modeling language for many real world applications. While instances can be extremely hard to solve (MIP is NP-hard), many practical instances are not.
- Many sophisticated software packages exist for these models (CPLEX, Gurobi, etc.). MIP solving is now considered a *mature* and practical technology.

A (10) A (10)

Sample Applications

• Routing delivery / pickup trucks for customers.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Sample Applications

• Optimizing supply chain logistics.

э

・ロト ・四ト ・ヨト ・ヨト

• Relax integrality of the variables.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Relax integrality of the variables.

$$\begin{array}{ll} \max \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{d}^{\mathsf{T}}\boldsymbol{y} \\ \text{subject to } \boldsymbol{A}\boldsymbol{x} + \boldsymbol{C}\boldsymbol{y} \leq \boldsymbol{b}, \quad \boldsymbol{x} \in \mathbb{R}^{n_1}, \, \boldsymbol{y} \in \mathbb{Z}^{n_2} \end{array}$$

э

<ロ> <問> <問> < 回> < 回> 、

• Relax integrality of the variables.

$$\begin{array}{ll} \max \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{d}^{\mathsf{T}}\boldsymbol{y} \\ \text{subject to } \boldsymbol{A}\boldsymbol{x} + \boldsymbol{C}\boldsymbol{y} \leq \boldsymbol{b}, \quad \boldsymbol{x} \in \mathbb{R}^{n_1}, \boldsymbol{y} \in \mathbb{R}^{n_2} \end{array}$$

・ロト ・四ト ・ヨト ・ヨト

• Relax integrality of the variables.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x+d^{\mathsf{T}}y\\ \text{subject to } Ax+Cy\leq b, \quad x\in \mathbb{R}^{n_1}, y\in \mathbb{R}^{n_2}\end{array}$$

Solve the LP.

イロト イヨト イヨト

• Relax integrality of the variables.

$$egin{array}{ll} \max & c^{ au}x+d^{ au}y\ ext{ subject to } Ax+Cy\leq b, \quad x\in \mathbb{R}^{n_1}, y\in \mathbb{R}^{n_2} \end{array}$$

- Solve the LP.
- Add extra constraints to tighten the LP or "guess" the values of some of the integer variables. Repeat.

A (10) A (10)

• Relax integrality of the variables.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x+d^{\mathsf{T}}y\\ \text{subject to } Ax+Cy\leq b, \quad x\in \mathbb{R}^{n_1}, y\in \mathbb{R}^{n_2}\end{array}$$

- Solve the LP.
- Add extra constraints to tighten the LP or "guess" the values of some of the integer variables. Repeat.
- Need to solve a lot of LPs quickly.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

A .

- **→ → →**

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

A .

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

A .

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

A I > A = A A

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

$$\begin{array}{ll} \max \quad c^{\mathsf{T}}x\\ \text{subject to } \mathsf{A}x < \mathsf{b}, \quad x \in \mathbb{R}^n \end{array}$$

Simplex Method: move from vertex to vertex along the graph of *P* until the optimal solution is found.

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Question

Why simplex?

A (10) A (10)

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Question

Why simplex?

• Simplex pivots implementable using "simple" linear algebra.

< 回 > < 三 > < 三 >

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Question

Why simplex?

- Simplex pivots implementable using "simple" linear algebra.
- Vertex solutions are often "nice" (e.g. sparse, easy to interpret).

→ ∃ →

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Question

Why simplex?

- Simplex pivots implementable using "simple" linear algebra.
- Vertex solutions are often "nice" (e.g. sparse, easy to interpret).
- Terminates with combinatorial description of an optimal solution.

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Question

Why simplex?

- Simplex pivots implementable using "simple" linear algebra.
- Vertex solutions are often "nice" (e.g. sparse, easy to interpret).
- Terminates with combinatorial description of an optimal solution.
- "Easy" to reoptimize when adding an extra variable (dual to adding a constraint).

A (10) A (10) A (10) A

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Problem

No known pivot rule is proven to converge in polynomial time!!!

< 回 > < 三 > < 三 >

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

No known pivot rule is proven to converge in polynomial time!!!

Simplex lower bounds:

- Klee-Minty (1972): designed "deformed cubes", providing worst case examples for many pivot rules.
- Friedmann et al. (2011): systematically designed bad examples using Markov decision processes.
- In these examples, the pivot rule is tricked into taking an (sub)exponentially long path, even though short paths exists.

 $\begin{array}{ll} \max \quad c^T x \\ \text{subject to } Ax \leq b, \quad x \in \mathbb{R}^n \\ A \text{ has } n \text{ columns, } m \text{ rows.} \end{array}$

Problem

No known pivot rule is proven to converge in polynomial time!!!

Simplex upper bounds:

Kalai (1992): Random facet rule requires 2^{O(√nlog m)} pivots on expectation.

< 回 > < 三 > < 三 >

Linear Programming and the Hirsch Conjecture

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}, \\ A \in \mathbb{R}^{m \times n}$$

P lives in \mathbb{R}^n (ambient dimension is *n*) and has *m* constraints.

< 回 > < 三 > < 三 >

Linear Programming and the Hirsch Conjecture

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}, \\ A \in \mathbb{R}^{m \times n}$$

P lives in \mathbb{R}^n (ambient dimension is *n*) and has *m* constraints.

Besides the computational efficiency of the simplex method, an even more basic question is not understood:

Question

How can we bound the length of paths on the graph of P? I.e. how to bound the **diameter** of P?

A B F A B F
Linear Programming and the Hirsch Conjecture

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}, \\ A \in \mathbb{R}^{m \times n}$$

P lives in \mathbb{R}^n (ambient dimension is *n*) and has *m* constraints.

Conjecture (Polynomial Hirsch Conjecture)

The diameter of P is bounded by a polynomial in the dimension n and number of constraints m.

Linear Programming and the Hirsch Conjecture

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}, \\ A \in \mathbb{R}^{m \times n}$$

P lives in \mathbb{R}^n (ambient dimension is *n*) and has *m* constraints.

Conjecture (Polynomial Hirsch Conjecture)

The diameter of P is bounded by a polynomial in the dimension n and number of constraints m.

Diameter lower bounds:

Santos (2010), Matschke-Santos-Weibel (2012):
 Disproved original Hirsch conjecture bound of *m* - *n*,
 exhibit polytopes with diameter (1 + ε)*m* (for some small ε > 0).

A (10) A (10)

Linear Programming and the Hirsch Conjecture

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}, \\ A \in \mathbb{R}^{m \times n}$$

P lives in \mathbb{R}^n (ambient dimension is *n*) and has *m* constraints.

Conjecture (Polynomial Hirsch Conjecture)

The diameter of P is bounded by a polynomial in the dimension n and number of constraints m.

Diameter upper bounds:

- Barnette, Larman (1974): $\frac{1}{3}2^{n-2}(m-n+\frac{5}{2})$.
- Kalai, Kleitman (1992), Todd (2014): $(m n)^{\log n}$.

< 回 > < 三 > < 三 >

$$P = \{x \in \mathbb{R}^n : Ax \leq b\}, A \in \mathbb{Q}^{m \times n}$$

Upper bounds for combinatorial classes:

- 0/1-polytopes: *m* − *n* (Naddef 1989)
- flow polytopes: quadratic (Orlin 1997)
- transportation polytopes: linear (Brightwell, v.d. Heuvel and Stougie 2006)
- polars of flag polytopes: m n (Adripasito, Benedetti 2014)

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Q}^{m \times n}$$

Upper bounds for well-conditioned constraint matrices:

Dyer, Frieze (1994):
 If A is totally unimodular, diameter is O(m¹⁶n³log(mn)³).

く 同 ト く ヨ ト く ヨ ト -

 $P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Q}^{m \times n}$

Upper bounds for well-conditioned constraint matrices:

- Dyer, Frieze (1994):
 - If A is totally unimodular, diameter is $O(m^{16}n^3 \log(mn)^3)$.
 - Analyze a random walk based simplex. They solve LP in similar runtime.

 $P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Q}^{m \times n}$

Upper bounds for well-conditioned constraint matrices:

- Dyer, Frieze (1994):
 - If A is totally unimodular, diameter is $O(m^{16}n^3 \log(mn)^3)$.
 - Analyze a random walk based simplex. They solve LP in similar runtime.
- Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier (2012): If *A* integer matrix and all subdeterminants $\leq \Delta$, diameter is $O(n^{3.5}\Delta^2 \log n\Delta)$.

A (10) A (10)

 $P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Q}^{m \times n}$

Upper bounds for well-conditioned constraint matrices:

- Dyer, Frieze (1994):
 - If A is totally unimodular, diameter is $O(m^{16}n^3 \log(mn)^3)$.
 - Analyze a random walk based simplex. They solve LP in similar runtime.
- Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier (2012): If *A* integer matrix and all subdeterminants $\leq \Delta$, diameter is $O(n^{3.5}\Delta^2 \log n\Delta)$.
 - ► Use volume expansion on the normal fan (non-constructive!).

< 回 > < 回 > < 回 > -

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Question

Can the diameter bound of Bonifas et al bounds be made constructive? How fast can we solve LP in this setting?

A B F A B F

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Question

Can the diameter bound of Bonifas et al bounds be made constructive? How fast can we solve LP in this setting?

• Brunsch, Röglin (2013):

Given two vertices can find a path of length $O(mn^3\Delta^4)$ efficiently.

A B b 4 B b

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Question

Can the diameter bound of Bonifas et al bounds be made constructive? How fast can we solve LP in this setting?

• Brunsch, Röglin (2013):

Given two vertices can find a path of length $O(mn^3\Delta^4)$ efficiently.

Use shadow simplex method, inspired by smoothed analysis.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Question

Can the diameter bound of Bonifas et al bounds be made constructive? How fast can we solve LP in this setting?

• Brunsch, Röglin (2013):

Given two vertices can find a path of length $O(mn^3\Delta^4)$ efficiently.

- Use shadow simplex method, inspired by smoothed analysis.
- Eisenbrand, Vempala (2014):
 Given an initial vertex and objective, can optimize using poly(*n*, Δ) simplex pivots. Initial feasible vertex using *m* poly(*n*, Δ) pivots.

A D A D A D A

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Question

Can the diameter bound of Bonifas et al bounds be made constructive? How fast can we solve LP in this setting?

• Brunsch, Röglin (2013):

Given two vertices can find a path of length $O(mn^3\Delta^4)$ efficiently.

- Use shadow simplex method, inspired by smoothed analysis.
- Eisenbrand, Vempala (2014):
 Given an initial vertex and objective, can optimize using poly(n, Δ) simplex pivots. Initial feasible vertex using m poly(n, Δ) pivots.
 - Use random walk based dual simplex, similar to Dyer and Frieze.

・四・・ モ・・ モート

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Question

Can the diameter bound of Bonifas et al bounds be made constructive? How fast can we solve LP in this setting?

• Brunsch, Röglin (2013):

Given two vertices can find a path of length $O(mn^3\Delta^4)$ efficiently.

- Use shadow simplex method, inspired by smoothed analysis.
- Eisenbrand, Vempala (2014):
 Given an initial vertex and objective, can optimize using poly(n, Δ) simplex pivots. Initial feasible vertex using m poly(n, Δ) pivots.
 - Use random walk based dual simplex, similar to Dyer and Frieze.
- All the above results hold with respect to more general conditions on P (more details later).

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of *A* bounded by Δ .

Theorem (D., Hähnle 2014+)

• Diameter is bounded by $O(n^3 \Delta^2 \ln(n\Delta))$.

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of *A* bounded by Δ .

Theorem (D., Hähnle 2014+)

- Diameter is bounded by $O(n^3 \Delta^2 \ln(n\Delta))$.
- Given an initial vertex and objective, can compute optimal vertex using at most O(n⁴Δ² ln(nΔ)) pivots on expectation.

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Theorem (D., Hähnle 2014+)

- Diameter is bounded by $O(n^3 \Delta^2 \ln(n\Delta))$.
- Given an initial vertex and objective, can compute optimal vertex using at most $O(n^4 \Delta^2 \ln(n\Delta))$ pivots on expectation.
- Can compute an initial feasible vertex using O(n⁵Δ² ln(nΔ)) pivots on expectation.

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Theorem (D., Hähnle 2014+)

- Diameter is bounded by $O(n^3 \Delta^2 \ln(n\Delta))$.
- Given an initial vertex and objective, can compute optimal vertex using at most $O(n^4 \Delta^2 \ln(n\Delta))$ pivots on expectation.
- Can compute an initial feasible vertex using O(n⁵Δ² ln(nΔ)) pivots on expectation.

Pivots require O(mn) arithmetic operations.

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Theorem (D., Hähnle 2014+)

- Diameter is bounded by $O(n^3 \Delta^2 \ln(n\Delta))$.
- Given an initial vertex and objective, can compute optimal vertex using at most O(n⁴Δ² ln(nΔ)) pivots on expectation.
- Can compute an initial feasible vertex using O(n⁵Δ² ln(nΔ)) pivots on expectation.

Pivots require O(mn) arithmetic operations.

Based on a new analysis and variant of the shadow simplex method.

A B F A B F

$$P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$$

Subdeterminants of A bounded by Δ .

Theorem (D., Hähnle 2014+)

- Diameter is bounded by $O(n^3 \Delta^2 \ln(n\Delta))$.
- Given an initial vertex and objective, can compute optimal vertex using at most O(n⁴Δ² ln(nΔ)) pivots on expectation.
- Can compute an initial feasible vertex using O(n⁵Δ² ln(nΔ)) pivots on expectation.

Pivots require O(mn) arithmetic operations.

Based on a new analysis and variant of the **shadow simplex method**. Inspired by path finding algorithm over the Voronoi graph of a lattice by Bonifas, D. (2014) used for solving the Closest Vector Problem.

Navigation over the Voronoi Graph

Figure: Randomized Straight Line algorithm

• Closest Vector Problem (CVP): Find closest lattice vector y to t.

D. Dadush, N. Hahnle	D. Da	adush	, N. F	Hähnle
----------------------	-------	-------	--------	--------

14/34

A (10) A (10)

Navigation over the Voronoi Graph

Figure: Randomized Straight Line algorithm

- Closest Vector Problem (CVP): Find closest lattice vector y to t.
- Solving CVP can be reduced to efficiently navigating over the Voronoi cell (Som.,Fed.,Shal. 09; Mic.,Voulg. 10-13).

(B)

Navigation over the Voronoi Graph

Figure: Randomized Straight Line algorithm

- Closest Vector Problem (CVP): Find closest lattice vector y to t.
- Can move between "nearby" lattice points using a polynomial number of steps (Bonifas, D. 14).

(日) (日) (日)

Outline

- Linear Programming and its Applications
- The Simplex Method
- The Shadow Simplex Method
 - The Normal Fan
 - Primal and Dual Perspectives
- - τ -wide Polyhedra
 - δ -distance Property
- - 3-step Shadow Simplex Path
 - Bounding Surface Area Measures of the Normal Fan
 - Finding an Optimal Facet

(4) (5) (4) (5)

4 A N

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^* = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

・ロト ・聞 ト ・ ヨト ・ ヨト

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^* = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^* = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^* = \{y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P\}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*
 - ▶ *k*-face of $P \cong (n k 1)$ -face of P^*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^* = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*
 - ▶ *k*-face of $P \cong (n k 1)$ -face of P^*
 - vertex-edge path in P ≅ facet-ridge path in P^{*}

< ロ > < 同 > < 回 > < 回 >

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^{\star} = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*
 - ▶ *k*-face of $P \cong (n k 1)$ -face of P^*
 - vertex-edge path in P ≅ facet-ridge path in P*

< ロ > < 同 > < 回 > < 回 >

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^{\star} = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*
 - ▶ *k*-face of $P \cong (n k 1)$ -face of P^*
 - vertex-edge path in P ≅ facet-ridge path in P^{*}

< 回 > < 三 > < 三 >

- Polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with $0 \in int(P)$
- Polar: $P^{\star} = \{ y \in \mathbb{R}^n : y^T x \le 1 \ \forall x \in P \}$

- Face lattice is reversed:
 - vertex of $P \cong$ facet of P^*
 - ▶ *k*-face of $P \cong (n k 1)$ -face of P^*
 - vertex-edge path in P ≅ facet-ridge path in P*

< ロ > < 同 > < 回 > < 回 >

• Same combinatorics as the polar, but expressed using cones.

< ロ > < 同 > < 回 > < 回 >

э

- Same combinatorics as the polar, but expressed using cones.
- *P* nondegenerate, i.e. each vertex $v \in P$ has exactly *n* tight facets.

- Same combinatorics as the polar, but expressed using cones.
- *P* nondegenerate, i.e. each vertex $v \in P$ has exactly *n* tight facets.
- Normal cone N_v: Cone defined by normal vectors of these facets, equivalently all objectives maximized at v.

- Same combinatorics as the polar, but expressed using cones.
- *P* nondegenerate, i.e. each vertex $v \in P$ has exactly *n* tight facets.
- Normal cone N_v: Cone defined by normal vectors of these facets, equivalently all objectives maximized at v.
- Normal fan: Set of all normal cones.

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

- Shadow simplex from v₁ to v₂
 - Pick c optimizing v₁.
 - Find optima wrt $(1 \lambda)c + \lambda d$ until $\lambda = 1$.

∃ >

- Shadow simplex from v₁ to v₂
 - Pick c optimizing v₁.
 - Find optima wrt $(1 \lambda)c + \lambda d$ until $\lambda = 1$.
- "Primal" interpretation
 - Project P to span of c and d.
 - ► Optima wrt (1 λ)c + λd are pre-images of optima in the plane.

- Shadow simplex from v₁ to v₂
 - Pick c optimizing v₁.
 - Find optima wrt $(1 \lambda)c + \lambda d$ until $\lambda = 1$.
- "Primal" interpretation
 - Project P to span of c and d.
 - ► Optima wrt (1 λ)c + λd are pre-images of optima in the plane.
- "Dual" interpretation
 - Trace segment [c, d] through normal fan.
 - Pivot step corresponds to crossing facet of a normal cone.

- E 🕨

Size of the shadow: randomness to the rescue

Question

When can we bound the number of edges in the shadow?

• In general, the shadow can be exponentially large.

A D A D A D A

Size of the shadow: randomness to the rescue

Question

When can we bound the number of edges in the shadow?

- In general, the shadow can be exponentially large.
- Borgwardt (1980s), Spielman-Teng (2004), Vershynin (2006): the shadow is small in expectation when the linear program is *random or smoothed*.

Size of the shadow: randomness to the rescue

Question

When can we bound the number of edges in the shadow?

- In general, the shadow can be exponentially large.
- Borgwardt (1980s), Spielman-Teng (2004), Vershynin (2006): the shadow is small in expectation when the linear program is *random* or smoothed.
- Brunsch-Röglin (2013): the shadow is small in expectation for "well-conditioned" polytopes when *c*, *d* are randomly chosen from the normal cones of two vertices.

A B b 4 B b

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

- Move from v_1 to v_2 by following [c, d] through the normal fan.
- Pivot step corresponds to crossing facet of normal cone.

Question

How can we bound the number of intersections with the normal fan?

Outline

Introduction

- Linear Programming and its Applications
- The Simplex Method
- Results
- 2 The Shadow Simplex Method
 - The Normal Fan
 - Primal and Dual Perspectives

Well-conditioned Polytopes

- τ-wide Polyhedra
- δ-distance Property

Diameter and Optimization

- 3-step Shadow Simplex Path
- Bounding Surface Area Measures of the Normal Fan
- Finding an Optimal Facet

A B F A B F

 Vertex normal cone N_ν is τ-wide: contains a ball of radius τ centered on the unit sphere.

・日・ ・ ヨ ・ ・ ヨ ・

э

 Vertex normal cone N_ν is τ-wide: contains a ball of radius τ centered on the unit sphere.

・ロト ・ 四ト ・ ヨト ・ ヨト

э

- Vertex normal cone N_ν is τ-wide: contains a ball of radius τ centered on the unit sphere.
- *P* is *τ*-wide if all its vertex normal cones are *τ*-wide.

- Vertex normal cone N_ν is τ-wide: contains a ball of radius τ centered on the unit sphere.
- Angles at any vertex are less than π – 2τ. "Discrete measure" of curvature.

A B A B A B A

Э.

<ロト < 回 > < 回 > < 回 > .

Lemma

 $P = \{x \in \mathbb{R}^n : Ax \le b\}, A \in \mathbb{Z}^{m \times n}$, subdeterminants bounded by Δ . Then P is τ -wide for $\tau = 1/(n\Delta)^2$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (D.-Hähnle 2014+)

If *P* an *n*-dimensional polyhedron with a τ -wide normal fan, then diameter of *P* is $O(n/\tau \ln(1/\tau))$.

A (10) A (10)

Theorem (D.-Hähnle 2014+)

If P an n-dimensional polyhedron with a τ -wide normal fan, then diameter of P is $O(n/\tau \ln(1/\tau))$.

Furthermore, paths are constructed using shadow simplex method.

A D A D A D A

Theorem (D.-Hähnle 2014+)

If P an n-dimensional polyhedron with a τ -wide normal fan, then diameter of P is $O(n/\tau \ln(1/\tau))$.

Furthermore, paths are constructed using shadow simplex method.

Remark: Perfect matching polytope on a graph G = (V, E) is $1/(3\sqrt{|E|})$ -wide.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- $N_v = \operatorname{cone}(a_1, \ldots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .

A (10) A (10)

- $N_v = \operatorname{cone}(a_1, \ldots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .
- δ -distance property: $d(a_j, H(F_j)) \ge \delta$ for all facet/opposite vertex pairs

< 回 > < 三 > < 三 >

- $N_v = \operatorname{cone}(a_1, \ldots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .
- δ -distance property: $d(a_j, H(F_j)) \ge \delta$ for all facet/opposite vertex pairs

- **→ →** •

 P has the (local) δ-distance property if every (feasible) basis has the δ-distance property.

- $N_v = \operatorname{cone}(a_1, \dots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .
- δ -distance property: $d(a_j, H(F_j)) \ge \delta$ for all facet/opposite vertex pairs

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

- Polytope $P = \{x \in \mathbb{R}^n : Ax \leq b\}.$
 - A ∈ Z^{m×n} with subdeterminants bounded by Δ. Then P satisfies the δ-distance property for δ = 1/(nΔ²).

- $N_v = \operatorname{cone}(a_1, \ldots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .
- δ -distance property: $d(a_j, H(F_j)) \ge \delta$ for all facet/opposite vertex pairs

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

- Polytope $P = \{x \in \mathbb{R}^n : Ax \leq b\}.$
 - A ∈ Z^{m×n} with subdeterminants bounded by Δ. Then P satisfies the δ-distance property for δ = 1/(nΔ²).
 - If *P* satisfies the local δ -distance property then *P* is τ -wide for $\tau = 1/(n\delta)$.

- $N_v = \operatorname{cone}(a_1, \ldots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .
- δ -distance property: $d(a_j, H(F_j)) \ge \delta$ for all facet/opposite vertex pairs

< 回 > < 三 > < 三 >

Theorem (D.-Hähnle)

If *P* a polytope satisfying local δ -distance property, then given a feasible vertex and objective, an optimal vertex can be found using $O(n^3/\delta \ln(n/\delta))$ shadow simplex pivots.

- $N_v = \operatorname{cone}(a_1, \ldots, a_n), a_i$'s scaled to be unit length.
- Take a_j and opposite facet F_j .
- δ -distance property: $d(a_j, H(F_j)) \ge \delta$ for all facet/opposite vertex pairs

・ロト ・四ト ・ヨト ・ヨト

Theorem (D.-Hähnle)

If *P* a polytope satisfying local δ -distance property, then given a feasible vertex and objective, an optimal vertex can be found using $O(n^3/\delta \ln(n/\delta))$ shadow simplex pivots.

Resolves question of Vempala and Eisenbrand (2014) regarding sufficiency of *local* δ -distance property for optimization.

Outline

Introduction

- Linear Programming and its Applications
- The Simplex Method
- Results
- 2 The Shadow Simplex Method
 - The Normal Fan
 - Primal and Dual Perspectives
- 3 Well-conditioned Polytopes
 - τ-wide Polyhedra
 - δ-distance Property

Diameter and Optimization

- 3-step Shadow Simplex Path
- Bounding Surface Area Measures of the Normal Fan
- Finding an Optimal Facet

A .

3-step Shadow Simplex Path

To *bound the diameter*, we will exhibit a short shadow simplex path between any two vertices.

• Let *v*, *w* be vertices of *P*.

3

3-step Shadow Simplex Path

To *bound the diameter*, we will exhibit a short shadow simplex path between any two vertices.

- Let *v*, *w* be vertices of *P*.
- Pick c ∈ N_v, d ∈ N_w to be "deep" inside the respective normal cones (exact choice made later).

伺 ト イヨ ト イヨト

3-step Shadow Simplex Path

To *bound the diameter*, we will exhibit a short shadow simplex path between any two vertices.

- Let *v*, *w* be vertices of *P*.
- Pick c ∈ N_v, d ∈ N_w to be "deep" inside the respective normal cones (exact choice made later).
- Let X be exponentially distributed over ℝⁿ, that is with probability density proportional to e^{-||x||}.
3-step Shadow Simplex Path

To *bound the diameter*, we will exhibit a short shadow simplex path between any two vertices.

- Let *v*, *w* be vertices of *P*.
- Pick c ∈ N_v, d ∈ N_w to be "deep" inside the respective normal cones (exact choice made later).
- Let X be exponentially distributed over ℝⁿ, that is with probability density proportional to e^{-||x||}.
- We shall follow the simplex paths in sequence:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

3-step Shadow Simplex Path

To *bound the diameter*, we will exhibit a short shadow simplex path between any two vertices.

- Let *v*, *w* be vertices of *P*.
- Pick c ∈ N_v, d ∈ N_w to be "deep" inside the respective normal cones (exact choice made later).
- Let X be exponentially distributed over ℝⁿ, that is with probability density proportional to e^{-||x||}.
- We shall follow the simplex paths in sequence:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

Question

How long is this path?

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

æ

イロン イ団と イヨン イヨン

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

Theorem (D.-Hähnle)

Assume P is an n-dimensional τ -wide polyhedron.

• Phase (b). The expected number of crossings of [c + X, d + X] with normal fan of P is bounded by $O(||c - d||/\tau)$.

A B > A B >
 A

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

Theorem (D.-Hähnle)

Assume P is an n-dimensional τ -wide polyhedron.

- Phase (b). The expected number of crossings of [c + X, d + X] with normal fan of P is bounded by $O(||c d||/\tau)$.
- Phase (a+c). The expected number of crossings of $[c + \alpha X, c + X]$ and $[d + \alpha X, d + X]$, for $\alpha \in (0, 1]$, with normal fan of P is $O(n/\tau \ln(1/\alpha))$.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

Theorem (D.-Hähnle)

Assume P is an n-dimensional τ -wide polyhedron.

- Phase (b). The expected number of crossings of [c + X, d + X] with normal fan of P is bounded by $O(||c d||/\tau)$.
- Phase (a+c). The expected number of crossings of $[c + \alpha X, c + X]$ and $[d + \alpha X, d + X]$, for $\alpha \in (0, 1]$, with normal fan of P is $O(n/\tau \ln(1/\alpha))$.

Remark: Only bound intersections of *partial path* in phases (a) and (c).

・ 回 ト ・ ヨ ト ・ ヨ ト …

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

Theorem (D.-Hähnle)

Assume P is an n-dimensional τ -wide polyhedron.

- Phase (b). The expected number of crossings of [c + X, d + X] with normal fan of P is bounded by $O(||c d||/\tau)$.
- Phase (a+c). The expected number of crossings of $[c + \alpha X, c + X]$ and $[d + \alpha X, d + X]$, for $\alpha \in (0, 1]$, with normal fan of P is $O(n/\tau \ln(1/\alpha))$.

Remark: Only bound intersections of *partial path* in phases (a) and (c). Next up: Diameter and Phase (b) crossing bound.

A (10) A (10)

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

æ

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

How to choose *c* and *d*?

A (10) A (10)

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

• Pick c', d' to be unit length centers of τ -balls in N_v, N_w . Set c = 2nc' and d = 2nd'.

A (10) A (10)

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_v, N_w .

A B K A B K

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_{ν} , N_{w} .
- Fact: $\mathbb{E}[||X||] = n$. By Markov, $||X|| \le 2n$ with probability $\ge 1/2$.

3

くぼう くほう くほう

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_v, N_w .
- Fact: $\mathbb{E}[||X||] = n$. By Markov, $||X|| \le 2n$ with probability $\ge 1/2$.
- If $||X|| \leq 2n$, $c + \tau X$, $d + \tau X$ are in N_v , N_w .

3

く 戸 と く ヨ と く ヨ と …

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_v, N_w .
- Fact: $\mathbb{E}[||X||] = n$. By Markov, $||X|| \le 2n$ with probability $\ge 1/2$.
- If $||X|| \le 2n$, $c + \tau X$, $d + \tau X$ are in N_v , N_w . Need only bound crossings for $[c + \tau X, c + X]$, $[d + \tau X, d + X]!$

3

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_{ν}, N_{w} .
- Fact: $\mathbb{E}[||X||] = n$. By Markov, $||X|| \le 2n$ with probability $\ge 1/2$.
- Phase (b): $O(\|c d\|/\tau) = O(n/\tau)$.
- Phase (a)+(c): $O(n/\tau \ln(1/\tau))$.

3

く 戸 と く ヨ と く ヨ と …

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_{ν}, N_{w} .
- Fact: $\mathbb{E}[||X||] = n$. By Markov, $||X|| \le 2n$ with probability $\ge 1/2$.
- Phase (b): $O(\|c d\|/\tau) = O(n/\tau)$.
- Phase (a)+(c): $O(n/\tau \ln(1/\tau))$.

Remark: Can bound diameter using only phase (b) by scaling *c*, *d* up by $1/\tau$, so that $c/\tau + X$, $d/\tau + X$ stay in N_v , N_w respectively.

э.

・ロト ・四ト ・ヨト ・ヨト

Vertices *v*,*w* of *P* optimized by *c*, *d* respectively.

• The 3-step shadow simplex path:

$$c \xrightarrow{(a)} c + X \xrightarrow{(b)} d + X \xrightarrow{(c)} d$$

- Pick c',d' to be unit length centers of τ-balls in N_v, N_w.
 Set c = 2nc' and d = 2nd'.
- c,d are at distance $\geq 2n\tau$ from boundaries of N_{ν}, N_{w} .
- Fact: $\mathbb{E}[||X||] = n$. By Markov, $||X|| \le 2n$ with probability $\ge 1/2$.
- Phase (b): $O(\|c d\|/\tau) = O(n/\tau)$.
- Phase (a)+(c): $O(n/\tau \ln(1/\tau))$.

Remark: Can bound diameter using only phase (b) by scaling *c*, *d* up by $1/\tau$, so that $c/\tau + X$, $d/\tau + X$ stay in N_v , N_w respectively. Results in $O(n/\delta^2)$ diameter bound.

2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

D. Dadush, N. Hähnle

2

イロト イヨト イヨト イヨト

$\Pr[\operatorname{cross} F] = \Pr[X \in -[c, d] + F]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\Pr[\operatorname{cross} F] = \Pr[X \in -[c, d] + F] = \xi_n \int_{-[c, d] + F} e^{-||x||} dx$$

D. Dadush, N. Hähnle

29/34

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\Pr[\operatorname{cross} F] = \Pr[X \in -[c, d] + F] = \xi_n \int_{-[c, d] + F} e^{-||x||} dx$$
$$= \xi_n u^T (d - c) \int_0^1 \int_{F - ((1 - \lambda)c + \lambda d)} e^{-||x||} d\operatorname{vol}_{n-1}(x) d\lambda$$

2

イロト イヨト イヨト イヨト

æ

2

イロト イヨト イヨト イヨト

The set $\{F + t + \mathbb{R}_+ y : F \text{ facet of } N_v\}$ forms a partition of $N_v + t$.

The set $\{F + t + \mathbb{R}_+ y : F \text{ facet of } N_v\}$ forms a partition of $N_v + t$.

$$\int_{F+t+\mathbb{R}_+y} e^{-\|x\|} \mathrm{d}x = \int_0^\infty \int_{F+t+\frac{r}{h}y} e^{-\|x\|} \mathrm{d}\operatorname{vol}_{n-1}(x) \mathrm{d}r$$

The set $\{F + t + \mathbb{R}_+ y : F \text{ facet of } N_v\}$ forms a partition of $N_v + t$.

$$\int_{F+t+\mathbb{R}_+y} e^{-\|x\|} \mathrm{d}x = \int_0^\infty \int_{F+t+\frac{r}{h}y} e^{-\|x\|} \mathrm{d}\operatorname{vol}_{n-1}(x) \mathrm{d}r$$
$$= \int_0^\infty \int_{F+t} e^{-\|x+\frac{r}{h}y\|} \mathrm{d}\operatorname{vol}_{n-1}(x) \mathrm{d}r$$

D. Dadush, N. Hähnle

The set $\{F + t + \mathbb{R}_+ y : F \text{ facet of } N_v\}$ forms a partition of $N_v + t$.

$$\int_{F+t+\mathbb{R}_+y} e^{-\|x\|} dx = \int_0^\infty \int_{F+t+\frac{r}{h}y} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) dr$$
$$= \int_0^\infty \int_{F+t} e^{-\|x+\frac{r}{h}y\|} d\operatorname{vol}_{n-1}(x) dr$$
$$\ge \int_0^\infty e^{-r/h} dr \int_{F+t} e^{-\|x\|} d\operatorname{vol}_{n-1}(x)$$

D. Dadush, N. Hähnle

The set $\{F + t + \mathbb{R}_+ y : F \text{ facet of } N_v\}$ forms a partition of $N_v + t$.

$$\int_{F+t+\mathbb{R}_+y} e^{-\|x\|} dx = \int_0^\infty \int_{F+t+\frac{r}{h}y} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) dr$$
$$= \int_0^\infty \int_{F+t} e^{-\|x+\frac{r}{h}y\|} d\operatorname{vol}_{n-1}(x) dr$$
$$\ge \int_0^\infty e^{-r/h} dr \int_{F+t} e^{-\|x\|} d\operatorname{vol}_{n-1}(x)$$
$$\ge \tau \int_{F+t} e^{-\|x\|} d\operatorname{vol}_{n-1}(x)$$

$$\Pr[\operatorname{cross} F] = \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-||x||} \mathrm{d} \operatorname{vol}_{n-1}(x) \mathrm{d} \lambda$$

D. Dadush, N. Hähnle

æ

イロト イヨト イヨト イヨト

$$\Pr[\operatorname{cross} F] = \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) d\lambda$$
$$\leq \xi_n \frac{\|d-c\|}{\tau} \int_0^1 \int_{F-((1-\lambda)c+\lambda d)+\mathbb{R}+y} e^{-\|x\|} dx d\lambda$$

æ

イロト イヨト イヨト イヨト

$$\begin{aligned} \Pr[\operatorname{cross} F] &= \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-\|x\|} \mathrm{d} \operatorname{vol}_{n-1}(x) \mathrm{d} \lambda \\ &\leq \xi_n \frac{\|d-c\|}{\tau} \int_0^1 \int_{F-((1-\lambda)c+\lambda d)+\mathbb{R}_+ y} e^{-\|x\|} \mathrm{d} x \mathrm{d} \lambda \end{aligned}$$

æ

<ロト < 回 > < 回 > < 回 > .

$$\Pr[\operatorname{cross} F] = \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) d\lambda$$
$$\leq \xi_n \frac{\|d-c\|}{\tau} \int_0^1 \int_{F-((1-\lambda)c+\lambda d)+\mathbb{R}_+ y} e^{-\|x\|} dx d\lambda$$

$$\mathbb{E}[\# \text{ crossings}] \leq rac{1}{2} \sum_{v} \sum_{F \subset N_v} \mathsf{Pr}[\mathsf{cross} \; F]$$

æ

イロン イ団と イヨン イヨン

$$\Pr[\operatorname{cross} F] = \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) d\lambda$$
$$\leq \xi_n \frac{\|d-c\|}{\tau} \int_0^1 \int_{F-((1-\lambda)c+\lambda d)+\mathbb{R}_+ y} e^{-\|x\|} dx d\lambda$$

$$\begin{split} \mathbb{E}[\# \text{ crossings}] &\leq \frac{1}{2} \sum_{v} \sum_{F \subset \mathcal{N}_{v}} \mathsf{Pr}[\mathsf{cross} \; F] \\ &\leq \xi_{n} \frac{\|d - c\|}{2\tau} \int_{0}^{1} \sum_{v} \int_{\mathcal{N}_{v} - ((1 - \lambda)c + \lambda d)} e^{-\|x\|} \mathrm{d}x \mathrm{d}\lambda \end{split}$$

æ

<ロト < 回 > < 回 > < 回 > .

$$\Pr[\operatorname{cross} F] = \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) d\lambda$$
$$\leq \xi_n \frac{\|d-c\|}{\tau} \int_0^1 \int_{F-((1-\lambda)c+\lambda d)+\mathbb{R}_+ y} e^{-\|x\|} dx d\lambda$$

$$\mathbb{E}[\# \text{ crossings}] \leq \frac{1}{2} \sum_{v} \sum_{F \subset N_{v}} \Pr[\text{cross } F]$$
$$\leq \xi_{n} \frac{\|d - c\|}{2\tau} \int_{0}^{1} \sum_{v} \int_{N_{v} - ((1 - \lambda)c + \lambda d)} e^{-\|x\|} dx d\lambda$$
$$= \xi_{n} \frac{\|d - c\|}{2\tau} \int_{0}^{1} \int_{\mathbb{R}^{n}} e^{-\|x\|} dx d\lambda$$

æ

<ロト < 回 > < 回 > < 回 > .
Putting it all together

$$\Pr[\operatorname{cross} F] = \xi_n u^T (d-c) \int_0^1 \int_{F-((1-\lambda)c+\lambda d)} e^{-\|x\|} d\operatorname{vol}_{n-1}(x) d\lambda$$
$$\leq \xi_n \frac{\|d-c\|}{\tau} \int_0^1 \int_{F-((1-\lambda)c+\lambda d)+\mathbb{R}_+ y} e^{-\|x\|} dx d\lambda$$

$$\mathbb{E}[\# \operatorname{crossings}] \leq \frac{1}{2} \sum_{v} \sum_{F \subset N_{v}} \Pr[\operatorname{cross} F]$$

$$\leq \xi_{n} \frac{\|d - c\|}{2\tau} \int_{0}^{1} \sum_{v} \int_{N_{v} - ((1 - \lambda)c + \lambda d)} e^{-\|x\|} dx d\lambda$$

$$= \xi_{n} \frac{\|d - c\|}{2\tau} \int_{0}^{1} \int_{\mathbb{R}^{n}} e^{-\|x\|} dx d\lambda$$

$$= \frac{\|d - c\|}{2\tau}$$

æ

<ロト < 回 > < 回 > < 回 > .

- $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.
 - Given vertex *v*, objective *d*: solve max $\{d^T x : x \in P\}$.

э

- $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.
 - Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
 - First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.

A D A D A D A

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...

A D A D A D A

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...
- Phase (c) bound: can find vertex w' optimizing d', $\|d' - d\| \le n\varepsilon = \|d\|\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

3

A (10) A (10)

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...
- Phase (c) bound: can find vertex w' optimizing d', $\|d' - d\| \le n\varepsilon = \|d\|\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.
- Remark: already enough for weakly polynomial bound.

3

< 回 > < 回 > < 回 > -

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...
- Phase (c) bound: can find vertex w' optimizing d', $\|d' d\| \le n\varepsilon = \|d\|\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.
- Solution: can identity optimal facet from w and d'!

くぼう くほう くほう

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...
- Phase (c) bound: can find vertex w' optimizing d', $\|d' - d\| \le n\varepsilon = \|d\|\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $\|d - d'\| < \delta/(2n^2)\|d\|$.

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...
- Phase (c) bound: can find vertex w' optimizing d', $\|d' d\| \le n\varepsilon = \|d\|\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $||d - d'|| < \delta/(2n^2)||d||$. Let $d' = \sum_{i \in I} \lambda_i a_i / ||a_i||$, where $N_w = \text{cone}(\{a_i : i \in I\})$.

D. Dadush, N. Hähnle

3

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v, objective d: solve max $\{d^T x : x \in P\}$.
- First attempt: Choose *c* as in diameter bound. Scale so that *c*, *d* have norm *n*. Run 3-step Shadow Simplex from *c* to *d*.
- Problem: don't know anything about *d*! Could lie on the boundary of normal cone...
- Phase (c) bound: can find vertex w' optimizing d', $\|d' - d\| \le n\varepsilon = \|d\|\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $||d - d'|| < \delta/(2n^2)||d||$. Let $d' = \sum_{i \in I} \lambda_i a_i / ||a_i||$, where $N_w = \operatorname{cone}(\{a_i : i \in I\})$. Then for $j = \operatorname{argmax}_{i \in I} \lambda_j$, w lies on the facet $a_i^T x \leq b_j$.

3

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v and objective d: solve max $\{d^T x : x \in P\}$.
- Phase (c) bound: can find vertex *w* optimizing *d'*, $\|d' d\| \le n\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $||d - d'|| < \delta/(2n^2)||d||$. Let $d' = \sum_{i \in I} \lambda_i a_i / ||a_i||$, where $N_w = \operatorname{cone}(\{a_i : i \in I\})$. Then for $j = \operatorname{argmax}_{i \in I} \lambda_j$, w lies on the facet $a_i^T x \leq b_j$.

• Remark: Solves open problem of Eisenbrand and Vempala.

< 日 > < 同 > < 回 > < 回 > < □ > <

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v and objective d: solve max $\{d^T x : x \in P\}$.
- Phase (c) bound: can find vertex *w* optimizing *d'*, $\|d' d\| \le n\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $||d - d'|| < \delta/(2n^2)||d||$. Let $d' = \sum_{i \in I} \lambda_i a_i / ||a_i||$, where $N_w = \operatorname{cone}(\{a_i : i \in I\})$. Then for $j = \operatorname{argmax}_{i \in I} \lambda_j$, w lies on the facet $a_i^T x \leq b_j$.

• Setting $\varepsilon = \delta/(2n^2)$, find an optimal facet after $O(n/\tau \ln(n/\delta)) = O(n^2/\delta \ln(n/\delta))$ pivots.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v and objective d: solve max $\{d^T x : x \in P\}$.
- Phase (c) bound: can find vertex *w* optimizing *d'*, $\|d' d\| \le n\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $||d - d'|| < \delta/(2n^2)||d||$. Let $d' = \sum_{i \in I} \lambda_i a_i / ||a_i||$, where $N_w = \operatorname{cone}(\{a_i : i \in I\})$. Then for $j = \operatorname{argmax}_{i \in I} \lambda_j$, w lies on the facet $a_i^T x \leq b_j$.

- Setting $\varepsilon = \delta/(2n^2)$, find an optimal facet after $O(n/\tau \ln(n/\delta)) = O(n^2/\delta \ln(n/\delta))$ pivots.
- Recursing *n* times, optimal solution using $O(n^3/\delta \ln(n/\delta))$ pivots.

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

 $P = \{x : Ax \le b\}$ polytope satisfying local δ -distance property. *P* is τ -wide for $\tau = \delta/n$.

- Given vertex v and objective d: solve max $\{d^T x : x \in P\}$.
- Phase (c) bound: can find vertex *w* optimizing *d'*, $\|d' d\| \le n\varepsilon$ with $O(n/\tau \ln(1/\varepsilon))$ pivots.

Lemma (D.-Hähnle 2014+)

Let w, w' be vertices of P, $d \in N_w$, $d' \in N_{w'}$, $||d - d'|| < \delta/(2n^2)||d||$. Let $d' = \sum_{i \in I} \lambda_i a_i / ||a_i||$, where $N_w = \operatorname{cone}(\{a_i : i \in I\})$. Then for $j = \operatorname{argmax}_{i \in I} \lambda_i$, w lies on the facet $a_j^T x \leq b_j$.

Feasibility: Use standard reductions to optimization (Phase 1 simplex).

3

イロン イ理 とく ヨン イヨン

- New and simpler analysis and variant of the Shadow Simplex method.
- Improved diameter bounds and simplex algorithm for *curved polyhedra*.
- Inspired by path finding algorithm over the Voronoi graph of a lattice by Bonifas, D. (2014) used for solving the Closest Vector Problem.

- New and simpler analysis and variant of the Shadow Simplex method.
- Improved diameter bounds and simplex algorithm for *curved polyhedra*.
- Inspired by path finding algorithm over the Voronoi graph of a lattice by Bonifas, D. (2014) used for solving the Closest Vector Problem.

Open Problems:

Improve smoothed analysis bounds using our techniques.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- New and simpler analysis and variant of the Shadow Simplex method.
- Improved diameter bounds and simplex algorithm for *curved polyhedra*.
- Inspired by path finding algorithm over the Voronoi graph of a lattice by Bonifas, D. (2014) used for solving the Closest Vector Problem.

Open Problems:

- Improve smoothed analysis bounds using our techniques.
- Polynomial Hirsch conjecture for random polytopes?

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- New and simpler analysis and variant of the Shadow Simplex method.
- Improved diameter bounds and simplex algorithm for *curved polyhedra*.
- Inspired by path finding algorithm over the Voronoi graph of a lattice by Bonifas, D. (2014) used for solving the Closest Vector Problem.

Open Problems:

- Improve smoothed analysis bounds using our techniques.
- Polynomial Hirsch conjecture for random polytopes?
- When can we improve the geometry of the normal fan?

・ロト ・ 四ト ・ ヨト ・ ヨト …

- New and simpler analysis and variant of the Shadow Simplex method.
- Improved diameter bounds and simplex algorithm for *curved polyhedra*.
- Inspired by path finding algorithm over the Voronoi graph of a lattice by Bonifas, D. (2014) used for solving the Closest Vector Problem.

Open Problems:

- Improve smoothed analysis bounds using our techniques.
- Polynomial Hirsch conjecture for random polytopes?
- When can we improve the geometry of the normal fan?

Thank you!

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A