Exercise 1 (Max of Gaussians)

Let X_1, \ldots, X_n be i.i.d. N(0,1). Prove that

$$\mathbb{E}[\max_{i \in [n]} |X_i|] \ge c\sqrt{\log n}$$

for a universal constant c > 0.

Exercise 2 (Gaussian Mass and Origin Containment)

Let $K \subseteq \mathbb{R}^n$ be a convex body such that $\gamma_n(K) \ge 1/2$. Show that $0 \in K$. (Hint: Separator theorem.)

Exercise 3 (Discrepancy Lower Bound)

Let $H \in \mathbb{R}^{n \times n}$, $n = 2^k$, denote the Hadamard matrix. Indexing the rows and columns of H by vectors in $\{0,1\}^k$, one may define H so that $H_{x,y} = (-1)^{\langle x,y \rangle}$, $\forall x,y \in \{0,1\}^k$. Prove that

$$\min_{z\in\{-1,1\}^n} \|Hz\|_{\infty} \ge \sqrt{n}.$$

(Hint: Show that columns of H are orthogonal and then relate ℓ_2 and ℓ_∞ norm.)

Exercise 4 (Marginals of Convex Bodies)

Let $K \subseteq \mathbb{R}^n$ be a convex body. Let $f : \mathbb{R} \to \mathbb{R}_+$ be defined by $f(t) = \operatorname{vol}_{n-1}(\{x \in \mathbb{R}^{n-1} : (t, x) \in K\})$.

- 1. Prove that $f^{1/(n-1)}$ is a concave function. (Hint: Brunn-Minkowski.)
- 2. Let $S = \{t \in \mathbb{R} : \exists x \in \mathbb{R}^{n-1}, (t, x) \in K\}$ and $b = \max\{f(t) : t \in S\}$. Show that

$$\operatorname{vol}_1(S)b/n \le \operatorname{vol}_n(K) \ge \operatorname{vol}_1(S)b.$$

(Hint: Base \times Height.)

3. Assume that *K* is symmetric and let $M = \sup\{x_1 : x \in K\}$. Show that

$$M/4 \leq \mathbb{E}_{X \sim \text{unif}(K)}[|X_1|^n]^{1/n} \leq M$$

where unif(K) denotes the uniform measure on K.

(Hint: Lower bound $Pr[|X_1| \ge M/2]$ and use Markov's inequality.)