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Exercise 1 (Distance between ¢; and /..).

First of all, recall the following result: if M € Mat(R,m x n) is interpreted as an operator
¢ — £7, then its operator norm is equal to the maximum absolute value of its entries. There
are two ways to prove this:

e For an arbitrary normed space X (not necessarily finite-dimensional) and an operator
T : 07 — X, one has ||T|lop = max{||Tei|x,...,||[Ten|x}, by a simply application of the
triangle inequality. In particular, the operator norm of M : ¢} — £2 is equal to the largest
£°°-norm of the columns of M, or equivalently, the maximum absolute value of its entries.

e Dually, for an arbitrary normed space X and an operator S : X — /7, we consider the
coordinate projections 71, ..., Ty, : {2 — R, given by m;(y1,...,Ym) = yi. Then it is easy
to see that ||S|lop = max{||m1 © Sllop;-- - [|Tm © Sllop} holds. In particular, the operator

norm of M : £} — (™ is equal to the largest (£1)* = ¢>° norm of the rows of M. Again,
this is simply the maximum absolute value of the entries of M.

For a € Ny, let 8(a) = {B(a)r}72, denote the binary expansion of n:
a = Zﬁ(a)k -2k,
k=0

Then S(a) is a sequence in {0,1} with at most finitely many non-zero terms. For a,b € Ny, let
(B(a), B(b)) € Ny denote the standard inner product of these two sequences:

(oo}
(B(a), B®) = > _Ba)r - BO.
k=0
(This is well-defined because there are only finitely many non-zero terms.) Recall from lecture 1:
for every k € Ny, the Hadamard matrix Hyx € Mat(R, 2% x 2) given by
(Hor)ij = (—1)BGE=1).8G=1))

satisfies ||Hax||p1po = 1 and HH2_legoo_>[1 < V2F = 2% We shall use these matrices to
construct for every n € Ny a matrix M,, € Mat(R, n x n) satisfying

< V2
S 2o
To that end, let n € N; be fixed. Write supp(8(n)) := {k € Ny : 8(n)r # 0}, and define

M, = @ Hyp.

kesupp(B(n))

Vn = (2+V2)-vn < 3.415-/n.

HMn||€1—>Z°° : ”Mr:lHZOO—Ml

'In the lecture notes, it is only proved that ||[Hyk ||p1_, 00 < 1 holds, but the equality follows from the consid-
erations at the beginning of this solution.



Then M, is a real n x n matrix with entries in {—1,0,1}. Since n > 1, we have supp(8(n)) # &,
so M, has non-zero entries. Therefore it is clear from the considerations at the beginning of this
solution that || M, ||s1 ¢ = 1 holds.

Since M, is the direct sum of a (non-empty) collection of invertible matrices, we see that M,
itself is also invertible, with inverse

Mzt = P H

kesupp(B(n))

Let us write supp(8(n)) = {k1,...,ks} with k1 < kg < -+ < ks = [logg(n)]. Then we can
identify R™ with R** @ ... @ RF=. In this setting we have

M (1@ ®ay) = H;ixl@-n@H;ims, (z; € R¥ for all i € [s]).

Now let ¥ =1 @ --- @ x5 € R™ be given (z; € R¥ for all i € [s]) satisfying ||#]|« < 1. Then for
all i € [s] we have ||z;]|s < 1, hence

ki

H zll, < ||H:E 21 < V2ki = 27,
2%i 2

illgoe— 01

I
Consequently, we find

M7, = [[Hpzi @ @ Hylas||,

|}H2_1g1$1||1 + HHQ_,ixng
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As this holds for all # € R” satisfying ||Z|lec < 1, we find ||M,; ||je_pn < el - y/n. Thus, if

V2-1
we interpret M,, as an operator {1 — (7., then we have
- V2
1Mo - (1M lop < 1+ Vi = (2+v2) -V,
V2 -1
as promised. [



Exercise 2 (Little Grothendieck inequality).

1. Let A € Mat(R,n x n) be positive semidefinite, and choose some B € Mat(R, m x n) such
that A= BT B. Define L4, R4 € R by

n

LA = max R ) E Aij<mi7yj>§
T1yeey Ty Y1y, Yn €S2 -1
3,j=1
n
Ry = max E Az, ;).
Z1,...,wn €201 &
4,j=1

Then L4 = || Al is simply the left-hand side of the inequality from the problem statement.
On the other hand, R4 has a different domain of maximisation (compared to the right-hand
side of the inequality from the problem statement), but this is inconsequential: given the
vectors 21, ..., T, € S~ ! we can find a Hilbert space isomorphism span(zy,...,z,) = R
for some d < n, so we may find vectors 1, ..., 2, € S with (z},2}) = (z;,2;) for all
i,j € [n]. Therefore we have

Ry = max E Az 2, J
Zi

Snl
"€ i,j=1

and we find that L4 and R4 are simply the left- and right-hand side maxima from the
problem statement.

Clearly we have

Ry = - Z Aij(xi,y;) < max Z Aij{zi,y;) = La.

2n—1
Ty Ty Y1seesYn € 1 T1yeesTnsY1s-,Yn €S 1
T1I=Y1see,Tn=Yn ,J= 4,J=

The problem at hand is to prove the reverse inequality, L4 < R4.

Given vectors 21, ...,Tn, Y1, .,Yn € S?" 1, define the matrices X,Y € Mat(R,2n x n) by

X = xry - Tn |, and Y = Yy - Yn

| | | |
Then we have

(XTY)y ZXMY,W > XiiYij = (i, y;)- (2.1)

For arbitrary m/,n’ € Ny, let (-, )& : Mat(R,m’ x n') — Rx>g denote the trace inner
product

’ ’

(C,D)y == tr(D'C) = iioijpij.

i=1 j=1

(The dimensions m’ and n’ will be clear from the context.)



By (2.1), we may write

Z Aij<xiayj> = <A3XTY>tr
ij=1
’ tr (X'Y)"A)

tr (BX")'BY")

(BY'T, BXT>tr

IN

[(BY",BXT), |

1 1
2 2

(BY',BY")? - (BXT,BX")

IN

tr

= ( Z Aij<yi7yj>> : < Z Aij@ivﬂ?j))

N

i,5=1 i,j=1
1 1
2 2

< Rji-Rj

= Ra.

This shows that we have Ly < Rj4.

. First of all, recall that for an arbitrary set of vectors y1,...,y, € R%, the “Gram” matrix
M € Mat(R,n x n) given by M;; = (y;,y;) is positive semidefinite. After all, if we let
Y € Mat(R, d x n) denote the matrix

| |
Y= |y - unl,
| |

then we may write M = Y "Y', analogously to (2.1]), so M is positive semidefinite.

Now, to solve the exercise, we use the Taylor expansion of arcsin. For all ¢ € [—1,1] we

have
o0
. 3 (2k)! k41
arcsm(t) = T -t 5
= 4R (kN2(2k + 1)

Consequently, for ¢t € [—1, 1] we may write

_ (2k)! L 42k+1

2 2, 2 . 2 —
- arcsin(t) — ;t - (arcsin(t) —t) = ~ ,; T22E 1) t . (2.2)

Furthermore, define the sequence { M} }7° ; in Mat(R,n x n) by setting

(My)ij = (i, x;)" = @P*,z2").



Then for every k € Ny, we have that Mj, is positive semidefinite (since it is a Gram matrix).
If B is as in the exercise, then we may write

B = (i arcsin((z;, z;)) — 72T<I1,IJ>>

ij=1

n

2 — 2k)! okt 1
- (772 4k(k!)(2(2)k+ 1) i, 2) 2T > (2.3)

k=1 ij=1
2 (2k)!
= — — M. . 2.4
™ ]; A2 (2k + 1) 2R (24)
A word about convergence: since 1, ..., x, are assumed to be unit vectors, for all 7, j € [n]

we have |[(z;, z;)| < ||lzill||z;|| < 1. It follows that (z;,z;) lies in the interval of convergence
of , warranting the expression . Consequently, the expression is warranted
because all (Hausdorff) vector space topologies on R™”*™ are equivalent, and each is equiv-
alent to the topology of pointwise convergence.

Since all the scalar coefficients in the series (2.4]) are non-negative, it follows that
N
2 (2k)!
B=Z>1 — M
T Noso (; AF(EN2(2k + 1) 2’““)

is the limit of an increasing sequence of positive semidefinite matrices. Since the positive
semidefinite cone is closed, we conclude that B is positive semidefinite.

. Let n € Ny be given, and let A € Mat(R,n x n) be positive semidefinite. Consider an
arbitrary set of unit vectors x1,...,2, € S*"1, and let g ~ N(0, I,,) be an n-dimensional
standard Gaussian vector. Define 1-dimensional real random variables aq, . .., a,, by setting
a; := sign((z;, g)) for all ¢ € [n]. Then we have —1 < a; <1 for all i € [n]. Furthermore,
by Grothendieck’s identity, for all i, j € [n] we have

Elasa;] = E[sign((x:,g)) sign({z;,9))] = = axcsin({z 2,)).

Hence, by linearity of expectation:

i 2
E Z Ajjaa5| = Z Ayj - ;arcsin((mi,xj». (2.5)

ij=1 ij=1
Define B € Mat(R,n x n) by
B;; := —arcsin({z;, z;)) — E<$ x;)
iy o= = iy Lyj p iy Lj)-

We showed in of the exercise that B is positive semidefinite.



Now, since A is also positive semidefinite, we may write

Z AijBij = (A, B
ij=1
= tr(BT A)
= tr(BA) (PSD matrix is symmetric

= tr (Bl/QBl/QAl/QAl/Q) (PSD matrix has unique PSD square root

= tr (Bl/2A1/2A1/2Bl/2)

= tr ((Bl/Q)T(Al/Q)TAl/QBl/Q) (PSD matrix is symmetric

— tr ((A1/2B1/2)TA1/2B1/2)
_ <A1/2B1/2,A1/ZBI/2>

tr
> 0.
It follows that
” 2 2
2 i e\ — 2 >
Z Ajj (W arcsin((z;, z;)) W(m,mﬁ) > 0,
i,j=1
or equivalently
-Zl Ay - p arcsin((z;, z;)) > .Zl Aij - ;<x7,x]>
1,)= 1,]=

Putting it all together, we find

3w

n n 2 )
Z Ajj(xi,xj) < Z A;j - ;arcsm((a:i,a:j))
ij=1

ij=1

=E i Al-jal-aj

i,7=1

IA

n
sup Z Aijbic; + byee [—1,1]"
ij=1
= [[Allg= -
Hence, by of the exercise, we have
2
2dlg = max 2

L1, xp €SP T 4
i,j=1

or equivalently: [|Allg < T[[Al|geep1-

n
> Ai(zi,zg) < Al

(trace is cyclic

)
)
)
)

(2.6)

(by (2:6))

(by (2.5))



Exercise 3 (Covering with an Asymmetric Convex Body).

1. For fixed z € R", we have

vol, (BN (2x — B)) = /

ldy = / lly € 2z — B| dy.
BN(22—B) B

Note that we have y € 22 — B if and only if 2z —y € B, if and only if x — %y € %B, if and
only if x € %y—l— %B. Furthermore, if y € B, then by convexity of B we have %y + %B C B.
As such, we find

ngB[VOln(Bﬂ(Z%‘—B))] = m/Bvoln(Bﬂ(%c—B))dm
1
= ol (B) B/Bl[yEQI—B]dyda:

1
= — 1z € iy + iBldzd
voln(B)/B/B v € ay + pBldvdy
1

— 1 1
_ Voln(B)/Bvoln(Bﬁ(2y+2B))dy

1
= — 1, (% 1B)d
Voln(B)/BVO (3y+3B)dy
1
= 1,(:B)d
voln(B)/BVO (3B)dy
1
= -vol, (% B) - vol, (B
VOln(B) Vo (2 ) Vo ( )
= vol,(3B)
~ vol,(B)
= =
Hence, by linearity of expectation:
vol,(BN(2z—B))] _ 1 (3.1)
z€B vol,, (B) ooon’ ’

2. By (83.1), we may choose some t € B such that vol, (BN (2t — B)) > %53). Using this ¢,
we define K C R"” as

K := (Bn(2t-B))—t = (B—t)N(t— B). (3.2)

Since translations, reflections and intersections of compact convex sets are again compact

and convex, it is clear that K is compact and convex. Furthermore, we have

vol,, (B)
27’L

so K has non-empty interior. Thirdly, it is clear from (3.2)) that K is symmetric. (To spell

it out, let x € K be given, then we may choose by,bs € B such that x =b; —t =t — bs,
and we have —x =by —t =t —b; € (B—1t) N (t — B) = K.) Finally, we have

K+t=DBn(2t—-B) C B.

vol,(K) = vol, (BN (2t — B)) > >0,

In conclusion: K is a symmetric convex body satisfying vol, (K) > VOI;,SB) and K+t C B.




3. First of all, if T' C R™ is such that |T| = N(A,K) and A C T+ K, then the set T :=T —t¢
satisfies |T'| = |T'| and

ACT+K =T +t+K C T + B,
so we have N (A4, B) < N(A4, K). For the upper bound, recall from the lecture that we have

Lvol,(A+ &)

N(4.K) < P(4,5) < 2"—

Then, since we have K +t C B, we find
K _ t o K+t t B
A+ S =A-L+ 5L CA-L+ 7,
hence vol,(A+ %) < vol,,(A— %+ £) = vol,,(A+ £). On the other hand, the lower bound
vol )

vol,, (K) > T(B gives us Volnl( 4] < Vofnn( 5 It follows that

vol, (A + &) vol, (A + B) vol, (A + B)
NAK) < 2"—————22 < 2" 22 <y =
(4, K) = vol,(K) — vol,(K) — vol, (B)

This proves that we have

vol, (A + 2)

N(A,B) < N(A,K) < 4" —" 5

(3.3)

Now, for the special cases, we claim that we have B + g = %B. Indeed:

e On the one hand, if x € %B, then we may choose b € B satisfying z = %b, so we have
r=b+ %b € B+ %. This proves the inclusion %B C B+ %.

e On the other hand, if z € B—l—%, then we may choose b1, by € B satisfying z = b1+%b2.
Now we have %bl + %bg € B, by convexity, hence z = g(%bl + %bz) € %B. This proves
the reverse inclusion B+ £ C 2B.

Therefore a straightforward application of (3.3]) yields
Lvol,(B+2) _ 4nvoln(%B) _
vol,, (B) vol,,(B)
Choose some set T'C R™ with |T'| < 6™ and B C T + K. Then we also have

-BC -T-K=-T+K=-T—-t+K+tC -T—t+B,

N(B,K) < 4

where we use that K is symmetric, and that K +t¢ C B. Consequently, we find
vol,(B—B+2) < vol,(B-T—-t+B+5)
vol, (3B —T —t)
|IT| - vol,, (5B —t)
6" - vol,(2B)
= 6" (3)" - vol,(B)
= 15" - vol,(B).
Therefore another application of yields

vol,(B— B+ %)
vol,, (B)

IAN

IN

N(B-B,B) < 4" < 4™ 15" = 60" |




Exercise 4 (Low Rank Approximation of the Identity).
Let n € Ny and € € (0, i) be fixed. By the Johnson-Lindenstrauss lemma (applied to the vectors
0,e1,...,e, € R™ and the constant §), we may choose a positive integer d and a linear map
T : R® — R? with the following properties:

. _ log(n+1)\ __ log(n)\.

(i) d=0(ZF5) = 0(%52);

(ii) For all i € [n], one has 1 — § < [|Teifl2 < 1+ 5;

(iii) For all ¢,5 € [n] one has

(1=3)llei —ejll < [[Te; = Tejll < (1+3) - [lei — €2

In particular, for i, € [n] with i # j we have |le; — e;]|2 = V2, hence
ITei=Tejll € [(1-5)-VE, (1+5) - VE]
We prove the following:
(4.a) For all ¢ € [n] one has (T'e;,Te;) € [1 —¢,1+¢];
(4.b) For all ¢,j € [n] with ¢ # j one has (T'e;, Te;) € [—¢,¢].
For note that we have

e €2 e €
Tei,Te)) = |Teill2 < (1452 =14+-4+—<1+-+— <1
(Tei,Tei) = ||Teils < (14 9) ot Sty <l+s
where we used that € < 1. Similarly, we have
(TeiTes) = [Teil2 > (1—2)2 = 1- 45 >1-5 5 1-¢
v iz = 4 2 16 — 2 ’

SO is proved. For note that for arbitrary 4, j € [n] we may write
(Te; —Tej, Te; —Te;) = (Te;, Te;) —2(Te;, Te;) + (Te;, Tej),
hence
(Te;, Tej) = 2(Te;, Te;) + 3(Te;, Tej) — 3(Te; —Tej, Te; — Tej)
= 3lITeill3 + 31Te;ll5 — 3lITei = Teg3.
In particular, if ¢ # j then we find

(Tei, Tej) < 3(1+5)7+ 301+ 52 - 5((1-5)-v2)*

(1452 - (-4

_ 1+§+£ _ 1,54,5
o 2 16 2 16

:5’



and similarly

<T€i, T€j> Z

This proves |(4.b)

Now let B € Mat(R,d x n) be the matrix

B:=\|Tey, -+ Te,|,
| |

and define I, := BT B. As we saw in (2.1)), for all 4,j € [n] we have (I,,);; = (Te;, Te;), so it
follows from and |(4.b)| that |(I, — I,);;] < € holds for all ¢,j € [n]. Furthermore, I, is
positive semidefinite as it is of the form BT B. Finally, note that we have

rank(l,,) < min(rank(BT),rank(B)) = rank(B) < min(d,n) < d,

and it was established before that d is O(*22{™). [ ]
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