MIP heuristics in commercial solvers, part II

FICO Decisions

Pietro Belotti Xpress Solver Development, FICO

© 2018 Fair Isaac Corporation.

Outline

- Primal Dual Integral
- Heuristics in FICO-Xpress
- Local search: good neighborhoods
- Heuristic based on analytic center

2

© 2018 Fair Isaac Corporation.

How do we measure the added value of a primal heuristic?

- Time to optimality *t_{solved}* (or # BB nodes)
 - very much depends on dual bound
- Time to first solution t_1
 - disregards solution quality
- Time to best solution *t_{opt}*
 - nearly optimal solution might be found long before

3

We would like to assess the *impact* of a heuristic on the overall solve process.

Suppose x_{opt} is the optimal solution and the time limit is t_{max} .

Def.: the **primal gap** w.r.t. a solution \tilde{x} , defined as $\gamma(\tilde{x}) \in [0,1]$, is $\gamma(\tilde{x}) = \begin{cases} 0 & \text{if } c^T x_{opt} = c^T \tilde{x} \\ 1 & \text{if } c^T x_{opt} \cdot c^T \tilde{x} < 0 \\ |c^T (x_{opt} - \tilde{x})| \\ \max(|c^T x_{opt}|, |c^T \tilde{x}|) & \text{otherwise.} \end{cases}$

If $\tilde{x}(t)$ is the incumbent at time t, the **primal gap function** $p: [0, t_{max}] \rightarrow [0,1]$ is $p(t) = \begin{cases} 1 & \text{if no incumbent at } t \\ \gamma(\tilde{x}(t)) & \text{otherwise.} \end{cases}$

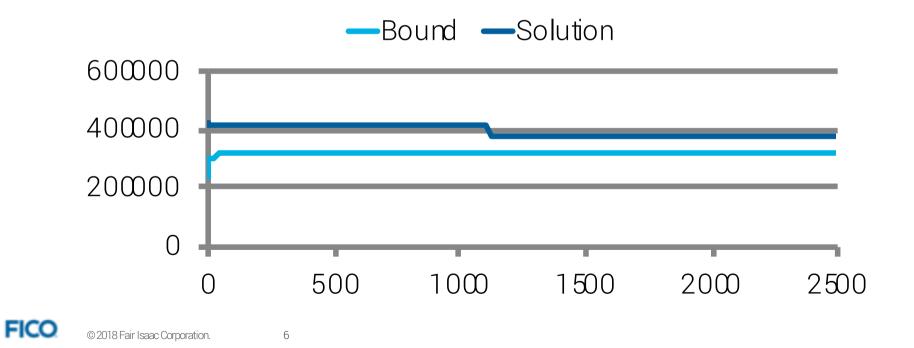
Primal integral

Integrating p(t) over [0, T] for $T \in [0, t_{max}]$ yields a measure of the heuristic:

$$P(T) = \int_0^T p(t)dt = \sum_{i=1}^I p(t_{i-1}) \cdot (t_i - t_{i-1})$$

- $P(t_{max}) \approx 0$: good solutions were found early in the solution process
- $P(t_{max}) \approx t_{max}$: solutions were either not found early or they were poor.
- It favors finding good solutions early
- Considers each update of incumbent
- $\frac{P(t_{max})}{t_{max}}$ is an indicator of the "average solution quality"
- We get the expected quality of the incumbent in case of timeout

- Includes the dual (lower for min. problems) bound in the measure
- Highlights the influence of the heuristics on the overall solve process
- Useful when optimal solution not known



- 1. Presolve
- 2. Run heuristic
- 3. LP solve
- 4. Select diving strategy by running different types
- 5. Cut + heuristic loop (diving, possibly local search)
- 6. Reconsider diving strategy, run all and select one to be run in the tree
- 7. Run heuristic: Local search RINS + MIP/LP-centered (aka "proximity search")
- 8. BB tree:
 - 1. RINS, diving, rounding-based heuristics

The workforce is broadly divided in

- "Diving": really means a combination of
 - Rounding
 - Fix + propagate
 - Diving
- Local search: Large Neighborhood Search or Variable Neighborhood search

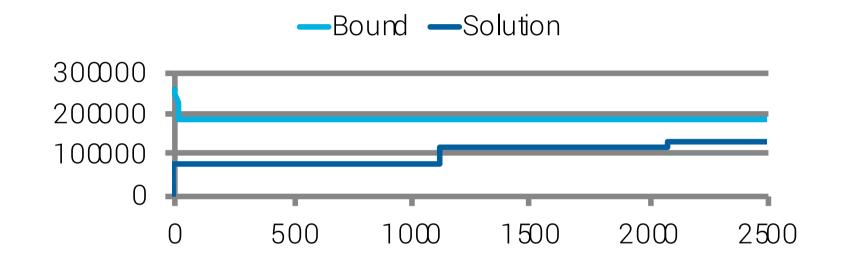
Heuristics in Xpress

- 4 Rounding/simple heuristics
- 10 Diving heuristics
- 3 Structural heuristics
- 2 Feasibility Pumps
- 4 Local search heuristics
- 1 User induced local search heuristic

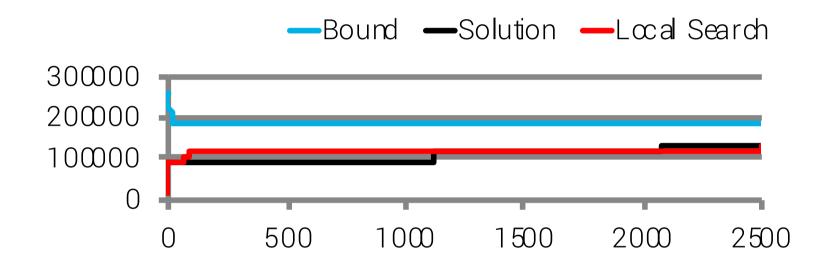
Many heuristics are off by default \rightarrow not sufficient benefit when solving to optimality.

Local search heuristics

- Problem is too large to wait for a single dive to complete
- Correct bad branching choices
- A good starting solution can benefit the branch-and-bound search
 - Useful for some special problem structures:
 - No duality gap, so can stop when an optimal solution is found ("lucky" heuristics)
 - When a good heuristic solution leads to lots of ready cost fixings and therefore a significant reduction in the problem
 - 25% slowdown in time to optimality on internal MIP benchmark set when switching all heuristics off



Hard user problem [*maximization*]. Initial improvement in bound from cutting Initial solution from simple heuristics, but better solutions found only through diving (~1000s per dive)



Local search heuristic can improve initial diving heuristic solution. Same quality solution with 50 sec. local search as 1000 sec. dive.

Basics of a Local Search Heuristics

- Given an existing MIP solution, x^*
 - Feasibility not required
 - Can be provided by a constructive heuristic (e.g. diving)
- Select one or more *critical* variables $C' \subseteq C^*$. C^* : subset of integer variables $x_j, j \in I$, such that x can be an improving solution only if $x_j \neq x_j^*$ for some $j \in C^*$
- Select a subset of variables $J' \subset J$, with $C' \subseteq J'$
- Solve the induced local search MIP by fixing all variables not in J' to x^* :

min
$$cx$$

s.t. $Ax \le b$
 $x_j = x_j^*, \forall j \in J \setminus J'$
 $x_j \in \mathbb{Z}, \forall j \in I$

Finding Critical Variables

• Given MIP solution x^* , fix integer variables and solve

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax \leq b \\ & l_j \leq x_j \leq u_j, \forall j \in J \\ & x_j = x_j^*, \forall j \in I \end{array}$$

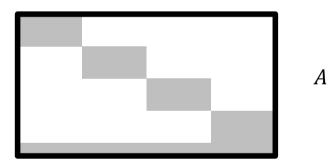
• Use reduced costs

$$r_j = c_j - c_B^T B^{-1} A_j, \forall j \in J$$

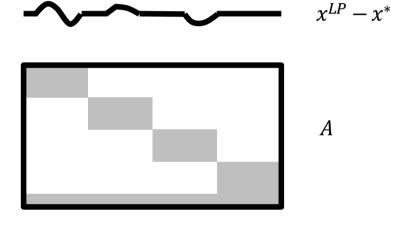
- Change $x^* \rightarrow x^* + \Delta x$ has approximate cost change $r \cdot \Delta x$
- $j \in I$ critical for x^* iff

$$r_j > 0$$
, $x_j^* > l_j$ of $r_j < 0$, $x_j^* < u_j$

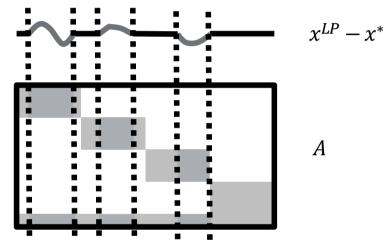
- Use an LP solution x^{LP} .
- Select subset J' as set of variables where x^{LP} and x^* differs.



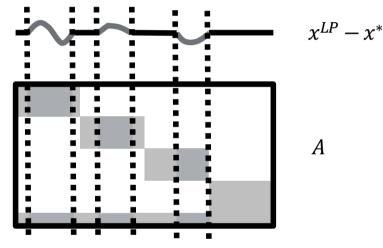
- Use an LP solution x^{LP} .
- Select subset J' as set of variables where x^{LP} and x^* differs.



- Use an LP solution x^{LP} .
- Select subset J' as set of variables where x^{LP} and x^* differs.



- Use an LP solution x^{LP} .
- Select subset J' as set of variables where x^{LP} and x^* differs.



- RINS (Relaxation Induced Neighborhood Search), Danna, Rothberg, Le Pape (2005)
- In practice, increase neighborhood to get an appropriately sized MIP.

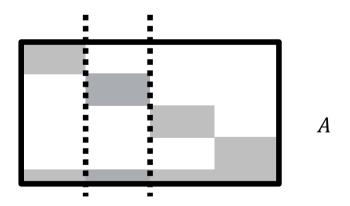
FICO © 2018 Fair Isaac Corporation. 18

Neighborhood Selection (2)

- For structured problems, look for related variables, e.g.:
 - Blocks of block-angular structure (stochastic models)
 - Time intervals for time-period formulations (unit commitment, lot sizing)
- 1. Select a random block or time interval
- 2. Re-optimize induced MIP
- 3. Repeat

Neighborhood Selection (2)

- For structured problems, look for related variables, e.g.:
 - Blocks of block-angular structure (stochastic models)
 - Time intervals for time-period formulations (unit commitment, lot sizing)
- 1. Select a random block or time interval
- 2. Re-optimize induced MIP
- 3. Repeat

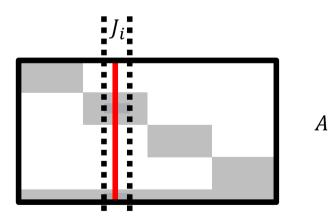


20

© 2018 Fair Isaac Corporation.

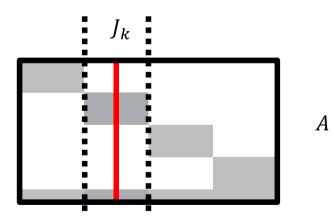
Building a Nice Neighborhood

- Create an initial neighborhood $J_0 \subseteq C^*$ containing one or more critical variables for x^* .
- Incrementally augment J_0 with variables closely connected to those in J_0 .
- Alternatively, rank variables $j \in J \setminus J_0$ based on connectivity to J_0 and exclude least connected variables.



Building a Nice Neighborhood

- Create an initial neighborhood $J_0 \subseteq C^*$ containing one or more critical variables for x^* .
- Incrementally augment J_0 with variables closely connected to those in J_0 .
- Alternatively, rank variables $j \in J \setminus J_0$ based on connectivity to J_0 and exclude least connected variables.

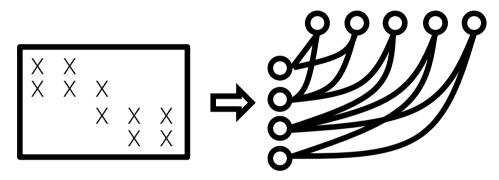


22

© 2018 Fair Isaac Corporation.

Building a Nice Neighborhood

• Translate variable relatedness problem into a graph connectivity problem on a bipartite graph:



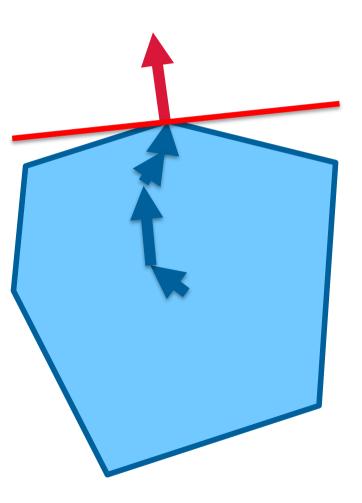
- Xpress uses both the weighted and unweighted graphs.
- 1. Start with initial set J_0 containing a critical node.
- 2. Rank other nodes according to connectivity.
- 3. Add most strongly connected node and repeat.

© 2018 Fair Isaac Corporation.

Interior point algorithm

 $\min c^T x$
s.t. Ax = b
 $x \ge 0$

- Iterate traverses the interior of the feasible region
- It follows the **central path**
- $\sim O(\log n)$ iterations



The Barrier Algorithm and the Analytic Center

min
$$c^T x - \mu \sum_{j=1}^n \ln x_j$$
 (log barrier)
s.t. $Ax = b$
 $x \ge 0$

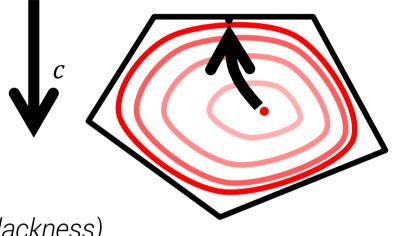
Solve KKT system:

$$Ax = b$$

$$A^{T}y - s = c$$

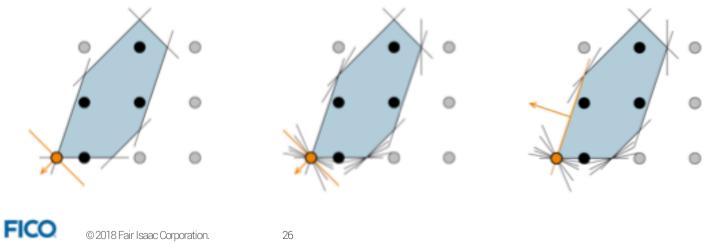
$$x_{j}s_{j} = \mu \quad j = 1, ..., n \quad (complementary slackness)$$

$$x, s \ge 0$$

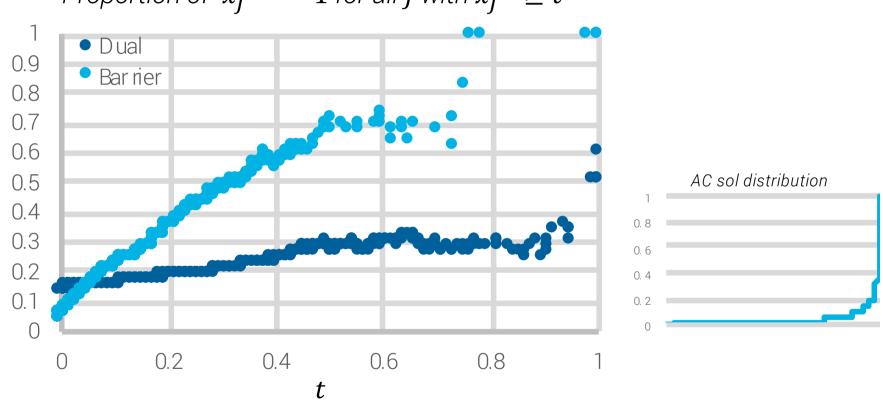


Analytic Center

- Strong convexity of log implies uniqueness
- Maximizes distance to boundary
- Can be computed by Barrier algorithm
- Without objective: Analytic center of polytope
- With objective: Analytic center of optimal face.
 - Interesting for highly dual degenerate problems.



Analytic Center Heuristic (example)



Proportion of $x_j^{MIP} = 1$ for all j with $x_j^{LP} \ge t$

© 2018 Fair Isaac Corporation.

Analytic Center Heuristic

FICO

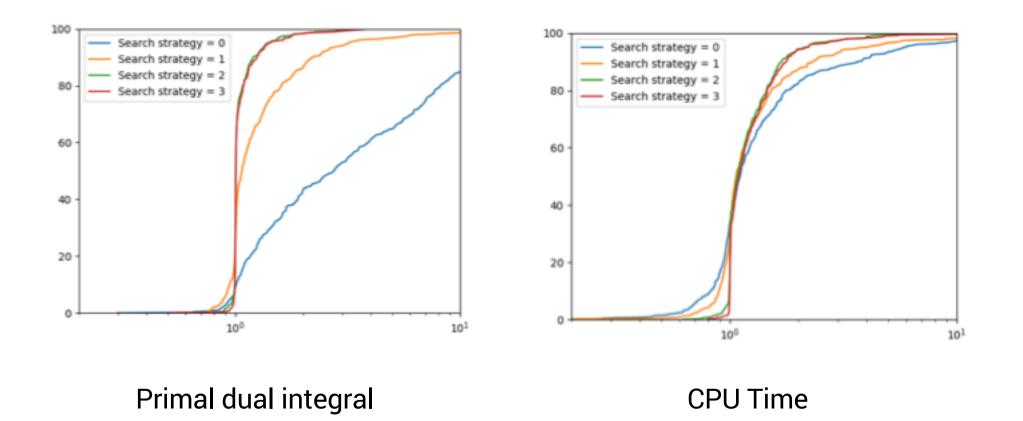
- "Classic", general integer interpretation of Analytic Center:
 - Middle of polyhedron likely to have feasible solutions in its vicinity → try rounding from the analytic center
- Our (binary-focused) interpretation:
 - Indicates the direction into which a variable is likely to move towards feasibility
 - Particularly interesting for variables that are likely to be 1 in a binary problem
 - Still, often not all of them can be set to 1 simultaneously

Analytic Center Heuristic

- Apply "soft rounding" by using the analytic center solution as auxiliary objective
 - Set objective coefficients proportionally to analytic center solution values
 - Tentatively fix some variables that are very close to one of their bounds
 - Apply restricted MIP solve
- Disregard original objective when creating analytic center solution
 - Makes heuristic useful for finding first feasible solution
 - Can be expensive, cf. Local Branching
 - Nicer interpretation than zero objective or objective flipping

42% benefit on H. Mittelmann's Feasibility Benchmark

Performance profiles



Performance profiles

