
Advanced SDPs Lecture 2 : February 16, 2017

Lecturers: Nikhil Bansal and Daniel Dadush Scribe: Nikhil Bansal

2.1 Grothendieck’s inequality and Maximizing

Quadratic Forms

In the last class we saw the hyperplane rounding scheme for the max-cut problem.
Another useful way to view it is the following. Given the unit vector ui for vertex i,
we set it to sign(〈ui, g〉) where g is a random Gaussian. The expected contribution of
edge (i, j) turns out to be (1−sign(〈ui, g〉)sign(〈ui, g〉))/2, while the SDP contribution
is 1/4‖ui − uj‖2 = 1/2(1− ui · uj). The analysis then involved showing that for any
two vectors ui, uj,

E[(1− sign(〈ui, g〉)sign(〈uj, g〉))/2] ≥ αGW1/2(1− ui · uj)

where αGW = 0.878....

We now consider the following problem. Given an m×n matrix A with possibly neg-
ative entries, Find x ∈ {−1, 1}m and y ∈ {−1, 1}n to maximize xTAy =

∑
i,j xiaijyj

.

As usual we write the SDP (vector) relaxation: max
∑
ij aijui · vj such that ‖ui‖22 = 1

for i ∈ [m] and ‖vj‖2 = 1 for j ∈ [n].

How can we round this to a {±1} solution. As we discussed last time, the hyperplane
rounding algorithm may not give any guarantee due to the negative and positive
terms.

We consider three different approaches. We first make a simple but useful observation.

Lemma 1 Suppose we have a solution with objective value B, such that xi, yj ∈
[−1, 1]. Then we can also obtain a {−1, 1} with value at least B.

Proof: We can modify the variables one by one to −1 or 1 while never decreasing
the objective as follows. Fix all variables except x1. The objective is linear in x1,

2-1

2-2 Lecture 2 : February 16, 2017

so there is a direction where the objective does not decrease, keep moving x1 until it
reaches −1 or 1. Repeat the same by all variables except x2 and so on.

Note that this trick works whenever there are no terms likes x2i .

2.2 Algorithm 1

We can assume that the ui and vj lie in Rm+n. Let B denote SDP objective. Let g
be a random gaussian vector (iid N(0, 1) entries). Let xi = 〈g, ui〉 and yj = 〈vj, g〉.

Recall from Exercise 1 that xi and xj also distributed as N(0, 1) (but correlated due
to the common g) and also satisfy

Lemma 2 E[xiyj] = ui · vj.

Proof: Let d denote the dimension where the vectors lie. Let g(1), . . . , g(d) be the
coordinates of g. Then,

E[xiyj] = E[〈g, ui〉〈g, vj] = E[(
d∑

k=1

g(k)ui(k))(
d∑

k′=1

g(k′)vj(k
′))]

As the coordinates g(k) are independent and N(0, 1), we have E[g(k)g(k′)] = 0 if
k 6= k′ and E[g(k)2] = 1. So the above sum is

d∑
k=1

ui(k)vj(k) = ui · vj

So, we have that
E[
∑
ij

aijxiyj] =
∑
ij

aijui · vj = B

Now if xi and yj would lie in [−1, 1] we would be done by Lemma 1. Of course, there is
no reason why this should hold (indeed if it would, we would have solved the problem
exactly). But note that xi and yj are distributed as N(0, 1), so the probability that
any of them exceeds c

√
log n is at most say 1/n4 for some constant c. So morally, one

can view all the xi and yj lying in [−c
√

log n, c
√
n].

Lecture 2 : February 16, 2017 2-3

More formally, consider the following algorithm. Let M = c
√

log n. If some xi
or yj lies outside [−M,M] return the all 0 solution. Otherwise return x̃i = xi/M
and ỹj = yj/M . Indeed, as one would expect, this truncation does not lose much
and the solution with x̃ and ỹ has value about B/M2 = Ω(B/ log n). We skip the
(relatively) details of bounding the effects of truncation here, as we will see a much
better guarantee using this approach later. But the reader may wish to try doing this
formally.

2.2.1 Algorithm 2

Before we begin, recall the problem from Exercise 1 to show that if p(x) = p0 + p1x+
· · · + pkx

k is a univariate polynomial with non-negative coefficients, and A is a PSD
matrix with aij = ui · uj. Then the matrix with entries p(aij) is also PSD.

Here is a cool way of showing this. Define

u′i = p
1/2
0 e0 ⊕

k∑
h=1

⊕p1/2h u⊗hi

Here ⊕ means that we take a direct sum of the different vector spaces that arise
as tensor powers (and thus view them as contributing separate coordinates), and
e0 = u⊗0i is a direction (coordinate) that is orthogonal to other power of ui.

Then the key observation is that,

u′i · u′j =
k∑

h=0

ph〈u⊗hi , u⊗hj 〉 =
k∑

h=1

ph(ui · uj)h = p(aij)

which gives a Gram decomposition of p(A), hence implying that it is PSD.

2.3 Krivine’s proof of Grothendieck’s inequality

Amazingly, already in the 50’s Groethendieck showed that integrality gap of the SDP
above is at most 2 ln(1 +

√
2)/π ≈ 0.56 (this is long before SDPs were invented!).

Below we give Krivine’s proof of this, which also gives an algorithm.

The idea will be the following. Let B =
∑
ij aijui · vj be the SDP objective. Suppose

that given ui and vj, we would construct some other unit vectors u′i and v′j such that

2-4 Lecture 2 : February 16, 2017

applying the hyperplane rounding of u′i and v′j gives contribution ui ·vj in expectation,
i.e.

E[sign(〈g, u′i〉)sign(〈g, v′j〉)] = c′ui · vj
for some fixed c′, then we would get a c′ approximate solution.

How can we accomplish this?

Suppose u′i and v′i are two unit vectors at angle θ′. Then a random hyperplane
separates then with probability θ′/π and otherwise they have the same sign. So,

E[sign(〈g, u′i〉)sign(〈g, v′j〉)] = (−1)
θ′

π
+ (1)

π − θ′

π
= 1− 2θ′

π
=

2

π
(
π

2
− θ′)

As u′i · v′j = cos θ′ = sin(π/2− θ′), the rhs above is simply 2
π

arcsin(u′i · v′j).

So, let us try to find a transformation ui → u′i and vj → v′j such that c(ui · uj) =
arcsin(u′i ·v′j) or equivalently u′i ·v′j = sin(c(ui ·vj)) for some c. By the Taylor expansion
of sin,

sin(cui · vj) =
∞∑
k=0

(−1)k
c2k+1

2k + 1!
(ui · vj)2k+1

So, using the trick we saw before, we can define the vectors u′i and v′j as functions of
ui and vj as

u′i =
∞∑
k=0

⊕
(
c2k+1

2k + 1!

)1/2

u⊗2k+1
i and v′j =

∞∑
k=0

⊕(−1)k
(
c2k+1

2k + 1!
)

)1/2

v⊗2k+1
j

This does the job as u′i · v′j = sin(c(ui · vj)). It remains to find c. As u′i and v′j unit
vectors, we note that their length is

‖u′i‖2 = ‖v′j‖2 =
∞∑
k=0

c2k+1

2k + 1!
=

1

2
(ecx − e−cx) = sinh(c).

So we set c = sinh−1(1) = ln(1 +
√

2).

Putting everything together this gives the overall c′ = 2
π
c = 2

π
ln(1 +

√
2) approxima-

tion guarantee.

It is important to note that we applied different transformations to ui and vj (as the
Taylor expansion for sin involved both positive and negative coefficient). The above
approach would not work if our quadratic form was

∑
ij aijui ·uj for example. Indeed

this turns out to be a harder question and is called minimizing quadratic forms on

Lecture 2 : February 16, 2017 2-5

graphs. We will not discuss this here, but the technique we will show next is more
robust, and can be used to obtain guarantees for this more general question also.
Interestingly, the approximation ratio depends roughly as log(χ(G)) where χ(G) is
the chromatic number of the support graph G of A. Note (and show) that the problem
we are discussing corresponds to quadratic form on a bipartite graph.

2.3.1 Algorithm 3: Truncation + Bounding error

Let us consider the truncation approach again, where M is a constant, say M = 5.
Let Xi = 〈g, ui〉 and Yj = 〈g, vj〉 be the gaussian projects. Let us define X̃i = Xi if
|Xi| ≤M and 0 otherwise, and similarly define Ỹj.

Let xi = X̃i/M and yj = Ỹj/M . Clearly, xi, yj ∈ [−1, 1]. By Lemma 1 this gives a
solution of value at least (1/M2)

∑
ij aijX̃iỸj, so we need to bound the error due to

truncation on the objective.

We know that E[
∑
ij aijXiYj] = B, the SDP value. Let B̃ = E[

∑
ij X̃iỸj]. Then,

B−B̃ =
∑
ij

aij(XiYj−X̃iỸj) =
∑
ij

aij((Xi−X̃i)Yj+X̃i(Yj−Ỹj)) =
∑
ij

aij(UiYj+X̃iVj)

where Ui = Xi − X̃i and Vj = Yj − Ỹj.

But how do we bound this error?

The crucial insight is to connect the random variables to geometry. We note that
given any collection of random vectors X1, . . . , Xk on some probability space, we can
associate vectors w1, . . . , wk to them (for those familiar, this the standard embedding
of random variables in the Hilbert space), such that E[XiXj] = wi ·wj for all i, j ∈ [k].
In particular, E[X2

i] = ‖wi‖2.

So to bound E[
∑
ij aijUiVj], it suffices to upper bound

∑
ij aij(ui · vj), where ui and vj

are vectors with E[U2
i] ≤ ‖ui‖2

Now, it is not hard to check by the way Ui was defined that E[U2
i] ≤ γ := 4M2e−M

2/2.
For M = 5, γ ≤ 1/10. Moreover, E[V 2

j] = 1. So, this is just a scaled version of our
original problem to begin with, and thus this error can be upper bounded by γB.
Similarly for the second error term.

So B̃ ≥ B(1− 2γ) ≥ B/2, giving an overall approximation of at least B/(2M2).

2-6 Lecture 2 : February 16, 2017

2.4 Laplacian, Conductance and Expansion

The Laplacian of a graph is defined as D − A where D is a diagonal matrix with
entries as degrees. LG = D − A =

∑
(i,j)∈E(ei − ej)(ei − ej)T which is dI − A if G is

regular.

Note that LG is PSD, and that xTLGx =
∑

(u,v)∈E(xu − xv)
2. So we could write

max-cut as maxx∈{0,1}n x
TLGx.

Given a graph G, the conductance or edge expansion of a set S is defineas

φ(S) =
E(S, S̄)∑
v∈S dv

=
E(S, S̄)

vol(S)

which is the fraction of edges across cut divided by total possible edges from S.

The conductance of G is defined as

φ(G) = min
S:V ol(S)≤V ol(G)/2

φ(S)

For G regular this is

φ(G) = min
S:|S|≤n/2

E(S, S̄)

d|S|

Examples: Conductance of cycle: 2/n. Hypercube on n vertices: 1/ log n. Random
graph Gn,p with p ≥ 2 log n/n has Ω(1) expansion.

Understanding conductance of a graph plays a major role in graph partitioning,
markov chain mixing, and various other areas in theoretical CS and optimization.
A graph with conductance Ω(1) is called an expander and these are extremely useful
objects with various applications.

How do we get a handle on the conductance of a graph?

In the next few lectures we will see three approaches for this. First is the so called
Cheeger’s inequality which relates the second eigenvalue of the normalized Laplacian
to expansion. This is one of the most beautiful results in spectral graph theory.

In particular if 0 = λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of the normalized
Laplacian. Then

λ2/2 ≤ Φ(G) ≤
√

2λ2

In general both these inequalities are tight. So, if λ2 = Ω(1), then λ2 provides a good
approximation of Φ(G).

Lecture 2 : February 16, 2017 2-7

Second, we will see an LP based O(log n) approximation. Finally, we will see a major
breakthrough result of Arora-Rao and Vazirani on a roughly O(

√
log n) approximation

for sparsest cut based on SDPs.

