
Mastermath, Spring 2018
Intro to Lattice Algs & Crypto Lecture 7

Periodic Gaussian, Discrete Gaussian and Transference

Lecturers: D. Dadush, L. Ducas
Scribe: S. Huiberts

In this lecture, we look at the Periodic and Discrete Gaussian functions and study them
through Fourier-analytic methods. We prove a tail bound for the Discrete Gaussian, which we
use to prove a stronger transference result.

1 The Periodic Gaussian

Definition 1 We define the function ρs : Rn 7→ R by

ρs(x) := e−π‖x/s‖2
, s > 0,

and from this we define the periodic Gaussian fs : Rn → R by

fs(t) := ρs(L+ t) = ∑
x∈L

ρs(x + t).

We write ρ := ρ1.

The function fs approaches a constant function as s→ ∞, and approaches separate Gaussian
densities as s → 0. Later in this lecture we will formalize this notion by defining a smoothing
parameter.

(a) Periodic Gaussian on Z2 for s = 0.3. (b) Periodic Gaussian on Z2 for s = 1.

Proposition 2 The functions ρs satisfy the following properties.

1.
∫

Rn ρs(x)dx = sn.

2. ρ̂s(y) = snρ1/s(y).

Proof: We prove both properties for s = 1. The general cases follow by a change of variables.
The first property is proven by switching the product and integration:∫

Rn
ρ(x)dx =

∫
Rn

n

∏
i=1

e−πx2
i dx =

n

∏
i=1

∫ ∞

−∞
e−πx2

i dxi = 1.

The equality
∫ ∞
−∞ e−πx2

i dxi = 1 is the standard Gaussian integral.

1



Observe that we can also integrate every variable separately to prove the second property.

ρ̂(y) =
∫

Rn
e−π‖x‖2

e−2πi〈y,x〉dx =
n

∏
j=1

∫ ∞

−∞
e−πx2

j−2πiyjxj dxj

We complete the square and get
∫ ∞
−∞ e−πx2

j−2πiyjxj dxj = e−πy2
j
∫ ∞
−∞ e−π(xj+iyj)

2
dxj. We argue that

the integral
∫ ∞
−∞ e−π(xj+iyj)

2
dxj is the same for every value of yj, which we show by differentiation.

d
dyj

∫ ∞

−∞
e−π(xj+iyj)

2
dxj =

∫ ∞

−∞
(2ixj − 2iyj)e−π(xj+iyj)

2
dxj

= 2i[e−π(xj+iyj)
2
]∞xj=−∞

= 0.

The derivative equals 0 for all values of yj, hence the integral does not depend on yj and∫ ∞
−∞ e−π(xj+iyj)

2
dxj =

∫ ∞
−∞ e−πx2

j dxj = 1. 2

Lemma 3 (Properties of the periodic Gaussian) For a full-rank lattice L ⊂ Rn and s > 0, the
periodic Gaussian fs satisfies

1. fs(t) is maximized when t ∈ L.

2. fs(t) ≥ fs(0)e−π‖t/s‖2
for all t ∈ Rn.

Proof: The function ρs satisfies all conditions for the Poisson summation formula: it is continu-
ous, and satisfies |ρs(x)| ≤ C

(‖x‖+1)n+δ for some C, δ > 0. In particular, ρ(x) ≥ 0, and

ρ(x) ≤ e−‖x‖
2 ≤ Ce−(n+δ)‖x‖ ≤ C

(1 + ‖x‖)(n+δ)
,

for C = e(n+δ)2
and any δ > 0. The second inequality follows from a · b ≤ a2 + b2, and the last

inequality stems from the fact that 1 + a ≤ ea.
As ρs satisfies all necessary conditions, we can use the Poisson summation formula:

ρs(L+ t) =
1

det(L) ∑
y∈L∗

e2πi〈y,t〉ρ̂s(y)

=
sn

det(L) ∑
y∈L∗

e2πi〈y,t〉ρ1/s(y).

We know that ρs is real-valued, so it makes sense to upper bound the above sum. The function
ρ1/s is non-negative everywhere, so we can upper bound the summation by the triangle inequality
as

∑
y∈L∗

e2πi〈y,t〉ρ1/s(y) ≤ | ∑
y∈L∗

e2πi〈y,t〉ρ1/s(y)| ≤ ∑
y∈L∗
|e2πi〈y,t〉|ρ1/s(y).

For t ∈ L we have e2πi〈y,t〉 = 1, which makes both inequalities tight. Hence ρs attains its maximal
value at points t ∈ L.
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For the second statement, we have

fs(t) = ∑
x∈L

e−π‖ x+t
s ‖2

= ∑
x∈L

1
2
(e−π‖ x+t

s ‖2
+ e−π‖ t−x

s ‖2
)

= ∑
x∈L

e−π‖t/s‖2
e−π‖x/s‖2

(
1
2

e−2π〈x,t〉/s2
+

1
2

e2π〈x,t〉/s2
).

By convexity, 1
2 e−2π〈x,t〉/s2

+ 1
2 e2π〈x,t〉/s2 ≥ 1. 2

Definition 4 For a full-rank lattice L ⊂ Rn and ε > 0, the smoothing parameter ηε(L) is the number
s > 0 such that ρ1/s(L∗) = 1 + ε.

As a function of s, ρ1/s(L∗) is strictly decreasing, going to 0 as s → ∞ and going to ∞ as s → 0.
Because of this, ηε(L) is well-defined: it exists and is unique. The following lemma justifies why
we call ηε(L) the smoothing parameter.

Lemma 5 For L ⊂ Rn a lattice and s ≥ ηε(L), we have

(1− ε)
sn

det(L) ≤ ρs(L+ t) ≤ (1 + ε)
sn

det(L) .

Proof: Using the Poisson summation formula we get

ρs(L+ t) =
sn

det(L) ∑
y∈L∗

e2πi〈y,t〉e−π‖sy‖2

=
sn

det(L)

(
1 + ∑

y∈L∗\{0}
e2πi〈y,t〉e−π‖sy‖2

)
.

It suffices if we can bound the summation in absolute value by ε. By the triangle inequality,
|∑y∈L∗\{0} e2πi〈y,t〉e−π‖sy‖2 | ≤ ∑y∈L∗\{0}|e2πi〈y,t〉|e−π‖sy‖2

. We know that |e2πi〈y,t〉| ≤ 1, so the last
sum is bounded by ρ1/s(L∗\{0}). Now recall that ρ1/s(L∗\{0}) ≤ ε by our assumption that
s ≥ ηε(L). This implies

ρs(L+ t) ∈ [1− ε, 1 + ε]
sn

det(L) .

2

For some basic intuition, we provide the next two lemmas on the behavior of ηε(L)

Lemma 6 For L ⊂ Rn a full-rank lattice, η1/2(L) ≥ 1
2λ1(L∗) .

Proof: Let s = 1
2λ1(L∗) . It suffices to show that ρ1/s(L∗) ≥ 3/2. Let x ∈ L∗ have ‖x‖ = λ1(L∗).

We have
ρ1/s(L∗) > 1 + ρ1/s(x) + ρ1/s(−x) = 1 + 2 · e−π‖sx‖2

>
3
2

,

as needed. 2

The function ρs(L\{0}) decays quickly as s grows. This is reflected in the smoothing param-
eter for different values of ε, which are not too far off from each other.
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Lemma 7 For any full-rank lattice L ⊂ Rn, ε ∈ (0, 1), and k > 1, we have ηε(L) < η
εk2 (L) < kηε(L).

Proof: The first inequality holds because ρ1/s(L∗) is strictly decreasing in s. Now suppose
without loss of generality that ηε(L) = 1. Then,

ρ1/kηε(L)(L
∗\{0}) = ∑

y∈L∗\{0}
ρηε(L)(y)

k2
<

(
∑

y∈L∗\{0}
ρηε(L)(y)

)k2

= εk2
,

so kηε(L) > η
εk2 (L) as needed. 2

Proposition 8 For a full-rank lattice L ⊂ Rn and any t ∈ Rn, s > 0, α ≥ 1 we have

ραs(L+ t) ≤ αnρs(L).

Proof: We recall that by Lemma 3, ραs(L+ t) ≤ ραs(L). From here, we derive the result using
the Poisson summation formula:

ραs(L) =
(αs)n

det(L)ρ1/(αs)(L∗)

≤ αn sn

det(L)ρ1/s(L∗)

= αnρs(L).

2

2 The Discrete Gaussian

In this section we define the discrete Gaussian distribution. For the discrete Gaussian we can
prove similar tail bounds as for the regular Gaussian. At the end of this section, we use these tail
bound to get a stronger transference result.

Definition 9 For a full-rank lattice L ⊂ Rn, s > 0 and t ∈ Rn, the discrete Gaussian distribution
DL+t,s has probability mass function PrX∼DL+t,s [X = x] = ρs(x)

ρs(L+t) if x ∈ L+ t and 0 otherwise.

To prove a strong tail bound on the norm of X ∼ DL+t,s, we use the following general bound
for non-negative random variables.

Lemma 10 For any random variable X on R+ we have the following tail estimate for all t, λ > 0:

Pr[X ≥ t] ≤ E[eλX2
]

eλt2 .

Proof: By monotonicity we have the following equalities of probabilities:

Pr[X ≥ t] = Pr[X2 ≥ t2] = Pr[λX2 ≥ λt2] = Pr[eλX2 ≥ eλt2
].

Recall Markov’s inequality: for s > 0 and a random variable Y on R+ we have Pr[Y ≥ s] ≤ E[Y]
s .

This is because E[Y] = E[Y|Y ≥ s]Pr[Y ≥ s] + E[Y|Y < s]Pr[Y < s] ≥ s Pr[Y ≥ s]. The result
immediately follows. 2
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Lemma 11 Let L ⊂ Rn be a full-rank lattice and t ∈ Rn. For any α < 1 and X ∼ DL+t,

E[eαπ‖X‖2
] ≤ 1
√

1− α
n ·

ρ(L)
ρ(L+ t)

.

Proof: We rewrite the expectation by writing out the summation defining it.

E[eαπ‖X‖2
] =

∑x∈L+t eαπ‖x‖2
e−π‖x‖2

ρ(L+ t)

=
ρ1/
√

1−α(L+ t)
ρ(L+ t)

By Proposition 8, ρ1/
√

1−α(L+ t) ≤ 1√
1−α

n
ρ(L)

ρ(L+t) as needed. 2

Theorem 12 For L ⊂ Rn a full-rank lattice, r ≥ 1, s > 0 and X ∼ DL+t,s, we have

Pr
[
‖X‖ > rs

√
n

2π

]
≤ ρs(L)

ρs(L+ t)
rne−

n
2 (r

2−1) ≤ ρs(L)
ρs(L+ t)

e−
n
2 (r−1)2

.

Proof: We prove this inequality using Lemma 10, which holds for all α > 0, and Lemma 11,
which holds for α < 1.

Pr[‖X‖ > rs
√

n
2π

] ≤ min
0<α<1

E[eαπ‖X‖2
]

eαnr2/2

≤ min
0<α<1

1
√

1− α
n

ρ(L)
ρ(L+ t)

e−αnr2/2.

We can minimize the last expression by differentiating with respect to α. Doing so, we find that
α = 1− 1

r2 minimizes the right-hand side. We fill this in and find

Pr[‖X‖ > rs
√

n
2π

] ≤ ρs(L)
ρs(L+ t)

rne−
n
2 (r

2−1)

≤ ρs(L)
ρs(L+ t)

e−
n
2 (r−1)2

.

We used on the last line that 0 ≤ ln(r) ≤ r− 1 for all r ≥ 1. 2

Corollary 13 For any full-rank lattice L ⊂ Rn, t ∈ Rn and s > 0, we have that

Pr
X∼DL+t,s

[‖X‖ ≥ s
√

n] ≤ ρs(L)
ρs(L+ t)

4−n.

Consequently, ρ(L+ t\
√

nBn
2 ) ≤ 4−nρ(L).

Proof: We apply the stronger bound in Theorem 12 with r =
√

2π. The corollary follows because

−(2π − 1)/2 + ln(
√

2π) < − ln(4). We observe that PrX∼DL+t,s [‖X‖ ≥ s
√

n] = ρ(L+t\
√

nBn
2 )

ρ(L+t) to
conclude the final result. 2

Now we have all tools we need to prove strong transference theorems.
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Theorem 14 For any full-rank lattice L ⊂ Rn, the following inequalities hold:

1.
√

n
2λ1(L∗) ≤ η 2

4n
(L) ≤

√
n

λ1(L∗) .

2. 1
2 η1/2(L) ≤ µ(L) ≤

√
nη1/2(L).

Proof of 1: We abbreviate s =
√

n
λ1(L∗) . For the lower bound, let x ∈ L be such that ‖x‖ = λ1(L).

We have that

ρ2/s(L\{0}) > ρ2/s(x) + ρ2/s(−x) = 2 · e−π(sλ1(L)/2)2
> 2 · 4−n,

as needed.
For the upper bound, we use the tail bound on the discrete Gaussian to bound the probability

mass at distance λ1(L∗) from the center of the distribution DL∗,1/s, which will allow for a bound
on ρs(L∗). Using that λ1(L∗) = 1

s
√

n and applying Corollary 13,

Pr
X∼DL∗ ,1/s

[‖X‖ ≥ λ1(L∗)] ≤ 4−n.

Observe that

Pr
X∼DL∗ ,1/s

[‖X‖ ≥ λ1(L∗)] =
ρ1/s(L∗\{0})

ρ1/s(L∗)
=

ρ1/s(L∗)− 1
ρ1/s(L∗)

.

It therefore follows that ρ1/s(L∗) ≤ 1
1−4−n ≤ 1 + 2 · 4−n, so s ≥ η2·4−n(L). 2

Proof of 2: Let s = η1/2(L). First we prove the upper bound. We fix some t ∈ Rn. Lattice
points in L close to a vector t correspond to short vectors in the set L − t. We show that such
short vectors exist through a probabilistic argument. We will prove that for X ∼ DL−t,s we have
PrX∼DL−t,s [‖X‖ < s

√
n] > 0. Using the tail bound on the discrete Gaussian and Lemma 5 we have

Pr
X∼DL−t,s

[‖X‖ ≥ s
√

n] ≤ ρs(L)
ρs(L+ t)

4−n

≤
(1 + 1

2 )s
n/det(L)

(1− 1
2 )s

n/det(L)
4−n

= 3 · 4−n < 1.

So with non-zero probability, ‖X‖ < s
√

n, which is equivalent to the lattice point X + t having
distance less than s

√
n from t. As such a nearby lattice point exists for any choice of t, we have a

bound on the covering radius µ(L) ≤
√

nη1/2(L).
For the lower bound, choose t ∈ Rn such that ρs(L + t) ≤ sn

det(L) and ‖t‖ ≤ µ(L). Such t

exists, because for D a fundamental domain of L,
∫

D ρs(L + x)dx = sn

det(L) . Furthermore, the

upper bound of Lemma 5 is tight for ρs(L) = 3sn

2det(L) . Appealing to Lemma 3,

2
3
=

ρs(L+ t)
ρs(L)

≥ e−π‖t/s‖2
.

Taking logarithms lets us deduce the result. 2

Corollary 15 For a full-rank lattice L ⊂ Rn, µ(L)λ1(L∗) ≤ n.
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Proof: We know that η1/2(L) ≤ η 2
4n
(L), which implies that

µ(L) ≤
√

nη1/2(L) ≤
√

nη 2
4n
(L) ≤ n

λ1(L∗)
.

2
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