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Exercise 1 (Distance between `1 and `∞).
First of all, recall the following result: if M ∈ Mat(R,m × n) is interpreted as an operator
`n1 → `m∞, then its operator norm is equal to the maximum absolute value of its entries. There
are two ways to prove this:

• For an arbitrary normed space X (not necessarily finite-dimensional) and an operator
T : `n1 → X, one has ‖T‖op = max{‖Te1‖X , . . . , ‖Ten‖X}, by a simply application of the
triangle inequality. In particular, the operator norm of M : `n1 → `m∞ is equal to the largest
`∞-norm of the columns of M , or equivalently, the maximum absolute value of its entries.

• Dually, for an arbitrary normed space X and an operator S : X → `m∞, we consider the
coordinate projections π1, . . . , πm : `m∞ → R, given by πi(y1, . . . , ym) = yi. Then it is easy
to see that ‖S‖op = max{‖π1 ◦ S‖op, . . . , ‖πm ◦ S‖op} holds. In particular, the operator
norm of M : `n1 → `m∞ is equal to the largest (`1)∗ = `∞ norm of the rows of M . Again,
this is simply the maximum absolute value of the entries of M .

For a ∈ N0, let β(a) = {β(a)k}∞k=0 denote the binary expansion of n:

a =

∞∑
k=0

β(a)k · 2k.

Then β(a) is a sequence in {0, 1} with at most finitely many non-zero terms. For a, b ∈ N0, let
〈β(a), β(b)〉 ∈ N0 denote the standard inner product of these two sequences:

〈β(a), β(b)〉 =

∞∑
k=0

β(a)k · β(b)k.

(This is well-defined because there are only finitely many non-zero terms.) Recall from lecture 1:
for every k ∈ N0, the Hadamard matrix H2k ∈ Mat(R, 2k × 2k) given by

(H2k)ij = (−1)〈β(i−1),β(j−1)〉

satisfies ‖H2k‖`1→`∞ = 1 and ‖H−1
2k
‖`∞→`1 ≤

√
2k = 2

k
2 .1 We shall use these matrices to

construct for every n ∈ N1 a matrix Mn ∈ Mat(R, n× n) satisfying

‖Mn‖`1→`∞ · ‖M−1n ‖`∞→`1 ≤
√

2√
2− 1

·
√
n = (2 +

√
2) ·
√
n ≤ 3.415 ·

√
n.

To that end, let n ∈ N1 be fixed. Write supp(β(n)) := {k ∈ N0 : β(n)k 6= 0}, and define

Mn :=
⊕

k∈supp(β(n))

H2k .

1In the lecture notes, it is only proved that ‖H2k‖`1→`∞ ≤ 1 holds, but the equality follows from the consid-
erations at the beginning of this solution.
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Then Mn is a real n×n matrix with entries in {−1, 0, 1}. Since n ≥ 1, we have supp(β(n)) 6= ∅,
so Mn has non-zero entries. Therefore it is clear from the considerations at the beginning of this
solution that ‖Mn‖`1→`∞ = 1 holds.

Since Mn is the direct sum of a (non-empty) collection of invertible matrices, we see that Mn

itself is also invertible, with inverse

M−1n =
⊕

k∈supp(β(n))

H−1
2k
.

Let us write supp(β(n)) = {k1, . . . , ks} with k1 < k2 < · · · < ks = blog2(n)c. Then we can
identify Rn with Rk1 ⊕ · · · ⊕ Rks . In this setting we have

M−1n (x1 ⊕ · · · ⊕ xs) = H−1
2k1
x1 ⊕ · · · ⊕H−12ks

xs, (xi ∈ Rki for all i ∈ [s]).

Now let ~x = x1 ⊕ · · · ⊕ xs ∈ Rn be given (xi ∈ Rki for all i ∈ [s]) satisfying ‖~x‖∞ ≤ 1. Then for
all i ∈ [s] we have ‖xi‖∞ ≤ 1, hence∥∥H−1

2ki
xi
∥∥
1
≤
∥∥H−1

2ki

∥∥
`∞→`1 · 1 ≤

√
2ki = 2

ki
2 .

Consequently, we find ∥∥M−1n ~x
∥∥
1

=
∥∥H−1

2k1
x1 ⊕ · · · ⊕H−12ks

xs
∥∥
1

=
∥∥H−1

2k1
x1‖1 + · · ·+ ‖H−1

2ks
xs
∥∥
1

≤ 2
k1
2 + · · ·+ 2

ks
2

≤
ks∑
i=0

√
2
i

=

√
2
ks+1 − 1√
2− 1

≤
√

2
ks+1

√
2− 1

=

√
2√

2− 1
· 2

ks
2

=

√
2√

2− 1
·
√

2
blog2(n)c

≤
√

2√
2− 1

·
√

2
log2(n)

=

√
2√

2− 1
·
√
n.

As this holds for all ~x ∈ Rn satisfying ‖~x‖∞ ≤ 1, we find ‖M−1n ‖`∞→`1 ≤
√
2√

2−1 ·
√
n. Thus, if

we interpret Mn as an operator `n1 → `n∞, then we have

‖Mn‖op · ‖M−1n ‖op ≤ 1 ·
√

2√
2− 1

·
√
n = (2 +

√
2) ·
√
n,

as promised. �
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Exercise 2 (Little Grothendieck inequality).

1. Let A ∈ Mat(R, n× n) be positive semidefinite, and choose some B ∈ Mat(R,m× n) such
that A = B>B. Define LA, RA ∈ R by

LA := max
x1,...,xn,y1,...,yn∈S2n−1

n∑
i,j=1

Aij〈xi, yj〉;

RA := max
x1,...,xn∈S2n−1

n∑
i,j=1

Aij〈xi, xj〉.

Then LA = ‖A‖G is simply the left-hand side of the inequality from the problem statement.
On the other hand, RA has a different domain of maximisation (compared to the right-hand
side of the inequality from the problem statement), but this is inconsequential: given the
vectors x1, . . . , xn ∈ S2n−1, we can find a Hilbert space isomorphism span(x1, . . . , xn) ∼= Rd
for some d ≤ n, so we may find vectors x′1, . . . , x

′
n ∈ Sn−1 with 〈x′i, x′j〉 = 〈xi, xj〉 for all

i, j ∈ [n]. Therefore we have

RA = max
x′1,...,x

′
n∈Sn−1

n∑
i,j=1

Aij〈x′i, x′j〉,

and we find that LA and RA are simply the left- and right-hand side maxima from the
problem statement.

Clearly we have

RA = max
x1,...,xn,y1,...,yn∈S2n−1

x1=y1,...,xn=yn

n∑
i,j=1

Aij〈xi, yj〉 ≤ max
x1,...,xn,y1,...,yn∈S2n−1

n∑
i,j=1

Aij〈xi, yj〉 = LA.

The problem at hand is to prove the reverse inequality, LA ≤ RA.

Given vectors x1, . . . , xn, y1, . . . , yn ∈ S2n−1, define the matrices X,Y ∈ Mat(R, 2n×n) by

X :=

 | |
x1 · · · xn
| |

 , and Y :=

 | |
y1 · · · yn
| |

 .

Then we have

(X>Y )ij =

n∑
k=1

X>ikYkj =

n∑
k=1

XkiYkj = 〈xi, yj〉. (2.1)

For arbitrary m′, n′ ∈ N1, let 〈 · , · 〉tr : Mat(R,m′ × n′) → R≥0 denote the trace inner
product

〈C,D〉tr := tr(D>C) =

m′∑
i=1

n′∑
j=1

CijDij .

(The dimensions m′ and n′ will be clear from the context.)

3



By (2.1), we may write

n∑
i,j=1

Aij〈xi, yj〉 = 〈A,X>Y 〉tr

= tr
(
(X>Y )>A

)
= tr

(
Y >XA

)
= tr

(
XAY >

)
= tr

(
XB>BY >

)
= tr

(
(BX>)>BY >

)
=
〈
BY >, BX>

〉
tr

≤
∣∣〈BY >, BX>〉

tr

∣∣
≤
〈
BY >, BY >

〉 1
2

tr
·
〈
BX>, BX>

〉 1
2

tr

=

(
n∑

i,j=1

Aij〈yi, yj〉

) 1
2

·

(
n∑

i,j=1

Aij〈xi, xj〉

) 1
2

≤ R
1
2

A ·R
1
2

A

= RA.

This shows that we have LA ≤ RA.

2. First of all, recall that for an arbitrary set of vectors y1, . . . , yn ∈ Rd, the “Gram” matrix
M ∈ Mat(R, n × n) given by Mij = 〈yi, yj〉 is positive semidefinite. After all, if we let
Y ∈ Mat(R, d× n) denote the matrix

Y :=

 | |
y1 · · · yn
| |

 ,

then we may write M = Y >Y , analogously to (2.1), so M is positive semidefinite.

Now, to solve the exercise, we use the Taylor expansion of arcsin. For all t ∈ [−1, 1] we
have

arcsin(t) =

∞∑
k=0

(2k)!

4k(k!)2(2k + 1)
· t2k+1,

Consequently, for t ∈ [−1, 1] we may write

2

π
arcsin(t)− 2

π
t =

2

π

(
arcsin(t)− t

)
=

2

π

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
· t2k+1. (2.2)

Furthermore, define the sequence {Mk}∞k=1 in Mat(R, n× n) by setting

(Mk)ij := 〈xi, xj〉k = 〈x⊗ ki , x⊗ kj 〉.
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Then for every k ∈ N1, we have that Mk is positive semidefinite (since it is a Gram matrix).
If B is as in the exercise, then we may write

B =

(
2

π
arcsin(〈xi, xj〉)−

2

π
〈xi, xj〉

)n
i,j=1

=

(
2

π

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
· 〈xi, xj〉2k+1

)n
i,j=1

(2.3)

=
2

π

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
M2k+1. (2.4)

A word about convergence: since x1, . . . , xn are assumed to be unit vectors, for all i, j ∈ [n]
we have |〈xi, xj〉| ≤ ‖xi‖‖xj‖ ≤ 1. It follows that 〈xi, xj〉 lies in the interval of convergence
of (2.2), warranting the expression (2.3). Consequently, the expression (2.4) is warranted
because all (Hausdorff) vector space topologies on Rn×n are equivalent, and each is equiv-
alent to the topology of pointwise convergence.

Since all the scalar coefficients in the series (2.4) are non-negative, it follows that

B =
2

π
lim
N→∞

(
N∑
k=1

(2k)!

4k(k!)2(2k + 1)
M2k+1

)

is the limit of an increasing sequence of positive semidefinite matrices. Since the positive
semidefinite cone is closed, we conclude that B is positive semidefinite.

3. Let n ∈ N1 be given, and let A ∈ Mat(R, n × n) be positive semidefinite. Consider an
arbitrary set of unit vectors x1, . . . , xn ∈ Sn−1, and let g ∼ N (0, In) be an n-dimensional
standard Gaussian vector. Define 1-dimensional real random variables a1, . . . , an by setting
ai := sign(〈xi, g〉) for all i ∈ [n]. Then we have −1 ≤ ai ≤ 1 for all i ∈ [n]. Furthermore,
by Grothendieck’s identity, for all i, j ∈ [n] we have

E[aiaj ] = E
[

sign(〈xi, g〉) sign(〈xj , g〉)
]

=
2

π
arcsin(〈xi, xj〉).

Hence, by linearity of expectation:

E

 n∑
i,j=1

Aijaiaj

 =

n∑
i,j=1

Aij ·
2

π
arcsin(〈xi, xj〉). (2.5)

Define B ∈ Mat(R, n× n) by

Bij :=
2

π
arcsin(〈xi, xj〉)−

2

π
〈xi, xj〉.

We showed in part 2 of the exercise that B is positive semidefinite.
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Now, since A is also positive semidefinite, we may write

n∑
i,j=1

AijBij = 〈A,B〉tr

= tr(B>A)

= tr(BA) (PSD matrix is symmetric)

= tr
(
B1/2B1/2A1/2A1/2

)
(PSD matrix has unique PSD square root)

= tr
(
B1/2A1/2A1/2B1/2

)
(trace is cyclic)

= tr
(
(B1/2)>(A1/2)TA1/2B1/2

)
(PSD matrix is symmetric)

= tr
(
(A1/2B1/2)>A1/2B1/2

)
=
〈
A1/2B1/2, A1/2B1/2

〉
tr

≥ 0.

It follows that
n∑

i,j=1

Aij

(
2

π
arcsin(〈xi, xj〉)−

2

π
〈xi, xj〉

)
≥ 0,

or equivalently
n∑

i,j=1

Aij ·
2

π
arcsin(〈xi, xj〉) ≥

n∑
i,j=1

Aij ·
2

π
〈xi, xj〉. (2.6)

Putting it all together, we find

2

π

n∑
i,j=1

Aij〈xi, xj〉 ≤
n∑

i,j=1

Aij ·
2

π
arcsin(〈xi, xj〉) (by (2.6))

= E

 n∑
i,j=1

Aijaiaj

 (by (2.5))

≤ sup


n∑

i,j=1

Aijbicj : b, c ∈ [−1, 1]n


= ‖A‖`∞→`1 .

Hence, by part 1 of the exercise, we have

2
π‖A‖G = max

x1,...,xn∈Sn−1

2

π

n∑
i,j=1

Aij〈xi, xj〉 ≤ ‖A‖`∞→`1 ,

or equivalently: ‖A‖G ≤ π
2 ‖A‖`∞→`1 . �
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Exercise 3 (Covering with an Asymmetric Convex Body).

1. For fixed x ∈ Rn, we have

voln(B ∩ (2x−B)) =

∫
B∩(2x−B)

1 dy =

∫
B

1[y ∈ 2x−B] dy.

Note that we have y ∈ 2x−B if and only if 2x− y ∈ B, if and only if x− 1
2y ∈

1
2B, if and

only if x ∈ 1
2y+ 1

2B. Furthermore, if y ∈ B, then by convexity of B we have 1
2y+ 1

2B ⊆ B.
As such, we find

E
x∈B

[
voln(B ∩ (2x−B))

]
=

1

voln(B)

∫
B

voln(B ∩ (2x−B)) dx

=
1

voln(B)

∫
B

∫
B

1[y ∈ 2x−B] dy dx

=
1

voln(B)

∫
B

∫
B

1[x ∈ 1
2y + 1

2B] dx dy

=
1

voln(B)

∫
B

voln(B ∩ ( 1
2y + 1

2B)) dy

=
1

voln(B)

∫
B

voln( 1
2y + 1

2B) dy

=
1

voln(B)

∫
B

voln( 1
2B) dy

=
1

voln(B)
· voln( 1

2B) · voln(B)

= voln( 1
2B)

=
voln(B)

2n
.

Hence, by linearity of expectation:

E
x∈B

[
voln(B ∩ (2x−B))

voln(B)

]
=

1

2n
. (3.1)

2. By (3.1), we may choose some t ∈ B such that voln(B ∩ (2t−B)) ≥ voln(B)
2n . Using this t,

we define K ⊆ Rn as

K :=
(
B ∩ (2t−B)

)
− t = (B − t) ∩ (t−B). (3.2)

Since translations, reflections and intersections of compact convex sets are again compact
and convex, it is clear that K is compact and convex. Furthermore, we have

voln(K) = voln(B ∩ (2t−B)) ≥ voln(B)

2n
> 0,

so K has non-empty interior. Thirdly, it is clear from (3.2) that K is symmetric. (To spell
it out, let x ∈ K be given, then we may choose b1, b2 ∈ B such that x = b1 − t = t − b2,
and we have −x = b2 − t = t− b1 ∈ (B − t) ∩ (t−B) = K.) Finally, we have

K + t = B ∩ (2t−B) ⊆ B.

In conclusion: K is a symmetric convex body satisfying voln(K) ≥ voln(B)
2n and K+ t ⊆ B.
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3. First of all, if T ⊆ Rn is such that |T | = N(A,K) and A ⊆ T +K, then the set T ′ := T − t
satisfies |T ′| = |T | and

A ⊆ T +K = T ′ + t+K ⊆ T ′ +B,

so we have N(A,B) ≤ N(A,K). For the upper bound, recall from the lecture that we have

N(A,K) ≤ P (A, K2 ) ≤ 2n
voln(A+ K

2 )

voln(K)
.

Then, since we have K + t ⊆ B, we find

A+ K
2 = A− t

2 + K+t
2 ⊆ A− t

2 + B
2 ,

hence voln(A+ K
2 ) ≤ voln(A− t

2 + B
2 ) = voln(A+ B

2 ). On the other hand, the lower bound

voln(K) ≥ voln(B)
2n gives us 1

voln(K) ≤
2n

voln(B) . It follows that

N(A,K) ≤ 2n
voln(A+ K

2 )

voln(K)
≤ 2n

voln(A+ B
2 )

voln(K)
≤ 4n

voln(A+ B
2 )

voln(B)
.

This proves that we have

N(A,B) ≤ N(A,K) ≤ 4n
voln(A+ B

2 )

voln(B)
. (3.3)

Now, for the special cases, we claim that we have B + B
2 = 3

2B. Indeed:

• On the one hand, if x ∈ 3
2B, then we may choose b ∈ B satisfying x = 3

2b, so we have

x = b+ 1
2b ∈ B + B

2 . This proves the inclusion 3
2B ⊆ B + B

2 .

• On the other hand, if x ∈ B+B
2 , then we may choose b1, b2 ∈ B satisfying x = b1+ 1

2b2.
Now we have 2

3b1 + 1
3b2 ∈ B, by convexity, hence x = 3

2 ( 2
3b1 + 1

3b2) ∈ 3
2B. This proves

the reverse inclusion B + B
2 ⊆

3
2B.

Therefore a straightforward application of (3.3) yields

N(B,K) ≤ 4n
voln(B + B

2 )

voln(B)
= 4n

voln( 3
2B)

voln(B)
= 4n · ( 3

2 )n = 6n.

Choose some set T ⊆ Rn with |T | ≤ 6n and B ⊆ T +K. Then we also have

−B ⊆ −T −K = −T +K = −T − t+K + t ⊆ −T − t+B,

where we use that K is symmetric, and that K + t ⊆ B. Consequently, we find

voln(B −B + B
2 ) ≤ voln(B − T − t+B + B

2 )

= voln( 5
2B − T − t)

≤ |T | · voln( 5
2B − t)

≤ 6n · voln( 5
2B)

= 6n · ( 5
2 )n · voln(B)

= 15n · voln(B).

Therefore another application of (3.3) yields

N(B −B,B) ≤ 4n
voln(B −B + B

2 )

voln(B)
≤ 4n · 15n = 60n. �
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Exercise 4 (Low Rank Approximation of the Identity).
Let n ∈ N1 and ε ∈ (0, 14 ) be fixed. By the Johnson–Lindenstrauss lemma (applied to the vectors
0, e1, . . . , en ∈ Rn and the constant ε

4 ), we may choose a positive integer d and a linear map
T : Rn → Rd with the following properties:

(i) d = O
( log(n+1)

( ε
4 )

2

)
= O

( log(n)
ε2

)
;

(ii) For all i ∈ [n], one has 1− ε
4 ≤ ‖Tei‖2 ≤ 1 + ε

4 ;

(iii) For all i, j ∈ [n] one has

(1− ε
4 ) · ‖ei − ej‖2 ≤ ‖Tei − Tej‖2 ≤ (1 + ε

4 ) · ‖ei − ej‖2.

In particular, for i, j ∈ [n] with i 6= j we have ‖ei − ej‖2 =
√

2, hence

‖Tei − Tej‖2 ∈
[

(1− ε
4 ) ·
√

2 , (1 + ε
4 ) ·
√

2
]
.

We prove the following:

(4.a) For all i ∈ [n] one has 〈Tei, T ei〉 ∈ [1− ε, 1 + ε];

(4.b) For all i, j ∈ [n] with i 6= j one has 〈Tei, T ej〉 ∈ [−ε, ε].

For (4.a), note that we have

〈Tei, T ei〉 = ‖Tei‖22 ≤ (1 + ε
4 )2 = 1 +

ε

2
+
ε2

16
≤ 1 +

ε

2
+

ε

16
< 1 + ε,

where we used that ε < 1. Similarly, we have

〈Tei, T ei〉 = ‖Tei‖22 ≥ (1− ε
4 )2 = 1− ε

2
+
ε2

16
≥ 1− ε

2
> 1− ε,

so (4.a) is proved. For (4.b), note that for arbitrary i, j ∈ [n] we may write

〈Tei − Tej , T ei − Tej〉 = 〈Tei , T ei〉 − 2〈Tei , T ej〉+ 〈Tej , T ej〉,

hence

〈Tei , T ej〉 = 1
2 〈Tei , T ei〉 + 1

2 〈Tej , T ej〉 −
1
2 〈Tei − Tej , T ei − Tej〉

= 1
2‖Tei‖

2
2 + 1

2‖Tej‖
2
2 − 1

2‖Tei − Tej‖
2
2.

In particular, if i 6= j then we find

〈Tei , T ej〉 ≤ 1
2 (1 + ε

4 )2 + 1
2 (1 + ε

4 )2 − 1
2

(
(1− ε

4 ) ·
√

2
)2

= (1 + ε
4 )2 − (1− ε

4 )2

=

(
1 +

ε

2
+
ε2

16

)
−
(

1− ε

2
+
ε2

16

)
= ε,
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and similarly

〈Tei , T ej〉 ≥ 1
2 (1− ε

4 )2 + 1
2 (1− ε

4 )2 − 1
2

(
(1 + ε

4 ) ·
√

2
)2

= (1− ε
4 )2 − (1 + ε

4 )2

=

(
1− ε

2
+
ε2

16

)
−
(

1 +
ε

2
+
ε2

16

)
= −ε.

This proves (4.b).

Now let B ∈ Mat(R, d× n) be the matrix

B :=

 | |
Te1 · · · Ten
| |

 ,

and define Ĩn := B>B. As we saw in (2.1), for all i, j ∈ [n] we have (Ĩn)ij = 〈Tei, T ej〉, so it

follows from (4.a) and (4.b) that |(In − Ĩn)ij | ≤ ε holds for all i, j ∈ [n]. Furthermore, Ĩn is
positive semidefinite as it is of the form B>B. Finally, note that we have

rank(Ĩn) ≤ min
(
rank(B>), rank(B)

)
= rank(B) ≤ min(d, n) ≤ d,

and it was established before that d is O( log(n)
ε2 ). �
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