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Linear and Integer Programming

Linear Programming (LP): linear constraints & linear objective with
continuous variables.

max cT x
subject to Ax ≤ b, x ∈ Rn
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Linear and Integer Programming

Linear Programming (LP): linear constraints & linear objective with
continuous variables.

max cT x
subject to Ax ≤ b, x ∈ Rn

Amazingly versatile modeling language.
Generally provides a “relaxed” view of a desired optimization
problem, but can be solved in polynomial time via interior point
(and many other) methods!
Will focus on one of the most used classes of algorithms for LP:
the Simplex Method (not a polytime algorithm!).
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Linear and Integer Programming

Mixed Integer Programming (MIP): models both continuous and
discrete choices.

max cT x + dT y
subject to Ax + Cy ≤ b, x ∈ Rn1 , y ∈ Zn2
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Linear and Integer Programming

Mixed Integer Programming (MIP): models both continuous and
discrete choices.

max cT x + dT y
subject to Ax + Cy ≤ b, x ∈ Rn1 , y ∈ Zn2

One of the most successful modeling language for many real
world applications. While instances can be extremely hard to
solve (MIP is NP-hard), many practical instances are not.
Many sophisticated software packages exist for these models
(CPLEX, Gurobi, etc.). MIP solving is now considered a mature
and practical technology.
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Sample Applications

Routing delivery / pickup trucks for customers.
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Sample Applications

Optimizing supply chain logistics.
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Standard Framework for Solving MIPs

Relax integrality of the variables.
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Relax integrality of the variables.
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subject to Ax + Cy ≤ b, x ∈ Rn1 , y ∈ Rn2

Solve the LP.
Add extra constraints to tighten the LP or “guess” the values of
some of the integer variables. Repeat.
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Standard Framework for Solving MIPs

Relax integrality of the variables.

max cT x + dT y
subject to Ax + Cy ≤ b, x ∈ Rn1 , y ∈ Rn2

Solve the LP.
Add extra constraints to tighten the LP or “guess” the values of
some of the integer variables. Repeat.
Need to solve a lot of LPs quickly.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

Simplex Method: move from vertex to vertex along the graph of P
until the optimal solution is found.

P

v1
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Question
Why simplex?
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Question
Why simplex?

Simplex pivots implementable using “simple” linear algebra.
Vertex solutions are often “nice” (e.g. sparse, easy to interpret).
Terminates with combinatorial description of an optimal solution.
“Easy” to reoptimize when adding an extra variable (dual to adding
a constraint).
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!

Simplex lower bounds:
Klee-Minty (1972): designed “deformed cubes”, providing worst
case examples for many pivot rules.
Friedmann et al. (2011): systematically designed bad examples
using Markov decision processes.
In these examples, the pivot rule is tricked into taking an
(sub)exponentially long path, even though short paths exists.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!

Simplex upper bounds:
Kalai (1992): Random facet rule requires 2O(

√
n log m) pivots on

expectation.

D. Dadush, N. Hähnle Shadow Simplex 8 / 34



Linear Programming and the Hirsch Conjecture

P = {x ∈ Rn : Ax ≤ b},
A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.
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Linear Programming and the Hirsch Conjecture

P = {x ∈ Rn : Ax ≤ b},
A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.

Besides the computational efficiency of the simplex method, an even
more basic question is not understood:

Question
How can we bound the length of paths on the graph of P? I.e. how to
bound the diameter of P?
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Linear Programming and the Hirsch Conjecture

P = {x ∈ Rn : Ax ≤ b},
A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.

Conjecture (Polynomial Hirsch Conjecture)
The diameter of P is bounded by a polynomial in the dimension n and
number of constraints m.
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Linear Programming and the Hirsch Conjecture

P = {x ∈ Rn : Ax ≤ b},
A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.

Conjecture (Polynomial Hirsch Conjecture)
The diameter of P is bounded by a polynomial in the dimension n and
number of constraints m.

Diameter lower bounds:
Santos (2010), Matschke-Santos-Weibel (2012):
Disproved original Hirsch conjecture bound of m− n,
exhibit polytopes with diameter (1 + ε)m (for some small ε > 0).
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Linear Programming and the Hirsch Conjecture

P = {x ∈ Rn : Ax ≤ b},
A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.

Conjecture (Polynomial Hirsch Conjecture)
The diameter of P is bounded by a polynomial in the dimension n and
number of constraints m.

Diameter upper bounds:
Barnette, Larman (1974): 1

32n−2(m− n + 5
2 ).

Kalai, Kleitman (1992), Todd (2014): (m− n)log n.
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Special Cases

P = {x ∈ Rn : Ax ≤ b}, A ∈ Qm×n

Upper bounds for combinatorial classes:

0/1-polytopes: m− n (Naddef 1989)
flow polytopes: quadratic (Orlin 1997)
transportation polytopes: linear (Brightwell, v.d. Heuvel and
Stougie 2006)
polars of flag polytopes: m− n (Adripasito, Benedetti 2014)
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Special Cases

P = {x ∈ Rn : Ax ≤ b}, A ∈ Qm×n

Upper bounds for well-conditioned constraint matrices:

Dyer, Frieze (1994):
If A is totally unimodular, diameter is O(m16n3 log(mn)3).

I Analyze a random walk based simplex. They solve LP in similar
runtime.

Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier (2012):
If A integer matrix and all subdeterminants ≤ ∆, diameter is
O(n3.5∆2 log n∆).

I Use volume expansion on the normal fan (non-constructive!).
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Simplex Algorithms

P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n

Subdeterminants of A bounded by ∆.

Question
Can the diameter bound of Bonifas et al bounds be made
constructive? How fast can we solve LP in this setting?

Brunsch, Röglin (2013):
Given two vertices can find a path of length O(mn3∆4) efficiently.

I Use shadow simplex method, inspired by smoothed analysis.
Eisenbrand, Vempala (2014):
Given an initial vertex and objective, can optimize using poly(n,∆)
simplex pivots. Initial feasible vertex using m poly(n,∆) pivots.

I Use random walk based dual simplex, similar to Dyer and Frieze.
All the above results hold with respect to more general conditions
on P (more details later).
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A Faster Shadow Simplex Method

P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n

Subdeterminants of A bounded by ∆.

Theorem (D., Hähnle 2014+)

Diameter is bounded by O(n3∆2 ln(n∆)).

Given an initial vertex and objective, can compute optimal vertex
using at most O(n4∆2 ln(n∆)) pivots on expectation.
Can compute an initial feasible vertex using O(n5∆2 ln(n∆)) pivots
on expectation.

Pivots require O(mn) arithmetic operations.

Based on a new analysis and variant of the shadow simplex method.
Inspired by path finding algorithm over the Voronoi graph of a lattice by
Bonifas, D. (2014) used for solving the Closest Vector Problem.
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D. Dadush, N. Hähnle Shadow Simplex 13 / 34



A Faster Shadow Simplex Method

P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n

Subdeterminants of A bounded by ∆.

Theorem (D., Hähnle 2014+)
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Diameter is bounded by O(n3∆2 ln(n∆)).
Given an initial vertex and objective, can compute optimal vertex
using at most O(n4∆2 ln(n∆)) pivots on expectation.
Can compute an initial feasible vertex using O(n5∆2 ln(n∆)) pivots
on expectation.

Pivots require O(mn) arithmetic operations.

Based on a new analysis and variant of the shadow simplex method.

Inspired by path finding algorithm over the Voronoi graph of a lattice by
Bonifas, D. (2014) used for solving the Closest Vector Problem.
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Navigation over the Voronoi Graph

x

y
t

Z + t

Z

Figure: Randomized Straight Line algorithm

Closest Vector Problem (CVP): Find closest lattice vector y to t .
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Navigation over the Voronoi Graph

x

y
t

Z + t

Z

Figure: Randomized Straight Line algorithm

Closest Vector Problem (CVP): Find closest lattice vector y to t .
Solving CVP can be reduced to efficiently navigating over the
Voronoi cell (Som.,Fed.,Shal. 09; Mic.,Voulg. 10-13).
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Navigation over the Voronoi Graph

x

y
t

Z + t

Z

Figure: Randomized Straight Line algorithm

Closest Vector Problem (CVP): Find closest lattice vector y to t .
Can move between “nearby” lattice points using a polynomial
number of steps (Bonifas, D. 14).
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The Polar

Polytope P = {x ∈ Rn : Ax ≤ b} with 0 ∈ int(P)

Polar: P? = {y ∈ Rn : yT x ≤ 1 ∀x ∈ P}

Face lattice is reversed:
I vertex of P ∼= facet of P?

I k -face of P ∼= (n− k − 1)-face of P?

I vertex-edge path in P ∼= facet-ridge path in P?
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The Normal Fan

Same combinatorics as the polar, but expressed using cones.

P nondegenerate, i.e. each vertex v ∈ P has exactly n tight facets.
Normal cone Nv : Cone defined by normal vectors of these facets,
equivalently all objectives maximized at v .
Normal fan: Set of all normal cones.
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P
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The Shadow Simplex Method

v ′2

d
v ′1

c

v2 v1

Shadow simplex from v1 to v2
I Pick c optimizing v1.
I Find optima wrt (1− λ)c + λd until λ = 1.

“Primal” interpretation
I Project P to span of c and d .
I Optima wrt (1− λ)c + λd are pre-images of

optima in the plane.
“Dual” interpretation

I Trace segment [c,d ] through normal fan.
I Pivot step corresponds to crossing facet of a

normal cone.
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D. Dadush, N. Hähnle Shadow Simplex 18 / 34



The Shadow Simplex Method

v ′2

d
v ′1

c

v2 v1

Shadow simplex from v1 to v2
I Pick c optimizing v1.
I Find optima wrt (1− λ)c + λd until λ = 1.

“Primal” interpretation
I Project P to span of c and d .
I Optima wrt (1− λ)c + λd are pre-images of

optima in the plane.

“Dual” interpretation
I Trace segment [c,d ] through normal fan.
I Pivot step corresponds to crossing facet of a

normal cone.
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Size of the shadow: randomness to the rescue

Question
When can we bound the number of edges in the shadow?

In general, the shadow can be exponentially large.

Borgwardt (1980s), Spielman-Teng (2004), Vershynin (2006): the
shadow is small in expectation when the linear program is random
or smoothed.
Brunsch-Röglin (2013): the shadow is small in expectation for
“well-conditioned” polytopes when c,d are randomly chosen from
the normal cones of two vertices.
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Shadow Simplex: Dual Perspective

Move from v1 to v2 by following [c,d ] through the normal fan.
Pivot step corresponds to crossing facet of normal cone.
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Shadow Simplex: Dual Perspective

Move from v1 to v2 by following [c,d ] through the normal fan.
Pivot step corresponds to crossing facet of normal cone.
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d
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d

Question
How can we bound the number of intersections with the normal fan?
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Polyhedra with τ-wide Normal Fan

Vertex normal cone Nv is τ-wide:
contains a ball of radius τ centered
on the unit sphere.
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Polyhedra with τ-wide Normal Fan

Vertex normal cone Nv is τ-wide:
contains a ball of radius τ centered
on the unit sphere.
P is τ-wide if all its vertex normal
cones are τ-wide.
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Polyhedra with τ-wide Normal Fan

Vertex normal cone Nv is τ-wide:
contains a ball of radius τ centered
on the unit sphere.
Angles at any vertex are less than
π − 2τ. “Discrete measure” of
curvature.

N3

N1

N4N2

P

v1

v2

v3

v4

a1

a2

a3

Nv

Nv
τ
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Polyhedra with τ-wide Normal Fan

a1

a2

a3

Nv
τ

Lemma
P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n, subdeterminants bounded by ∆.
Then P is τ-wide for τ = 1/(n∆)2.
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Polyhedra with τ-wide Normal Fan

a1

a2

a3

Nv
τ

Theorem (D.-Hähnle 2014+)
If P an n-dimensional polyhedron with a τ-wide normal fan, then
diameter of P is O(n/τ ln(1/τ)).

Furthermore, paths are constructed using shadow simplex method.

Remark: Perfect matching polytope on a graph G = (V ,E) is
1/(3

√
|E |)-wide.
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The δ-distance Property

Nv = cone(a1, . . . ,an), ai ’s
scaled to be unit length.
Take aj and opposite facet Fj .

δ-distance property:
d(aj ,H(Fj)) ≥ δ for all
facet/opposite vertex pairs

aj

Fj

δ
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P has the (local) δ-distance property if
every (feasible) basis has the δ-distance property.
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Lemma
Polytope P = {x ∈ Rn : Ax ≤ b}.

A ∈ Zm×n with subdeterminants bounded by ∆. Then P satisfies
the δ-distance property for δ = 1/(n∆2).

If P satisfies the local δ-distance property then P is τ-wide for
τ = 1/(nδ).
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scaled to be unit length.
Take aj and opposite facet Fj .
δ-distance property:
d(aj ,H(Fj)) ≥ δ for all
facet/opposite vertex pairs

aj

Fj

δ

Theorem (D.-Hähnle)
If P a polytope satisfying local δ-distance property, then given a
feasible vertex and objective, an optimal vertex can be found using
O(n3/δ ln(n/δ)) shadow simplex pivots.
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Nv = cone(a1, . . . ,an), ai ’s
scaled to be unit length.
Take aj and opposite facet Fj .
δ-distance property:
d(aj ,H(Fj)) ≥ δ for all
facet/opposite vertex pairs

aj

Fj

δ

Theorem (D.-Hähnle)
If P a polytope satisfying local δ-distance property, then given a
feasible vertex and objective, an optimal vertex can be found using
O(n3/δ ln(n/δ)) shadow simplex pivots.

Resolves question of Vempala and Eisenbrand (2014) regarding
sufficiency of local δ-distance property for optimization.
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3-step Shadow Simplex Path
To bound the diameter, we will exhibit a short shadow simplex path
between any two vertices.

Let v ,w be vertices of P.

Pick c ∈ Nv , d ∈ Nw to be “deep” inside the respective normal
cones (exact choice made later).
Let X be exponentially distributed over Rn, that is with probability
density proportional to e−‖x‖.
We shall follow the simplex paths in sequence:

c
(a)−→ c + X

(b)−→ d + X
(c)−→ d

Question
How long is this path?
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D. Dadush, N. Hähnle Shadow Simplex 26 / 34



Crossing Bounds

The 3-step shadow simplex path:

c
(a)−→ c + X

(b)−→ d + X
(c)−→ d

Theorem (D.-Hähnle)
Assume P is an n-dimensional τ-wide polyhedron.

Phase (b). The expected number of crossings of [c + X ,d + X ]
with normal fan of P is bounded by O(‖c − d‖/τ).
Phase (a+c). The expected number of crossings of
[c + αX , c + X ] and [d + αX ,d + X ], for α ∈ (0,1],
with normal fan of P is O(n/τ ln(1/α)).

Remark: Only bound intersections of partial path in phases (a) and (c).
Next up: Diameter and Phase (b) crossing bound.
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Assume P is an n-dimensional τ-wide polyhedron.

Phase (b). The expected number of crossings of [c + X ,d + X ]
with normal fan of P is bounded by O(‖c − d‖/τ).

Phase (a+c). The expected number of crossings of
[c + αX , c + X ] and [d + αX ,d + X ], for α ∈ (0,1],
with normal fan of P is O(n/τ ln(1/α)).

Remark: Only bound intersections of partial path in phases (a) and (c).
Next up: Diameter and Phase (b) crossing bound.
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Assume P is an n-dimensional τ-wide polyhedron.

Phase (b). The expected number of crossings of [c + X ,d + X ]
with normal fan of P is bounded by O(‖c − d‖/τ).
Phase (a+c). The expected number of crossings of
[c + αX , c + X ] and [d + αX ,d + X ], for α ∈ (0,1],
with normal fan of P is O(n/τ ln(1/α)).

Remark: Only bound intersections of partial path in phases (a) and (c).
Next up: Diameter and Phase (b) crossing bound.
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Bounding the Diameter
Vertices v ,w of P optimized by c,d respectively.

The 3-step shadow simplex path:

c
(a)−→ c + X

(b)−→ d + X
(c)−→ d

Pick c′,d ′ to be unit length centers of τ-balls in Nv ,Nw .
Set c = 2nc′ and d = 2nd ′.
c,d are at distance ≥ 2nτ from boundaries of Nv ,Nw .
Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
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c,d are at distance ≥ 2nτ from boundaries of Nv ,Nw .
Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
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(a)−→ c + X

(b)−→ d + X
(c)−→ d

Pick c′,d ′ to be unit length centers of τ-balls in Nv ,Nw .
Set c = 2nc′ and d = 2nd ′.
c,d are at distance ≥ 2nτ from boundaries of Nv ,Nw .
Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
If ‖X‖ ≤ 2n, c + τX ,d + τX are in Nv ,Nw .
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Bounding the Diameter
Vertices v ,w of P optimized by c,d respectively.

The 3-step shadow simplex path:

c
(a)−→ c + X

(b)−→ d + X
(c)−→ d

Pick c′,d ′ to be unit length centers of τ-balls in Nv ,Nw .
Set c = 2nc′ and d = 2nd ′.
c,d are at distance ≥ 2nτ from boundaries of Nv ,Nw .
Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
If ‖X‖ ≤ 2n, c + τX ,d + τX are in Nv ,Nw .
Need only bound crossings for [c + τX , c + X ], [d + τX ,d + X ]!
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Bounding the Diameter
Vertices v ,w of P optimized by c,d respectively.

The 3-step shadow simplex path:

c
(a)−→ c + X

(b)−→ d + X
(c)−→ d

Pick c′,d ′ to be unit length centers of τ-balls in Nv ,Nw .
Set c = 2nc′ and d = 2nd ′.
c,d are at distance ≥ 2nτ from boundaries of Nv ,Nw .
Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
Phase (b): O(‖c − d‖/τ) = O(n/τ).
Phase (a)+(c): O(n/τ ln(1/τ)).
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The 3-step shadow simplex path:
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Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
Phase (b): O(‖c − d‖/τ) = O(n/τ).
Phase (a)+(c): O(n/τ ln(1/τ)).
Remark: Can bound diameter using only phase (b) by scaling c,d
up by 1/τ, so that c/τ + X ,d/τ + X stay in Nv ,Nw respectively.
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(b)−→ d + X
(c)−→ d

Pick c′,d ′ to be unit length centers of τ-balls in Nv ,Nw .
Set c = 2nc′ and d = 2nd ′.
c,d are at distance ≥ 2nτ from boundaries of Nv ,Nw .
Fact: E[‖X‖] = n. By Markov, ‖X‖ ≤ 2n with probability ≥ 1/2.
Phase (b): O(‖c − d‖/τ) = O(n/τ).
Phase (a)+(c): O(n/τ ln(1/τ)).
Remark: Can bound diameter using only phase (b) by scaling c,d
up by 1/τ, so that c/τ + X ,d/τ + X stay in Nv ,Nw respectively.
Results in O(n/δ2) diameter bound.
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Phase (b): Bound Facet Crossing Probability

F

C

c

d

Pr[cross F ] = Pr[X ∈ −[c,d ] + F ]

= ξn

∫
−[c,d ]+F

e−‖x‖dx

= ξnuT (d − c)
∫ 1

0

∫
F−((1−λ)c+λd)

e−‖x‖d voln−1(x)dλ
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Bounding the Surface Measure using τ

F

Nv

u

The set {F + t + R+y : F facet of Nv} forms a partition of Nv + t .∫
F+t+R+y

e−‖x‖dx =
∫ ∞

0

∫
F+t+ r

h y
e−‖x‖d voln−1(x)dr

=
∫ ∞

0

∫
F+t

e−‖x+
r
h y‖d voln−1(x)dr

≥
∫ ∞

0
e−r/hdr

∫
F+t

e−‖x‖d voln−1(x)

≥ τ
∫

F+t
e−‖x‖d voln−1(x)
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Putting it all together

yF

Nv

c

d
u

Pr[cross F ] = ξnuT (d − c)
∫ 1

0

∫
F−((1−λ)c+λd)

e−‖x‖d voln−1(x)dλ

≤ ξn
‖d − c‖

τ

∫ 1

0

∫
F−((1−λ)c+λd)+R+y

e−‖x‖dxdλ

E[# crossings] ≤ 1
2 ∑

v
∑

F⊂Nv

Pr[cross F ]

≤ ξn
‖d − c‖

2τ

∫ 1

0
∑
v

∫
Nv−((1−λ)c+λd)

e−‖x‖dxdλ

= ξn
‖d − c‖

2τ

∫ 1

0

∫
Rn

e−‖x‖dxdλ

=
‖d − c‖

2τ
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Optimization
P = {x : Ax ≤ b} polytope satisfying local δ-distance property.
P is τ-wide for τ = δ/n.

Given vertex v , objective d : solve max
{

dT x : x ∈ P
}

.

First attempt: Choose c as in diameter bound. Scale so that c,d
have norm n. Run 3-step Shadow Simplex from c to d .
Problem: don’t know anything about d !
Could lie on the boundary of normal cone...
Phase (c) bound: can find vertex w ′ optimizing d ′,
‖d ′ − d‖ ≤ nε = ‖d‖ε with O(n/τ ln(1/ε)) pivots.
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Optimization
P = {x : Ax ≤ b} polytope satisfying local δ-distance property.
P is τ-wide for τ = δ/n.

Given vertex v , objective d : solve max
{

dT x : x ∈ P
}

.
First attempt: Choose c as in diameter bound. Scale so that c,d
have norm n. Run 3-step Shadow Simplex from c to d .
Problem: don’t know anything about d !
Could lie on the boundary of normal cone...
Phase (c) bound: can find vertex w ′ optimizing d ′,
‖d ′ − d‖ ≤ nε = ‖d‖ε with O(n/τ ln(1/ε)) pivots.
Remark: already enough for weakly polynomial bound.
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Optimization
P = {x : Ax ≤ b} polytope satisfying local δ-distance property.
P is τ-wide for τ = δ/n.

Given vertex v , objective d : solve max
{

dT x : x ∈ P
}

.
First attempt: Choose c as in diameter bound. Scale so that c,d
have norm n. Run 3-step Shadow Simplex from c to d .
Problem: don’t know anything about d !
Could lie on the boundary of normal cone...
Phase (c) bound: can find vertex w ′ optimizing d ′,
‖d ′ − d‖ ≤ nε = ‖d‖ε with O(n/τ ln(1/ε)) pivots.
Solution: can identity optimal facet from w and d ′!
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Optimization
P = {x : Ax ≤ b} polytope satisfying local δ-distance property.
P is τ-wide for τ = δ/n.

Given vertex v , objective d : solve max
{

dT x : x ∈ P
}

.
First attempt: Choose c as in diameter bound. Scale so that c,d
have norm n. Run 3-step Shadow Simplex from c to d .
Problem: don’t know anything about d !
Could lie on the boundary of normal cone...
Phase (c) bound: can find vertex w ′ optimizing d ′,
‖d ′ − d‖ ≤ nε = ‖d‖ε with O(n/τ ln(1/ε)) pivots.

Lemma (D.-Hähnle 2014+)

Let w ,w ′ be vertices of P, d ∈ Nw , d ′ ∈ Nw ′ , ‖d − d ′‖ < δ/(2n2)‖d‖.

Let d ′ = ∑i∈I λiai /‖ai‖, where Nw = cone({ai : i ∈ I}).
Then for j = argmaxj∈Iλj , w lies on the facet aT

j x ≤ bj .
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Remark: Solves open problem of Eisenbrand and Vempala.
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O(n/τ ln(n/δ)) = O(n2/δ ln(n/δ)) pivots.
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Given vertex v and objective d : solve max
{

dT x : x ∈ P
}

.
Phase (c) bound: can find vertex w optimizing d ′,
‖d ′ − d‖ ≤ nε with O(n/τ ln(1/ε)) pivots.

Lemma (D.-Hähnle 2014+)

Let w ,w ′ be vertices of P, d ∈ Nw , d ′ ∈ Nw ′ , ‖d − d ′‖ < δ/(2n2)‖d‖.
Let d ′ = ∑i∈I λiai /‖ai‖, where Nw = cone({ai : i ∈ I}).
Then for j = argmaxj∈Iλj , w lies on the facet aT

j x ≤ bj .

Setting ε = δ/(2n2), find an optimal facet after
O(n/τ ln(n/δ)) = O(n2/δ ln(n/δ)) pivots.
Recursing n times, optimal solution using O(n3/δ ln(n/δ)) pivots.
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Optimization
P = {x : Ax ≤ b} polytope satisfying local δ-distance property.
P is τ-wide for τ = δ/n.

Given vertex v and objective d : solve max
{

dT x : x ∈ P
}

.
Phase (c) bound: can find vertex w optimizing d ′,
‖d ′ − d‖ ≤ nε with O(n/τ ln(1/ε)) pivots.

Lemma (D.-Hähnle 2014+)

Let w ,w ′ be vertices of P, d ∈ Nw , d ′ ∈ Nw ′ , ‖d − d ′‖ < δ/(2n2)‖d‖.
Let d ′ = ∑i∈I λiai /‖ai‖, where Nw = cone({ai : i ∈ I}).
Then for j = argmaxj∈Iλj , w lies on the facet aT

j x ≤ bj .

Feasibility: Use standard reductions to optimization (Phase 1
simplex).
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Summary and Open Problems

New and simpler analysis and variant of the Shadow Simplex
method.
Improved diameter bounds and simplex algorithm for curved
polyhedra.
Inspired by path finding algorithm over the Voronoi graph of a
lattice by Bonifas, D. (2014) used for solving the Closest Vector
Problem.

Open Problems:
Improve smoothed analysis bounds using our techniques.
Polynomial Hirsch conjecture for random polytopes?
When can we improve the geometry of the normal fan?

Thank you!
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D. Dadush, N. Hähnle Shadow Simplex 34 / 34



Summary and Open Problems

New and simpler analysis and variant of the Shadow Simplex
method.
Improved diameter bounds and simplex algorithm for curved
polyhedra.
Inspired by path finding algorithm over the Voronoi graph of a
lattice by Bonifas, D. (2014) used for solving the Closest Vector
Problem.

Open Problems:
Improve smoothed analysis bounds using our techniques.
Polynomial Hirsch conjecture for random polytopes?
When can we improve the geometry of the normal fan?

Thank you!
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