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Exercise 1 (Exact Volume of `p Balls)
Let Γ(a) =

∫ ∞
0 ta−1e−tdt, a > 0 denote the Gamma function. You will prove that

voln(Bn
p) = (2Γ(1/p)/p)n/Γ(n/p + 1).

1. Show that
∫

Rn e−‖x‖
p
p dx = (2Γ(1/p)/p)n.

(Hint: Split the integral along each coordinate and apply a change of variables.)

2. Show that
∫

Rn e−‖x‖
p
p dx = voln(Bn

p)Γ(n/p + 1).

(Hint: Use the identity e−‖x‖
p
p =

∫ ∞
‖x‖p

ptp−1e−tp
dt)

Solution:

1. By splitting up the integral along coordinates, we get that∫
Rn

e−‖x‖
p
p dx =

∫
Rn

n

∏
i=1

e−|xi |p dx =︸︷︷︸
Fubini

n

∏
i=1

∫
R

e−|xi |p dxi = (
∫

R
e−|t|

p
dt)n = (2

∫ ∞

0
etp

dt)n. (1)

Applying the change of variable t→ t1/p, we see that∫ ∞

0
etp

dt =
1
p

∫ ∞

0
t1/p−1etdt =

1
p

Γ(1/p). (2)

Combining (1), (2), get the desired expression∫
Rn

e−‖x‖
p
p = (2Γ(1/p)/p)n.

2. Using the identity, we see that∫
Rn

e−‖x‖
p
p dx =

∫
Rn

∫ ∞

‖x‖p

ptp−1e−tp
dtdx

=
∫

Rn

∫ ∞

0
1[‖x‖p ≤ t]ptp−1e−tp

dtdx

=
∫ ∞

0
ptp−1e−tp

∫
Rn

1[‖x‖p ≤ t]dxdt ( by Fubini )

=
∫ ∞

0
ptp−1e−tp

voln(tBn
p)dt

=
∫ ∞

0
ptp+n−1e−tp

voln(Bn
p)dt. (3)

Applying the change of variable t→ t1/p to the last line, we get∫ ∞

0
ptp+n−1e−tp

dt =
∫ ∞

0
tn/pe−tdt = Γ(n/p + 1). (4)

Combining (3), (4) yields the result.
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Exercise 2 (Duality between `2 norm minimization and ellipsoid maximation)
Let A ∈ Rm×n be a non-singular matrix and b ∈ Rn.

1. Show that

min{‖x‖2 : x ∈ Rm, ATx = b} ≥ max{yTb : y ∈ Rn, ‖Ay‖2 ≤ 1}.

(Hint: Use Cauchy-Schwarz.)

2. Show that the value of both systems is equal to
√

bT(ATA)−1b and hence both have same
value. (Hint: Use the fact that ‖Ay‖2 ≤ 1 defines an ellipsoid.)

3. Let A1, . . . , Ak be matrices where Ai ∈ Rmi×n, i ∈ [k], let λ1, . . . , λk > 0 and b ∈ Rn. Assume
that ∑k

i=1 λi AT
i Ai � 0 (positive definite). Use the above to show that the systems

1. min{

√√√√ k

∑
i=1

λi‖xi‖2 : xi ∈ Rmi , i ∈ [k],
k

∑
i=1

λi AT
i xi = b}

2. max{bTy : y ∈ Rn,
k

∑
i=1

λi‖Aiy‖2
2 ≤ 1}

are strong duals to each other. That is, show that any solution to (1) has value at least that
of (2), and the optimal solutions have same value.

Solution:

1. Let x ∈ Rm satisfy ATx = b and ‖Ay‖2 ≤ 1. Then

‖x‖2 ≥ ‖Ay‖2‖x‖2 ≥︸︷︷︸
Cauchy-Schwarz

(Ay)Tx = yTb.

2. Since A is non-singular, note that ATA is invertible. Furthermore, ((ATA)−1)T = ((ATA)T)−1 =

(ATA)−1, so the inverse is symmetric. Let y = (ATA)−1b/
√

bT(ATA)−1b. From here, we get
that

yTb =
√

bT(ATA)−1b,

‖Ay‖2
2 = yT(ATA)y = bT(ATA)−T(ATA)(ATA)−1b/(bT(ATA)−1b) = 1.

Therefore the value of the right hand side program is at least
√

bT(ATA)−1b.

Let x = A(ATA)−1b. From here, we get that

ATx = (ATA)(ATA)−1b = b,

‖x‖2
2 = xTx = bT(ATA)−T(ATA)(ATA)−1b = bT(ATA)−1b.

Thus the value of the left hand side program is at most
√

bT(ATA)−1b. By Part 1, both programs
therefore has the same value, as needed.
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3. Let A ∈ Rm×n, where m = ∑k
i=1 mi, denote the block diagonal matrix

A =


√

λ1A1√
λ2A2

. . .√
λk Ak

 .

A direct computation reveals that ‖Ay‖2
2 = ∑k

i=1 λi‖Aiy‖2
2. By Parts 1 and 2, we therefore have

that

max{yTb :
k

∑
i=1

λi‖Aiy‖2
2 ≤ 1} = min{‖x‖2 : x ∈ Rm, ATx = b}.

We now work on the second hand program to get it in the desired form. Let us decompose x =

(x1, . . . , xk), where xi ∈ Rmi . From here, we see that

b = ATx =
k

∑
i=1

√
λi AT

i xi =
k

∑
i=1

λi AT
i (xi/

√
λi),

‖x‖2 =
k

∑
i=1
‖xi‖2

2 =
m

∑
i=1

λi‖xi/
√

λi‖2
2.

Therefore, letting zi = xi/
√

λi, ∀i ∈ [k], we see that

min{‖x‖2 : x ∈ Rm, ATx = b} = min{

√√√√ k

∑
i=1

λi‖zi‖2
2 : zi ∈ Rmi , i ∈ [k],

k

∑
i=1

λi AT
i zi = b},

as needed.

Exercise 3 (1/n-Concavity of Determinant) Let A, B � 0 be n× n positive definite matrices.

1. Show that det(A)1/n = min{tr(AX)/n : X � 0, det(X) = 1}, where equality on the right
hand side is uniquely attained at X = A−1 det(A)1/n. (Hint: Recall that the trace of a
matrix is the sum of the eigenvalues while the determinant is the product. Compare the
two via the arithmetic mean - geometric mean (AM-GM) inequality.)

2. Conclude that for λ ∈ (0, 1), det(λA)1/n + (1− λ)det(B)1/n ≤ det(λA + (1− λ)B)1/n with
equality iff A ∈ R+B.

Solution:

1. Let λ1, . . . , λn > 0 denote the eigen values of A. These are all positive since A � 0.

Let X = A−1 det(A)1/n. Recall that det(A) = ∏n
i=1 λi > 0 and that the eigenvalues of A−1 are

1/λ1, . . . , 1/λn > 0. Since A−T = (AT)−1 = A−1 is symmetric, X is positive definite. Second,
det(X) = det(A−1)(det(A)1/n)n = det(A)−1 det(A) = 1. Thus, the value of the program is at
most tr(XA)/n = det(A)1/ntr(In)/n = det(A)1/n.

Now take X � 0 such that det(X) = 1. Letting X1/2 denote the unique positive definite square
root of X, we see that AX is similar to X1/2(AX)X−1/2 = X1/2 AX1/2. Since the latter is positive
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definite, AX has positive eigen values γ1, . . . , γn > 0 and is diagonalizable. Furthermore, since
det(AX) = det(A)det(X) = det(A), we see that ∏n

i=1 γi = det(A). From here, we have that

tr(AX)/n =
n

∑
i=1

γi/n ≥
n

∏
i=1

γ1/n
i = det(A)1/n

where the first inequality is a consequence of the AM-GM inequality. By the equality conditions for
AM-GM, the above inequality holds at equality iff γ1 = γ2 = · · · = γn = det(A)1/n. Since AX is
diagonalizable, equality thus implies that AX = det(A)1/n In, where In is the n× n identity. That
is, equality holds iff X = A−1 det(A)1/n as needed.

2. From Part 1, we see that

det(λA + (1− λ)B)1/n = min
det(X)=1,X�0

tr((λA + (1− λ)B)X)/n

= min
det(X)=1,X�0

λtr(AX)/n + (1− λ)tr(BX)/n

≥ λ min
det(X)=1,X�0

tr(AX)/n + (1− λ) min
det(X)=1,X�0

tr(BX)/n

= λ det(A)1/n + (1− λ)det(B)1/n.

By part 1, since λ ∈ (0, 1), the above holds at equality iff

(λA + (1− λ)B)−1 det(λA + (1− λ)B)1/n = A−1 det(A)1/n = B−1 det(B)1/n.

The above implies that A = B det(A)1/n/ det(B)1/n ⇒ A ∈ R+B. Now if A ∈ R+B, since
A � 0 this implies that A = γB, with γ > 0. From here, it is direct to check the that equality
conditions are satisfied, thus proving the statement.

Exercise 4 (Approximation by a Simplex)
Let K ⊂ Rn be a convex body. Let ∆ = conv(p1, . . . , pn+1) denote a maximum volume simplex
contained in K and let c = ∑n+1

i=1 pi/(n + 1) denote its center.

1. Show that such a simplex exists and give an example body K where it is not unique.

2. For i ∈ [n + 1], let ηi denote a unit normal to the hyperplane Hi = aff.hull(pj : j ∈ [n + 1] \
{i}), pointing in the direction of pi, and let si ∈ Rn satisfy Hi = {x ∈ Rn : 〈ηi, x〉 = si}
(note that by assumption 〈ηi, pi〉 > si). Prove that

K ⊆ {x ∈ Rn : |〈ηi, x〉 − si| ≤ 〈ηi, pi〉 − si}.

(Hint: Show that if not one can replace pi to make a simplex of larger volume.)

3. Conclude that ∆− c ⊆ K− c ⊆ (n + 2)(∆− c).

Solution:

1. If K = Bn
2 , then if ∆ is a maximum volume simplex then so is R∆ where R is any orthogonal

transformation since RBn
2 = Bn

2 and R is measure preserving. Since ∆ is clearly a strict subset of
Bn

2 , the maximizer cannot be unique.
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2. Take x ∈ K. By the base times height formula in Rn, we have that

voln(p1, . . . , pi−1, x, pi, . . . , pn) = voln−1(p1, . . . , pi−1, pi+1, . . . , pn) · dist(Hi, x)/n

= voln−1(p1, . . . , pi−1, pi+1, . . . , pn) · |〈ηi, x〉 − si|/n,

where dist(Hi, x) is the Euclidean distance between the hyperplane Hi and x. By the definition of
∆, plugging in pi for x above maximizes volume. Given the above formula, this implies that

〈ηi, pi〉 − si = |〈ηi, pi〉 − si| ≥ |〈ηi, x〉 − si| ∀x ∈ K,

as needed.

3. After shifting K and ∆ by −c, we may assume that 0 = c = ∑n+1
i=1 pi/(n + 1). We now wish to

show that ∆ ⊆ K ⊆ (n + 2)∆. Since the first inclusion is by assumption, we may focus on proving
K ⊆ (n + 2)∆. To begin, we first claim that ∆ can be expressed in inequality form as follows:

∆ = {x ∈ Rn : 〈ηi, x〉 ≥ si, ∀i ∈ [n + 1]}, (5)

where si is as above (after shifting ∆). To see this, let

A =

(
p1 p2 . . . pn+1

1 1 . . . 1

)
.

Note that conv(p1, . . . , pn+1) has non-zero volume iff p1, . . . , pn are affinely independent and hence
iff A is invertible. From here, by definition

x ∈ conv(p1, . . . , pn+1)⇔ A−1
(

x
1

)
≥ 0.

To prove the claim it suffices to show that the ith row of A−1 is a positive multiple of (ηi,−si). Note
that this is true iff 〈ηi, pj〉 − si > 0 for i = j and = 0 otherwise. This last property follows by
construction and hence the claim holds.

Given the inequality description, to prove that K ⊆ (n + 2)∆ it suffices to show that

〈ηi, x〉 ≥ (n + 2)si, ∀x ∈ K, i ∈ [n + 1].

Take x ∈ K and i ∈ [n + 1]. Since 0 = c ∈ ∆ by assumption, we have that si ≤ 0 in (5). If
〈ηi, x〉 ≥ si, the desired inequality is trivial since si ≤ 0. Thus, we may assume that 〈ηi, x〉 ≤ si.
In this situation, by part 2 we have that

〈ηi, pi〉 − si ≥ |〈ηi, x〉 − si| = si − 〈ηi, x〉. (6)

From here, we see that

0 = 〈ηi, c〉 = ∑
j 6=i
〈ηi, pj〉/(n + 1) + 〈ηi, pi〉/(n + 1) = sin/(n + 1) + 〈η, pi〉/(n + 1)

⇒ 〈η, pi〉 = −sin. (7)

Combining (6), (7), we have that

〈ηi, x〉 − si ≥ si − 〈ηi, pi〉 = si(n + 1)⇒ 〈ηi, x〉 ≥ si(n + 2),

as needed.
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