GEOMETRIC FUNCTIONAL ANALYSIS AND APPLICATIONS

—LECTURE NOTES— GROTHENDIECK'S INEQUALITY

These notes are provided for your convenience and may contain errors. If you find an error, please leave a message on the student forum.

1. GROTHENDIECK'S INEQUALITY

This lecture is about Grothendieck's inequality, the centerpiece of the extraordinary paper "*Résumé de la théorie métrique des produits tensoriels topologiques*" [Gro53]. This result shows a surprising relation between the three fundamental Banach spaces ℓ_1 , ℓ_2 and ℓ_{∞} . Denote by $S_p^{n-1} = \{x \in \mathbb{R}^n : ||x||_p = 1\}$ the unit sphere of $\ell_p^n = (\mathbb{R}^n, || ||_p)$. The simplest formulation of Grothendieck's inequality is given in terms of the following two quantities on $\mathbb{R}^{n \times n}$:

$$||A||_{\ell_{\infty} \to \ell_1} = \sup\left\{\sum_{i,j=1}^n A_{ij}a_ib_j : a, b \in B_{\infty}^n\right\}$$
$$||A||_G = \sup\left\{\sum_{i,j=1}^n A_{ij}\langle x_i, y_j\rangle : d \in \mathbb{N}, x_i, y_j \in B_2^d\right\}.$$

The notation suggests that these quantities are norms, which they are. The first is easily seen to be the operator norm of the linear operator from ℓ_{∞}^n to ℓ_1^n given by $x \mapsto Ax$ (hence the notation). We leave showing that the second is also a norm as an exercise. Let us make a few preliminary observations of these norms. First, by convexity and compactness of B_p^n and bi-linearity of the arguments, the suprema are attained by vectors $a, b \in \{-1, 1\}^n$ and $x_i, y_j \in S_2^{2n-1}$, respectively, where the second fact follows because there are only 2n vectors appearing in $||A||_G$ (spanning a vector space of dimension at most 2n). Second, $||A||_G \geq ||A||_{\ell_{\infty} \to \ell_1}$ holds for any matrix A, since $B_2^1 = [-1, 1]$. Third, the last inequality can be strict, as can be seen from the Hadamard matrix $H = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. On the one hand, $||H||_{\ell_{\infty} \to \ell_1} = 2$ (exercise).

Date: March 12, 2019.

On the other, $||H||_G \ge 2\sqrt{2}$, which can be seen by considering the 2-dimensional unit vectors shown in Figure 1.

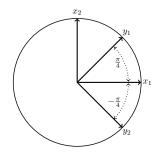


Figure 1. Vectors for Hadamard matrix.

Surprisingly, Grothendieck's inequality shows that these norms are never too far apart, however.

Theorem 1.1 (Grothendieck's inequality). There exists an absolute constant $K \in (1, \infty)$ such that the following holds. For any positive integer n and matrix $A \in \mathbb{R}^{n \times n}$, we have

(1)
$$||A||_{\ell_{\infty} \to \ell_1} \le ||A||_G \le K ||A||_{\ell_{\infty} \to \ell_1}.$$

There are many equivalent formulations of this result. Its original formulation in [Gro53] was in terms of norms on tensor products of Banach spaces. The form used above is due to Lindenstrauss and Pełczyński [LP68], who revamped Grothendieck's original work in such a way so as to lift it from an obscurity it had unfortunately suffered up until then. We refer to Pisier's survey [Pis12] for more information about its interesting history and ramifications. The *Grothendieck constant* K_G is the smallest K for which Theorem 1.1 holds true. Determining its exact value is the only one of six problems posed in [Gro53] that remains open to this day. The Hadamard matrix shows that $K_G \ge \sqrt{2}$. The best bounds $1.6769 \cdots \le K_G < 1.7822 \ldots$ were proved by Davie and Reeds [Dav84, Ree91], and Braverman et al. [BMMN13], respectively. In the next section, we give arguably the most elegant proof of Theorem 1.1, due to Krivine [Kri79], who showed that

$$K_G \le \frac{\pi}{2\ln(1+\sqrt{2})} = 1.7822\dots$$

The elegance of Krivine's proof led many researchers to believe that this was in fact the exact value of K_G . No one could prove this, however, and

it turns out for the good reason that it is false. It was shown relatively recently in [BMMN13] that K_G is strictly smaller than Krivine's bound by some additive $\varepsilon > 0$. Unfortunately, the proof of this fact is based on a long series of calculations in complex analysis in addition to a computer-assisted search for a good partition of the plane into two disjoints sets (giving the so-called tiger partition shown in Figure 2).

Figure 2. The tiger partition. Source: https://web.math.princeton.edu/~naor/

2. KRIVINE'S PROOF OF GROTHENDIECK'S INEQUALITY

The first ingredient of Krivine's proof of Theorem 1.1 is the following simple lemma, which was also used in the original proof given in [Gro53], but in a less effective way (giving a larger value of K).

Lemma 2.1 (Grothendieck's identity). Let x, y be n-dimensional real unit vectors and let $g = (g_1, \ldots, g_n) \sim N(0, I_n)$ be an n-dimensional standard Gaussian vector. Then,

(2)
$$\mathbb{E}\left[\operatorname{sign}(\langle x,g\rangle)\operatorname{sign}(\langle y,g\rangle)\right] = \frac{2}{\pi}\operatorname{arcsin}(\langle x,y\rangle)$$

Proof sketch: If x = y or x = -y then the identity is trivial. Suppose that x and y are not parallel and consider the two-dimensional subspace spanned by them. By rotational invariance of the Gaussian distribution, the projection of g onto this subspace is a two-dimensional standard Gaussian. Observe that $\operatorname{sign}(\langle x, g \rangle) \operatorname{sign}(\langle y, g \rangle)$ is positive if and only if g lies above or below both of the half-planes orthogonal to x and y respectively (Figure 3).

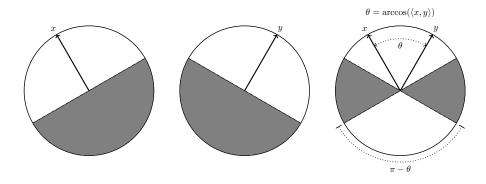


Figure 3. Grothendieck's identity in two dimensions.

Since the direction of q is uniform on the unit circle, it follows that this happens with probability

$$\frac{2}{2\pi} (\pi - \arccos(\langle x, y \rangle)).$$

Hence, the expectation in (2) equals

$$\frac{1}{\pi} \left(\pi - \arccos(\langle x, y \rangle) - \frac{1}{\pi} \left(\arccos(\langle x, y \rangle) = 1 - \frac{2}{\pi} \arccos(\langle x, y \rangle), \right) \right)$$

ich equals the right-hand side of (2).

which equals the right-hand side of (2).

We will use the Taylor expansions of the sine and hyperbolic sine functions, given by

$$\sin(t) = \sum_{k=0}^{\infty} \alpha_k t^k$$
$$\sinh(t) = \sum_{k=0}^{\infty} |\alpha_k| t^k$$

where for k = 0, 1, ..., we have $\alpha_{2k} = 0$ and $\alpha_{2k+1} = (-1)^k / ((2k+1)!)$. In particular, the Taylor coefficients of the hyperbolic sine functions are given by the absolute values of those of the sine function. Moreover, both of these Taylor series converge on the interval [-1, 1].

Recall that the *tensor product* of vectors $x \in \mathbb{R}^{d_1}$ and $y \in \mathbb{R}^{d_1}$ is the d_1d_2 -dimensional vector $x \otimes y \in \mathbb{R}^{d_1d_2}$ given by

$$x \otimes y = (x_i y_j)_{(i,j) \in [d_1] \times [d_2]}.$$

For a positive integer k, denote by $x^{\otimes k}$ the k-fold iterated tensor product of x with itself. We leave the proof of the following simple proposition as an exercise.

Proposition 2.2. For any $x, y \in \mathbb{R}^d$, we have $\langle x^{\otimes k}, y^{\otimes k} \rangle = \langle x, y \rangle^k$.

Proof of Theorem 1.1: Let

$$c = \sinh^{-1}(1) = \ln(1 + \sqrt{2}).$$

Fix a positive integer d and two sets of d-dimensional unit vectors $x_1, \ldots, x_n, y_1, \ldots, y_n \in S_2^{d-1}$. We show that there exist $\{-1, 1\}$ -valued random variables $a_1, \ldots, a_n, b_1, \ldots, b_n$ such that

$$\mathbb{E}[a_i b_j] = \frac{2c}{\pi} \langle x_i, y_j \rangle$$

holds for all $i, j \in [n]$. To see why this suffices to prove the theorem, observe that by linearity of expectation,

$$\frac{2c}{\pi}\sum_{i,j=1}^n A_{ij}\langle x_i, y_j\rangle = \mathbb{E}\Big[\sum_{i,j=1}^n A_{ij}a_ib_j\Big] \le \max_{a_i,b_j\in\{-1,1\}}\sum_{i,j=1}^n A_{ij}a_ib_j.$$

This shows that $K_G \leq \pi/(2c)$.

To obtain the random signs, define two new sequences of vectors:

$$u_{i} = \bigoplus_{k=1}^{\infty} \sqrt{|\alpha_{k}|} c^{k/2} x_{i}^{\otimes k}$$
$$v_{j} = \bigoplus_{k=1}^{\infty} \operatorname{sign}(\alpha_{k}) \sqrt{|\alpha_{k}|} c^{k/2} y_{j}^{\otimes k}$$

Using the Taylor expansions of sin and sinh and Proposition 2.2 it is easy to verify that these are unit vectors and that

$$\langle u_i, v_j \rangle = \sin(c \langle x_i, v_j \rangle).$$

Observe that these are infinite-dimensional. However, since there are only 2n of them, they span a space of dimension at most 2n, and it follows that there exist unit vectors $u'_1, \ldots, u'_n, v'_1, \ldots, v'_n \in S_2^{2n-1}$ such that $\langle u'_i, v'_j \rangle = \langle u_i, v_j \rangle$ for all $i, j \in [n]$. Let $g = (g_1, \ldots, g_{2n})$ be a random vector of independent standard normal random variables. Define

$$a_i = \operatorname{sign}(\langle u'_i, g \rangle)$$
 and $b_j = \operatorname{sign}(\langle v'_i, g \rangle).$

Then, by Lemma 2.1,

$$\frac{\pi}{2} \mathbb{E}[a_i b_j] = \arcsin(\langle u'_i, v'_j \rangle)$$
$$= \arcsin(\sin(c \langle x_i, y_j \rangle))$$
$$= c \langle x_i, y_j \rangle.$$

This proves the theorem.

3. GROTHENDIECK FACTORIZATION

In this section and the next, given a matrix $A \in \mathbb{R}^{m \times n}$ and normed vector spaces $X = (\mathbb{R}^n, || \, ||_X), \, Y = (\mathbb{R}^m, || \, ||_Y)$, we shall write $||A||_{X \to Y}$ for the operator norm of the linear operator $X \to Y$ given by $x \mapsto Ax$.

While it is not hard to interpret the $\ell_{\infty} \to \ell_1$ norm, one may wonder what it means for a matrix A to satisfy $||A||_G \leq 1$. The answer turns out to be that A can be "factored through a Hilbert space", meaning that there exist matrices $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{m \times n}$ such that A can decomposed as A = BC and such that $||B||_{\ell_2 \to \ell_1} ||C||_{\ell_{\infty} \to \ell_2} \leq 1$. This is a result of the following lemma, which we prove in this section.

Lemma 3.1 (Grothendieck). Let $A \in \mathbb{R}^{n \times n}$ be a matrix without zero rows or columns. Then, satisfies $||A||_G \leq C$ if and only if there exist positive unit vectors $u, v \in \mathbb{R}_{>0} \cap S_2^{n-1}$ such that for any $x, y \in \mathbb{R}^n$,

$$(3) \qquad \qquad |\langle Ax, y \rangle| \le C ||x \circ u||_2 ||y \circ v||_2,$$

where \circ denotes the entry-wise product.

Proof: We prove the "only if" direction and leave the "if" direction as an exercise. Let $M = A/||A||_G$, so that $||M||_G \leq 1$. Then, by the AMGM inequality, it holds that for arbitrary vectors x_i, y_j of the same dimension, we have

(4)
$$\left|\sum_{i,j=1}^{n} M_{ij} \langle x_i, y_j \rangle\right| \leq \max_{i,j \in [n]} \|x_i\| \|y_j\| \leq \frac{1}{2} \max_{i,j \in [n]} (\|x_i\|^2 + \|y_j\|^2).$$

Define the set $K \subseteq \mathbb{R}^{n \times n}$ by

$$K = \left\{ \left(\|x_i\|^2 + \|y_j\|^2 - 2 \Big| \sum_{k,\ell=1}^n M_{k\ell} \langle x_k, y_\ell \rangle \Big| \right)_{i,j=1}^n : d \in \mathbb{N}, \ x_i, y_j \in \mathbb{R}^d \right\}.$$

We show that K is a convex cone. For every $t \in \mathbb{R}_+$ and matrix $Q \in K$ given by vectors x_i, y_j , the vectors $x'_i = \sqrt{t}x_i$ and $y'_j = \sqrt{t}y_j$ similarly define tQ, and so K is a cone. We now show that K is convex. Let

6

 $Q, Q' \in K$ be specified by x_i, y_j and x'_i, y'_j respectively. Then, for any $\lambda \in [0, 1]$, the vectors $(\sqrt{\lambda}x_i, \sqrt{1-\lambda}x'_i), (\sqrt{\lambda}y_j, \sqrt{1-\lambda}y'_j)$ can easily be seen to define $\lambda Q + (1-\lambda)Q'$, which thus also belongs to K.

Additionally, it follows from (4) that K is disjoint from the open convex cone $\mathbb{R}_{<0}^{n \times n}$ of matrices with strictly negative entries. It thus follows from the Hahn–Banach separation theorem that there is a nonzero matrix $L \in \mathbb{R}^{n \times n}$ such that $\langle L, Q \rangle \geq 0$ for all $Q \in K$ and $\langle L, N \rangle < 0$ for all $N \in \mathbb{R}_{<0}^{n \times n}$. The second inequality implies that L is entry-wise non-negative. Indeed, suppose that $L_{ij} \leq -\varepsilon$ for some $\varepsilon > 0$ and let $\delta = \max_{k,l} |L_{kl}|$. Consider the negative matrix N given by $N_{ij} = -1$ and $N_{kl} = -\varepsilon/(\delta n^2)$ for all $(k, l) \neq (i, j)$. Then,

$$\langle L, N \rangle \ge \varepsilon - \varepsilon (n^2 - 1)/n^2 > 0,$$

a contradiction.

Let $P = L / \sum_{ij} L_{ij}$, so that P defines a probability distribution on $[n]^2$. Then, for any $Q \in K$,

$$0 \le \langle P, Q \rangle = \sum_{i,j=1}^{n} P_{ij}(\|x_i\|^2 + \|y_j\|^2) - 2\Big| \sum_{k,\ell=1}^{n} M_{k\ell} \langle x_k, y_\ell \rangle \Big|$$
$$= \sum_{i=1}^{n} \sigma_i \|x_i\|^2 + \sum_{j=1}^{n} \mu_j \|y_j\|^2 - 2\Big| \sum_{k,\ell=1}^{n} M_{k\ell} \langle x_k, y_\ell \rangle \Big|,$$

where $\sigma_i = P_{i1} + \cdots + P_{in}$ and $\mu_j = P_{1j} + \cdots + P_{nj}$. Rearranging the inequality above, it follows that for every $\lambda > 0$, we have

(5)
$$2\Big|\sum_{k,\ell=1}^{n} M_{k\ell} \langle x_k, y_\ell \rangle\Big| = 2\Big|\sum_{k,\ell=1}^{n} M_{k\ell} \langle \lambda x_k, \lambda^{-1} y_\ell \rangle\Big| \\ \leq \lambda^2 \sum_{i=1}^{n} \sigma_i \|x_i\|_2^2 + \lambda^{-2} \sum_{j=1}^{n} \mu_j \|y_j\|_2^2.$$

Setting

$$\lambda = \left(\frac{\sum_{j=1}^{n} \mu_j \|y_j\|_2^2}{\sum_{i=1}^{n} \sigma_i \|x_i\|_2^2}\right)^{1/4}$$

in (5), we find that

$$2\Big|\sum_{k,\ell=1}^{n} M_{k\ell}\langle x_k, y_\ell\rangle\Big| \le 2\Big(\sum_{i=1}^{n} \sigma_i \|x_i\|_2^2\Big)^{1/2} \Big(\sum_{j=1}^{n} \mu_j \|y_j\|_2^2\Big)^{1/2}.$$

In particular, by letting $u_i = \sqrt{\sigma_i}$, $v_i = \sqrt{\mu_i}$ for every $i \in [n]$, the above shows that if $x_k, y_\ell \in \mathbb{R}$, then

(6)
$$|\langle Mx, y \rangle| \le ||x \circ u||_2 ||y \circ v||_2.$$

The assumption that M has no zero rows or columns shows that uand v have strictly positive entries. To see this, first observe that uand v have at least one non-zero entry because they have unit ℓ_2 -norm. Let $i \in [n]$ be arbitrary, let $j \in [n]$ be such that $M_{ij} \neq 0$ (as per the assumption on M) and let $k \in [n]$ such that $v_k \neq 0$. Setting $x = e_i$ and $y = \operatorname{sign}(M_{ij})e_j + \operatorname{sign}(M_{ik})e_k$ in (6) shows that

$$0 < |M_{ij}| \le |M_{ij}| + |M_{ik}| = |\langle Mx, y \rangle| \le u_i \sqrt{v_j^2 + v_k^2} \le u_i v_j.$$

In particular, $u_i > 0$ for each $i \in [n]$. The same argument shows that v has strictly positive entries as well. \Box

Combining Lemma 3.1 with Theorem 1.1 (Grothendieck's inequality) gives the following factorization result. For $x \in \mathbb{R}^n$, denote by Diag(x) the matrix whose diagonal is x and whose off-diagonals are all zero.

Corollary 3.2. For any matrix $A \in \mathbb{R}^{n \times n}$, there exist $B, C \in \mathbb{R}^{n \times n}$ such that A = BC and $||B||_{\ell_2 \to \ell_1} ||C||_{\ell_{\infty} \to \ell_2} \leq K_G ||A||_{\ell_{\infty} \to \ell_1}$.

Proof: Let $u, v \in \mathbb{R}^n$ be as in Lemma 3.1. Since u, v are Euclidean unit vectors, it follows that $\|\operatorname{Diag}(u)\|_{\ell_{\infty}\to\ell_2} = \|\operatorname{Diag}(v)\|_{\ell_2\to\ell_1} \leq 1$. Define $M = \operatorname{Diag}(v)^{-1}A\operatorname{Diag}(u)^{-1}$. Then, it follows from Lemma 3.1 and Theorem 1.1 that for any $x, y \in \mathbb{R}^n$, we have

$$|\langle Mx, y \rangle| \le ||A||_G || (\operatorname{Diag}(u)^{-1}x) \circ u ||_2 || (\operatorname{Diag}(v)^{-1}y) \circ v ||_2 \le K_G ||A||_{\ell_{\infty} \to \ell_1} ||x||_2 ||y||_2.$$

In particular, this shows that $||M||_{\ell_2 \to \ell_2} \leq K_G ||A||_{\ell_\infty \to \ell_1}$. Setting B = Diag(v)M and C = Diag(u) then gives the result since

$$||B||_{\ell_2 \to \ell_1} \le ||\operatorname{Diag}(v)||_{\ell_2 \to \ell_1} ||M||_{\ell_2 \to \ell_2}.$$

4. An application to geometric functional analysis

We end with a first application of Grothendieck's inequality. A finitedimensional normed space X embeds into normed space Y with distortion C if there is a subspace $Z \subseteq Y$ with the same dimension as Xsuch that $d(X, Z) \leq C$, where d is the Banach-Mazur distance. **Corollary 4.1.** Let $n \leq k$ be positive integers and let $X = (\mathbb{R}^n, || ||_X)$ be a normed space. Suppose that X and its dual X^* embed into ℓ_1^k with distortion C_1, C_2 , respectively. Then, $d(X, \ell_2^n) \leq K_G C_1 C_2$.

A famous result of Dvoretzky, which we will see later in this course, implies that a converse of Corollary 4.1 also holds. In particular, there is a constant C such that if $d(X, \ell_2^n) \leq C'$, then both X and X^* embed into ℓ_1^{2n} with distortion at most CC'. A more basic result due to Khitchine, which we will also see later, shows that this holds for $\ell_1^{2^n}$.

Proof: Let $S_1, S_2 \subseteq \ell_1^k$ be subspaces such that $d(X, S_1) \leq C_1$ and $d(X^*, S_2) \leq C_2$. Then, there exist $A_1, B_1, A_2, B_2 \in \mathbb{R}^{k \times n}$ such that $A_1^\mathsf{T}B_1 = A_2^\mathsf{T}B_2 = I_n$ and such that

$$||A_1^{\mathsf{T}}||_{S_1 \to X} ||B_1||_{X \to S_1} \le C_1 \text{ and } ||A_2^{\mathsf{T}}||_{S_2 \to X^*} ||B_2||_{X^* \to S_2} \le C_2.$$

We can thus write the identity (which should be thought of as a linear map from X to itself) as

(7)
$$(A_1^{\mathsf{T}}B_1)(A_2^{\mathsf{T}}B_2)^{\mathsf{T}} = A_1^{\mathsf{T}}B_1B_2^{\mathsf{T}}A_2 = I_n.$$

Note that

$$||B_1||_{X \to \ell_1} = ||B_1||_{X \to S_1}$$

$$||B_2^{\mathsf{T}}||_{\ell_{\infty} \to X} = ||B_2||_{X^* \to \ell_1} = ||B_2||_{X^* \to S_1}.$$

Since operator norms are sub-multiplicative, the matrix appearing in the middle of (7), $M = B_1 B_2^{\mathsf{T}} \in \mathbb{R}^{k \times k}$, therefore satisfies

$$\|M\|_{\ell_{\infty}\to\ell_{1}} \leq \|B_{1}\|_{X\to\ell_{1}}\|B_{2}^{\mathsf{T}}\|_{\ell_{\infty}\to X} = \|B_{1}\|_{X\to S_{1}}\|B_{2}\|_{X^{*}\to S_{2}}.$$

It follows from Corollary 3.2 that there exist $M_1, M_2 \in \mathbb{R}^{k \times k}$ with which we can factor M as $M = M_1^{\mathsf{T}} M_2$ and which satisfy the norm bounds

$$\|M_1^{\mathsf{T}}\|_{\ell_2 \to \ell_1} \|M_2\|_{\ell_\infty \to \ell_2} \le K_G \|M\|_{\ell_\infty \to \ell_1}.$$

Using this factorization of M, we can rewrite the factorization (7) as

$$I_n = A_1^\mathsf{T} M_1^\mathsf{T} M_2 A_2.$$

The image of M_2A_2 is an *n*-dimensional subspace of \mathbb{R}^k . Therefore, there is an isometry from ℓ_2^n to ℓ_2^k given by a matrix $D \in \mathbb{R}^{k \times n}$ such that the right-hand side of (7) equals $(A_1^\mathsf{T} M_1^\mathsf{T} D)(D^\mathsf{T} M_2A_2)$. This gives a factorization of the identity operator on X. In particular, since S_2^* is a quotient of ℓ_{∞}^n , we get that

$$d(X, \ell_{2}^{n}) \leq \|A_{1}^{\mathsf{T}} M_{1}^{\mathsf{T}} D\|_{\ell_{2} \to X} \|D^{\mathsf{T}} M_{2} A_{2}\|_{X \to \ell_{2}}$$

$$\leq \|A_{1}^{\mathsf{T}}\|_{S_{1} \to X} \|M_{1}^{\mathsf{T}}\|_{\ell_{2} \to S_{1}} \|M_{2}\|_{S_{2}^{*} \to \ell_{2}} \|A_{2}\|_{X \to S_{2}^{*}}$$

$$\leq \|A_{1}^{\mathsf{T}}\|_{S_{1} \to X} \|M_{1}^{\mathsf{T}}\|_{\ell_{2} \to \ell_{1}} \|M_{2}\|_{\ell_{\infty} \to \ell_{2}} \|A_{2}\|_{X \to S_{2}^{*}}$$

$$\leq K_{G} \|A_{1}^{\mathsf{T}}\|_{S_{1} \to X} \|M\|_{\ell_{\infty} \to \ell_{1}} \|A_{2}^{\mathsf{T}}\|_{X^{*} \to S_{2}}$$

$$\leq K_{G} \|A_{1}^{\mathsf{T}}\|_{S_{1} \to X} \|B_{1}\|_{X \to S_{1}} \|A_{2}^{\mathsf{T}}\|_{S_{2} \to X^{*}} \|B_{2}\|_{X^{*} \to S_{2}}$$

$$\leq K_{G} C_{1} C_{2}.$$

5. Exercises

- *Exercise* 5.1. Show that the quantities $||A||_{\ell_{\infty} \to \ell_1}$ and $||A||_G$ are norms.
- *Exercise* 5.2. Let $H = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Show that $||H||_{\ell_{\infty} \to \ell_1} = 2$.
- Exercise 5.3. Prove Proposition 2.2.
- Exercise 5.4. Prove the "if" direction in Lemma 3.1.

References

- [BMMN13] Mark Braverman, Konstantin Makarychev, Yury Makarychev, and Assaf Naor. The Grothendieck constant is strictly smaller than Krivine's bound. *Forum Math. Pi*, 1:e4, 42, 2013. Preliminary version in FOCS'11.
- [Dav84] Alexander Davie. Lower bound for K_G . Unpublished, 1984.
- [Gro53] Alexander Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques (French). Bol. Soc. Mat. São Paulo, 8:1–79, 1953.
- [Kri79] J. L. Krivine. Constantes de Grothendieck et fonctions de type positif sur les sphères. Adv. Math., 31:16–30, 1979.
- [LP68] J. Lindenstrauss and A. Pełczyński. Absolutely summing operators in L_p -spaces and their applications. *Studia Math.*, 29:275–326, 1968.
- [Pis12] Gilles Pisier. Grothendieck's theorem, past and present. Bull. Amer. Math. Soc., 49(2):237–323, 2012. also available at arXiv:1101.4195.
- [Ree91] James Reeds. A new lower bound on the real Grothendieck constant. Manuscript (http://www.dtc.umn.edu/~reedsj/bound2.dvi), 1991.

10