Exercise 1 (Fun with lattices - 20 pts)

1. Construct an explicit basis for the lattice $\left\{\mathbf{x} \in \mathbb{Z}^{n}: x_{1}+\sum_{i=2}^{n} a_{i} x_{i} \equiv 0(\bmod p)\right\}$, where $a_{i} \in$ $\mathbb{Z} / p \mathbb{Z}, p$ a prime.
2. For all large enough $n \in \mathbb{Z}$, find an n-dimensional full-rank lattice \mathcal{L} in which vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ achieving the successive minimina, i.e. $\left\|\mathbf{v}_{i}\right\|=\lambda_{i}(\mathcal{L}) \forall i \in[n]$, do not form a basis of \mathcal{L}. (Hint: Cesium Chloride).

Exercise 2 (Lattice Point Counting - 40pts)

Let $\mathcal{L} \subseteq \mathbb{R}^{n}$ be a full-rank lattice. For $\varepsilon \in(0,1)$, set $r=\mu(\mathcal{L}) / \varepsilon$. The goal of this exercise is to prove the following:

$$
\frac{(1-\varepsilon)^{n} \operatorname{vol}\left(r \mathcal{B}_{2}^{n}\right)}{\operatorname{det}(\mathcal{L})} \leq\left|\mathcal{L} \cap r \mathcal{B}_{2}^{n}\right| \leq \frac{(1+\varepsilon)^{n} \operatorname{vol}\left(r \mathcal{B}_{2}^{n}\right)}{\operatorname{det}(\mathcal{L})}
$$

Let \mathcal{V} denote the Voronoi cell of \mathcal{L}.

1. Show that $\mathcal{L} \cap r \mathcal{B}_{2}^{n}+\mathcal{V} \subseteq(1+\varepsilon) r \mathcal{B}_{2}^{n}$. Use this to deduce the upper bound.
2. Show that $(1-\varepsilon) r \mathcal{B}_{2}^{n} \subseteq \mathcal{L} \cap r \mathcal{B}_{2}^{n}+\mathcal{V}$. Use this to deduce the lower bound.

Exercise 3 (CVP using a dual HKZ basis - 40pts)

Let $f(n)$ be the smallest number s.t. $\mu(\Lambda) \lambda_{1}\left(\Lambda^{*}\right) \leq f(n)$ for any n-dimensional lattice Λ. Recall that in class we proved that $f(n)=O\left(n^{3 / 2}\right)$.

Let $\mathcal{L} \subseteq \mathbb{R}^{n}$ be an n-dimensional lattice. Assume we are given a basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ such that $\mathbf{D}=\left(\mathbf{b}_{n}^{*}, \ldots, \mathbf{b}_{1}^{*}\right)$ is an HKZ-reduced basis for \mathcal{L}^{*}, where $\mathbf{B}^{*}=\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ is the dual basis of \mathbf{B}. Recall that \mathbf{D} is HKZ-reduced for \mathcal{L}^{*}, if it is size-reduced and if $\forall i \in[n],\left\|\widetilde{\mathbf{d}}_{i}\right\|=$ $\lambda_{1}\left(\pi_{\text {span }\left(\mathbf{d}_{1} \ldots, \mathbf{d}_{i-1}\right)^{\perp}}\left(\mathcal{L}^{*}\right)\right)$.

The goal of this exercise is to use \mathbf{B} to give an enumeration based CVP algorithm for \mathcal{L}.

1. Let $\mathbf{t} \in \mathbb{R}^{n}$ be a target. Fix $c_{n-k+1}, \ldots, c_{n} \in \mathbb{Z}$ for $0 \leq k<n$. Pick

$$
\mathbf{y}^{k} \in \operatorname{argmin}\left\{\|\mathbf{y}-\mathbf{t}\|: \mathbf{y}=\mathbf{B} \mathbf{z}, \mathbf{z} \in \mathbb{Z}^{n}, z_{j}=c_{j} \forall j \in\{n-k+1, \ldots, n\}\right\}
$$

(note that \mathbf{y}_{0} is simply a closest vector in \mathcal{L} to \mathbf{t}.) Express $\mathbf{y}^{k}=\mathbf{B z}^{k}, \mathbf{z}^{k} \in \mathbb{Z}^{n}$, and let

$$
p_{n-k}:=\frac{\left\langle\widetilde{\mathbf{b}}_{n-k}, \mathbf{t}-\sum_{i=n-k+1}^{n} c_{i} \mathbf{b}_{i}\right\rangle}{\left\|\widetilde{\mathbf{b}}_{n-k}\right\|^{2}},
$$

Using the above notation, show that $z_{n-k}^{k} \in\left[p_{n-k}-f(n-k), p_{n-k}+f(n-k)\right] \cap \mathbb{Z}$.
2. Use the previous part to give an enumeration based algorithm which uses \mathbf{B} to find the closest lattice vector to \mathbf{t} in $2^{O(n)} \prod_{i=1}^{n} f(i)$ time.

