Spring 2019 Solutions to D. Dadush, J. Briet
Geometric Functional Analysis Exercise 1 Mastermath

Exercise 1 (Exact Volume of £, Balls)
LetT'(a) = f0°° t"~le~tdt, a > 0 denote the Gamma function. You will prove that

vol,(B,) = (2L'(1/p)/p)"/T(n/p+1).

1. Show that [, eIl dx = (2r(1/p)/p)".
(Hint: Split the integral along each coordinate and apply a change of variables.)

2. Show that f]R" e IIxlp gy = Voln(B;)I’(n/p +1).
(Hint: Use the identity e~ ¥l = l HO;Hp ptt~le=""dt)

Solution:

1. By splitting up the integral along coordinates, we get that

n n [ee]
=l _/ [Te"dx = / il g, — / 17 gpyn — / ? gy
e rdx = e dx = e dx; = e i)t = (2 e dn)t. (1
/n R Pl ~—~ H R 1 ( R ) ( ) ( )

1. 0
Fubini =1

Applying the change of variable t — t'/7, we see that

[Terar="1 [Tarta = Trayp) @)
0 pJo 4

Combining (1), @), get the desired expression
/n eIy = ar(1/p)/p)".

2. Using the identity, we see that

/ e_Htzdx :/ /oo ptp_le_tpdtdx
R "l
= 71 < tlptr~te " dtd
o |10l < fpetet atd
:/ ptv—le—f”/ 1||x]lp < fldxdt  ( by Fubini )
0 R"
:/0 pt”’le’tpvoln(tBZ)dt
_ /0 pt? 1 1e " vol,, (B dt. 3)
Applying the change of variable t — t'/P to the last line, we get
/ ptPle=t g — / tPetdt =T(n/p+1). (4)
0 0

Combining (3), @) yields the result.
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Exercise 2 (Duality between ¢, norm minimization and ellipsoid maximation)
Let A € R™*" be a non-singular matrix and b € R".

1. Show that
min{||x[]2: x € R", ATx = b} > max{y'b:y € R", || Ay|]» < 1}.
(Hint: Use Cauchy-Schwarz.)

2. Show that the value of both systems is equal to 1/bT(ATA)~1b and hence both have same
value. (Hint: Use the fact that || Ay|» < 1 defines an ellipsoid.)

3. Let Ay,..., Ay be matrices where A; € R"*", i € [k],let Ay,...,Ax > 0and b € R". Assume
that Y5, MATA; = 0 (positive definite). Use the above to show that the systems

k k
L min{,| Y Aillxi)2: x; e R™,i € [k], Y AiAf x = b}
i=1 i=1

k
2. max{b'y:y € R", Y Ai|| A5 < 1}
i=1

are strong duals to each other. That is, show that any solution to (1) has value at least that
of (2), and the optimal solutions have same value.

Solution:
1. Let x € R™ satisfy ATx = band || Ayl < 1. Then

xl2 > ||A x > Ay)Tx =y'b.
lxllz = [ Ayl2llxlz - = (Ay) x=y
Cauchy-Schwarz

2. Since A is non-singular, note that AT A is invertible. Furthermore, ((ATA)™)T = ((ATA)T)1 =
(ATA)71, so the inverse is symmetric. Let y = (ATA)~1b/+/bT(ATA)~1b. From here, we get

that
y b= /bT(ATA)"1b,

1Ay (13 = yT (AT A)y = bT(ATA)"T(ATA)(ATA) "0/ (b7 (ATA)'b) = 1.

Therefore the value of the right hand side program is at least /b7 (AT A)~1b.
Let x = A(ATA)~'b. From here, we get that

ATx = (ATAY(ATA) b =1,
|x|]|Z=xTx=b"(ATA) " T(ATA)(ATA) b =bT(ATA) b

Thus the value of the left hand side program is at most /b7 (AT A)~1b. By Part 1, both programs
therefore has the same value, as needed.
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3. Let A € R"™*", where m = Y_X_, m;, denote the block diagonal matrix

VA1A
A— VA2A2

VAKAK

A direct computation reveals that || Ay|3 = Y5 1 Aj||Awy||3. By Parts 1 and 2, we therefore have

that

k
max{y'b: Y Ai[[Aiy|3 < 1} = min{||x||> : x € R", ATx = b}.
i=1

We now work on the second hand program to get it in the desired form. Let us decompose x =

(x1,...,xx), where x; € R™i. From here, we see that
k k
b=ATx=)Y VMNATxi =Y MAT (xi/V/A),
i=1 i=1
s v 2
x)l® = Y il = Y Adllxi/ VAl
i=1 i=1

Therefore, letting z; = x;/+/A;, Vi € [k], we see that

k k
min{||x[]2: x € R", ATx = b} = min{, | }_ Ail|zi[3:z; € R™,i € [K], Y AAlz = b},
i=1 i=1

as needed.

Exercise 3 (1/n-Concavity of Determinant) Let A, B =~ 0 be n x n positive definite matrices.

1. Show that det(A)'/" = min{tr(AX)/n: X = 0,det(X) = 1}, where equality on the right
hand side is uniquely attained at X = A~ldet(A)Y". (Hint: Recall that the trace of a
matrix is the sum of the eigenvalues while the determinant is the product. Compare the

two via the arithmetic mean - geometric mean (AM-GM) inequality.)

2. Conclude that for A € (0,1), det(AA)/" + (1 — A) det(B)Y/" < det(AA + (1 — A)B)V/" with

equality iff A € R, B.
Solution:

1. Let Aq,..., Ay > O denote the eigen values of A. These are all positive since A > 0.

Let X = A~'det(A)'/". Recall that det(A) = [/ A; > 0 and that the eigenvalues of A1 are
1/A,...,1/Ay > 0. Since AT = (AT)~! = A~ is symmetric, X is positive definite. Second,
det(X) = det(A~1)(det(A)/™")" = det(A) ' det(A) = 1. Thus, the value of the program is at

most tr(XA)/n = det(A)"tr(I,)/n = det(A)V/".

Now take X > 0 such that det(X) = 1. Letting X/? denote the unique positive definite square
root of X, we see that AX is similar to X'/2(AX)X~1/2 = XV/2AX'/2. Since the latter is positive

3
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definite, AX has positive eigen values 7y1,...,v, > 0 and is diagonalizable. Furthermore, since
det(AX) = det(A) det(X) = det(A), we see that [Ti_; v; = det(A). From here, we have that

1

n n
tr(AX)/n=Y_yi/n>[]7}/" = det(A)"/"
i=1 =1

where the first inequality is a consequence of the AM-GM inequality. By the equality conditions for
AM-GM, the above inequality holds at equality iff y1 = 72 = - - = v, = det(A)/™. Since AX is
diagonalizable, equality thus implies that AX = det(A)'Y/"1,, where I, is the n x n identity. That
is, equality holds iff X = A~!det(A)Y" as needed.

2. From Part 1, we see that

A+ (1—A)B)Y" = i A+ (1—A)B)X
det(AA + ( )B) det(g:lgx>0tr((A +( )B)X)/n

= min  AMr(AX)/n+ (1 - A)tr(BX)/n
det(X)=1,X>~0

>A min  tr(AX)/n+(1—A) min tr(BX)/n
det(X)=1,X>~0 det(X)=1,X>~0

= Adet(A)Y" 4 (1 — A) det(B)M".
By part 1, since A € (0,1), the above holds at equality iff
(AA+ (1 —=A)B)tdet(AA+ (1 —A)B)V" = A~1det(A)/" = B~1det(B)/".

The above implies that A = Bdet(A)'/"/ det(B)"/" = A € R.B. Now if A € RB, since
A > 0 this implies that A = B, with v > 0. From here, it is direct to check the that equality
conditions are satisfied, thus proving the statement.

Exercise 4 (Approximation by a Simplex)
Let K C R" be a convex body. Let A = conv(py,...,pn+1) denote a maximum volume simplex
contained in K and let c = Y p;/(n + 1) denote its center.

1. Show that such a simplex exists and give an example body K where it is not unique.

2. For i € [n+1], let 17; denote a unit normal to the hyperplane H; = aff.hull(p; : j € [n+1] \
{i}), pointing in the direction of p;, and let s; € R” satisfy H; = {x € R" : (y;,x) = s;}
(note that by assumption (1;, p;) > s;). Prove that

K C{xeR": |[{n;,x) —si| < (i, pi) —si}.
(Hint: Show that if not one can replace p; to make a simplex of larger volume.)

3. Conclude that A —¢c C K—¢ C (n+2)(A —c).

Solution:

1. If K = BY, then if A is a maximum volume simplex then so is RA where R is any orthogonal
transformation since RBy = Bj and R is measure preserving. Since A is clearly a strict subset of
BY, the maximizer cannot be unique.
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2. Take x € K. By the base times height formula in R", we have that
voly(p1,. .., Pi—1, %, Piy -, Pn) = VOly_1(p1, ..., Pi1, Pi+1,- - -, Pn) - dist(H;, x) /n
= VOll’l—l(pl/ ceey pifll Pi+1/ sy Pn) . |<771/ x> - Si|/n/

where dist(H;, x) is the Euclidean distance between the hyperplane H; and x. By the definition of
A, plugging in p; for x above maximizes volume. Given the above formula, this implies that

(i, pi) —si = [(ni, pi) —sil > [(mi, x) —si| Vx € K,
as needed.

3. After shifting K and A by —c, we may assume that 0 = ¢ = Y. p;/(n + 1). We now wish to
show that A C K C (n+ 2)A. Since the first inclusion is by assumption, we may focus on proving
K C (n+2)A. To begin, we first claim that A can be expressed in inequality form as follows:

A={xeR": (y;,x)>s;,Vie [n+1]}, (5)
where s; is as above (after shifting A). To see this, let
_(P1 P2 .- Put1
A= (1 1 ... 1 ) '

Note that conv(ps, ..., pus1) has non-zero volume iff p1, . . ., pn are affinely independent and hence
iff A is invertible. From here, by definition

x €conv(py,...,puy1) & A7 (T) > 0.

To prove the claim it suffices to show that the i row of A~ is a positive multiple of (11;, —s;). Note
that this is true iff (1;,p;) —s; > 0 for i = j and = 0 otherwise. This last property follows by
construction and hence the claim holds.

Given the inequality description, to prove that K C (n + 2)A it suffices to show that
(ni,x) > (n+2)s;, Vx € K, i € [n+1].

Take x € Kand i € [n+1]. Since 0 = ¢ € A by assumption, we have that s; < 0 in (5). If
(ni,x) > s, the desired inequality is trivial since s; < 0. Thus, we may assume that (n;,x) < s;.
In this situation, by part 2 we have that

(i, pi) —si > [(ni, %) —si| = 8i — (13, x). (6)

From here, we see that

0= (ni,c) = ;(771', pi)/(n+1)+ (i, pi)/ (n+1) =sin/(n+1) + (n,p:;)/ (n+1)
j#i
= (n,pi) = —sin. (7)
Combining (6), (7), we have that
(i, x) —s; >si— (i, pi) =si(n+1) = (;,x) > s;(n+2),

as needed.



