
GEOMETRIC FUNCTIONAL ANALYSIS AND
APPLICATIONS

—LECTURE NOTES—
GROTHENDIECK’S INEQUALITY

These notes are provided for your convenience and may contain errors.
If you find an error, please leave a message on the student forum.

1. Grothendieck’s inequality

This lecture is about Grothendieck’s inequality, the centerpiece of the
extraordinary paper “Résumé de la théorie métrique des produits ten-
soriels topologiques” [Gro53]. This result shows a surprising relation
between the three fundamental Banach spaces `1, `2 and `∞. Denote
by Sn−1

p = {x ∈ Rn : ‖x‖p = 1} the unit sphere of `np = (Rn, ‖ ‖p). The
simplest formulation of Grothendieck’s inequality is given in terms of
the following two quantities on Rn×n:

‖A‖`∞→`1 = sup
{ n∑

i,j=1

Aijaibj : a, b ∈ Bn
∞

}
‖A‖G = sup

{ n∑
i,j=1

Aij〈xi, yj〉 : d ∈ N, xi, yj ∈ Bd
2

}
.

The notation suggests that these quantities are norms, which they are.
The first is easily seen to be the operator norm of the linear opera-
tor from `n∞ to `n1 given by x 7→ Ax (hence the notation). We leave
showing that the second is also a norm as an exercise. Let us make
a few preliminary observations of these norms. First, by convexity
and compactness of Bn

p and bi-linearity of the arguments, the suprema

are attained by vectors a, b ∈ {−1, 1}n and xi, yj ∈ S2n−1
2 , respectively,

where the second fact follows because there are only 2n vectors appear-
ing in ‖A‖G (spanning a vector space of dimension at most 2n). Second,
‖A‖G ≥ ‖A‖`∞→`1 holds for any matrix A, since B1

2 = [−1, 1]. Third,
the last inequality can be strict, as can be seen from the Hadamard
matrix H =

(
1 1
1 −1

)
. On the one hand, ‖H‖`∞→`1 = 2 (exercise).
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On the other, ‖H‖G ≥ 2
√

2, which can be seen by considering the
2-dimensional unit vectors shown in Figure 1.
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Figure 1. Vectors for Hadamard matrix.

Surprisingly, Grothendieck’s inequality shows that these norms are
never too far apart, however.

Theorem 1.1 (Grothendieck’s inequality). There exists an absolute
constant K ∈ (1,∞) such that the following holds. For any positive
integer n and matrix A ∈ Rn×n, we have

(1) ‖A‖`∞→`1 ≤ ‖A‖G ≤ K‖A‖`∞→`1 .

There are many equivalent formulations of this result. Its original
formulation in [Gro53] was in terms of norms on tensor products of
Banach spaces. The form used above is due to Lindenstrauss and
Pe lczyński [LP68], who revamped Grothendieck’s original work in such
a way so as to lift it from an obscurity it had unfortunately suffered
up until then. We refer to Pisier’s survey [Pis12] for more informa-
tion about its interesting history and ramifications. The Grothendieck
constant KG is the smallest K for which Theorem 1.1 holds true. Deter-
mining its exact value is the only one of six problems posed in [Gro53]
that remains open to this day. The Hadamard matrix shows that
KG ≥

√
2. The best bounds 1.6769 · · · ≤ KG < 1.7822 . . . were proved

by Davie and Reeds [Dav84, Ree91], and Braverman et al. [BMMN13],
respectively. In the next section, we give arguably the most elegant
proof of Theorem 1.1, due to Krivine [Kri79], who showed that

KG ≤
π

2 ln(1 +
√

2)
= 1.7822 . . . .

The elegance of Krivine’s proof led many researchers to believe that this
was in fact the exact value ofKG. No one could prove this, however, and
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it turns out for the good reason that it is false. It was shown relatively
recently in [BMMN13] that KG is strictly smaller than Krivine’s bound
by some additive ε > 0. Unfortunately, the proof of this fact is based
on a long series of calculations in complex analysis in addition to a
computer-assisted search for a good partition of the plane into two
disjoints sets (giving the so-called tiger partition shown in Figure 2).

Figure 2. The tiger partition. Source:
https://web.math.princeton.edu/~naor/

2. Krivine’s proof of Grothendieck’s inequality

The first ingredient of Krivine’s proof of Theorem 1.1 is the follow-
ing simple lemma, which was also used in the original proof given
in [Gro53], but in a less effective way (giving a larger value of K).

Lemma 2.1 (Grothendieck’s identity). Let x, y be n-dimensional real
unit vectors and let g = (g1, . . . , gn) ∼ N(0, In) be an n-dimensional
standard Gaussian vector. Then,

(2) E
[

sign(〈x, g〉) sign(〈y, g〉)
]

=
2

π
arcsin(〈x, y〉).

Proof sketch: If x = y or x = −y then the identity is trivial. Sup-
pose that x and y are not parallel and consider the two-dimensional
subspace spanned by them. By rotational invariance of the Gaussian
distribution, the projection of g onto this subspace is a two-dimensional
standard Gaussian. Observe that sign(〈x, g〉) sign(〈y, g〉) is positive if
and only if g lies above or below both of the half-planes orthogonal to
x and y respectively (Figure 3).

https://web.math.princeton.edu/~naor/
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yx x y

θ

π − θ

θ = arccos(〈x, y〉)

Figure 3. Grothendieck’s identity in two di-
mensions.

Since the direction of g is uniform on the unit circle, it follows that this
happens with probability

2

2π

(
π − arccos(〈x, y〉).

Hence, the expectation in (2) equals

1

π

(
π − arccos(〈x, y〉)− 1

π

(
arccos(〈x, y〉) = 1− 2

π
arccos(〈x, y〉),

which equals the right-hand side of (2). 2

We will use the Taylor expansions of the sine and hyperbolic sine func-
tions, given by

sin(t) =
∞∑
k=0

αkt
k

sinh(t) =
∞∑
k=0

|αk|tk,

where for k = 0, 1, . . . , we have α2k = 0 and α2k+1 = (−1)k/((2k+1)!).
In particular, the Taylor coefficients of the hyperbolic sine functions are
given by the absolute values of those of the sine function. Moreover,
both of these Taylor series converge on the interval [−1, 1].

Recall that the tensor product of vectors x ∈ Rd1 and y ∈ Rd1 is the
d1d2-dimensional vector x⊗ y ∈ Rd1d2 given by

x⊗ y = (xiyj)(i,j)∈[d1]×[d2].



GROTHENDIECK’S INEQUALITY 5

For a positive integer k, denote by x⊗k the k-fold iterated tensor prod-
uct of x with itself. We leave the proof of the following simple propo-
sition as an exercise.

Proposition 2.2. For any x, y ∈ Rd, we have 〈x⊗k, y⊗k〉 = 〈x, y〉k.

Proof of Theorem 1.1: Let

c = sinh−1(1) = ln(1 +
√

2).

Fix a positive integer d and two sets of d-dimensional unit vectors
x1, . . . , xn, y1, . . . , yn ∈ Sd−1

2 . We show that there exist {−1, 1}-valued
random variables a1, . . . , an, b1, . . . , bn such that

E[aibj] =
2c

π
〈xi, yj〉

holds for all i, j ∈ [n]. To see why this suffices to prove the theorem,
observe that by linearity of expectation,

2c

π

n∑
i,j=1

Aij〈xi, yj〉 = E
[ n∑
i,j=1

Aijaibj

]
≤ max

ai,bj∈{−1,1}

n∑
i,j=1

Aijaibj.

This shows that KG ≤ π/(2c).

To obtain the random signs, define two new sequences of vectors:

ui =
∞⊕
k=1

√
|αk|ck/2 x⊗ki

vj =
∞⊕
k=1

sign(αk)
√
|αk|ck/2 y⊗kj .

Using the Taylor expansions of sin and sinh and Proposition 2.2 it is
easy to verify that these are unit vectors and that

〈ui, vj〉 = sin(c〈xi, vj〉).

Observe that these are infinite-dimensional. However, since there are
only 2n of them, they span a space of dimension at most 2n, and
it follows that there exist unit vectors u′1, . . . , u

′
n, v′1, . . . , v

′
n ∈ S2n−1

2

such that 〈u′i, v′j〉 = 〈ui, vj〉 for all i, j ∈ [n]. Let g = (g1, . . . , g2n) be
a random vector of independent standard normal random variables.
Define

ai = sign(〈u′i, g〉) and bj = sign(〈v′j, g〉).
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Then, by Lemma 2.1,
π

2
E[aibj] = arcsin(〈u′i, v′j〉)

= arcsin(sin(c〈xi, yj〉))
= c〈xi, yj〉.

This proves the theorem. 2

3. Grothendieck factorization

In this section and the next, given a matrix A ∈ Rm×n and normed
vector spaces X = (Rn, ‖ ‖X), Y = (Rm, ‖ ‖Y ), we shall write ‖A‖X→Y

for the operator norm of the linear operator X → Y given by x 7→ Ax.

While it is not hard to interpret the `∞ → `1 norm, one may wonder
what it means for a matrix A to satisfy ‖A‖G ≤ 1. The answer turns
out to be that A can be “factored through a Hilbert space”, meaning
that there exist matrices B ∈ Rn×m and C ∈ Rm×n such that A can
decomposed as A = BC and such that ‖B‖`2→`1‖C‖`∞→`2 ≤ 1. This is
a result of the following lemma, which we prove in this section.

Lemma 3.1 (Grothendieck). Let A ∈ Rn×n be a matrix without zero
rows or columns. Then, satisfies ‖A‖G ≤ C if and only if there exist
positive unit vectors u, v ∈ R>0 ∩ Sn−1

2 such that for any x, y ∈ Rn,

(3) |〈Ax, y〉| ≤ C‖x ◦ u‖2‖y ◦ v‖2,
where ◦ denotes the entry-wise product.

Proof: We prove the “only if” direction and leave the “if” direction
as an exercise. Let M = A/‖A‖G, so that ‖M‖G ≤ 1. Then, by the
AMGM inequality, it holds that for arbitrary vectors xi, yj of the same
dimension, we have

(4)
∣∣∣ n∑
i,j=1

Mij〈xi, yj〉
∣∣∣ ≤ max

i,j∈[n]
‖xi‖‖yj‖ ≤

1

2
max
i,j∈[n]

(‖xi‖2 + ‖yj‖2).

Define the set K ⊆ Rn×n by

K =

{(
‖xi‖2 + ‖yj‖2 − 2

∣∣∣ n∑
k,`=1

Mk`〈xk, y`〉
∣∣∣)n

i,j=1
: d ∈ N, xi, yj ∈ Rd

}
.

We show that K is a convex cone. For every t ∈ R+ and matrix Q ∈ K
given by vectors xi, yj, the vectors x′i =

√
txi and y′j =

√
tyj similarly

define tQ, and so K is a cone. We now show that K is convex. Let
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Q,Q′ ∈ K be specified by xi, yj and x′i, y
′
j respectively. Then, for any

λ ∈ [0, 1], the vectors (
√
λxi,
√

1− λx′i), (
√
λyj,
√

1− λy′j) can easily
be seen to define λQ+ (1− λ)Q′, which thus also belongs to K.

Additionally, it follows from (4) that K is disjoint from the open convex
cone Rn×n

<0 of matrices with strictly negative entries. It thus follows
from the Hahn–Banach separation theorem that there is a nonzero
matrix L ∈ Rn×n such that 〈L,Q〉 ≥ 0 for all Q ∈ K and 〈L,N〉 < 0
for all N ∈ Rn×n

<0 . The second inequality implies that L is entry-wise
non-negative. Indeed, suppose that Lij ≤ −ε for some ε > 0 and let
δ = maxk,l |Lkl|. Consider the negative matrix N given by Nij = −1
and Nkl = −ε/(δn2) for all (k, l) 6= (i, j). Then,

〈L,N〉 ≥ ε− ε(n2 − 1)/n2 > 0,

a contradiction.

Let P = L/
∑

ij Lij, so that P defines a probability distribution on [n]2.
Then, for any Q ∈ K,

0 ≤ 〈P,Q〉 =
n∑

i,j=1

Pij(‖xi‖2 + ‖yj‖2)− 2
∣∣∣ n∑
k,`=1

Mk`〈xk, y`〉
∣∣∣

=
n∑

i=1

σi‖xi‖2 +
n∑

j=1

µj‖yj‖2 − 2
∣∣∣ n∑
k,`=1

Mk`〈xk, y`〉
∣∣∣,

where σi = Pi1 + · · · + Pin and µj = P1j + · · · + Pnj. Rearranging the
inequality above, it follows that for every λ > 0, we have

2
∣∣∣ n∑
k,`=1

Mk`〈xk, y`〉
∣∣∣ = 2

∣∣∣ n∑
k,`=1

Mk`〈λxk, λ−1y`〉
∣∣∣

≤ λ2
n∑

i=1

σi‖xi‖22 + λ−2
n∑

j=1

µj‖yj‖22.(5)

Setting

λ =

(∑n
j=1 µj‖yj‖22∑n
i=1 σi‖xi‖22

)1/4

in (5), we find that

2
∣∣∣ n∑
k,`=1

Mk`〈xk, y`〉
∣∣∣ ≤ 2

( n∑
i=1

σi‖xi‖22
)1/2( n∑

j=1

µj‖yj‖22
)1/2

.
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In particular, by letting ui =
√
σi, vi =

√
µi for every i ∈ [n], the above

shows that if xk, y` ∈ R, then

(6) |〈Mx, y〉| ≤ ‖x ◦ u‖2‖y ◦ v‖2.

The assumption that M has no zero rows or columns shows that u
and v have strictly positive entries. To see this, first observe that u
and v have at least one non-zero entry because they have unit `2-norm.
Let i ∈ [n] be arbitrary, let j ∈ [n] be such that Mij 6= 0 (as per the
assumption on M) and let k ∈ [n] such that vk 6= 0. Setting x = ei
and y = sign(Mij)ej + sign(Mik)ek in (6) shows that

0 < |Mij| ≤ |Mij|+ |Mik| = |〈Mx, y〉| ≤ ui

√
v2j + v2k ≤ uivj.

In particular, ui > 0 for each i ∈ [n]. The same argument shows that v
has strictly positive entries as well. 2

Combining Lemma 3.1 with Theorem 1.1 (Grothendieck’s inequality)
gives the following factorization result. For x ∈ Rn, denote by Diag(x)
the matrix whose diagonal is x and whose off-diagonals are all zero.

Corollary 3.2. For any matrix A ∈ Rn×n, there exist B,C ∈ Rn×n

such that A = BC and ‖B‖`2→`1‖C‖`∞→`2 ≤ KG‖A‖`∞→`1.

Proof: Let u, v ∈ Rn be as in Lemma 3.1. Since u, v are Euclidean
unit vectors, it follows that ‖Diag(u)‖`∞→`2 = ‖Diag(v)‖`2→`1 ≤ 1.
Define M = Diag(v)−1ADiag(u)−1. Then, it follows from Lemma 3.1
and Theorem 1.1 that for any x, y ∈ Rn, we have

|〈Mx, y〉| ≤ ‖A‖G
∥∥(Diag(u)−1x

)
◦ u
∥∥
2

∥∥(Diag(v)−1y
)
◦ v
∥∥
2

≤ KG‖A‖`∞→`1‖x‖2‖y‖2.
In particular, this shows that ‖M‖`2→`2 ≤ KG‖A‖`∞→`1 . Setting B =
Diag(v)M and C = Diag(u) then gives the result since

‖B‖`2→`1 ≤ ‖Diag(v)‖`2→`1‖M‖`2→`2 .

2

4. An application to geometric functional analysis

We end with a first application of Grothendieck’s inequality. A finite-
dimensional normed space X embeds into normed space Y with distor-
tion C if there is a subspace Z ⊆ Y with the same dimension as X
such that d(X,Z) ≤ C, where d is the Banach–Mazur distance.
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Corollary 4.1. Let n ≤ k be positive integers and let X = (Rn, ‖ ‖X)
be a normed space. Suppose that X and its dual X∗ embed into `k1 with
distortion C1, C2, respectively. Then, d(X, `n2 ) ≤ KGC1C2.

A famous result of Dvoretzky, which we will see later in this course,
implies that a converse of Corollary 4.1 also holds. In particular, there
is a constant C such that if d(X, `n2 ) ≤ C ′, then both X and X∗ embed
into `2n1 with distortion at most CC ′. A more basic result due to
Khitchine, which we will also see later, shows that this holds for `2

n

1 .

Proof: Let S1, S2 ⊆ `k1 be subspaces such that d(X,S1) ≤ C1 and
d(X∗, S2) ≤ C2. Then, there exist A1, B1, A2, B2 ∈ Rk×n such that
AT

1B1 = AT
2B2 = In and such that

‖AT
1 ‖S1→X‖B1‖X→S1 ≤ C1 and ‖AT

2 ‖S2→X∗‖B2‖X∗→S2 ≤ C2.

We can thus write the identity (which should be thought of as a linear
map from X to itself) as

(7) (AT
1B1)(A

T
2B2)

T = AT
1B1B

T
2 A2 = In.

Note that

‖B1‖X→`1 = ‖B1‖X→S1

‖BT
2 ‖`∞→X = ‖B2‖X∗→`1 = ‖B2‖X∗→S1 .

Since operator norms are sub-multiplicative, the matrix appearing in
the middle of (7), M = B1B

T
2 ∈ Rk×k, therefore satisfies

‖M‖`∞→`1 ≤ ‖B1‖X→`1‖BT
2 ‖`∞→X = ‖B1‖X→S1‖B2‖X∗→S2 .

It follows from Corollary 3.2 that there exist M1,M2 ∈ Rk×k with which
we can factor M as M = MT

1 M2 and which satisfy the norm bounds

‖MT
1 ‖`2→`1‖M2‖`∞→`2 ≤ KG‖M‖`∞→`1 .

Using this factorization of M , we can rewrite the factorization (7) as

(8) In = AT
1M

T
1 M2A2.

The image of M2A2 is an n-dimensional subspace of Rk. Therefore,
there is an isometry from `n2 to `k2 given by a matrix D ∈ Rk×n such
that the right-hand side of (7) equals (AT

1M
T
1 D)(DTM2A2). This gives

a factorization of the identity operator on X. In particular, since S∗2 is
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a quotient of `n∞, we get that

d(X, `n2 ) ≤ ‖AT
1M

T
1 D‖`2→X‖DTM2A2‖X→`2

≤ ‖AT
1 ‖S1→X‖MT

1 ‖`2→S1‖M2‖S∗2→`2‖A2‖X→S∗2

≤ ‖AT
1 ‖S1→X‖MT

1 ‖`2→`1‖M2‖`∞→`2‖A2‖X→S∗2

≤ KG‖AT
1 ‖S1→X‖M‖`∞→`1‖AT

2 ‖X∗→S2

≤ KG‖AT
1 ‖S1→X‖B1‖X→S1‖AT

2 ‖S2→X∗‖B2‖X∗→S2

≤ KGC1C2.

2

5. Exercises

Exercise 5.1. Show that the quantities ‖A‖`∞→`1 and ‖A‖G are norms.

Exercise 5.2. Let H =
(
1 1
1 −1

)
. Show that ‖H‖`∞→`1 = 2.

Exercise 5.3. Prove Proposition 2.2.

Exercise 5.4. Prove the “if” direction in Lemma 3.1.
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