GEOMETRIC FUNCTIONAL ANALYSIS AND
APPLICATIONS

—LECTURE NOTES—
GROTHENDIECK’S INEQUALITY

These notes are provided for your convenience and may contain errors.
If you find an error, please leave a message on the student forum.

1. GROTHENDIECK’S INEQUALITY

This lecture is about Grothendieck’s inequality, the centerpiece of the
extraordinary paper “Résumé de la théorie métrique des produits ten-
soriels topologiques” [Grob3]. This result shows a surprising relation
between the three fundamental Banach spaces ¢, 5 and /,,. Denote
by Sp~t = {z € R": ||z[|, = 1} the unit sphere of £ = (R", || [|,). The
simplest formulation of Grothendieck’s inequality is given in terms of
the following two quantities on R™*"™:

Al e, = SUP{ Z Ajjab; : a,be Bgo}

ij=1

n
JAll = sup { D Aylai ) - d €N, 2y, € Bi}.
ij=1
The notation suggests that these quantities are norms, which they are.
The first is easily seen to be the operator norm of the linear opera-
tor from (2 to ¢} given by x — Ax (hence the notation). We leave
showing that the second is also a norm as an exercise. Let us make
a few preliminary observations of these norms. First, by convexity
and compactness of B and bi-linearity of the arguments, the suprema
are attained by vectors a,b € {—1,1}" and z;,y; € S3" ', respectively,
where the second fact follows because there are only 2n vectors appear-
ing in || Al|¢ (spanning a vector space of dimension at most 2n). Second,

|Allg > ||All¢.. e, holds for any matrix A, since By = [—1,1]. Third,
the last inequality can be strict, as can be seen from the Hadamard
matrix H = (}%). On the one hand, |[H|, ¢ = 2 (exercise).
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2 GROTHENDIECK’S INEQUALITY

On the other, ||[H||¢ > 2v/2, which can be seen by considering the
2-dimensional unit vectors shown in Figure 1.

Figure 1. Vectors for Hadamard matrix.

Surprisingly, Grothendieck’s inequality shows that these norms are
never too far apart, however.

Theorem 1.1 (Grothendieck’s inequality). There ezists an absolute
constant K € (1,00) such that the following holds. For any positive
integer n and matriz A € R™"™, we have

(1) [Alleser < [[Alle < K[ Alleweer-

There are many equivalent formulations of this result. Its original
formulation in [Gro53] was in terms of norms on tensor products of
Banach spaces. The form used above is due to Lindenstrauss and
Pelczyniski [LP68], who revamped Grothendieck’s original work in such
a way so as to lift it from an obscurity it had unfortunately suffered
up until then. We refer to Pisier’s survey [Pis12] for more informa-
tion about its interesting history and ramifications. The Grothendieck
constant K is the smallest K for which Theorem 1.1 holds true. Deter-
mining its exact value is the only one of six problems posed in [Gro53]
that remains open to this day. The Hadamard matrix shows that
K¢ > /2. The best bounds 1.6769 - - - < Kg < 1.7822... were proved
by Davie and Reeds [Dav84, Ree91], and Braverman et al. [ BMMN13],
respectively. In the next section, we give arguably the most elegant
proof of Theorem 1.1, due to Krivine [Kri79], who showed that

Ko< —"  — 17802, ..

2In(1 + v/2)

The elegance of Krivine’s proof led many researchers to believe that this
was in fact the exact value of K. No one could prove this, however, and
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it turns out for the good reason that it is false. It was shown relatively
recently in [BMMN13] that K¢ is strictly smaller than Krivine’s bound
by some additive € > 0. Unfortunately, the proof of this fact is based
on a long series of calculations in complex analysis in addition to a
computer-assisted search for a good partition of the plane into two
disjoints sets (giving the so-called tiger partition shown in Figure 2).

| W

Figure 2. The tiger partition. Source:
https://web.math.princeton.edu/~naor/

2. KRIVINE’S PROOF OF GROTHENDIECK’S INEQUALITY

The first ingredient of Krivine’s proof of Theorem 1.1 is the follow-
ing simple lemma, which was also used in the original proof given
in [Grob3], but in a less effective way (giving a larger value of K).

Lemma 2.1 (Grothendieck’s identity). Let x,y be n-dimensional real
unit vectors and let g = (g1,...,9n) ~ N(0,1,) be an n-dimensional
standard Gaussian vector. Then,

2 E[sign((r,g)) sisn((y, )] = = axcsin((z. ).

Proof sketch: If x = y or x = —y then the identity is trivial. Sup-
pose that x and y are not parallel and consider the two-dimensional
subspace spanned by them. By rotational invariance of the Gaussian
distribution, the projection of g onto this subspace is a two-dimensional
standard Gaussian. Observe that sign((z, g)) sign((y, g)) is positive if
and only if ¢ lies above or below both of the half-planes orthogonal to
x and y respectively (Figure 3).
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0 = arccos({z, y))

Figure 3. Grothendieck’s identity in two di-
mensions.

Since the direction of ¢ is uniform on the unit circle, it follows that this
happens with probability

2
%(ﬂ' — arccos((z,y)).
Hence, the expectation in (2) equals

%(w — arccos({z,y)) — %(arccos((x, y)) =1-— %arccos((x, y)),

which equals the right-hand side of (2). O

We will use the Taylor expansions of the sine and hyperbolic sine func-
tions, given by

o0
sin(t) = Z oy t"
k=0

(e e}
sinh(t) = ot
k=0

where for k = 0,1,..., we have agp = 0 and a1y = (=1)%/((2k +1)!).
In particular, the Taylor coefficients of the hyperbolic sine functions are
given by the absolute values of those of the sine function. Moreover,
both of these Taylor series converge on the interval [—1,1].

Recall that the tensor product of vectors x € R% and y € R% is the
d1ds-dimensional vector x ® y € R%% given by

TR Y = (Tily) j)eldi)x[da] -
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For a positive integer k, denote by #®* the k-fold iterated tensor prod-
uct of x with itself. We leave the proof of the following simple propo-
sition as an exercise.

Proposition 2.2. For any x,y € RY, we have (x®* y®*) = (z, y)k.

Proof of Theorem 1.1: Let
¢ =sinh (1) = In(1 + v/2).

Fix a positive integer d and two sets of d-dimensional unit vectors
L1 Ty Yty Yn € S5 We show that there exist {—1,1}-valued
random variables a4, ..., a,, bi,...,b, such that
2c
Elaib] = — (i, y5)

holds for all ¢, 5 € [n]. To see why this suffices to prove the theorem,
observe that by linearity of expectation,

Z A, y5) [ Z Ajjab ] < a“bnel?xl y Z Ajjab;.

i,7=1 3,j=1
This shows that Ko < 7/(2c¢).

To obtain the random signs, define two new sequences of vectors:
o0
= @ Vo |2 Bk

GB sign(ay) |ozk|ck/2

Using the Taylor expansions of sin and sinh and Proposition 2.2 it is
easy to verify that these are unit vectors and that

(wi, v;) = sin(e{w;, v;)).

Observe that these are infinite-dimensional. However, since there are
only 2n of them, they span a space of dimension at most 2n, and
it follows that there exist unit vectors u},...,u/, v},..., v/ € S3"!
such that (uj,v}) = (u;,v;) for all 4,5 € [n]. Let g = (g1,...,92) be
a random vector of independent standard normal random variables.
Define

a; = sign((u;, g)) and  b; = sign((v}, g)).
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Then, by Lemma 2.1,
gE[aibj] — arcsin( (1, v/))
= arcsin(sin(c(z;, y;)))
= (@i, y;)-
This proves the theorem. O

3. GROTHENDIECK FACTORIZATION

In this section and the next, given a matrix A € R™*" and normed
vector spaces X = (R, || ||x), Y = (R™, || ||y), we shall write || A| x_y
for the operator norm of the linear operator X — Y given by = — Ax.

While it is not hard to interpret the o, — ¢; norm, one may wonder
what it means for a matrix A to satisfy ||A||¢ < 1. The answer turns
out to be that A can be “factored through a Hilbert space”, meaning
that there exist matrices B € R™™ and C' € R™*" such that A can
decomposed as A = BC' and such that || B||z,—e, |[|C|r—e, < 1. This is
a result of the following lemma, which we prove in this section.

Lemma 3.1 (Grothendieck). Let A € R™™ be a matriz without zero
rows or columns. Then, satisfies ||Allc < C if and only if there exist
positive unit vectors u,v € Rog N Sy~ " such that for any z,y € R”,

(3) [{Az, y)| < Cllz o ullally o vl

where o denotes the entry-wise product.

Proof: We prove the “only if” direction and leave the “if” direction
as an exercise. Let M = A/||Al|g, so that |M||c < 1. Then, by the
AMGM inequality, it holds that for arbitrary vectors x;, y; of the same
dimension, we have

(4) ‘ z": Mij (i, y;)

i,j=1

Define the set K C R™*" by

K {(W gl =2 D2 Muoar, )

k=1

1
< max ||x; A < = max xi2+ 11%).
< anax il < 5 max (i + 1)

) :dEN, xi,ijRd}.
i,j=1

We show that K is a convex cone. For every ¢t € R, and matrix () € K
given by vectors x;,y;, the vectors o} = v/tz; and Y = Vty; similarly
define t(Q), and so K is a cone. We now show that K is convex. Let
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Q,Q" € K be specified by x;,y; and 7, y; respectively. Then, for any

A € [0,1], the vectors (v Azi, v — Ax}), (V Ay, V1 — Ay;) can easily
be seen to define AQ + (1 — A\)@’, which thus also belongs to K.

Additionally, it follows from (4) that K is disjoint from the open convex
cone RZ§" of matrices with strictly negative entries. It thus follows
from the Hahn-Banach separation theorem that there is a nonzero
matrix L € R™" such that (L,Q) > 0 for all Q € K and (L, N) <0
for all N € RZ;". The second inequality implies that L is entry-wise
non-negative. Indeed, suppose that L;; < —¢e for some € > 0 and let
0 = maxy, |Ly|. Consider the negative matrix N given by N;; = —1
and Ny = —e/(0n?) for all (k,1) # (i,7). Then,

(L,N) >¢e—¢e(n*—1)/n* >0,
a contradiction.

Let P = L/3,; Lij, so that P defines a probability distribution on [n]*.
Then, for any Q e K,

0<(P.Q) = Y Pylllaill® +l1ysl1?) = 2| Y Muedow, )|

ij=1 k=1
- Zmnxw +Zug||ygll2 2 3 Mislon,)
k=1

where 0; = Py + -+ + Py, and p; = Py + -+ - + P,;. Rearranging the
inequality above, it follows that for every A > 0, we have

2‘ > Mk€<xk7yf>’ = 2‘ >, Mké@\l‘ka)\_lye)‘

k,e=1 k=1
(5) <A aillaills + A7) willylla-
i=1 j=1

Setting
n 1/4
\ = Zj:l NijjH%
i oillaill3
in (5), we find that

n 1/2
2 S Mol )| < 2(Zazuxzu ) (3 il l2)
j=1

k=1



8 GROTHENDIECK’S INEQUALITY

In particular, by letting u; = /03, v; = \/f; for every i € [n], the above
shows that if xx,y, € R, then

(6) (M, y)| < [l o ulla[ly o v]f2.

The assumption that M has no zero rows or columns shows that
and v have strictly positive entries. To see this, first observe that u
and v have at least one non-zero entry because they have unit /5-norm.
Let i € [n] be arbitrary, let j € [n] be such that M;; # 0 (as per the
assumption on M) and let k € [n] such that vy # 0. Setting z = ¢;
and y = sign(M;;)e; + sign(M;i)ex, in (6) shows that

0 < [Mjj| < [My| + [Mix| = KMz, y)| < wiy /v + 07 < uvy.

In particular, u; > 0 for each i € [n]. The same argument shows that v
has strictly positive entries as well. O

Combining Lemma 3.1 with Theorem 1.1 (Grothendieck’s inequality)
gives the following factorization result. For x € R", denote by Diag(z)
the matrix whose diagonal is # and whose off-diagonals are all zero.

Corollary 3.2. For any matriv A € R™", there exist B,C € R™*"
such that A = BC and || B||ey—0, [|Clloee -0 < K|l Alloo e, -

Proof: Let u,v € R™ be as in Lemma 3.1. Since u,v are Euclidean
unit vectors, it follows that || Diag(u)/s,—e = || Diag(v)|le,—e < 1.
Define M = Diag(v)~*ADiag(u)~*. Then, it follows from Lemma 3.1
and Theorem 1.1 that for any z,y € R", we have

[(Mz,y)| < [|Alle||(Diag(u)~"z) o ul[,||( Diag(v)~'y) o v,
< Kol Allew—a 1 l2[lyl2-
In particular, this shows that || M||s,_n < Kgl|Allr. - Setting B =
Diag(v)M and C' = Diag(u) then gives the result since

||BH52H51 < H Diag<v)||f2ﬁfl ||M||52H52'

4. AN APPLICATION TO GEOMETRIC FUNCTIONAL ANALYSIS

We end with a first application of Grothendieck’s inequality. A finite-
dimensional normed space X embeds into normed space Y with distor-
tion C' if there is a subspace Z C Y with the same dimension as X
such that d(X, Z) < C, where d is the Banach-Mazur distance.
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Corollary 4.1. Let n < k be positive integers and let X = (R™, || ||x)
be a normed space. Suppose that X and its dual X* embed into (% with
distortion Cy, Cy, respectively. Then, d(X,05) < KgC1Cy.

A famous result of Dvoretzky, which we will see later in this course,
implies that a converse of Corollary 4.1 also holds. In particular, there
is a constant C' such that if d(X, ¢5) < C’, then both X and X* embed
into 3" with distortion at most C'C’. A more basic result due to
Khitchine, which we will also see later, shows that this holds for 2",

Proof: Let S1,Sy C (% be subspaces such that d(X,S;) < C; and
d(X*,S5) < Cy. Then, there exist Ay, By, Ay, B, € R¥™ such that
Al B; = A} By = I, and such that

AT [|syox | Billxos, < C1 and || A7 |ls,-x-

By|

x5, < Cy.

We can thus write the identity (which should be thought of as a linear
map from X to itself) as

(7) (A{B1)(A}By)" = A B1 By Ay = I,,.
Note that
| Billx—e, = |1 B1llx—s,
HBJHEOO%X = HB2‘ X*—=l — HBQHX*—)Sl-

Since operator norms are sub-multiplicative, the matrix appearing in
the middle of (7), M = B;B] € R¥* therefore satisfies

M ||t < [|Billx—el| B3 lew—sx = | Billx-s,]|Be]

It follows from Corollary 3.2 that there exist M;, My € R¥*¥ with which
we can factor M as M = M M, and which satisfy the norm bounds

X*—=So-

1M e | Mol oot < Kl M ety
Using this factorization of M, we can rewrite the factorization (7) as
(8) I, = Al M MyA,.

The image of M,A, is an n-dimensional subspace of R¥. Therefore,
there is an isometry from 3 to (5 given by a matrix D € R**" such
that the right-hand side of (7) equals (A] M D)(DTMyAs,). This gives
a factorization of the identity operator on X. In particular, since S5 is
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a quotient of £, we get that

d(X,05) < ||A{M{ D¢y x || DT Mo As|| x e,

< NAT s x 1M a8 (| M2 || 5500 | A2 || x 555
< NAT [[syox 1M g [| M| e s | Azl x5
< K|l AT [|sx | M |ew = [l AS || x5 55,

< KollAf ls,ox | Bl x— 8.1 43 | sy x+
< KaChCy.

Bs|lx+—s,

5. EXERCISES

FEzercise 5.1. Show that the quantities || A||s. ¢, and ||A||¢ are norms.

Ezercise 5.2. Let H = (] !}). Show that ||H s e = 2.

Ezercise 5.3. Prove Proposition 2.2.

FEzxercise 5.4. Prove the “if” direction in Lemma 3.1.
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