Exercise 1 \hspace{1cm} \text{Advanced SDPs}

\textbf{Matrices and vectors:} All these are very important facts that we will use repeatedly, and should be internalized.

- \textit{Inner product and outer products.} Let \(u = (u_1, \ldots, u_n) \) and \(v = (v_1, \ldots, v_n) \) be vectors in \(\mathbb{R}^n \). Then \(u^T v = \langle u, v \rangle = \sum_{i=1}^{n} u_i v_i \) is the inner product of \(u \) and \(v \).

 The outer product \(uv^T \) is an \(n \times n \) rank 1 matrix \(B \) with entries \(B_{ij} = u_i v_j \). The matrix \(B \) is a very useful operator. Suppose \(v \) is a unit vector. Then, \(B \) sends \(v \) to \(u \) i.e. \(Bv = uv^T v = u \), but \(Bw = 0 \) for all \(w \in v^\perp \).

- \textit{Matrix Product.} For any two matrices \(A \in \mathbb{R}^{m \times n} \) and \(B \in \mathbb{R}^{n \times p} \), the standard matrix product \(C = AB \) is the \(m \times p \) matrix with entries \(c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \). Here are two very useful ways to view this.

 Inner products: Let \(r_i \) be the \(i \)-th row of \(A \), or equivalently the \(i \)-th column of \(A^T \), the transpose of \(A \). Let \(b_j \) denote the \(j \)-th column of \(B \). Then \(c_{ij} = r_i^T b_j \) is the dot product of \(i \)-column of \(A^T \) and \(j \)-th column of \(B \).

 Sums of outer products: For any \(A \in \mathbb{R}^{m \times n} \) and vectors \(v \in \mathbb{R}^n \), the outer product \(A = \sum_{i=1}^{n} a_i v_i v_i^T \) is a very useful operator. Suppose \(v \) is a unit vector. Then, \(Bv = uv^T v = u \), but \(Bw = 0 \) for all \(w \in v^\perp \).

- \textit{Trace inner product of matrices.} For any \(n \times n \) matrix \(A \), the trace is defined as the sum of diagonal entries, \(\text{Tr}(A) = \sum_i a_{ii} \). For any two \(m \times n \) matrices \(A \) and \(B \) one can define the Frobenius or Trace inner product \(\langle A, B \rangle = \sum_{ij} a_{ij} b_{ij} \). This is also denoted as \(A \bullet B \).

 \textbf{Exercise:} Show that \(\langle A, B \rangle = \text{Tr}(A^T B) = \text{Tr}(BA^T) \).

- \textit{Bilinear forms.} For any \(m \times n \) matrix \(A \) and vectors \(u \in \mathbb{R}^m, v \in \mathbb{R}^n \), the product \(u^T Av = \langle u, Av \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} u_i v_j \).

 \textbf{Exercise:} Show that \(u^T Av = \langle uv^T, A \rangle \). This relates bilinear product to matrix inner product.

- \textit{PSD matrices.} Let \(A \) be a symmetric \(n \times n \) matrix with entries \(a_{ij} \). Recall that we defined \(A \) to be PSD if there exist vectors \(v_i \) for \(i = 1, \ldots, n \) (in some arbitrary dimensional space) such that \(a_{ij} = v_i \cdot v_j \) for each \(1 \leq i, j \leq n \).

 The following properties are all equivalent ways to characterizing PSD matrices:

1. \(a_{ij} = v_i \cdot v_j \) for each \(1 \leq i, j \leq n \). \(A \) is called the Gram matrix of vectors \(v_i \). So if \(V \) is the matrix obtained by stacking these vectors with \(i \)-th column \(v_i \), then \(A = V^T V \).
2. \(A \) is symmetric and \(x^T Ax \geq 0 \) for all \(x \in \mathbb{R}^n \).
3. \(A \) is symmetric and has all eigenvalues non-negative.
4. \(A = \sum_{i=1}^{n} \lambda_i u_i u_i^T \) for \(\lambda_i \geq 0 \) and \(u_i \) are an orthonormal set of vectors. The \(\lambda_i \) are the eigenvalues of \(A \) and \(u_i \) are the corresponding eigenvectors.

 \textbf{Exercise:} Show that (1) \(\rightarrow \) (2) and (2) \(\rightarrow \) (3).

 \textbf{Solution:}
$1 \rightarrow 2$: Note that (1) implies that $A = V^T V$, where $V = (v_1, \ldots, v_n)$. Then for any $x \in \mathbb{R}^n$, we have that
\[
x^T Ax = x^T V^T V x = \|V x\|^2 \geq 0,
\]
where $\|V x\|^2$ is the squared Euclidean norm.

$2 \rightarrow 3$: Since A is symmetric, A is diagonalizable and only real eigen values. Now assume that A has a negative eigen value $\lambda < 0$ with corresponding eigen vector $v \neq 0$ such that $Av = \lambda v$. But then, $v^T Av = |\lambda|\|v\|^2 > 0$, contradicting (2).

$3 \rightarrow 4$ follows from the well-known spectral theorem (that we do not prove here) that any symmetric matrix B has real eigenvalues and its eigenvectors are orthogonal. That is, $B = \sum \beta_i u_i u_i^T$ where $\beta_i \in \mathbb{R}$ and u_i is an orthonormal set of vectors.

Exercise: Show that (4) \rightarrow (1) using the two views of matrix products discussed above.

Solution: Let $U = (\sqrt{\lambda_1} u_1, \ldots, \sqrt{\lambda_n} u_n)$ (i.e. with the indicated columns). Then
\[
A = \sum_{i=1}^{n} \lambda_i u_i u_i^T = \sum_{i=1}^{n} (\sqrt{\lambda_i} u_i)(\sqrt{\lambda_i} u_i)^T = UU^T.
\]

Now letting $(v_1, \ldots, v_n)^T = U$ denote the columns of U, we directly get that $A_{ij} = (UU^T)_{ij} = v_i \cdot v_j$.

Exercise: If A and B are $n \times n$ PSD matrices. Show that $A + B$ is also PSD. **Solution:** Note that $x^T Ax \geq 0$ and $x^T Bx \geq 0$, $\forall x \in \mathbb{R}^n$, clearly implies that $x^T (A + B)x = x^T Ax + x^T Bx \geq 0 \forall x \in \mathbb{R}^n$. Thus, by (2) $A + B$ is also PSD.

Hint: It is easiest to use definition (2) of PSD above.

Exercise: Show the above using (1) instead of (2). In particular if $a_{ij} = v_i \cdot v_j$ and $b_{ij} = w_i \cdot w_j$ can you construct vectors y_i using these v_i and w_i such that $a_{ij} + b_{ij} = y_i \cdot y_j$?

Solution: Define z_1, \ldots, z_n by the relation $z_i^T = (v_i^T, w_i^T)$ for $i \in [n]$. Then clearly $\langle z_i, z_j \rangle = \langle v_i, v_j \rangle + \langle w_i, w_j \rangle = a_{ij} + b_{ij}$.

- **Tensors.** Let $v \in \mathbb{R}^n$. We define the two-fold tensor $v^{\otimes 2}$ as the $n \times n$ matrix with (i, j)-th entry $v_i \cdot v_j$. This is same as $v v^T$, but it is useful to view $v^{\otimes 2}$ as an n^2 dimensional vector. Similarly, if $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$, $v \otimes w = vw^T$ is viewed as an nm dimensional vector.

Exercise: Show that if $v, w \in \mathbb{R}^n$ and $x, y \in \mathbb{R}^m$, then $\langle v \otimes x, w \otimes y \rangle = \langle v, w \rangle \langle x, y \rangle$. One can remember this rule as, the dot product of tensors is the product of their vector dot products. **Solution:**
\[
\langle v \otimes x, w \otimes y \rangle = \sum_{i \in [n], j \in [m]} (v \otimes x)_{ij} (w \otimes y)_{ij} = \sum_{i \in [n], j \in [m]} v_i x_j w_i y_j
\]
\[
= (\sum_{i \in [n]} v_i w_i)(\sum_{j \in [m]} x_j y_j) = \langle v, w \rangle \langle x, y \rangle.
\]

Similarly, one can generalize this to higher order tensors. For now we just discuss the k-fold tensor of a vector by itself. If $v \in \mathbb{R}^n$ $v^{\otimes k}$ is the n^k dimensional vector with the (i_1, \ldots, i_k) entry equal to the product $v_{i_1} v_{i_2} \cdots v_{i_k}$.

Exercise: Show (by just expanding things out) that if $v, w \in \mathbb{R}^n$ then $v^{\otimes k}, w^{\otimes k} = (\langle v, w \rangle)^k$.
Solution:

\[\langle v^{\otimes k}, w^{\otimes k} \rangle = \sum_{i_1, \ldots, i_k \in [n]} v_{i_1i_2 \ldots i_k}^{\otimes k} w_{i_1i_2 \ldots i_k}^{\otimes k} = \sum_{i_1, \ldots, i_k \in [n]} (v_1 \cdots v_k)(w_1 \cdots w_k) \]

\[= \sum_{i_1, \ldots, i_k \in [n]} (v_i w_i) \cdots (v_k w_k) = \left(\sum_{i_1 \in [n]} v_i w_i \right) \cdots \left(\sum_{i_k \in [n]} v_k w_k \right) = \langle v, w \rangle^k, \]

as needed.

Exercise: Let \(p(x) \) a univariate polynomial with non-negative coefficients. Let \(A \) be a \(n \times n \) PSD matrix with entries \(a_{ij} \), and let \(p(A) \) denote the matrix which has its \((i, j)\)-entry \(p(a_{ij}) \). Show that \(p(A) \) is also PSD.

Hint: Use that \(a_{ij} = \langle v_i, v_j \rangle \) for each \(i, j \), and construct suitable vectors \(v'_i \) and \(v'_j \) such that \(p(a_{ij}) = v'_i \cdot v'_j \). Use the property \((v^{\otimes k}, w^{\otimes k}) = (\langle v, w \rangle)^k\) of dot products tensors stated above.

Solution: Since \(A \) is PSD we can write \(A_{ij} = \langle v_i, v_j \rangle \) for vectors \(v_1, \ldots, v_n \). Let \(p(x) = c_0 + c_1 x + \cdots + c_k x^k \), where \(c_0, c_1, \ldots, c_k \geq 0 \). Now define the vectors \(z_1, \ldots, z_n \) by

\[z_i = (\sqrt{c_0}, \sqrt{c_1} v_i, \sqrt{c_2} v_i^{\otimes 2}, \ldots, \sqrt{c_k} v_i^{\otimes k}) \]

for \(i \in [n] \). Then by the previous exercises, we see that

\[\langle z_i, z_j \rangle = c_0 + c_1 \langle v_i, v_j \rangle + c_2 \langle v_i^{\otimes 2}, v_j^{\otimes 2} \rangle + \cdots + c_k \langle v_i^{\otimes k}, v_j^{\otimes k} \rangle \]

\[= c_0 + c_1 \langle v_i, v_j \rangle + c_2 \langle v_i, v_j \rangle^2 + \cdots + c_k \langle v_i, v_j \rangle^k \]

\[= c_0 + c_1 a_{ij} + c_2 a_{ij}^2 + \cdots + c_k a_{ij}^k = p(a_{ij}) . \]

• If the Goemans Williamson SDP relaxation for maxcut on a graph \(G \) has value \((1 - \epsilon)|E|\) where \(|E|\) is the number of edges in \(G \), show that the hyperplane rounding algorithm achieves a value of \((1 - O(\sqrt{\epsilon}))|E|\).

Solution: Let \(v_1, \ldots, v_n \in \mathbb{R}^n, \|v_i\| = 1 \) denote the optimal solution to the SDP for \(G \). Recall that the SDP value is

\[\sum_{(i, j) \in E} \frac{1}{2}(1 - \langle v_i, v_j \rangle) := \text{SDP}, \]

and that the value achieved by Goemans Williamson rounding is

\[\sum_{(i, j) \in E} \theta_{ij} / \pi \]

where \(\cos(\theta_{ij}) = \langle v_i, v_j \rangle \) for all \((i, j) \in E\).

By assumption, we know that the MAXCUT of the graph has size at least \((1 - \epsilon)|E|\) edges, and hence the value of the value of SDP is at least \((1 - \epsilon)|E|\) as well.

To begin the analysis, we will first remove all the edges for which the angles are less than \(\pi / 2 \), and show that the value of the remaining edges is still at least \(1 - 2\epsilon \) (this will allow us to apply a useful concavity argument). Namely, let \(E' = \{(i, j) \in E : \langle v_i, v_j \rangle \leq 0\} \), and let \(\alpha = |E'| / |E| \). We first show that \(\alpha \geq 1 - 2\epsilon \). To see this, note that

\[(1 - \epsilon)|E| \leq \sum_{(i, j) \in E \setminus E'} \frac{1}{2}(1 - \langle v_i, v_j \rangle) + \sum_{(i, j) \in E'} \frac{1}{2}(1 - \langle v_i, v_j \rangle) \]

\[\leq (|E| - |E'|)/2 + |E'| = (1 - \alpha)|E|/2 + \alpha|E|, \]
where the lower bound $\alpha \geq 1 - 2\epsilon$ now follows by rearranging.

Using the above, we can lower bound the value of the SDP restricted to the edges of E' as follows,

$$
\sum_{(i,j) \in E'} \frac{1}{2} (1 - \langle v_i, v_j \rangle) \geq (1 - \epsilon) |E| - \sum_{(i,j) \in E \setminus E'} \frac{1}{2} (1 - \langle v_i, v_j \rangle) \geq (1 - \epsilon) |E| - \frac{1}{2} (|E| - |E'|) \geq (1 - 2\epsilon) |E| .
$$

Let us now examine the average angle $\bar{\theta} = \sum_{(i,j) \in E'} \theta_{ij} / |E'|$, noting that the value of the Goemans-Williams algorithm is at least $\bar{\theta} |E'| / \pi$. Since the function $\frac{1}{2} (1 - \cos(x))$ is concave on the interval $[\pi/2, \pi]$ (note the derivative $\sin(x)/2$ is decreasing on this interval) and the angles from vectors connected by edges in E' are in this range, by Jensen’s inequality we have that

$$
(1 - 2\epsilon) \leq (1 - 2\epsilon) \frac{|E'|}{|E'|} \leq \frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2} (1 - \cos(\theta_{ij})) \leq \frac{1}{2} (1 - \cos(\bar{\theta})) . \tag{1}
$$

To prove the desired bound on the Goemans-Williams algorithm, we will show that $\bar{\theta} \geq \pi - 4\sqrt{\epsilon}$. Note that the total value obtained by the rounding algorithm would then be at least

$$
\bar{\theta} |E'| / \pi \geq (1 - (4/\pi)\sqrt{\epsilon})(1 - 2\epsilon) |E| = (1 - O(\sqrt{\epsilon})) |E| ,
$$

as needed.

By the Taylor expansion, for $x \in [2\pi/3, \pi]$ we have that $\frac{1}{2} (1 - \cos x) \leq 1 - (x - \pi)^2 / 8$. Therefore, for ϵ small enough, combining with (1), we have that

$$
(1 - 2\epsilon) \leq 1 - (\bar{\theta} - \pi)^2 / 8 \iff \bar{\theta} \in [\pi - 4\sqrt{\epsilon}, \pi] ,
$$

as needed.

- (Relating probability and geometry) Let $g = (g_1, \ldots, g_n)$ be the standard gaussian in \mathbb{R}^n, where each g_i is an iid $N(0, 1)$ random variable.

Exercise: For any vector $v = (v_1, \ldots, v_n)$, show that the random variable $\langle g, v \rangle$ has the distribution $N(0, \|v\|^2)$, i.e., it is gaussian with mean 0 and variance the ℓ_2-squared length of v.

Solution: Note that $\langle g, v \rangle = \sum_{i=1}^n g_i v_i$. Since g_1, \ldots, g_n are iid $N(0, 1)$, we know that $\sum_{i=1}^n g_i v_i$ is $N(0, \sum_{i=1}^n v_i^2) = N(0, \|v\|^2)$.

For any $v, w \in \mathbb{R}^n$, let $X = \langle g, v \rangle$ and $Y = \langle g, w \rangle$ be two random variables. Note that X and Y are correlated via the same random gaussian g.

The covariance of two random variables is defined as $cov(X, Y) = E[XY] - E[X]E[Y]$.

Exercise: Show that for X and Y as defined above, $cov(X, Y) = \langle v, w \rangle$. In particular, if v and w are orthogonal vectors, and X and Y are independently distributed gaussians.

Solution:

$$
E[XY] - E[X]E[Y] = E[\langle g, v \rangle \langle g, w \rangle] - E[\langle g, v \rangle]E[\langle g, w \rangle] = E[\langle g, v \rangle \langle g, w \rangle] = E[\sum_{i,j \in [n]} v_i w_j g_i g_j] = \sum_{i \in [n]} v_i w_j = \langle v, w \rangle .
$$

If v, w are orthogonal vectors, there exists an orthogonal matrix U such that $Uv = \|v\|e_1$ and $Uw = \|w\|e_2$. Since the distribution of g is rotation invariant, we have that $U^T g$
is identically distributed to g. In particular, the joint distribution of $(\langle g, v \rangle, \langle g, w \rangle)$ is identical to

$$(\langle U^T g, v \rangle, \langle U^T g, w \rangle) = (\langle g, \|v\|e_1 \rangle, \langle g, \|w\|e_2 \rangle) = (\|v\|g_1, \|w\|g_2).$$

The result now follows from the assumptions that g_1, g_2 are independent Gaussian.