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INTRODUCTION

We consider a generic mixed integer linear
program (MILP) in the form

min cTx (1
Ax>b (2)
x;€1{0,1} Vje B, 3)
xj integer Vje g, (4)
x; continuous, VjeC, (5)

where A is an m x n input matrix, and b
and ¢ are input vectors of dimension m and
n, respectively. Here, the variable index set
N:={1,...,n} is partitioned into (B,G,0C),
where B is the index set of the 0—1 variables
(if any), while the sets G and C index the
general integer and the continuous vari-
ables, respectively. Bound on the variables,
including the 0-1 bounds on the binary
ones, are assumed to be part of system
(2). Removing the integrality requirement
on variables indexed by Z:= BUG leads to
the LP relaxation min{cTx:x € P} where
P:={xeR":Ax > b}.

MILP heuristics aim at finding a feasible
(and hopefully good) solution of the prob-
lem above, which is an NP-hard problem by
itself. We next present the main ideas under-
lying some of the heuristics proposed in the
literature. In this article, in particular, we
focus on those algorithms developed with the
aim of being tightly integrated within MILP
solvers. We group and discuss the algorithms

depending on the main ingredient (building
block) they use, namely LP-based heuristics
in the section titled “LP-Based Heuristics”
and MILP-based approaches in the section
titled “MILP-Based Heuristics.”

With a little abuse of terminology, in what
follows, we will say that a point x is integer
if x; is integer for all j € 7 (no matter what
the value of the other components), whereas
the rounding % of a given x will be defined
as X; := [x;] if j € 7 and X; := x; otherwise ([-]
representing scalar rounding to the nearest
integer).

We end the introduction by noting that,
although Achterberg [1] has shown that the
impact of heuristics is not dramatic in terms
of ability of an MILP solver to prove optimal-
ity in a (much) quicker way, the psychological
impact for the user who sees a high quality
feasible solution provided very early is huge.
For this reason, the availability of very effec-
tive general-purpose heuristics for MILP is
among the most crucial improvements over
the last 10 years.

LP-BASED HEURISTICS

In this section we address some basic heuris-
tics that only assume the availability of a
“black-box” LP solver.

Folklore

The so-called rounding as well as diving
heuristics belong to folklore.

Rounding methods solve the LP relaxation
to get an optimal point x*, whose fractional
components xJ* with j € 7 are rounded, for
example, to their nearest integer value. Con-
tinuous variables, if any, can optimally be
recomputed once the integer variables have
been fixed by solving an LP.

Diving (also known as Relax-and-Fix)
methods, instead, mimic an enumerative
scheme by sequentially fixing some integer-
valued variables that assume a fractional
value in the solution of the current LP-
relaxation. The sequence can be viewed
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as “diving” on a branch-and-bound tree
until a feasible (and hopefully good) MILP
solution is found. A limited backtracking
is often allowed to investigate alternative
fixing patterns. Various variable-fixing (i.e.,
branching) policies have been used by dif-
ferent authors, all meant to hopefully reach
deep branching nodes while maintaining a
good LP relaxation lower bound value.

Pivoting Methods

These methods originate from the seminal
work of Balas and Martin [2] in the late
1970s. The basic heuristic, called Pivot and
Complement (P&C), applies to pure 0—1 inte-
ger linear programs (ILPs) with G =C=0. It
is based on the observation that a feasible
solution is just a basic solution of the LP
relaxation where all 0—1 variables are non-
basic (either at their lower or upper bound),
that is, only the slack (continuous) variables
on Equation (2) are allowed to be basic. Given
an optimal basis of the LP relaxation, p&C
then performs a systematic series of “non-
standard” pivots in the attempt of driving as
many 0-1 variables as possible out of the
basis, while preserving primal feasibility and
worsening the objective function as little as
possible.

More specifically, the method prescribes
the use of three types of pivots: (i) Type
1 pivots that maintain primal feasibility
and increase the number of nonbasic 0-1
variables; (ii) Type 2 pivots that also main-
tain primal feasibility but leave the number
of nonbasic 0-1 variables unchanged,
while reducing the infeasibility degree of
the current LP solution x*, computed as
> jeB minfx;, 1 —x7}; (iii)) Type 3 pivots
that increase the number of nonbasic 0-1
variables at the price of producing a primal-
infeasible point—a situation to be repaired
at a later step of the procedure.

Nonbasic 0—1 variables can also be com-
plemented with the aim of improving the
solution quality or reducing its primal infea-
sibility, and reduced costs are exploited to
fix variables when mathematically correct.
The P&C heuristic was later improved by
Lgkketangen et al. [3] by adding tabu search
to the basic mechanisms.

In the mid-1980s Balas and Martin [4]
introduced a generalization of P&C to MILPs,
called pivot and shift, where general integer
variables are treated as 0—1 variables “cen-
tered” on the current LP solution, and some
new types of “nonstandard” pivots are intro-
duced. An elaboration with the same name of
this idea was later proposed by Balas et al.
[5]. Different extensions called pivot, cut, and
dive and pivot and Gomory cut were proposed
by Nediak and Eckstein [6] and by Gosh and
Hayward [7], respectively.

OCTANE and Line Search Methods

Line search methods are based on the fol-
lowing construction. One starts from an LP
relaxation optimal vertex x* and draws a
line toward a second point, for example, y,
to be chosen according to a certain criterion.
Thus, moving in a discretized way from x*
to y traces a discrete sequence of (say) K
points x* :=x* + oy —x*) for 0 =y < --- <
ag = 1. Each x* can therefore be associated
(e.g., by rounding) with an integer point "
which is then checked for feasibility and pos-
sibly used to update a current-best MILP
solution. Local shifts of the rounded vari-
ables are typically allowed in the attempt of
improving the feasibility and/or quality of the
rounded points.

Hillier [8] introduced this scheme by defin-
ing y so as to go inside P along a so-called
interior path, the rational being supported
by the geometrical intuition that (mainly
for general integer MILPs) going inside P
increases the chances the rounded point be
feasible. A similar scheme was later adopted
by Ibaraki etal. [9] and by Faaland and
Hiller [10], where the sampling line segment
[x*,y] is replaced by a sequence of linear
segments [x*,y1], [y!,y%],... approximating
a curved search trajectory. Very recently,
Naoum-Sawaya and Elhedhli [11] investi-
gated the effect of replacing the LP solver
by an analytic-center method.

OCTANE (for Octahedral Neighborhood
Enumeration) is a line search method pro-
posed by Balas et al. [12] for 0—1 ILPs. It
also starts with an LP optimal vertex x*
and moves it along a certain search direction
y —x*. However, the integer (possibly infea-
sible) points discovered along this direction
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are not defined through rounding, but exploit
the following construction. Consider the cen-
ter x0 = (1/2,...,1/2) of the unit hypercube.
For any vertex x of the unit hypercube (not
necessarily in P), define the hyperplane H(%)
passing through X and orthogonal to x —
x0.1 Starting from x* and going toward vy
one crosses, in sequence, certain hyperplanes
H@Y),H(&?),. .. whose generating 0—1 points
#1,%%, ... are checked for feasibility and used
to possibly update the current-best feasible
solution. OCTANE prescribes to visit only a
limited number of hyperplanes, and exploits
an effective method for their enumeration.

Feasibility Pump

The Feasibility Pump (FP) is a method orig-
inally proposed by Fischetti et al. [13] for
0-1 MILPs (G =¢), and then extended by
Bertacco et al. [14] to the general case. It
is based on the observation that a feasible
MILP solution is a point x of P that coincides
with its rounding. Replacing “coincides” with
“is as close as possible” leads to the follow-
ing iterative scheme. FP works with a pair
of points (x*,%) with x* € P and X integer,
that are iteratively updated with the aim
of reducing as much as possible their Li-
distance A(x*,%) := Zjd |x; — X;|. In a sense,
the method is aimed at “pumping” the inte-
grality of X into x*, and the LP-feasibility of x*
into ¥—hence its name.? To be more specific,
one starts with any x* € P, for example, an
optimal LP vertex, and initializes an integer
X as the rounding of x*. At each FP itera-
tion, called a pumping cycle, x is fixed and
one finds a point x* € P which is as close
as possible to X by solving the auxiliary LP
min{A(x,%) : x € P}. If A(x*,%) = 0, then x* is
integer and the method is completed. Oth-
erwise, X is replaced by the rounding of x*
so as to hopefully reduce A(x*,%) even fur-
ther, and the process is iterated. The basic

1The half-spaces induced by these hyperplanes
that contain x° define an octahedron, hence the
name of the method.

2The name was actually inspired by the Electron

Pump of the Asimov’s science fiction novel “The
Gods Themselves”.

FP scheme above may stall in case A(x*,X%)
is not reduced at some iteration, hence a
number of diversification mechanisms are
introduced.

As stated, FP is meant to only produce
a feasible MILP solution, as the objective
function is only taken into account implicitly
in the definition of the very first x*. In
order to produce good quality solutions, the
original FP approach [13] uses a “sliding
window” method that introduces the cut
¢Tx < UB into the LP model and updates
UB, on the fly, by taking an intermediate
value between the optimal LP-relaxation
and the UB values. (Note that the value
UB can also be a “guess” of a feasible
solution value and in such a case the
cut can be possibly invalid.) A different
approach, called objective FP, was devel-
oped by Achterberg and Berthold [15],
who modified the objective function of
the auxiliary LP to A(x*,%)+ acTx, where
«a is a dynamically updated parameter.
Very recently, Fischetti and Salvagnin [16]
proposed a more elaborated FP version,
called Fp 2.0, where the original rounding
operation used to construct X from x* is
replaced by a more clever rounding heuristic
based on constraint propagation—a basic
tool in constraint programming (see Con-
straint Programming Links with Math
Programming).

MILP-BASED HEURISTICS

We next address a new generation of MILP
heuristics that emerged in the late 1990s.
Their hallmark is the use of a “black-box”
external MILP solver to explore a solution
neighborhood defined by invalid linear con-
straints. The use of an exact MILP solver
inside an MILP heuristic may appear naive
at first glance, but it turns out to be effective
in the cases where the added invalid con-
straints lead to a structural simplification of
the MILP at hand and allow, for example,
for a more powerful instance preprocessing
and/or for extensive node pruning.

Local Branching

The local branching (LB) scheme of Fischetti
and Lodi [17] appears to be the first method
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embedding an MILP solver within a general
MILP heuristic framework. Suppose a fea-
sible reference solution x of an MILP with
B # () is given, and one aims at finding an
improved solution that is “not too far” from
x. To this end, one can define the k-OPT
neighborhood N(x,k) of X as the set of the
MILP solutions satisfying the invalid local
branching constraint

Alx,X) := Z xj + Z 1-x) <k, (6)
JjeBE=0 JjeBxE=1

for a small parameter k (typically, £ = 10
or k£ =20), and explore it by means of an
external MILP solver, often heuristically,
that is, within a prefixed number of branch-
and-bound nodes. The method is in the
spirit of local search metaheuristics and
in particular of large neighborhood search
[18], with the novelty that neighborhoods
are obtained through a so-called soft fixing,
that is, through invalid cuts to be added
to the original MILP model. Diversification
cuts can be defined in a similar way, thus
leading to a flexible toolkit for the definition
of metaheuristics for general MILPs. For
example, Hansen etal. [19] embedded
LB within variable neighborhood search,
whereas Fischetti et al. [20] specialized LB to
MILPs with a two-level variable structure.
Integration between FP and LB was instead
proposed by Fischetti and Lodi [21].

As its name suggests, LB can also be
used within an exact enumerative scheme by
branching on the “local” disjunction A(x,x) <
k (to be explored first) or A(x,x) > & + 1 with
respect to the incumbent MILP solution x (no
matter the LP solution at a given node). This
branching strategy is intended to favor the
detection of good solutions very early in the
enumeration.

Relaxation Induced Neighborhood Search and
Variants

The relaxation induced neighborhood search
(RINS) framework of Danna et al. [22] also
uses the (heuristic) solution of a simplified
MILP through an external MILP solver as
a main ingredient, but extends the idea by
taking the solution of the LP relaxations into

account. At specified nodes of the branch-
and-bound tree, the current LP relaxation
solution x* and the incumbent x are com-
pared and all integer-constrained variables
that agree in value are fixed and projected
out of the MILP. In this way, such an MILP
is not only simplified but generally speaking
(provided the number of components fixed is
sufficiently large) it is also reduced in size.
This is probably the main difference between
LB and RINS, namely the fact that the former
performs a soft fixing by means of the cardi-
nality constraint (6), while in the latter the
fixing is hard with clear benefits associated
with dealing with smaller MILPs.

The RINS framework is also particularly
suitable for an integration within a classical
branch-and-bound (and then within classi-
cal MILP solvers) because it can be virtu-
ally invoked at any node of the tree where
solutions of the LP relaxations are always
different. Clearly, invoking the algorithm too
often would result in slowing down the over-
all running time for proving optimality, thus
RINS is only executed every L (say) nodes in
the tree. On the other hand, the size of the
resulting reduced MILP cannot be predicted
in advance and the MILP is solved only if the
reduction is relevant enough.

The distance induced neighborhood search
(DINS) approach by Ghosh [23] is a RINS
variant which takes an intermediate step
between LB and RINS by performing both
soft and hard fixing within the same algo-
rithm. The idea behind DINS is that the most
promising solutions are those “close” to the
solution of the continuous relaxation, thus
the neighborhood is defined by the distance
inequality

Z e — x| < Z Ixj — 71, (7

JjeBUG JjeBUG

where again x* and x denote the current LP
solution of the LP relaxation and the incum-
bent, respectively. For a variable x; such that
x; — xJ’f‘l < 0.5 the only way for the new solu-
tion to decrease its distance with respect
to x; is to hard fix it, that is, x; =Xx;. For
the other variables, instead, a rebounding
phase is performed before the neighborhood
is explored (as usual by means of a call to an
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external MILP solver), in which the bounds
on the variables are set so as the absolute
value of the distance between the new solu-
tion and X cannot increase. A bit more of
flexibility can be granted by allowing some
of the variables to increase their distance
but reducing the overall distance (as guaran-
teed by Equation 7). This is again obtained
by a sophisticated mixture of hard and soft
fixing.

The relaxation enforced neighborhood
search (RENS) scheme by Berthold [24] is
another RINS approach whose main charac-
teristic is to define a reduced MILP (to be
explored by a call to an external solver) as
the set of all integer solutions which can be
obtained by rounding a solution x* € P. More
precisely, for a given x* the reduced MILP is
constructed by

1. hard fixing those integer-constrained
variables whose current value is
already integer, that is, x; = xj’f,Vj el
where F' := {j:x}‘ = Lx;‘J,j e BUG};

2. rebounding the remaining variables by
using the two rounded values as lower
¢; and upper u;j bounds, that is, ¢; = |x7]
and u; = [x;fl forallje (BUG)\F.

Interestingly, RENS does not require an
incumbent solution to work with and it can
be used offline as a tool for the analysis of the
effectiveness of MILP rounding heuristics.
Note that pivot-and-shift [5] uses a similar
mechanism to restrict the range of the integer
variables depending on their LP value and
such a rebounding is similar to that of DINS
as well.

An Evolutionary Algorithm within MILP

The farthest (to date) step in the direction
of using metaheuristic ideas within an MILP
has been taken by Rothberg [25]. The result-
ing approach, often called polishing algo-
rithm, implements an evolutionary heuristic
which is invoked at selected nodes of a
branch-and-bound tree and includes all
classical ingredients of genetic computation.
More precisely,

e Population. A fixed-size population of
feasible solutions is maintained. Those

solutions are either obtained within the
tree (by other heuristics, including div-
ing) or computed by the polishing algo-
rithm itself.

e Combination. Two or more solutions
(the parents) are combined with the
aim of creating a new member of the
population (the child) with “improved”
characteristics. The RINS scheme is
adopted, that is, all variables whose
value coincides in the parents are fixed
and the reduced MILP is heuristically
solved by an external MILP solver
within a limited number of branch-
and-bound nodes. This scheme, clearly,
is much more time-consuming than a
classical combination step in evolution-
ary algorithms, but guarantees that
the child solution is feasible (for the
original problem).

e Mutation. A sufficient degree of diversi-
fication is guaranteed by performing a
classical mutation action which consists
in (i) selecting at random a seed solution
in the population, (ii) fixing at random
some of its variables, and (iii) heuristi-
cally solve the resulting reduced MILP.

e Selection. The parents’ selection is per-
formed in a simple way by randomly
picking a solution in the population and
then choosing, again at random, the sec-
ond one but only among those solutions
with a better objective value. Although
it is easy to extend this criterion to select
more than two parents, in Rothberg [25]
either two or all solutions are used as
parents, that is, in the latter case no
selection is performed.

The polishing algorithm is then a fully
general metaheuristic implemented within
an MILP framework and, in turn, making use
of an external MILP solver as main “engine.”
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