
Mastermath, Spring 2018
Intro to Lattice Algs & Crypto Lecture 4

27/02/18

Lecturers: D. Dadush, L. Ducas
Scribe: K. de Boer

1 Introduction

In this lecture, we focus on computational problems in the field of lattice theory. These problems
are often variations on finding a short lattice in a given lattice or finding a lattice point near a
given target point. Also, two algorithms are treated that solve these problems in a ‘approximate’
sense. Those are the Babai Nearest-Plane algorithm – also known as size reduction – and the
famous Lenstra-Lenstra-Lovàsz algorithm, which is more well-known by its acronym LLL.

2 Computational problems over lattices

Definition 1 (SVP variations) Given a basis B of a lattice Λ ⊆ Rn

• (SVP) Shortest Vector Problem: Find some v ∈ Λ such that ‖v‖ = λ1(Λ).

• (α-SVP) Approximate Shortest Vector Problem: Find some v ∈ Λ\{0} such that ‖v‖ ≤ α · λ1(Λ).

• (r-HermiteSVP) Hermite Approximate Shortest Vector Problem:
Find some v ∈ Λ\{0} such that ‖v‖ ≤ r · det(Λ)1/n.

The parameter α ≥ 1 in α-SVP is called the approximation factor. The bigger this factor, the easier
α-SVP becomes. For α = 1, α-SVP and SVP are the same problem. The problem r-HermiteSVP is
very similar to α-SVP except for the fact that it measures the length of the vector v with respect
to the (n-th root of the) determinant of Λ instead of λ1(Λ), the length of the shortest vector.

The following definition is about the closest vector problem. Given a target t ∈ span(B), this
problem asks to find the closest vector v ∈ Λ to t. Note that t is only in the linear span of the
lattice, and generally is not in the lattice Λ itself.

Definition 2 (CVP variations) Given a basis B of a lattice Λ ⊆ Rn and given a target t ∈ span(B).

• (CVP) Closest Vector Problem:
Find some v ∈ Λ such that ‖v− t‖ is minimized. I.e. ‖v− t‖ = d(Λ, t).

• (α-CVP) α-Approximate Closest Vector Problem (Relative):
Find some v ∈ Λ such that ‖v− t‖ ≤ α · d(Λ, t).

• (r-AbsCVP) r-Approximate Closest Vector Problem (Absolute):
Find some v ∈ Λ such that ‖v− t‖ ≤ r.

Again, the parameter α ≥ 1 in α-CVP plays essentially the same rôle as in the α-SVP; to relax the
problem somewhat.

One could ask why the r-absolute approximate closest vector problem needs a separate
definition; is it not just a rephrasing of the relative approximate closest vector problem with
α = r/d(Λ, t)? The answer is: Yes, it is. But often, d(Λ, t) is not known explicitly. This makes it
hard to check whether some v ∈ Λ is really a solution or not. Having a fixed ‘absolute’ value r to
compare ‖v− t‖ with, overcomes this issue. That is why the r-AbsCVP has a separate definition.

1

The upcoming definition is one of a promise problem. In a promise problem the input is
promised to satisfy certain requirements (hence the name). For those who aren’t convinced that
this really alters the problem, let’s sketch the following example.

Exercise 1 Suppose you are given a large number n ∈ N, and you are asked to factorize this
number into prime factors. How would you solve this? Let’s add a certain promise on n: any
prime p that divides n satisfies p ≤ 100. How would you solve this problem now?

Definition 3 (BDD variations) Given a basis B of a lattice Λ ⊆ Rn and given a target t ∈ span(B).
Let r ≤ 1

2 λ1(Λ) and α ≤ 1
2 .

• (r-AbsBDD) r-Approximate Bounded Distance Decoding (Absolute):
Promised: d(Λ, t) ≤ r.
Find the unique v ∈ Λ such that ‖v− t‖ ≤ r

• (α-BDD) α-Approximate Bounded Distance Decoding (Relative):
Promised: d(Λ, t) ≤ αλ1(Λ).
Find the unique v ∈ Λ such that ‖v− t‖ ≤ α · λ1(Λ).

As you can see, the BDD-variants are nothing more than their respective CVP-variants with
a promise on the input target t. This promise consists of the target point t being very close to the
lattice Λ. This closeness is measured by the parameter r (or α, in the relative version).

Despite the familiarity between BDD and CVP, they fundamentally differ at the following
point. The problem α-BDD becomes easier whenever α decreases; whereas α-CVP becomes harder
whenever α decreases.

Exercise 2 Show that the word ‘unique’ in Definition 3 is justified, i.e., show that there exists
only one v ∈ V with ‖v− t‖ ≤ r.

3 Babai Nearest-Plane algorithm

Definition 4 Given a basis B and let B̃ be its Gram-Schmidt orthogonalized basis. Denote by Psym(B̃)
the symmetric parallelepiped B̃[−1/2, 1/2)n associated to B̃, or the symmetric Babai fundamental domain
of B.

The following algorithms attempts to solve α-BDD and α′-CVP; so it tries to find a vector
close to some target point t. It outputs some vector v ∈ Λ and an error e in the symmetric Babai
fundamental domain.
Proof: (of the correctness of algorithm 1)
Clearly, v + e = t and v ∈ Λ at any point in the algorithm. So this leaves us to show that
e ∈ Psym(B̃) after the algorithm finishes. As B̃ is a basis, we can always write e = ∑i cib̃i for
some ci ∈ R. By orthogonality, we have 〈e, b̃i〉 = ci‖b̃i‖2 and therefore it is enough to show that

|ci| = 〈e,b̃i〉
‖b̃i‖2 ≤ 1

2 for all i.

But when i = j, we can show that 〈e,b̃j〉
‖b̃j‖2 ≤ 1

2 . Since all operations after this step only alter e by

vectors orthogonal to b̃j, this inner product doesn’t change.
2

2

Algorithm 1: Babai Nearest-Plane algorithm
Input : A basis B = (b1, . . . , bn) of a lattice Λ and a target t ∈ span(Λ).
Output: (v, e) such that v + e = t, v ∈ Λ and e ∈ Psym(B̃).

e := t
v := 0
for i = n down to 1 do

k := d 〈e,b̃i〉
‖b̃i‖2 c

e := e− kbi
v := v + kbi

end
return (v, e)

Exercise 3 Show that Babai Nearest-Plane algorithm solves r-AbsBDD for any r ≤ 1
2 mini‖b̃i‖.

Exercise 4 Show that Babai Nearest-Plane algorithm solves r-AbsCVP for any r ≥ 1
2

√
∑n

i=1‖b̃i‖2.

4 Hermite’s Bound and the LLL-algorithm

4.1 Hermite’s Bound

Theorem 5 (Hermite) γn ≤ γn−1
2 .

One could reasonably ask why this theorem is stated here, as we already proved an asymptot-
ically much stronger bound on γn using Minkowski’s convex body theorem. The first reason
why this theorem is mentioned is because of the historic context1; before Minkowski’s theorem,
Hermite’s bound was the best known. The second and most important reason why this theorem
is treated here, is because of its similarities with a famous basis reduction algorithm: the LLL
algorithm. Some consider LLL as an ‘algorithmization’ of Hermite’s bound.

We will soon prove Hermite’s theorem ‘by algorithm’, see algorithm 2.

Definition 6 Let Λ = L(B) a lattice generated by the basis B. We will denote by Bi:j the basis
(πi(bi), . . . , πi(bj)).

Definition 7 Let Λ = L(B) a lattice generated by the basis B. We will denote Λi:j for the lattice
generated by Bi:j = (πi(bi), . . . , πi(bj)), i.e.,

Λi:j = L(πi(bi), . . . , πi(bj)).

Exercise 5 Verify for yourself that Λ1:n = Λ and Λi:n = Λi.

Exercise 6 Show that B̃i:j = (B̃i:k|B̃k+1:j) for any i ≤ k ≤ j.

Lemma 8 det(Λi:j) = ∏
j
k=i‖b̃k‖.

3

Algorithm 2: Hermite reduction algorithm
Input : A basis B = (b1, . . . , bn) of a lattice Λ.
Output: A basis B such that ‖b1‖2 ≤ γn−1

2 · det(Λ)2/n.

while ∃i such that ‖b̃i‖ > γ2‖b̃i+1‖ do
Find matrix U ∈ Z2×2 such that Bi:i+1U is Lagrange reduced
Set (b′i, b′i+1) = (bi, bi+1)U
Set B = (b1, . . . , bi−1, b′i, b′i+1, bi+2, . . . , bn)

end
return B

Proof: The proof is left as an exercise to the reader. 2

Proof: (of Hermite’s theorem)
First, we prove the correctness of algorithm 2, if it terminates. After that, we will show that
the algorithm does terminate indeed. Lastly, we see why the correctness and termination of the
Hermite reduction algorithm implies Hermite’s bound.

Correctness If the algorithm terminates, any pair of basis vectors b̃i, b̃i+1 satisfies ‖b̃i‖ ≤
γ2‖b̃i+1‖. Using inductive reasoning, one can conclude that ‖b̃1‖ = ‖b̃1‖ ≤ γi−1

2 ‖b̃i‖. Mul-
tiplying together for all i and using the determinant formula and the triangular number formula,
yields

‖b1‖n ≤
n

∏
i=1

γi−1
2 ‖b̃i‖ = γ

n(n−1)
2

2 det(Λ).

Taking n/2-th roots shows that the output of the Hermite reduction algorithm – if it indeed
terminates – satisfies the requirements.

Termination Before proving termination of the algorithm, we would like to show that Lagrange-
reduction on a pair of vectors (bi, bi+1) indeed leads to inequality ‖b̃i‖ ≤ γ2‖b̃i+1‖. After
Lagrange-reduction, we have ‖b̃i‖2 ≤ γ2 · det(Bi:i+1) = γ2‖b̃i‖‖b̃i+1‖, where the last equal-
ity comes from Lemma 8. Dividing out appropriately yields ‖b̃i‖ ≤ γ2‖b̃i+1‖. So Lagrange-
reduction indeed ‘resolves’ the wrong-way inequality ‖b̃i‖ > γ2‖b̃i+1‖.

To prove that the algorithm terminates one can use an induction argument. Let us assume, by
hypothesis, that the Hermite reduction algorithm always terminates on lattices with dimension
smaller than n. We will prove that this algorithm also terminates on lattices with dimension
precisely n.

To show that, we need a few claims.

• The norm of b1 doesn’t change if a Lagrange reduction doesn’t involve b1. This is obviously
true, because then b1 is not affected and the norm stays the same.

• When a Lagrange reduction does involve b1, it will replace b1 with a new one with strictly
smaller norm. This is true by the following reasoning. Because the Hermite reduction al-
gorithm only applies Lagrange reduction whenever ‖b1‖ > γ2‖b̃2‖, we know that ‖b1‖2 >

1Minkowski (1864-1909) established his convex body theorem in 1891; Hermite (1822-1904) stated his bound around
1850.

4

γ2‖b̃2‖‖b1‖ = γ2 · det(Λ1:2) before the Lagrange reduction happens. However, after La-
grange reduction, we have ‖b1‖ ≤ γ2 · det(Λ1:2). So the new b1 has indeed a strictly
smaller norm.

• ‖b1‖ has a lower bound. Namely, λ1(Λ) ≤ ‖b1‖.

Since Λ is a discrete subset of Rn, the norm of b1 has a lower bound and the norm is decreas-
ing during the algorithm, this norm must eventually stabilize. This means that no Lagrange-
reduction involving b1 happens after that stabilization.

Therefore, after this stabilization, the algorithm takes place in Λ2:n alone (because no opera-
tions on b1 are done anymore). By the induction hypothesis, it must terminate. Thus, the entire
algorithm on Λ terminates, too.

Implication of Hermite’s bound Lastly, the correctness and termination of this algorithm im-
plies Hermite’s bound; in any lattice of dimension n we can find a vector b1 whose square norm
is bounded by γn−1

2 · det(Λ)2/n. Thus,

γ(Λ) =
λ1(Λ)2

det(Λ)2/n ≤
‖b1‖2

det(Λ)2/n ≤
γn−1

2 · det(Λ)2/n

det(Λ)2/n = γn−1
2 .

Therefore, γn = supΛ γ(Λ) ≤ γn−1
2 . 2

4.2 Weakly LLL-reduced bases

The issue with Hermite’s algorithm is that it may be terribly slow. The idea of the Lenstra-
Lenstra-Lovász algorithm consists in slightly relaxing the termination condition to make the
algorithm faster. Below, we present a weak version of the notion of LLL-reduced basis, which
is sufficient to show that the number of iterations in the algorithm is polynomial. However, the
size of the numbers occurring in this computation is not controlled; it might still be possible that
the numbers involved in the computation are too big to efficiently compute with. The true LLL
algorithm, which will be presented in the next section, resolves this problem.

Definition 9 (ε-Weakly LLL reduced) B is said to be ε-WLLL reduced if

‖b̃i‖ ≤ (γ2 + ε)‖b̃i+1‖ for all i.

For a fixed i, this is known as the Lovàsz condition on (b̃i, b̃i+1).

Not that above algorithm only pays for a Lagrange reduction whenever the norm of b̃i is
significantly larger than what it could be. This ‘significant amount’ is measured by ε > 0. So, in
fact, above algorithm is exactly the Hermite reduction algorithm, with the sole difference that it
adds some ‘slack’ in the form of the parameter ε.

Theorem 10 If B ∈ Zn×n, then the ε-Weakly LLL algorithm terminates after poly(n, log‖B‖∞, 1/ε)

iterations.

Proof: Define P = ∏n
i=1 det(Λ1:i), to be the ‘potential‘ of a the current basis B (note that the

notation Λ1:i indeed hides a dependence in the choice of the basis). We will show that P decreases

5

Algorithm 3: ε-Weakly LLL-reduction algorithm
Input : A basis B = (b1, . . . , bn) of a lattice Λ.
Output: A basis B such that ‖b1‖2 ≤ (γ2 + ε)n−1 · det(Λ)2/n.

while ∃i such that ‖b̃i‖ > (γ2 + ε)‖b̃i+1‖ do
Find matrix U ∈ Z2×2 such that Bi:i+1U is Lagrange reduced
Set (b′i, b′i+1) = (bi, bi+1)U
Set B = (b1, . . . , bi−1, b′i, b′i+1, bi+2, . . . , bn)

end
return B

by a constant factor in each iteration and that P has a lower bound. This combined shows that
the algorithm terminates within a polynomially bounded number of iterations.

One application of Lagrange on Bi:i+1 in an iteration only changes det(Λ1:i) and keeps all
other determinants in the product of the potential fixed. Before this iteration ‖b̃i‖2 ≥ (γ2 +

ε)det(Λi:i+1). After the Lagrange reduction we must have ‖b̃i‖2 ≤ γ2 · det(Λi:i+1). Therefore,
after this Lagrange reduction, det(Λ1:i) = ∏i

k=1‖b̃k‖ must at least be diminished by a factor√
γ2

γ2+ε . Thus, also the potential P must be reduced by (at least) this factor f =
√

γ2
γ2+ε .

As Λ1:i ⊆ Zn, we must have that det(Λ1:i) ∈ Z\{0}. This has as a direct consequence that
P ≥ 1; at any time in the algorithm, P must be larger than or equal to one.

The initial potential Pinit (that is, the potential before running the algorithm) is bounded by

∏n
i=1‖bi‖ = ‖B‖n(n+1)/2

∞ , where ‖B‖∞ = maxi‖bi‖. Let N be the number of iterations, then we
know that

1 ≤ P < f N · Pinit ≤ f N · ‖B‖n(n+1)/2
∞

This means that the algorithm is surely terminated whenever f N · ‖B‖n(n+1)/2
∞ ≤ 1, i.e. whenever

N log(f) + n(n+1)
2 log(‖B‖∞) ≤ 0. Reshaping the formula yields that the algorithm is necessarily

ended when

N ≥ n(n + 1) log(‖B‖∞)

−2 · log(f)

So, the number of iterations is bounded by n(n+1) log(‖B‖∞)
−2·log(f) . Using the fact that − log(f) = 1/2 ·

log(1 + ε/γ2) =
ε

2γ2
+ O(ε2) yields the result. 2

However, it is not enough to prove that the number of iterations is bounded, in order to show
that algorithm 3 is truly poly-time. The time consumed computing with the (rational) numbers
in the algorithm should also be taken in consideration; without more analysis we don’t know
whether the rational numbers occurring in B̃ have very large numerators and denominators
(which might slow down the overall computation drastically). Also, we don’t know whether
the size of the integer coefficients of B can be controlled. We will see that bounding the integer
coefficients requires a modification of the algorithm (namely, the ‘real’ LLL algorithm), which
will be treated in the next section.

The denominators of the entries in B̃ are bounded by det(L(B))2, which follows from the
following lemma.

Lemma 11 If B ∈ Zn×n, we have B̃ ∈ 1
det(B·BT)

Zn×n.

6

Proof: We prove this by induction on the number of basis vectors. Let B = (b1, . . . , bn) be a basis.
Write C = (π2(b1), . . . , π2(bn)), a projected basis. In order to apply the induction hypothesis, we
want something that is in Zn×(n−1). But we know that π2(v) = v− 〈v,b1〉

‖b1‖2 · b1 ∈ 1
‖b1‖2 Zn. Write

d = ‖b1‖2. Then dC ∈ Zn×(n−1), so we can apply the induction hypothesis:

(dC̃) = dC̃ ∈ 1
det(CCT)

Zn×(n−1), i.e. C̃ ∈ 1
d · det(CCT)

Zn×(n−1)

Now use that C is full rank, and therefore det(CCT) = ∏n
i=2‖b̃i‖2. Since B̃ = (b1|C̃) and

det(BBT) = ‖b1‖2 · det(CCT) = d · det(CCT), we have

B̃ = (b1|C̃) ∈ 1
det(BBT)

Zn×n

2

5 LLL-reduced bases

Definition 12 A basis of a lattice B is said size reduced when

∀i < j |〈b̃i, bj〉| ≤
1
2
‖b̃i‖2

Above definition is equivalent to saying that the off-diagonal of the so-called µ-matrix of the
Gram-Schmidt orthogonalization is bounded by a half, that is, |µij| ≤ 1/2 for all i 6= j.

Definition 13 A basis B is ε-LLL reduced if it is both ε-WLLL reduced and size reduced.

Lemma 14 A size-reduced basis B of a lattice Λ ⊆ Zn has basis vectors bi satisfying log(‖bi‖), log(‖b̃i‖) ≤
poly(n) · log(det(Λ)).

Proof: As B ∈ Zn×n, we have ∏n
i=1‖b̃i‖ = det(Λ) ≥ 1, which in turn means that ‖b̃i‖ ≥

1/det(Λ). The last inequality follows from distinguishing the cases ‖b̃i‖ < 1 and ≥ 1. The last
case is trivial, whereas the first case follows from ‖b̃i‖ < ‖b̃i‖det(Λ) < det(Λ). This, by the
determinant formula, immediately yields ‖b̃i‖ ≤ det(Λ)n−1.

As the basis is size-reduced, we can write any basis vector bj = ∑n
i=1 cib̃i with |ci| ≤ 1/2.

Therefore ‖bj‖ ≤ ∑i |ci|‖b̃i‖ ≤ n
2 det(Λ)n−1.

So, both log(‖bi‖), log(‖b̃i‖) are bounded by n2 · log(det(Λ)), which proves the claim. 2

Thus, as long as the basis B is size-reduced during the computation, one can be sure that the
coefficients of the basis are not growing too large. Therefore, to have a poly-time basis reduction
algorithm, we should have an algorithm similar to the Weakly LLL-reduction algorithm, with the
extra requirement that, in the meantime, the basis is always size-reduced. This is roughly what
the LLL algorithm does.

7

Algorithm 4: Size-reduction algorithm
Input : A basis B = (b1, . . . , bn) of a lattice Λ.
Output: A size-reduced basis B, i.e., ∀i < j |〈b̃i, bj〉| ≤ 1

2‖b̃i‖2

Set B′ = (b1, . . . , bn−1).
Size-reduce B′ recursively.
Apply the Babai Nearest-Plane algorithm with basis B′ and target bn.
Return (B′|e), where e is the output of the Babai Nearest Plane algorithm.

5.1 The size-reduction algorithm

The size-reduction algorithm (algorithm 4) uses the Babai Nearest-Plane with a target which is
not in the span of B′. One can easily prove that applying the BNP-algorithm on bn is equivalent
to applying it to π(bn), where π is the map projecting the space span(B) on span(B′).

Exercise 7 Let B = (B′|bn) be a basis of a lattice. Show that |〈b̃i, bn〉| = |〈b̃i, π(bn)〉|, where π is
the map projecting the space span(B) on span(B′). [Hint: Show that π = id− πn.]

Lemma 15 The size-reduction algorithm (algorithm 4) indeed outputs a size-reduced basis as in definition
12.

Proof: The design of the size-reduction algorithm makes it easy to prove this claim by induction.
As B′ is size-reduced by induction, we only have to check whether for all i < n we have the
inequality |〈b̃i, bn〉| ≤ 1

2‖b̃i‖2.
Let π : span(B) → span(B′) be the projection map that projects span(B) on span(B′). We

have
|〈b̃i, bn〉| = |〈b̃i, π(bn)〉| ≤

1
2
‖b̃i‖2,

where the inequality follows from the construction of the Babai nearest-plane algorithm, and the
equality follows from the last exercise. 2

5.2 The LLL algorithm

Algorithm 5: LLL-reduction algorithm
Input : A basis B = (b1, . . . , bn) of a lattice Λ.
Output: An LLL-reduced basis B

Size-reduce the basis B
while ∃i such that ‖b̃i‖ > (γ2 + ε)‖b̃i+1‖ do

Lagrange reduce Bi:i+1 as in the WLLL algorithm.
Size-reduce the new basis B.

end
Return B

8

Exercise 8 Show that size-reduction doesn’t affect the potential P = ∏n
i=1 det(Λ1:i), as defined

in the proof of theorem 10. Explain why you can use this proof to show that the LLL-reduction
algorithm uses only polynomially many iterations.

As we already proved that the denominators of b̃i stay bounded, we only have to prove that
the coefficients of bi doesn’t grow to big. As we saw that size-reduced bases indeed satisfy this
requirement (see lemma 14), we are almost done. The final step to finish the prove that the LLL-
algorithm terminates in polynomially bounded time, is showing that Lagrange-reduction will
not let grow the basis too much.

Lemma 16 Let (b1, b2) two independent vectors. Let (b′1, b′2) = (b1, b2)U be the associated Lagrange-
reduced basis.

Then log‖b′1‖, log‖b′2‖ are polynomially bounded by the logarithms of the norms of the input basis
vectors. Moreover, during the Lagrange reduction, the intermediate basis vectors will also satisfy this
bound.

Proof: In the previous lecture notes, we proved that the Lagrange reduction terminates within
O(log ‖b1‖√

detΛ
) iterations. At each iteration, the Lagrange algorithm multiplies the basis by a matrix

of the form U0 =

[
0 1
1 −k

]
with k = d 〈b1,b2〉

‖b1‖2 c. As |〈b1, b2〉| ≤ ‖b1‖‖b2‖, we have that |k| must

be bounded by ‖b2‖
‖b1‖ . The `2-matrix norm of such an unimodular U0 matrix is bounded by

√
k2 + 2 ≤ |k|+ 2. Therefore,

‖b′1‖ ≤ ‖b1‖‖U‖ = ‖b1‖‖U0 · · ·Ur‖ ≤ ‖b1‖‖U0‖ · · · ‖Ur‖.

Here, r is the number of iterations, which is bounded by O(log ‖b1‖√
detΛ

). Taking logarithms, gives
us

log‖b′1‖ ≤ log‖b1‖+ log‖U0‖+ . . . + log‖Ur‖ ≤ log‖b1‖+ O
(

log
‖b1‖√
detΛ

)
· log

(
‖b2‖
‖b1‖

+ 2
)

,

which is clearly polynomially bounded in log‖b1‖ and log‖b2‖. A similar bound can be estab-
lished for b′2. Furthermore, every occurring intermediate basis vector must satisfy this bound,
too. 2

Combined all the previous lemmata, we arrive at the following result.

Theorem 17 The LLL-basis reduction algorithm (as in Algorithm 5) with as input a basis B ⊆ Zn×n

runs in polynomial time.

9

	Introduction
	Computational problems over lattices
	Babai Nearest-Plane algorithm
	Hermite's Bound and the LLL-algorithm
	Hermite's Bound
	Weakly LLL-reduced bases

	LLL-reduced bases
	The size-reduction algorithm
	The LLL algorithm

